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On Unsettleable Arithmetical Problems
John H. Conway

Abstract. It has long been known that there are arithmetic statements that are true but not
provable, but it is usually thought that they must necessarily be complicated. In this paper, I
shall argue that these wild beasts may be just around the corner.

1. INTRODUCTION. Before Fermat’s Last Theorem was proved, there was some
speculation that it might be unprovable. Many people noticed that the theorem and
its negation have a different status. The negation asserts that for some n > 2 there is
an nth power that is the sum of two smaller ones: Exhibiting these numbers proves
the negation and disproves the theorem itself. So if one shows that the theorem is not
disprovable, then one also shows there exist no such nth powers and therefore that the
theorem is true.

However, the theorem could conceivably be true without being provable. In this
case, its unprovability could not itself be proved since such a proof would imply the
nonexistence of a counterexample.

The same sort of arguments applied to the Four Color Theorem and still apply
to Goldbach’s Conjecture, that every even number greater than 2 is the sum of two
primes. (In fact, Goldbach asserted this of every positive even number since he counted
1 as a prime.) There has never been any doubt that Goldbach’s conjecture is true be-
cause the evidence for it is overwhelming.

What are the simplest true assertions that are neither provable nor disprovable? I
shall use the term unsettleable because for more than a century the ultimate basis for
proof has been set theory. For some of my examples, it might even be that the assertion
that they are not provable is not itself provable and so on. Of course this means that
you shouldn’t expect to see any proofs! My examples are inspired by

2. THE COLLATZ 3n + 1 PROBLEM. Consider the Collatz function 1
2 n | 3n + 1,

whose value is 1
2 n if this is an integer and otherwise 3n + 1. I shall call this a “bipartite

linear function” because its value is one of two linear possibilities. The Collatz 3n + 1
problem is, “Does iterating this function always eventually lead to 1” (starting at a
positive integer)? It certainly does if we start at 7:

7→ 22→ 11→ 34→ 17→ 52→ 26→ 13→

40→ 20→ 10→ 5→ 16→ 8→ 4→ 2→ 1.

Tomás Oliveira e Silva has verified [4] that it does for all numbers less than 5× 1018.
There is a slight chance that this problem itself is unsettleable—some very similar
problems certainly are.

I generalize it by considering multipartite linear functions and the associated games
and problems. The value of the k-partite linear function

g(n) = g1(n) | g2(n) | · · · | gk(n)
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is the first one of the k linear functions gi (n) = ai n + bi that is integral (and is un-
defined if no gi (n) is integral). The corresponding Collatzian game is to repeatedly
replace n by g(n) until a predetermined number (1, say) is reached, or possibly g(n)
is undefined, when the game stops.

3. ARE THERE UNSETTLEABLE COLLATZIAN GAMES? There certainly
are. The proof is more technical than the rest of the paper, but the message is simple:
There is an explicit game with 24 simple linear functions for which there are numbers
n for which the game never stops, but this is not provable. Gödel’s famous Incom-
pleteness Theorem, published in 1931, shows that no consistent system of axioms can
prove every true arithmetical statement. In particular, it cannot prove an arithmetized
version of its own consistency statement. Turing translated this into his theorem about
computation—that the Halting Problem for an idealized model of computation is
undecidable.

Given these stupendous results, it is comparatively trivial to produce an unset-
tleable Collatzian game. In a 1972 paper “Unpredictable Iterations” [1], I showed
that any computation can be simulated by a Collatzian game of a very simple type,
namely a fraction game, where the multipartite linear function involved has the form
r1n | r2n | · · · | rkn determined by a sequence r1, r2, . . . , rn of rational numbers. The
later paper “Fractran: a Simple Universal Programming Language for Arithmetic” [2],
shows that the game whose fractions are:
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is universal in the sense that for any computable (technically, general recursive) func-
tion f (n), there is a constant c such that the game takes c · 22n

to 22 f (n)
. In this case we

define fc(n) to be f (n). Moreover, the result includes all partial recursive functions
(those that are not always defined) when we say that fc(n) is undefined if this game
does not stop or stops at a number not of the form 22m

.
From this it follows fairly easily that whatever consistent axioms we use to define

“settleable,” there is some number for which the game with one more fraction,
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never gets to 1, but this is not settleable. Instructions to the writer of a computer pro-
gram: If the machine succeeds in proving 0 = 1 from the nth axiom system, define
f (n) = 0, otherwise leave f (n) undefined. Then, precisely when the system is incon-
sistent, the 23-fraction game stops at 2, since 0 is the only possible value for f (n), and
so the 24-fraction one stops at 1.

What are the simplest Collatzian games that we can expect to be unsettleable? I
think I have one answer.

4. THE AMUSICAL PERMUTATION. The amusical permutation µ(n) maps
2k 7→ 3k, 4k + 1 7→ 3k + 1, and 4k − 1 7→ 3k − 1. This is obviously a tripartite
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linear function, since every number is uniquely of one of the three forms on the
left-hand side. Since every number is also uniquely of one of the forms on the right-
hand side, µ−1 is equally a tripartite linear function and so µ is a permutation. In
the abbreviated notation, the amusical permutation is 3n

2 |
3n+1

4 |
3n−1

4 and its inverse
is 2n

3 |
4n+1

3 |
4n−1

3 . Using {r} for the nearest integer to r , we could abbreviate the
permutation µ still further to 3n

2 | {
3n
4 } and µ−1 to 2n

3 | {
4n
3 }, but this might obscure the

fact that µ and µ−1 are tripartite rather than bipartite linear functions.
In the usual cycle notation (including possibly infinite cycles), µ begins

(1) (2, 3) (4, 6, 9, 7, 5) (44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59)

(. . . , 91, 68, . . . , 86, . . . , 97, 73, 55, 41, 31, 23, 17, 13, 10, 15, 11, 8,
12, 18, 27, 20, 30, 45, 34, 51, 38, 57, 43, 32, 48, 72, . . .)

(. . . , 77, 58, 87, 65, 49, 37, 28, 42, 63, 47, 35, 26, 39, 29, 22, 33, 25, 19, 14, 21, 16,
24, 36, 54, 81, 61, 46, 69, 52, 78, . . . , 88, . . . , 94, . . . , 89, 67, 50, 75, 56, 84, . . .)

(. . . , 98, . . . , 100, . . . , 95, 71, 53, 40, 60, 90, . . . , 76, . . .)

(. . . , 85, 64, 96, . . .) (. . . , 80, . . .) (. . . , 92, . . . , 82, . . .)

wherein the smallest element in each cycle is highlighted. I have shown what seem to
be all the finite cycles and the first six infinite ones, so as to include all numbers up
to 100.

Strictly speaking, I do not know that these statements are true. For instance, the
cycle containing 8 might be finite, or might be the same as the one containing 14.
However, the numbers in both of these cycles have been followed in each direction
until they get larger than 10400 and it’s obvious that they will never again descend below
100. We need a name for this kind of obviousness: I suggest probvious, abbreviating
“probabilistically obvious.”

Figure 1 makes this even more clear. It shows the cycles containing 8, 14, 40, 64,
80, and 82 on a logarithmic scale against applications of µ. These six curves have been

-20000 -10000 0 10000 20000

Figure 1. Cycles from 8, 14, 40, 64, 80, and 82 for 20 000 iterations
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separated since on the scale displayed their least points are all indistinguishable from
1.∗ The spots indicate where they pass 10400. In both directions the growth is exponen-
tial, and µ has a slightly faster rate than µ−1. How can these facts be explained?

Let’s consider what is probably the case when the numbers get large. Since a
number n is equally likely to be even or odd, it will be multiplied on average by√

3
2 ×

3
4 =

√
9
8 per move. In twelve moves the expected factor is:

312

218
=

531 441

262 144
≈ 2.027.

For µ−1 we multiply by 2
3 in one case out of three and 4

3 in the other two cases, so the
expected increase in three moves is 32

27 and the expected increase in twelve moves is:

324

274
=

220

312
=

1 048 576

531 441
≈ 1.973.

Taking these two numbers to be 2 explains the name “amusical.” On a piano there
are twelve notes per octave, which represents a doubling of frequency, just as twelve
steps of the amusical permutation approximately doubles a number, on average. A
frequency ratio of

312

219
=

531 441

524 288
≈ 1.0136

is called the “Pythagorean comma,” and is that between B-flat and A-sharp and other
pairs of “enharmonically equivalent” notes. So there really is a connection with music.
However, since the series always ascends by a fifth modulo octaves, it does not sound
very musical, and it has amused me to call it amusical.

5. AMUSICAL UNSETTLEABILITIES? The simplest assertion about µ that I be-
lieve to be true but unsettleable is that 8 belongs to an infinite cycle.

Why is this true? Because the assertion that the logarithm ofµn(8) increases linearly
is amply verified by Figure 1, and nobody can seriously believe that µn(8), having
already surpassed 10400, will miraculously decrease to 8 again (Figure 2, produced
after this text was written, shows that after 200 000 iterations it even surpasses 105000).
Being true, the assertion will not be disprovable.

If a Collatzian game does not terminate, is there a proof that it does not terminate?
The 24 fraction game of Section 3 (which was improved to 7 fractions by John Rickard
[3]) shows that in general the answer is no. In general, if a Collatzian game does not
stop, then there is no proof of this. So one should not expect the cycle of 8 to be
provably infinite in the absence of any reason why it should be. After all, there is a
very small positive probability that for some very large positive numbers M and N ,
µM(8) might just happen to be the same googol digit number as µ−N (8).

Some readers will still be disappointed not to be given proofs, despite the warning in
the Introduction that this is clearly impossible. I leave such readers with the intriguing
thought that the proportion of fallacies in published proofs is far greater than the small
positive probability mentioned in the previous paragraph.
∗The visible kink in the graph of the 82 cycle corresponds to the remarkable decrease (by a factor of more

than 75989) from µ1981(82) = 5 518 82 09 452 689 749 562 442 051 558 599 474 342 616 171 049
802 024 438 847 761≈ 5.519 · 1063 to µ2208(82) = 72 625 599 594 039 327 995 887 556 149 205 597
399 175 812 389 461 574 936 396 ≈ 7.263 · 1058. Admittedly this decrease by a factor of more than 216

where an increase of almost 219 was to be expected casts some doubt on the probabilistic arguments in the text.
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-200000 -100000 0 100000 200000

Figure 2. The same cycles for 200 000 iterations, showing much greater regularity in the long run, and further
confirming the probabilistic predictions

APPENDIX 1: Is the 3n + 1 problem settleable? The 3n + 1 game presents special
features, in that the probabilistic arguments suggest that large numbers decrease, rather
than increase as in the amusical permutation. If this were provable, the conjecture
would be settled by being provable. There is some slight hope that this might happen.
The celebrated Hardy-Littlewood circle method often makes it possible to prove results
that are predicted probabilistically.

Its most spectacular application has been Vinogradov’s proof that every sufficiently
large odd number is the sum of 3 primes. The method applies more generally to find
the number of representations of a number n as a sum of a given number of numbers
of some special form (primes, kth-powers, . . . ). Their estimate for this number takes
the form P + E , where P is a probabilistic estimate and E an error term. One hopes
to prove that |E | < P so that there is a representation.

P turns out to be a product containing factors Pp, where Pp (for prime p) is the
probability that n is p-adically (i.e., modulo all powers of p) the sum of the given
number of numbers of that form. (There is also a factor P∞, which is the proportion of
numbers near to N that are representable.) In other words, P is just what one would
naively expect from probabilistic considerations analogous to the ones we used for the
amusical permutation.

It is not entirely inconceivable that such a method might one day prove the Col-
latz 3n + 1 Conjecture, since all one has to do is prove that large enough numbers
eventually reduce. However, I don’t really believe it.

These remarks do not apply to the amusical permutation, whose behavior would not
be established even if one proved that almost all large numbers tend to increase, since,
for instance, the number obtained by applying µ a million times to 8 might just be the
same as the number obtained by applying µ−1 rather more times to 8 or 14, in which
case the cycle containing 8 would be either finite or the same as the cycle containing
14. This probviously doesn’t happen, but we can’t expect to prove it, and there’s no
reason to expect that either it or its negative follows the Zermelo–Fraenkel Axioms or
any likely extension of them. In other words, it’s probviously unsettleable.

Some other things are probvious but with a slightly smaller probability. For in-
stance, there is probviously an algorithm for telling whether n belongs to a finite cycle.
Just ask whether n is one of the twenty numbers:

1, 2, 3, 4, 5, 6, 7, 9, 44, 59, 62, 66, 70, 74, 79, 83, 93, 99, 105, 111;
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if so, say “yes,” if not, “no.” If there is another finite cycle this algorithm fails, but the
answer will still be computable unless there are infinitely many finite cycles, which
there very probviously aren’t.

I’ve already suggested that the assertion that 8 is in an infinite cycle, although prob-
vious, is unsettleable. I now propose that this unsettleability assertion is itself unprov-
able, and therefore unsettleable and so on arbitrarily far into the metatheory.

Even if this is wrong, mathematics is not defined by any system of set theoretical
axioms. In particular, it is likely that some simple Collatzian problems (possibly even
the 3n + 1 problem itself) will remain forever unsettleable.

APPENDIX 2: Some amusical paradoxes. With some relief let’s put deep problems
aside to discuss some simple puzzles about the behavior of the amusical permutation.
We have already noticed the “Either-way-up paradox,” that the numbers in the typical
cycle increase no matter which way we move along the cycle. It’s not really paradox-
ical, as Figure 1 shows. No matter where we start on the cycle and no matter which
direction we move, we’ll eventually pass the minimum and after that we go up.

Here is the “Congruence Paradox.” Since n < µ(n) just if n is even and n < µ−1(n)
just if n is not a multiple of 3, it satisfies both these inequalities (and so is a local min-
imum) just if n ≡ ±2 (mod 6), which happens in exactly one third of cases: Right?
Maybe not. It satisfies neither inequality just if n ≡ 3 (mod 6) and so is a local maxi-
mum in exactly one sixth of the cases. But in any sequence local minima and maxima
alternate, so there should be just as many of each. So which is right: Do we get these
turning points every third term or every sixth term?

Let’s think again. Whenever an increase is followed by a decrease we get a maxi-
mum, and since increases and decreases are equally likely, we should get a maximum
one quarter of the time and the same argument applies to minima, which happen when
a decrease is followed by an increase. So these things both happen once in four moves
rather than once in either three or six! We can get yet another answer by thinking back-
wards, when the two probabilities are 2

3 and 1
3 , leading to the conclusion that maxima

and minima both occur once every 4 1
2 moves.

What these arguments prove is not really paradoxical. If one follows a typical num-
ber one sees both maxima and minima equally often, namely once every four moves
going forwards or once every 4 1

2 backwards. We leave it to the reader to explain why
neither of these answers (once in 4 or 4 1

2 ) agrees with either of the answers (once in 3
or 6) given by the Congruence Paradox.

Since the apparent contradictions are based on our experience with finite cycles,
one might think that they could be turned around to prove that most cycles are infinite,
or that at least there are some infinite cycles. However, having thought about it, I still
believe that these problems are unsettleable.

If you disagree try to prove or disprove either of the following statements.

1. There is a new finite cycle.

2. There is an infinite cycle.

ACKNOWLEDGMENTS. Alex Ryba deserves many thanks for his invaluable help in producing this paper.
I would also like to thank Dierk Schleicher for having produced the pictures.

POSTSCRIPT. Added June 8th, 2012. The following argument has convinced me
that the Collatz 3n + 1 Conjecture is itself very likely to be unsettleable, rather than
this merely having the slight chance mentioned above. It uses the fact that there are
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arbitrarily tall “mountains” in the graph of the Collatz game. To see this, observe that
2m − 1 passes in two moves to 3m − 1, from which it follows that 2km − 1 passes
in 2k moves to 3km − 1. Now by the Chinese Remainder Theorem we can arrange
that 3km − 1 has the form 2ln, which passes by l moves to n. There is a very slight
possibility that n happens to be the same as the number 2km − 1 that we started with.
Let’s suppose that the starting number 2km − 1 is about a googol; then the downward
slope of the mountain certainly contains a number between one and two googols, so
the chance that this is the same as the starting number is at least one googolth. (This
is justified by observations for smaller n showing that the first iterate that lies in the
range [n, 2n) is approximately uniformly distributed in this range.) In my view the
fact that this probability, though very small, is positive, makes it extremely unlikely
that there can be a proof that the Collatz game has no cycles that contain only large
numbers. This should not be confused with a suggestion that there actually are cycles
containing large numbers. After all, events whose probability is around one googolth
are distinctly unlikely to happen!

I don’t want readers to take these words on trust but rather to encourage those who
don’t find them convincing to try even harder to prove the Collatz Conjecture!
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