

Kestrels, Quirky Birds, and Hopeless
Egocentricity
Raganwald’s collected adventures in Combinatory Logic
and Ruby Meta-Programming

Reginald Braithwaite

This book is for sale at http://leanpub.com/combinators

This version was published on 2013-10-01

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2011 - 2013 Reginald Braithwaite

http://leanpub.com/combinators
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Reginald Braithwaite by spreading the word about this book on Twitter!

The suggested hashtag for this book is #combinators.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search/#combinators

http://twitter.com
https://twitter.com/search/#combinators
https://twitter.com/search/#combinators

Also By Reginald Braithwaite
What I’ve Learned From Failure

How to Do What You Love & Earn What You’re Worth as a Programmer

CoffeeScript Ristretto

JavaScript Allongé

http://leanpub.com/u/raganwald
http://leanpub.com/shippingsoftware
http://leanpub.com/dowhatyoulove
http://leanpub.com/coffeescript-ristretto
http://leanpub.com/javascript-allonge

Contents

0.1 The MIT License . 1
0.2 Preface . 1

1 Introduction . 2

2 Kestrels . 3
2.1 Object initializer blocks . 4
2.2 Inside, an idiomatic Ruby Kestrel . 5
2.3 The Enchaining Kestrel . 6
2.4 The Obdurate Kestrel . 9
2.5 Kestrels on Rails . 10
2.6 Rewriting “Returning” in Rails . 11

3 The Thrush . 16
3.1 Let . 17

4 Songs of the Cardinal . 19
4.1 Building a Cardinal in Ruby . 20

5 Quirky Birds and Meta-Syntactic Programming . 23
5.1 A limited interpretation of the Quirky Bird in Ruby 25
5.2 Embracing the Quirky Bird . 27
5.3 Andand even more . 29

6 Aspect-Oriented Programming in Ruby using Combinator Birds 32
6.1 Giving methods advice . 33
6.2 The super keyword, perhaps you’ve heard of it? . 35
6.3 The Queer Bird . 37

7 Mockingbirds . 40
7.1 Duplicative Combinators . 40
7.2 Recursive Lambdas in Ruby . 41
7.3 Recursive Combinatorics . 42
7.4 Recursive Combinators in Idiomatic Ruby . 45
7.5 The Mockingbird . 45

CONTENTS

8 Refactoring Methods with Recursive Combinators . 47
8.1 Divide and Conquer . 48
8.2 The Merge Sort . 54
8.3 Separating Declaration from Implementation . 57
8.4 Practical Recursive Combinators . 57
8.5 Spicing things up . 60
8.6 Building on a legacy . 65
8.7 Seriously . 66
8.8 Separating Implementation from Declaration . 69
8.9 A Really Simple Recursive Combinator . 71

9 You can’t be serious!? . 74
9.1 String to Proc . 75
9.2 The Message . 79

10 The Hopelessly Egocentric Book Chapter . 81
10.1 Object-oriented egocentricity . 81

11 Bonus Chapter: Separating Concerns in Coffeescript using Aspect-Oriented Pro-
gramming . 87

12 Appendix: Finding Joy in Combinators . 93
12.1 Languages for combinatorial logic . 93
12.2 Concatenative languages . 96

13 Appendix: Source Code . 98
13.1 kestrels . 98
13.2 thrushes . 99
13.3 the cardinal . 100
13.4 quirky birds . 101
13.5 bluebirds . 108

14 About The Author . 116
14.1 contact . 116

CONTENTS 1

0.1 The MIT License

All contents Copyright (c) 2004-2011 Reg Braithwaite except as otherwise noted.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Softwarewithout restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM,OUTOFOR INCONNECTIONWITHTHE SOFTWAREORTHEUSEOROTHER
DEALINGS IN THE SOFTWARE.

http://www.opensource.org/licenses/mit-license.php

Cover photo © 2009 Jack Wolf

http://www.flickr.com/photos/wolfraven/3294145307

0.2 Preface

The chapters of this book originally appeared as blog posts. You can still read them online, for free, at
http://github.com/raganwald/homoiconic¹. The original posts were released under the MIT license,
you you can pass them around or incorporate them into your own works as you see fit. I decided to
publish these essays as an e-book as well as online. This format doesn’t replace the original online
essays, it’s a way to present these essays in a more coherent whole that’s easier to read consecutively.
I hope you like it.

–Reginald “Raganwald” Braithwaite², Toronto, November 2011

¹http://github.com/raganwald/homoiconic
²http://braythwayt.com

http://github.com/raganwald/homoiconic
http://braythwayt.com
http://github.com/raganwald/homoiconic
http://braythwayt.com

1 Introduction
Like the Lambda Calculus, Combinatory Logic¹ is a mathematical notation that is powerful enough
to handle set theory and issues in computability.

Combinatory logic is a notation introduced byMoses Sch��nfinkel² and Haskell Curry³
to eliminate the need for variables in mathematical logic. It has more recently been
used in computer science as a theoretical model of computation and also as a basis
for the design of functional programming languages. It is based on combinators. A
combinator is a higher-order function that uses only function application and earlier
defined combinators to define a result from its arguments.

In this book, we’re going to meet some of the standard combinators, and for each one we’ll
explore some of its ramifications when writing programs using the Ruby programming language. In
Combinatory logic, combinators combine and alter each other, and our Ruby examples will focus on
combining and altering Ruby code. From simple examples like the K Combinator and Ruby’s .tap
method, we’ll work our way up to meta-programming with aspects and recursive combinators.

about the bird names

When Combinatory Logic was first invented by Haskell Curry, the standard combinators were given
upper-case letters. For example, the two combinators needed to express everything in the Lambda
Calculus and in Set Theory are the S and K combinators. In 1985, Raymond Smullyan published To
Mock a Mockingbird⁴, an exploration of combinatory logic for the recreational layman. Smullyan
used a forest full of songbirds as a metaphor, with each of the combinators given the name of a
songbird rather than a single letter. For example, the S and K combinators became the Starling and
Kestrel, the I combinator became the Idiot bird, and so forth.

These ornithological nicknames have become part of the standard lexicon for combinatory logic.

thanks

There are too many people to name,but amongst the crowd, Alan Smith stands out.

¹http://en.wikipedia.org/wiki/Combinatory_logic
²http://en.wikipedia.org/wiki/Moses_Sch��nfinkel
³http://en.wikipedia.org/wiki/Haskell_Curry
⁴http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=

B00A1P096Y&linkCode=as2&tag=raganwald001-20

http://en.wikipedia.org/wiki/Combinatory_logic
http://en.wikipedia.org/wiki/Moses_Schรถnfinkel
http://en.wikipedia.org/wiki/Haskell_Curry
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20
http://en.wikipedia.org/wiki/Combinatory_logic
http://en.wikipedia.org/wiki/Moses_Schรถnfinkel
http://en.wikipedia.org/wiki/Haskell_Curry
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20

2 Kestrels
In Combinatory Logic, a Kestrel (or “K Combinator”) is a function that returns a constant function,
normally written Kxy = x. In Ruby, it might look like this:

for *any* x,

kestrel.call(:foo).call(x)

=> :foo

Kestrels are to be found in Ruby. You may be familiar with their Ruby 1.9 name, #tap. Let’s say you
have a line like address = Person.find(...).address and you wish to log the person instance.
With tap, you can inject some logging into the expression without messy temporary variables:

address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address

tap is a method in all objects that passes self to a block and returns self, ignoring whatever the last
item of the block happens to be. Ruby on Rails programmers will recognize the Kestrel in slightly
different form:

address = returning Person.find(...) do |p|

logger.log "person #{p} found"

end.address

Again, the result of the block is discarded, it is only there for side effects. This behaviour is the
same as a Kestrel. Remember kestrel.call(:foo).call(x)? If I rewrite it like this, you can see the
similarity:

Kestrel.call(:foo) do

x

end

=> :foo

Both returning and tap are handy for grouping side effects together. Methods that look like this:

Kestrels 4

def registered_person(params = {})

person = Person.new(params.merge(:registered => true))

Registry.register(person)

person.send_email_notification

person

end

Can be rewritten using returning:

def registered_person(params = {})

returning Person.new(params.merge(:registered => true)) do |person|

Registry.register(person)

person.send_email_notification

end

end

It is obvious from the first line what will be returned and it eliminates an annoying error when the
programmer neglects to make person the last line of the method.

2.1 Object initializer blocks

The Kestrel has also been sighted in the form of object initializer blocks. Consider this example using
Struct¹:

Contact = Struct.new(:first, :last, :email) do

def to_hash

Hash[*members.zip(values).flatten]

end

end

The method Struct#new creates a new class. It also accepts an optional block, evaluating the block
for side effects only. It returns the new class regardless of what happens to be in the block (it happens
to evaluate the block in class scope, a small refinement).

You can use this technique when writing your own classes:

¹http://blog.grayproductions.net/articles/all_about_struct

http://blog.grayproductions.net/articles/all_about_struct
http://blog.grayproductions.net/articles/all_about_struct

Kestrels 5

class Bird < Creature

def initialize(*params)

do something with the params

yield self if block_given?

end

end

Forest.add(

Bird.new(:name => 'Kestrel) { |k| combinators << k }

)

The pattern of wanting a Kestrel/returning/tap when you create a new object is so common that
building it into object initialization is useful. And in fact, it’s built into ActiveRecord. Methods like
new and create take optional blocks, so you can write:

class Person < ActiveRecord::Base

...

end

def registered_person(params = {})

Person.new(params.merge(:registered => true)) do |person|

Registry.register(person)

person.send_email_notification

end

end

In Rails, returning is not necessary when creating instances of your model classes, thanks to
ActiveRecord’s built-in object initializer blocks.

2.2 Inside, an idiomatic Ruby Kestrel

Whenwe discussed Struct above, we noted that its initializer block has a slightly different behaviour
than tap or returning. It takes an initializer block, but it doesn’t pass the new class to the block as
a parameter, it evaluates the block in the context of the new class.

Putting this into implementation terms, it evaluates the block with self set to the new class. This
is not the same as returning or tap, both of which leave self untouched. We can write our own
version of returning with the same semantics. We will call it inside:

Kestrels 6

module Kernel

def inside(value, &block)

value.instance_eval(&block)

value

end

end

You can use this variation on a Kestrel just like returning, only you do not need to specify a
parameter:

inside [1, 2, 3] do

uniq!

end

=> [1, 2, 3]

This isn’t particularly noteworthy. Of more interest is your access to private methods and instance
variables:

sna = Struct.new('Fubar') do

attr_reader :fu

end.new

inside(sna) do

@fu = 'bar'

end

=> <struct Struct::Fubar >

sna.fu

=> 'bar'

inside is a Kestrel just like returning. No matter what value its block generates, it returns its
primary argument. The only difference between the two is the evaluation environment of the block.

2.3 The Enchaining Kestrel

In Kestrels, we looked at #tap from Ruby 1.9 and returning from Ruby on Rails. No we’ll going to
look at another use for tap. As already explained, Ruby 1.9 includes the new method Object#tap.
It passes the receiver to a block, then returns the receiver no matter what the block contains. The
canonical example inserts some logging in the middle of a chain of method invocations:

Kestrels 7

address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address

Object#tap is also useful when you want to execute several method on the same object without
having to create a lot of temporary variables, a practice Martin Fowler calls [Method Chain-
ing](http://martinfowler.com/dslwip/MethodChaining.html “”). Typically, you design such an ob-
ject so that it returns itself in response to every modifier message. This allows you to write things
like:

HardDrive.new.capacity(150).external.speed(7200)

Instead of:

hd = HardDrive.new

hd.capacity = 150

hd.external = true

hd.speed = 7200

And if you are a real fan of the Kestrel, you would design your class with an object initializer block
so you could write:

hd = HardDrive.new do

@capacity = 150

@external = true

@speed = 7200

end

But what do you do when handed a class that was not designed with method chaining in mind?
For example, Array#pop returns the object being popped, not the array. Before you validate every
criticism levelled against Ruby for allowing programmers to rewrite methods in core classes,
consider using #tap with Symbol#to_proc or String#to_proc to chain methods without rewriting
them.

So instead of

def fizz(arr)

arr.pop

arr.map! { |n| n * 2 }

end

We can write:

Kestrels 8

def fizz(arr)

arr.tap(&:pop).map! { |n| n * 2 }

end

I often use #tap to enchain methods for those pesky array methods that sometimes do what you
expect and sometimes don’t. My most hated example is Array#uniq!²:

arr = [1,2,3,3,4,5]

arr.uniq, arr

=> [1,2,3,4,5], [1,2,3,3,4,5]

arr = [1,2,3,3,4,5]

arr.uniq!, arr

=> [1,2,3,4,5], [1,2,3,4,5]

arr = [1,2,3,4,5]

arr.uniq, arr

=> [1,2,3,4,5], [1,2,3,4,5]

arr = [1,2,3,4,5]

arr.uniq!, arr

=> nil, [1,2,3,4,5]

Let’s replay that last one in slow motion:

[1, 2, 3, 4, 5].uniq!

=> nil

That might be a problem. For example:

[1,2,3,4,5].uniq!.sort!

=> NoMethodError: undefined method `sort!' for nil:NilClass

Object#tap to the rescue: When using a method like #uniq! that modifies the array in place and
sometimes returns the modified array but sometimes helpfully returns nil, I can use #tap to make
sure I always get the array, which allows me to enchain methods:

[1,2,3,4,5].tap(&:uniq!).sort!

=> [1,2,3,4,5]

So there’s another use for #tap (along with Symbol#to_proc for simple cases): We can use it when
we want to enchain methods, but the methods do not return the receiver.

²http://ruby-doc.org/core/classes/Array.html#M002238

http://ruby-doc.org/core/classes/Array.html#M002238
http://ruby-doc.org/core/classes/Array.html#M002238

Kestrels 9

In Ruby 1.9, #tapworks exactly as described above. Ruby 1.8 does not have #tap, but you
can obtain it by installing the andand gem. This version of #tap also works like a Quirky
Bird, so you can write things like HardDrive.new.tap.capacity(150) for enchaining
methods that take parameters and/or blocks. To get andand, sudo gem install andand.
Rails users can also drop andand.rb in config/initializers.

2.4 The Obdurate Kestrel

The andand gem³ includes Object#tap for Ruby 1.8. It also includes another kestrel called #dont.
Which does what it says, or rather doesn’t do what it says.

:foo.tap { p 'bar' }

bar

=> :foo # printed 'bar' before returning a value!

:foo.dont { p 'bar' }

=> :foo # without printing 'bar'!

Object#dont simply ignores the block passed to it. So what is it good for? Well, remember our
logging example for #tap?

address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address

Let’s turn the logging off for a moment:

address = Person.find(...).dont { |p| logger.log "person #{p} found" }.address

And back on:

address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address

I typically use it when doing certain kinds of primitive debugging. And it has another trick up its
sleeve:

arr.dont.sort!

Look at that, it works with method calls like a quirky bird! So you can use it to NOOPmethods. Now,
you could have done that with Symbol#to_proc:

³http://github.com/raganwald/andand/tree

http://github.com/raganwald/andand/tree
http://github.com/raganwald/andand/tree

Kestrels 10

arr.dont(&:sort!)

But what about methods that take parameters and blocks?

JoinBetweenTwoModels.dont.create!(...) do |new_join|

...

end

Object#dont is the Ruby-semantic equivalent of commenting out a method call, only it can be
inserted inside of an existing expression. That’s why it’s called the obdurate kestrel. It refuses to do
anything!

If youwant to try Object#dont, or want to use Object#tapwith Ruby 1.8, sudo gem install andand.
Rails users can also drop andand.rb in config/initializers as mentioned above. Enjoy!

2.5 Kestrels on Rails

As mentioned, Ruby on Rails provides #returning, a method with K Combinator semantics:

returning(expression) do |name|

name is bound to the result of evaluating expression

this block is evaluated and the result is discarded

end

=> # the result of evaluating the expression is now returned

Rails also provides object initializer blocks for ActiveRecord models. Here’s an example from one of
my unit tests:

@board = Board.create(:dimension => 9) do |b|

b['aa'] = 'black'

b['bb'] = 'black'

b['cb'] = 'black'

b['da'] = 'black'

b['ba'] = 'white'

b['ca'] = 'white'

end

So, it looks like in Rails you can choose between an object initializer block and #returning:

Kestrels 11

@board = returning(Board.create(:dimension => 9)) do |b|

b['aa'] = 'black'

b['bb'] = 'black'

b['cb'] = 'black'

b['da'] = 'black'

b['ba'] = 'white'

b['ca'] = 'white'

end

In both cases the created object is returned regardless of what the block would otherwise return.
But beyond that, the two Kestrels have very different semantics. “Returning” fully evaluates the
expression, in this case creating the model instance in its entirety, including all of its callbacks. The
object initializer block, on the other hand, is called as part of initializing the object before starting
the lifecycle of the object including its callbacks.

“Returning” is what you want when you want to do stuff involving the fully created object and you
are trying to logically group the other statements with the creation. In my case, that’s what I want, I
am trying to say that @board is a board with black stones on certain intersections and white stones
on other intersections.

Object initialization is what youwant when youwant to initialize certain fields by hand and perform
some calculations or logic before kicking off the object creation lifecycle. That wasn’t what I wanted
in this case because my []=method depended on the object being initialized. So my code had a bug
that was fixed when I changed from object initializers to #returning.

Summary: In Rails, object initializers are evaluated before the object’s life cycle is started, #return-
ing’s block is evaluated afterwards. And that is today’s lingua obscura.

2.6 Rewriting “Returning” in Rails

One of the most useful tools provided by Ruby on Rails is the #returning method, a simple but very
useful implementation of the K Combinator or Kestrel. For example, this:

def registered_person(params = {})

person = Person.new(params.merge(:registered => true))

Registry.register(person)

person.send_email_notification

person

end

Can and should be expressed using #returning as this:

Kestrels 12

def registered_person(params = {})

returning Person.new(params.merge(:registered => true)) do |person|

Registry.register(person)

person.send_email_notification

end

end

Why? Firstly, you avoid the common bug of forgetting to return the object you are creating:

def broken_registered_person(params = {})

person = Person.new(params.merge(:registered => true))

Registry.register(person)

person.send_email_notification

end

This creates the person object and does the initialization you want, but doesn’t actually return it
from the method, it returns whatever #send_email_notification happens to return. If you’ve worked
hard to create fluent interfaces youmight be correct by accident, but #send_email_notification could
just as easily return the email it creates. Who knows?

Second, in methods like this as you read from top to bottom you are declaring what the method
returns right up front:

def registered_person(params = {})

returning Person.new(params.merge(:registered => true)) do # ...

...

end

end

It takes some optional params and returns a new person. Very clear. And the third reason I like
#returning is that it logically clusters the related statements together:

returning Person.new(params.merge(:registered => true)) do |person|

Registry.register(person)

person.send_email_notification

end

It is very clear that these statements are all part of one logical block. As a bonus, my IDE respects
that and it’s easy to fold them or drag them around as a single unit. All in all, I think #returning is
a big win and I even look for opportunities to refactor existing code to use it whenever I’m making
changes.

Kestrels 13

DWIM

All that being said, I have observed a certain bug or misapplication of #returning from time to time.
It’s usually pretty subtle in production code, but I’ll make it obvious with a trivial example. What
does this snippet evaluate to?

returning [1] do |numbers|

numbers << 2

numbers += [3]

end

This is the kind of thing that sadistic interviewers use in coding quizzes. The answer is [1, 2], not [1,
2, 3]. The << operator mutates the value assigned to the numbers variable, but the += statement
overwrites the reference assigned to the numbers variable without changing the original value.
#returning remembers the value originally assigned to numbers and returns it. If you have some
side-effects on that value, those count. But assignment does nothing to the value.

This may seem obvious, but in my experience it is a subtle point that causes difficulty. Languages
with referential transparency escape the confusion entirely, but OO languages like Ruby have this
weird thing where we have to keep track of references and labels on references in our head.

Here’s something contrived to look a lot more like production code. First, without #returning:

def working_registered_person(params = {})

person = Person.new(params.merge(:registered => true))

if Registry.register(person)

person.send_email_notification

else

person = Person.new(:default => true)

end

person

end

And here we’ve refactored it to use #returning:

Kestrels 14

def broken_registered_person(params = {})

returning Person.new(params.merge(:registered => true)) do |person|

if Registry.register(person)

person.send_email_notification

else

person = Person.new(:default => true)

end

end

end

Oops! This no longer works as we intended. Overwriting the person variable is irrelevant, #returning
returns the unregistered new person no matter what. So what’s going on here?

One answer is to “blame the victim.” Ruby has a certain well-documented behaviour around
variables and references. #returning has a certain well-documented behaviour. Any programmer
whomakes the abovemistake is–well–mistaken. Fix the code and set the bug ticket status to Problem
Between Keyboard And Chair (“PBKAC”).

Another answer is to suggest that the implementation of #returning is at fault. If you write:

returning ... do |var|

...

var = something_else

...

end

You intended to change what you are returning from #returning. So #returning should be changed
to do what you meant. I’m on the fence about this. When folks argue that designs should cater
to programmers who do not understand the ramifactions of the programming language or of
the framework, I usually retort that you cannot have progress and innovation while clinging to
familiarity, an argument I first heard from Jef Raskin⁴. The real meaning of “The Principle of Least
Surprise” is that a design should be internally consistent, which is not the same thing as familiar.

Ruby’s existing use of variables and references is certainly consistent. And once you know what
#returning does, it remains consistent. However, this design decision isn’t really about being
consistent with Ruby’s implementation, we are debating how an idiom should be designed. I think
we have a blank canvas and it’s reasonable to at least consider a version of #returning that handles
assignment to the parameter.

Rewriting #returning

⁴http://weblog.raganwald.com/2008/01/programming-language-cannot-be-better.html

http://weblog.raganwald.com/2008/01/programming-language-cannot-be-better.html
http://weblog.raganwald.com/2008/01/programming-language-cannot-be-better.html

Kestrels 15

The RewriteRails⁵ plug-in adds syntactic abstractions like Andand⁶ to Rails projects without
monkey-patching⁷. RewriteRails now includes its own version of #returning that overrides the
#returning shipping with Rails.

When RewriteRails is processing source code, it turns code like this:

def registered_person(params = {})

returning Person.new(params.merge(:registered => true)) do |person|

if Registry.register(person)

person.send_email_notification

else

person = Person.new(:default => true)

end

end

end

Into this:

def registered_person(params = {})

lambda do |person|

if Registry.register(person)

person.send_email_notification

else

person = Person.new(:default => true)

end

person

end.call(Person.new(params.merge(:registered => true)))

end

Note that in addition to turning the #returning “call” into a lambda that is invoked immediately, it
alsomakes sure the new lambda returns the person variable’s contents. So assignment to the variable
does change what #returning appears to return.

Like all processors in RewriteRails, #returning is only rewritten in .rr files that you write in your
project. Existing .rb files are not affected, including all code in the Rails framework: RewriteRails
will never monkey with other people’s expectations. RewriteRails doesn’t physically modify the .rr
files you write: The rewritten code is put in another file that the Ruby interpreter sees. So you see
the code you write and RewriteRails figures out what to show the interpreter. This is a little like a
Lisp macro.

⁵http://github.com/raganwald-deprecated/rewrite_rails/tree/master
⁶http://github.com/raganwald-deprecated/rewrite_rails/tree/master/doc/andand.textile
⁷http://avdi.org/devblog/2008/02/23/why-monkeypatching-is-destroying-ruby/

http://github.com/raganwald-deprecated/rewrite_rails/tree/master
http://github.com/raganwald-deprecated/rewrite_rails/tree/master/doc/andand.textile
http://avdi.org/devblog/2008/02/23/why-monkeypatching-is-destroying-ruby/
http://avdi.org/devblog/2008/02/23/why-monkeypatching-is-destroying-ruby/
http://github.com/raganwald-deprecated/rewrite_rails/tree/master
http://github.com/raganwald-deprecated/rewrite_rails/tree/master/doc/andand.textile
http://avdi.org/devblog/2008/02/23/why-monkeypatching-is-destroying-ruby/

3 The Thrush
In Combinatory Logic, the thrush is an extremely simple permuting combinator; it reverses the
normal order of evaluation. The thrush is written Txy = yx. It reverses evaluation. In Ruby terms,

thrush.call(a_value).call(a_proc)

=> a_proc.call(a_value)

In No Detail Too Small¹, I defined Object#into, an implementation of the thrush as a Ruby method:

class Object

def into expr = nil

expr.nil? ? yield(self) : expr.to_proc.call(self)

end

end

If you are in the habit of violating the Law of Demeter², you can use #into to make an expression
read consistently from left to right. For example, this code:

lambda { |x| x * x }.call((1..100).select(&:odd?).inject(&:+))

Reads “Square (take the numbers from 1 to 100, select the odd ones, and take the sum of those).”
Confusing. Whereas with #into, you can write:

(1..100).select(&:odd?).inject(&:+).into { |x| x * x }

Which reads “Take the numbers from 1 to 100, keep the odd ones, take the sum of those, and then
answer the square of that number.”

A permuting combinator like #into is not strictly necessary when you have parentheses or local
variables. Which is kind of interesting, because it shows that if you have permuting combinators,
you can model parentheses and local variables.

But we are not interested in theory. #intomay be equivalent to what we can accomplish with other
means, but it is useful to us if we feel it makes the code clearer and easier to understand. Sometimes
a longer expression should be broken into multiple small expressions to make it easier to understand.
Sometimes it can be reordered using tools like #into.

¹http://weblog.raganwald.com/2008/01/no-detail-too-small.html
²http://en.wikipedia.org/wiki/Law_of_Demeter

http://weblog.raganwald.com/2008/01/no-detail-too-small.html
http://en.wikipedia.org/wiki/Law_of_Demeter
http://weblog.raganwald.com/2008/01/no-detail-too-small.html
http://en.wikipedia.org/wiki/Law_of_Demeter

The Thrush 17

3.1 Let

Object#into defines the thrush as a method that takes a block, lambda, or anything that can become
a block or lambda as its argument. There is another way to formulate a Thrush:

module Kernel

def let it

yield it

end

end

It’s remarkably simple, so simple that it appears to be less useful than #into. The example above
would look like this if we used let:

let (1..100).select(&:odd?).inject(&:+) do |x|

x * x

end

How does that help? I’ll let you in on a secret: Ruby 1.9 changes the game. In Ruby 1.8, x is local to
the surrounding method, so it doesn’t help. But in Ruby 1.9, x is a block local variable, meaning that
it does not clobber an existing variable. So in Ruby 1.8:

def say_the_square_of_the_sum_of_the_odd_numbers(x)

sotos = let (1..x).select(&:odd?).inject(&:+) do |x|

x * x

end

"The square of the sum of the odd numbers from 1..#{x} is #{sotos}"

end

say_the_square_of_the_sum_of_the_odd_numbers(10)

=> "The square of the sum of the odd numbers from 1..25 is 625"

1..25!? What happened here is that the x inside the block clobbered the value of the x parameter.
Not good. In Ruby 1.9:

say_the_square_of_the_sum_of_the_odd_numbers(10)

=> "The square of the sum of the odd numbers from 1..10 is 625"

Much better, Ruby 1.9 creates a new scope inside the block and x is local to that block, shadowing
the x parameter. Now we see a use for let:

The Thrush 18

let(some_expression) do |my_block_local_variable|

...

end

let creates a new scope and defines your block local variable inside the block. This signals³ that the
block local variable is not used elsewhere. Imperative methods can be easier to understand when
they are composed of smaller blocks with well-defined dependencies between them. A variable local
to the entire method creates a dependency across the entire method. A variable local to a block only
creates dependencies within that block.

Although Ruby 1.8 does not enforce this behaviour, it can be useful to write code in this style as a
signal to make the code easier to read.

Summary

We have seen two formulations of the thrush combinator, #into and let. One is useful for making
expressions more consistent and easier to read, the other for signaling the scope of block-local
variables.

³http://weblog.raganwald.com/2007/11/programming-conventions-as-signals.html

http://weblog.raganwald.com/2007/11/programming-conventions-as-signals.html
http://weblog.raganwald.com/2007/11/programming-conventions-as-signals.html

4 Songs of the Cardinal
In Combinatory Logic, the cardinal is one of the most basic permuting combinators; it reverses and
parenthesizes the normal order of evaluation. The cardinal is written Cxyz = xzy. In Ruby:

cardinal.call(proc_over_proc).call(a_value).call(a_proc)

=> proc_over_proc.call(a_proc).call(a_value)

What does this mean? Let’s compare it to the Thrush. The thrush is written Txy = yx. In Ruby terms,

thrush.call(a_value).call(a_proc)

=> a_proc.call(a_value)

The salient difference is that a cardinal doesn’t just pass a_value to a_proc. What it does is first
passes a_proc to proc_over_proc and then passes a_value to the result. This implies that proc_-
over_proc is a function that takes a function as its argument and returns a function.

Or in plainer terms, you want a cardinal when you would like to modify what a function or a block
does. Now you can see why we can derive a thrush from a cardinal. If we write:

identity = lambda { |f| f }

Then we can write:

thrush = cardinal.call(identity)

What we have done is say a thrush is what you get when you use a cardinal and a function that
doesn’t modify its function but answers it right back.

Note to ornithologists and ontologists:

This is not object orientation: a thrush is not a kind of cardinal. The correct relationship
between them in Ruby is that a cardinal creates a thrush. Or in Smullyan’s songbird
metaphor, if you call out the name of an identity bird to a cardinal, it will call out the
name of a thrush back to you.

Now, this bizarre syntactic convention of writing foo.call(bar).call(bash) is not very helpful
for actually writing software. It is great for explaining what’s going on, but if we are going to use
Ruby for the examples, we need to lift our game up a level and make some idiomatic Ruby.

Songs of the Cardinal 20

4.1 Building a Cardinal in Ruby

The next chunk of code works around the fact that Ruby 1.8 can’t define a proc that takes a block
and also doesn’t allow define_method to define a method that takes a block. So for Ruby 1.8, we
will start by making a utility method that defines methods that can take a block, based on an idea
from coderr¹. For Ruby 1.9 this is not necessary: you can use define_method to define methods that
take blocks as arguments.

def define_method_taking_block(name, method_body_proc)

self.class.send :define_method, "__cardinal_helper_#{name}__", &method_body_proc

eval <<-EOM

def #{name}(a_value, &a_proc)

__cardinal_helper_#{name}__(a_value, a_proc)

end

EOM

end

Now we can see what the expression “accidental complexity” means. Do you see how
we need a long paragraph and a chunk of code to explain how we are working around
a limitation in our tool? And how the digression to explain the workaround is longer
than the actual code we want to write? Ugh!

With that out of the way, we can write our cardinal:

def cardinal_define(name, &proc_over_proc)

define_method_taking_block(name) do |a_value, a_proc|

proc_over_proc.call(a_proc).call(a_value)

end

end

Ready to try it? Here’s a familiar example. We’ll need a proc_over_proc, our proc that modifies
another proc. Because we’re trying to be Ruby-ish, we’ll write it out as a block:

do |a_proc|

lambda { |a_value|

¹http://coderrr.wordpress.com/2008/10/29/using-define_method-with-blocks-in-ruby-18/

http://coderrr.wordpress.com/2008/10/29/using-define_method-with-blocks-in-ruby-18/
http://coderrr.wordpress.com/2008/10/29/using-define_method-with-blocks-in-ruby-18/
http://coderrr.wordpress.com/2008/10/29/using-define_method-with-blocks-in-ruby-18/

Songs of the Cardinal 21

a_proc.call(a_value) unless a_value.nil?

}

end

This takes a a_proc and returns a brand new proc that only calls a_proc if the value you pass it is
not nil. Now let’s use our cardinal to define a new method:

cardinal_define(:maybe) do |a_proc|

lambda { |a_value|

a_proc.call(a_value) unless a_value.nil?

}

end

Let’s try it out:

maybe(1) { |x| x + 1 }

=> 2

maybe(nil) { |x| x + 1 }

=> nil

If we’re using Rails, we can make a slightly different version of maybe:

cardinal_define(:unless_blank) do |a_proc|

lambda { |a_value|

a_proc.call(a_value) unless a_value.blank?

}

end

unless_blank(Person.find(...).name) do |name|

register_name_on_title(name)

end

Remember we said the cardinal can be used to define a thrush? Let’s try our Ruby cardinal out to
do the same thing. Recall that expressing the identity bird as a block is:

Songs of the Cardinal 22

do |a_proc|

a_proc

end

Therefore we can define a thrush with:

cardinal_define(:let) do |a_proc|

a_proc

end

let((1..10).select { |n| n % 2 == 1 }.inject { |mem, var| mem + var }) do |x|

x * x

end

=> 625

As you can see, once you have a defined a cardinal, you can create an infinite variety of methods that
have thrush-like syntax–a method that applies a value to a block–but you can modify or augment
the semantics of the block in any way you want.

In Ruby terms, you are meta-programming. In Smullyan’s terms, you are Listening to the Songs of
the Cardinal.

5 Quirky Birds and Meta-Syntactic
Programming

In Combinatory Logic, the Queer Birds are a family of combinators which both parenthesize and
permute. One member of the family, the Quirky Bird, has interesting implications for Ruby. The
quirky bird is written Qxyz = z(xy). In Ruby:

quirky.call(value_proc).call(a_value).call(a_proc)

=> a_proc.call(value_proc.call(a_value))

Like the Cardinal, the quirky bird reverses the order of application. But where the cardinal modifies
the function that is applied to a value, the quirky bird modifies the value itself. Let’s compare how
cardinals and quirky birds work.

a cardinals refresher

The cardinal is defined in its simplest Ruby form as:

cardinal.call(proc_over_proc).call(a_value).call(a_proc)

=> proc_over_proc.call(a_proc).call(a_value)

From that definition, we wrote a method called cardinal_define that writes methods in idiomatic
Ruby. For example, here’s how we used cardinal_define to generate the maybe method:

cardinal_define(:maybe) do |a_proc|

lambda { |a_value|

a_proc.call(a_value) unless a_value.nil?

}

end

maybe(1) { |x| x + 1 }

=> 2

maybe(nil) { |x| x + 1 }

=> nil

Now we are not looking at the source code for maybe, but from the definition of a cardinal above we
know that any method defined by cardinal_define will look roughly like:

Quirky Birds and Meta-Syntactic Programming 24

def defined_by_a_cardinal(a_value, &a_proc)

proc_over_proc.call(a_proc).call(a_value)

end

Or in our case:

def maybe(a_value, &a_proc)

lambda do |a_proc|

lambda { |a_value|

a_proc.call(a_value) unless a_value.nil?

}

end.call(a_proc).call(a_value)

end

and now to the quirky bird

From the definition for the quirky bird, we expect that if we write quirky_bird_define, the methods
it generates will look roughly like:

def defined_by_a_quirky_bird(a_value, &a_proc)

a_proc.call(value_proc.call(a_value))

end

So, are we ready to write quirky_bird_define? This seems too easy. Just copy the cardinal_define
code, make a few changes, and we’re done:

def quirky_bird_define(name, &value_proc)

define_method_taking_block(name) do |a_value, a_proc|

a_proc.call(value_proc.call(a_value))

end

end

method_body_proc should expect (a_value, a_proc)

see http://coderrr.wordpress.com/2008/10/29/using-define_method-with-blocks-in-\

ruby-18/

def define_method_taking_block(name, &method_body_proc)

self.class.send :define_method, "__quirky_bird_helper_#{name}__", method_body_p\

roc

eval <<-EOM

def #{name}(a_value, &a_proc)

__quirky_bird_helper_#{name}__(a_value, a_proc)

end

EOM

end

Quirky Birds and Meta-Syntactic Programming 25

Ok, let’s try it out on something really trivial:

quirky_bird_define(:square_first) do |a_value|

a value * a_value

end

square_first(1) { |n| n + 1 }

=> 2

square_first(2) { |n| n + 1 }

=> 5

It works, good. Now let’s define maybe using the quirky bird we just wrote. Just so we’re clear, I
want to write:

quirky_bird_define(:maybe) do |a_value|

... something goes here ...

end

maybe(1) { |n| n + 1 }

=> 2

maybe(nil) { |n| n + 1 }

=> nil

Scheisse! Figuring out what to put in the block to make maybe work is indeed queer and quirky!!

Now, the simple truth is, I know of no way to use a quirky bird to cover all of the possible blocks
you could use with maybe so that it works exactly like the version of maybe we built with a cardinal.
However, I have found that sometimes it is interesting to push an incomplete idea along if it is
incomplete in interesting ways. “Maybe” we can learn something in the process.

5.1 A limited interpretation of the Quirky Bird in Ruby

Let’s solve maybe any-which-way-we-can and see how it goes. When we used a cardinal, we wanted
a proc that would modify another proc to such that if it was passed nil, it would answer nilwithout
evaluating its contents.

Now we want to modify a value such that if it is nil, it responds nil to the method +. This is
doable, with the help of the BlankSlate class, also called a BasicObject. You’ll find BlankSlate and
BasicObject classes in various frameworks and Ruby 1.9, and there’s one at blank_slate.rb¹ you can
use.

¹http://github.com/raganwald/homoiconic/tree/master/2008-11-04/blank_slate.rb

http://github.com/raganwald/homoiconic/tree/master/2008-11-04/blank_slate.rb
http://github.com/raganwald/homoiconic/tree/master/2008-11-04/blank_slate.rb

Quirky Birds and Meta-Syntactic Programming 26

BlankSlate is a class with no methods, which is very different from the base class Object. That’s
because Object in Ruby is heavyweight, it has lots of useful stuff. But we don’t want useful stuff,
because our mission is to answer a value that responds nil to any method you send it.

The Ruby way to handle any method is with method_missing. Here’s a really simple expression that
answers an object that responds nil to any method:

returning(BlankSlate.new) do |it|

def it.method_missing(*args)

nil

end

end

Hmmm. What about:

quirky_bird_define(:maybe) do |value|

if value.nil?

returning(BlankSlate.new) do |it|

def it.method_missing(*args)

nil

end

end

else

value

end

end

This is saying, “Let’s define a quirky bird method based on a value_proc as usual. Our value_proc
will take a value, and if the value is nil we will return an object that responds with nil to any
method. But if the value is not nil, our value_proc will respond with the object.”

Let’s try it:

maybe(1) { |n| n + 1 }

=> 2

maybe(nil) { |n| n + 1 }

=> nil

Now, I admit this is very flawed:

Quirky Birds and Meta-Syntactic Programming 27

maybe(nil) { |n| n + 1 + 1 }

⇒ NoMethodError: undefined method ‘+’ for nil:NilClass

maybe(nil) { |n| 1 + n }

⇒ TypeError: coerce must return [x, y]

The basic problem here is that we only control the value we pass in. We can’t modify how other
objects respond to it, nor can we control what happens to any objects we return frommethods called
on it. So, the quirky bird turns out to be useful in the case where (a) the value is the receiver of a
method, and (b) there is only one method being called, not a chain of methods.

Hmmm again.

5.2 Embracing the Quirky Bird

Maybe we shouldn’t be generating methods that deal with arbitrary blocks and procedures. One
way to scale this down is to deal only with single method invocations. For example, what if instead
of designing our new version of maybe so that we invoke it by writing maybe(nil) { |n| n + 1 }

or maybe(1) { |n| n + 1 }, we design it so that we write nil.maybe + 1 or 1.maybe + 1 instead?

In that case, maybe becomes a method on the object class that applies value_proc to its receiver
rather than being a method that takes a value and a block. Getting down to business, we are going
to open the core Object class and add a new method to it. The body of that method will be our
value_proc:

def quirky_bird_extend(name, &value_proc)

Object.send(:define_method, name) do

value_proc.call(self)

end

end

Just as we said, we are defining a new method in the Object class.

We are using define_method and a block rather than the def keyword. The reason is that
whenwe use define_method and a block, the body of themethod executes in the context
of the block, not the context of the object itself. Blocks are closures in Ruby, whichmeans
that the block has access to value_proc, the parameter from our quirky_bird_extend
method.

Quirky Birds and Meta-Syntactic Programming 28

Had we used def, Ruby would try to evaluate value_proc in the context of the object
itself. So our parameter would be lost forever. Performance wonks and compiler junkies
will be interested in this behaviour, as it has very serious implications for garbage
collection and memory leaks.

Now let’s use it with exactly the same block we used with quirky_bird_define:

require 'quirky_bird'

require 'blank_slate'

require 'returning'

quirky_bird_extend(:maybe) do |value|

if value.nil?

returning(BlankSlate.new) do |it|

def it.method_missing(*args)

nil

end

end

else

value

end

end

nil.maybe + 1

=> nil

1.maybe + 1

=> 2

It works. And it looks familiar! We have defined our own version of andand², only this is much
more interesting. Instead of a one-off handy-dandy, we have created a method that creates similar
methods.

Let’s try it again, this time emulating Chris Wanstrath’s try³:

²http://github.com/raganwald/andand/tree
³http://ozmm.org/posts/try.html

http://github.com/raganwald/andand/tree
http://ozmm.org/posts/try.html
http://github.com/raganwald/andand/tree
http://ozmm.org/posts/try.html

Quirky Birds and Meta-Syntactic Programming 29

quirky_bird_extend(:try) do |value|

returning(BlankSlate.new) do |it|

def it.__value__=(arg)

@value = arg

end

def it.method_missing(name, *args)

if @value.respond_to?(name)

@value.send(name, *args)

end

end

it.__value__ = value

end

end

nil.try + 1

=> nil

1.try + 1

=> 2

1.try.ordinalize

=> nil

As you can see, we can used the quirky bird to create a whole family of methods that modify
the receiver in some way to produce new semantics. I can’t show you the source code, but here is
something from a proprietary Rails application:

Account.without_requiring_authorization.create!(...)

In this case, without_requiring_authorization follows the quirky bird pattern, only instead of
taking an instance and producing a version that handles certain methods specially, this one takes a
class and produces a version that doesn’t enforce authorization for use in test cases.

so what have we learned?

The quirky bird is superficially similar to the cardinal, however it can be used to generate syntax
that is a little more method-oriented rather than function-oriented. And what’s better than a handy
method like andand? A method for defining such methods, of course.

5.3 Andand even more

As we’ve discovered, “andand” is a Quirky Bird. Here’s a little tip for using it effectively: You already
know that you can use it to conditionally invoke a method on an object:

Quirky Birds and Meta-Syntactic Programming 30

"foo".andand + "bar"

=> "foobar"

nil.andand + "bar"

=> nil

In other words, it’s a Quirky Bird. But did you know that you can also use it to conditionally invoke
a block?

(1..10).andand do |numbers|

doubles = numbers.map { |n| n * 2 }

double_doubles = doubles.map { |n| n * 2 }

end

=> [4, 8, 12, 16, 20, 24, 28, 32, 36, 40]

nil.andand do |numbers|

doubles = numbers.map { |n| n * 2 }

double_doubles = doubles.map { |n| n * 2 }

end

=> nil

It’s not just a Quirky Bird, it’s also a Cardinal!

Consider this conditional code:

if my_var = something_or_other()

3.times do

yada(my_var)

end

end

I’m not a big fan. The obvious sin is the pathetic 90s cultural reference. But I’m even more annoyed
by having side-effects in the predicate of an if clause, in this case assigning something to the variable
my_var. Although I’m not switching to a purely functional language any time soon, I strongly prefer
that when you write if something(), then “something()” should not cause any side effects, ever.

Another problem is that we are obviously creating my_var just to use inside the block, but we’re
declaring it in top-level scope. We could fool around with a Thrush like let, but instead let’s use
Object#andand:

Quirky Birds and Meta-Syntactic Programming 31

something_or_other().andand do |my_var|

3.times do

yada(my_var)

end

end

Now we are making it clear that we wish to execute this block only if something_or_other() is
not nil. Furthermore, we are assigning the result of something_or_other() to my_var and using it
within the block. Crisp and clean, no caffeine⁴.

Note that if we don’t actually need my_var in the block, we don’t really need andand either:

something_or_other() and begin

3.times do

yada()

end

end

Like anything else, andand do ... end is a tool to be used in specialized situations. Use it whenever
you want to do something more complicated than a simple message send, but only when the subject
is not nil.

⁴http://www.youtube.com/watch?v=ryXsn7fLV-M

http://www.youtube.com/watch?v=ryXsn7fLV-M
http://www.youtube.com/watch?v=ryXsn7fLV-M

6 Aspect-Oriented Programming in
Ruby using Combinator Birds

In Combinatory Logic, the bluebird is one of the most important and fundamental combinators,
because the bluebird composes two other combinators. Although this is usually discussed as part
of functional programming style¹, it is just as valuable when writing object-oriented programs. In
this post, we will develop an aspect-oriented programming² (or “AOP”) module that adds before
methods and after methods to Ruby programs, with the implementation inspired by the bluebird.
The bluebird is written Bxyz = x(yz). In Ruby, we can express the bluebird like this:

bluebird.call(proc1).call(proc2).call(value)

=> proc1.call(proc2.call(value))

If this seems a little arcane, consider a simple Ruby expression (x * 2) + 1: This expression composes
multiplication and addition. Composition is so pervasive in programming languages that it becomes
part of the syntax, something we take for granted. We don’t have to think about it until someone
like Oliver Steele writes a library like functional javascript³ that introduces a compose function, then
we have to ask what it does.

Beforewe start using bluebirds, let’s be clear about something.Wewrote that bluebird.call(proc1).call(proc2).call(value)
is equivalent to proc1.call(proc2.call(value)). We want to be very careful that we understand
what is special about proc1.call(proc2.call(value)). How is it different from proc1.call(proc2).call(value)?

The answer is:

proc1.call(proc2.call(value))

=> puts value into proc2, then puts the result of that into proc1

proc1.call(proc2).call(value)

=> puts proc2 into proc1, getting a function out, then puts value into the new f\

unction

So with a bluebird you can chain functions together in series, while if you didn’t have a bluebird
all you could do is write functions that transform other functions. Not that there’s anything wrong
with that, we used that to great effect with cardinals⁴ and quirky birds⁵.

¹http://weblog.raganwald.com/2007/03/why-why-functional-programming-matters.html
²http://en.wikipedia.org/wiki/Aspect-oriented_programming
³http://osteele.com/sources/javascript/functional/
⁴http://github.com/raganwald/homoiconic/tree/master/2008-10-31/songs_of_the_cardinal.markdown#readme
⁵http://github.com/raganwald/homoiconic/tree/master/2008-11-04/quirky_birds_and_meta_syntactic_programming.markdown#readme

http://weblog.raganwald.com/2007/03/why-why-functional-programming-matters.html
http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://osteele.com/sources/javascript/functional/
http://github.com/raganwald/homoiconic/tree/master/2008-10-31/songs_of_the_cardinal.markdown#readme
http://github.com/raganwald/homoiconic/tree/master/2008-11-04/quirky_birds_and_meta_syntactic_programming.markdown#readme
http://weblog.raganwald.com/2007/03/why-why-functional-programming-matters.html
http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://osteele.com/sources/javascript/functional/
http://github.com/raganwald/homoiconic/tree/master/2008-10-31/songs_of_the_cardinal.markdown#readme
http://github.com/raganwald/homoiconic/tree/master/2008-11-04/quirky_birds_and_meta_syntactic_programming.markdown#readme

Aspect-Oriented Programming in Ruby using Combinator Birds 33

6.1 Giving methods advice

We’re not actually going to Greenspun⁶ an entire aspect-oriented layer on top of Ruby, but we will
add a simple feature, we are going to add before and after methods. You already knowwhat a normal
method is. A before method simply specifies some behaviour you want executed before the method
is called, while an after method specifies some behaviour you want executed after the method is
called. In AOP, before and after methods are called “advice.”

There is an unwritten rule that says every Ruby programmer must, at some point, write
his or her own AOP implementation –Avdi Grimm

Ruby on Rails programmers are familiar with method advice. If you have ever written any of the
following, you were using Rails’ built-in aspect-oriented programming support:

after_save

validates_each

alias_method_chain

before_filter

These and other features of Rails implement method advice, albeit in a very specific way tuned to
portions of the Rails framework. We’re going to implement method advice in a module that you can
use in any of your classes, on any method or methods you choose. We’ll start with before methods.
Here’s the syntax we want:

def something(parameter)

do stuff...

end

before :something do |parameter|

stuff to do BEFORE we do stuff...

end

before :something do |parameter|

stuff to do BEFORE stuff to do BEFORE we do stuff...

end

As we can see, the before methods get chained together before the method. To keep this nice and
clean, we are going tomake themwork just like composable functions: whatever our beforemethod’s
block returns will be passed as a parameter up the chain. We also won’t fool around with altering
the order of before methods, we’ll just take them as they come.

This is really simple, we are composing methods. To compare to the bluebird above, we are writing
before, then the name of a method, then a function. I’ll rewrite it like this:

⁶http://en.wikipedia.org/wiki/Greenspun%27s_Tenth_Rule

http://en.wikipedia.org/wiki/Greenspun%27s_Tenth_Rule
http://en.wikipedia.org/wiki/Greenspun%27s_Tenth_Rule

Aspect-Oriented Programming in Ruby using Combinator Birds 34

bluebird.call(something).call(stuff_to_do_before_we_do_stuff).call(value)

=> something.call(stuff_to_do_before_we_do_stuff.call(value))

Now we can see that this newfangled aspect-oriented programming stuff was figured out nearly a
century ago by people like Alonzo Church⁷.

Okay, enough history, let’s get started. First, we are not going to write any C, so there is no way to
actually force the Ruby VM to call our before methods. So instead, we are going to have to rewrite
our method. We’ll use a trick⁸ I found on Jay Fields’ blog:

module NaiveBeforeMethods

module ClassMethods

def before(method_sym, &block)

old_method = self.instance_method(method_sym)

if old_method.arity == 0

define_method(method_sym) do

block.call

old_method.bind(self).call

end

else

define_method(method_sym) do |*params|

old_method.bind(self).call(*block.call(*params))

end

end

end

end

def self.included(receiver)

receiver.extend ClassMethods

end

end

As you can see, we have a special case for methods with no parameters, and when we have a
method with multiple parameters, our before method must answer an array of parameters. And
the implementation relies on a “flock of bluebirds:” Our before methods and the underlying base
method are composed with each other to define the method that is actually executed at run time.

Using it is very easy:

⁷http://en.wikipedia.org/wiki/Alonzo_Church
⁸http://blog.jayfields.com/2006/12/ruby-alias-method-alternative.html

http://en.wikipedia.org/wiki/Alonzo_Church
http://blog.jayfields.com/2006/12/ruby-alias-method-alternative.html
http://en.wikipedia.org/wiki/Alonzo_Church
http://blog.jayfields.com/2006/12/ruby-alias-method-alternative.html

Aspect-Oriented Programming in Ruby using Combinator Birds 35

class SuperFoo

def one_parameter(x)

x + 1

end

def two_parameters(x, y)

x * y

end

end

class Foo < SuperFoo

include NaiveBeforeMethods

before :one_parameter do |x|

x * 2

end

before :two_parameters do |x, y|

[x + y, x - y]

end

end

Foo.new.one_parameter(5)

=> 11

Foo.new.two_parameters(3,1)

=> 8

This could be even more useful if it supported methods with blocks. Adventurous
readers may want to combine this code with the tricks in cardinal.rb and see if they
can build a version of before that supports methods that take blocks.

6.2 The super keyword, perhaps you’ve heard of it?

Of course, Ruby provides a means of ‘decorating’ methods like this by overriding a method and
calling super within it. So we might have written:

Aspect-Oriented Programming in Ruby using Combinator Birds 36

class Foo < SuperFoo

def one_parameter(x)

super(x * 2)

end

def two_parameters(x, y)

super(x + y, x - y)

end

end

On a trivial example, the two techniques seem equivalent, so why bother with the extra baggage?
The answer is that using super is a little low level. When you see a method definition in a language
like Ruby, you don’t know whether you are defining a new method, overriding an existing method
with entirely new functionality, or “decorating” a method with before advice. Using advice can be
useful when you want to signal exactly what you are trying to accomplish.

Another reason to prefer method advice is when you want to share some functionality:

class LoggingFoo < SuperFoo

def one_parameter(x)

log_entry

returning(super) do

log_exit

end

end

def two_parameters(x, y)

log_entry

returning(super) do

log_exit

end

end

end

This could be written as:

Aspect-Oriented Programming in Ruby using Combinator Birds 37

class LoggingFoo < SuperFoo

include NaiveBeforeMethods

before :one_parameter, :two_parameters do # see below

log_entry

end

after :one_parameter, :two_parameters do

log_exit

end

end

This cleanly separates the concern of logging from the mechanism of what the methods actually do

Although this is not the main benefit, method advice also works with methods defined
in modules and the current class, not just superclasses. So in some ways it is even more
flexible than Ruby’s super keyword.

6.3 The Queer Bird

That looks handy. But we also want an after method, a way to compose methods in the other order.
Good news, the Queer Bird combinator is exactly what we want. Written Qxyz = y(xz), the Ruby
equivalent is:

queer_bird.call(something).call(stuff_to_do_after_we_do_stuff).call(value)

=> stuff_to_do_after_we_do_stuff.call(something.call(value))

Which is, of course:

def something(parameter)

do stuff...

end

after :something do |return_value|

stuff to do AFTER we do stuff...

end

Aspect-Oriented Programming in Ruby using Combinator Birds 38

The difference between before and after advice is that after advice is consumes and transforms
whatever the method returns, while before advice consumes and transforms the parameters to the
method.

We could copy, paste and modify our bluebird code for the before methods to create after methods.
But before you rush off to implement that, you might want to think about a few interesting “real
world” requirements:

1. If you define before and after methods in any order, the final result should be that all of the
before methods are run before the main method, then all of the after methods. This is not
part of combinatory logic, but it’s the standard behaviour people expect from before and after
methods.

2. You should be able to apply the same advice to more than one method, for example by writing
after :foo, :bar do ... end

3. If you declare parameters for before advice, whatever it returns will be used by the next
method, just like the example above. If you do not declare parameters for before advice,
whatever it returns should be ignored. The same goes for after advice.

4. If you override the main method, the before and after methods should still work.
5. The blocks provided should execute in the receiver’s scope, like method bodies.

One implementation meeting these requirements is in the appendix. Embedded in a lot of extra
moving parts, the basic pattern of composing methods is still evident:

naive_before_advice.rb

module NaiveBeforeAdvice

module ClassMethods

def before(method_sym, &block)

old_method = self.instance_method(method_sym)

if old_method.arity == 0

define_method(method_sym) do

block.call

old_method.bind(self).call

end

else

define_method(method_sym) do |*params|

old_method.bind(self).call(*block.call(*params))

end

end

end

Aspect-Oriented Programming in Ruby using Combinator Birds 39

end

def self.included(receiver)

receiver.extend ClassMethods

end

end

That is why we looked at supporting just before methods first. If you are comfortable with the
naïve implementation of before advice discussed above, the mechanism is easy to understand. The
complete version is considerably more powerful. As mentioned, it supports before and after advice.
It also uses instance_exec to evaluate the blocks in the receiver’s scope, providing access to private
methods and instance variables. And it works properly even when you override the method being
advised.

7 Mockingbirds
In this chapter, we will meet a combinator that duplicates its arguments, and see how to use it
to achieve recursion. Such combinators are called recursive combinators, and are an important
foundation for separating the concrete implementation of an algorithm from its definition.

7.1 Duplicative Combinators

Almost all of the combinators we’ve seen in previous essays about combinators “conserve” their
arguments. For example, if you pass xyz to a Bluebird, you get one x, one y, and one z back, exactly
what you passed in. You get x(yz) back, so they have been grouped for you. But nothing has been
added and nothing has been taken away. Likewise the Thrush reverses its arguments, but again it
answers back the same number arguments you passed to it. The Kestrel, on the other hand, does
not conserve its arguments. It erases one. If you pass xy to a Kestrel, you only get x back. The y is
erased. Kestrels do not conserve their arguments.

Today we are going to meet another combinator that does not conserve its arguments, the
Mockingbird. Where a Kestrel erases one of its arguments, the Mockingbird duplicates its argument.
In logic notation, Mx = xx. Or in Ruby:

mockingbird.call(x)

#=> x.call(x)

The Mockingbird is not the only combinator that duplicates one or more of its arguments. Logicians
have also found important uses for many other duplicating combinators like the Starling (Sxyz =

xz(yz)), which is one half of the SK combinator calculus¹, and the Turing Bird (Uxy = y(xxy)),
which is named after its discoverer².

The great benefit of duplicative combinators from a theoretical perspective is that combinators that
duplicate an argument can be used to introduce recursion without names, scopes, bindings, and
other things that clutter things up. Being able to introduce anonymous recursion is very elegant,
and there are times when it is useful in its own right³.

¹http://en.wikipedia.org/wiki/SKI_combinator_calculus
²http://www.alanturing.net/turing_archive/index.html
³http://www.eecs.harvard.edu/~cduan/technical/ruby/ycombinator.shtml

http://en.wikipedia.org/wiki/SKI_combinator_calculus
http://www.alanturing.net/turing_archive/index.html
http://www.eecs.harvard.edu/~cduan/technical/ruby/ycombinator.shtml
http://en.wikipedia.org/wiki/SKI_combinator_calculus
http://www.alanturing.net/turing_archive/index.html
http://www.eecs.harvard.edu/~cduan/technical/ruby/ycombinator.shtml

Mockingbirds 41

7.2 Recursive Lambdas in Ruby

Let’s write a simple recursive combinator in Ruby from first principles. To start with, let’s pick a
recursive algorithm to implement: We’ll sum the numbers of a nested list. In other words, we’re
going to traverse a tree of numbers and generate the sum of the leaves, a recursive problem.

This is a trivial problem in Ruby, [1, [[2,3], [[[4]]]]].flatten.inject(&:+)

will do the trick. Of course, it does so by calling .flatten, a built-in method that is
itself recursive. However, by picking a really simple example, it’s easy to focus on the
recursion rather than by the domain-specific parts of our problem. That will make things
look a little over-engineered here, but when you’re interested in the engineering, that’s
a good thing.

So what is our algorithm?

1. If we are given a number, return it.
2. If we are given a list, call ourself for each item of the list and sum the numbers that are

returned.

In Ruby:

sum_of_nested_list = lambda do |arg|

arg.kind_of?(Numeric) ? arg : arg.map { |item| sum_of_nested_list.call(item) }.\

inject(&:+)

end

One reason we don’t like this is that it breaks badly if we ever modify the variable sum_of_nested_-
list. Although you may think that’s unlikely, it can happen when writing the method combinators
you’ve seen in previous chapters. For example, imagine you wanted to write to the log when calling
this function, but only once, you don’t want to write to the log when it calls itself.

old_sum = sum_of_nested_list

sum_of_nested_list = lambda do |arg|

puts "sum_of_nested_list(#{arg.inspect})"

old_sum.call(arg)

end

sum_of_nested_list.call([[[[[6]]]]])

sum_of_nested_list([[[[[6]]]]])

Mockingbirds 42

sum_of_nested_list([[[[6]]]])

sum_of_nested_list([[[6]]])

sum_of_nested_list([[6]])

sum_of_nested_list([6])

sum_of_nested_list(6)

#=> 6

This doesn’t work because inside our original sum_of_nested_list, we call sum_of_nested_list by
name. If that gets redefined by a method combinator or anything else, we’re calling the new thing
and not the old one.

Another reason to eschew having lambdas call themselves by name is that we won’t be able to
create anonymous recursive lambdas. Although naming things is an important part of writing
readable software, being able to make anonymous things like object literals opens up a world where
everything is truly first class and can be created on the fly or passed around like parameters. So
by figuring out how to have lambdas call themselves without using their names, we’re figuring out
how to make all kinds of lambdas anonymous and flexible, not just the non-recursive ones.

7.3 Recursive Combinatorics

The combinator way around this is to find a way to pass a function to itself as a parameter. If a
lambda only ever calls its own parameters, it doesn’t depend on anything being bound to a name in
its environment. Let’s start by rewriting our function to take itself as an argument:

sum_of_nested_list = lambda do |myself, arg|

arg.kind_of?(Numeric) ? arg : arg.map { |item| myself.call(myself, item) }.inje\

ct(&:+)

end

One little problem: How are we going to pass our function to itself? Let’s start by currying it into a
function that takes one argument, itself, and returns a function that takes an item:

sum_of_nested_list = lambda do |myself|

lambda do |arg|

arg.kind_of?(Numeric) ? arg : arg.map { |item| myself.call(myself).call(item)\

}.inject(&:+)

end

end

Mockingbirds 43

Notice that we now have myself call itself and have the result call an item. To use it, we have to
have it call itself:

sum_of_nested_list.call(sum_of_nested_list).call([1, [[2,3], [[[4]]]]]) #⇒ 10

This works, but is annoying. Writing our function to take itself as an argument and return a function
is one thing, we can fix that, but having our function call itself by name defeats the very purpose
of the exercise. Let’s fix it. First thing we’ll do, let’s get rid of myself.call(myself).call(item).
We’ll use a new parameter, recurse (it’s the last parameter in an homage to callback-oriented
programming style). We’ll pass it myself.call(myself), thus removing myself.call(myself) from
our inner lambda:

sum_of_nested_list = lambda do |myself|

lambda do |arg|

lambda do |arg, recurse|

arg.kind_of?(Numeric) ? arg : arg.map { |item| recurse.call(item) }.inject(\

&:+)

end.call(arg, myself.call(myself))

end

end

sum_of_nested_list.call(sum_of_nested_list).call([1, [[2,3], [[[4]]]]])

#⇒ 10

Next, we hoist our code out of the middle and make it a parameter. This allows us to get rid of the ‘
sum_of_nested_list.call(sum_of_nested_list)‘ by moving it into our lambda:

sum_of_nested_list = lambda do |fn|

lambda { |x| x.call(x) }.call(

lambda do |myself|

lambda do |arg|

fn.call(arg, myself.call(myself))

end

end

)

end.call(

lambda do |arg, recurse|

arg.kind_of?(Numeric) ? arg : arg.map { |item| recurse.call(item) }.inject(&:\

+)

end

)

sum_of_nested_list.call([1, [[2,3], [[[4]]]]])

Mockingbirds 44

#⇒ 10

Lots of code there, but let’s check and see that it works as an anonymous lambda:

lambda do |fn|

lambda { |x| x.call(x) }.call(

lambda do |myself|

lambda do |arg|

fn.call(arg, myself.call(myself))

end

end

)

end.call(

lambda do |arg, recurse|

arg.kind_of?(Numeric) ? arg : arg.map { |item| recurse.call(item) }.inject(&:\

+)

end

).call([1, [[2,3], [[[4]]]]])

#⇒ 10

Looking at this final example, we can see it has two cleanly separated parts:

The recursive combinator

lambda do |fn|

lambda { |x| x.call(x) }.call(

lambda do |myself|

lambda do |arg|

fn.call(arg, myself.call(myself))

end

end

)

end.call(

The lambda we wish to make recursive

lambda do |arg, recurse|

arg.kind_of?(Numeric) ? arg : arg.map { |item| recurse.call(item) }.inject(&:\

+)

end

)

Mockingbirds 45

7.4 Recursive Combinators in Idiomatic Ruby

We’ve now managed to separate the mechanism of recursing (the combinator) from what we want
to do while recursing. Let’s formalize this and make it idiomatic Ruby. We’ll make it a method for
creating recursive lambdas and call it with a block instead of a lambda:

def lambda_with_recursive_callback

lambda { |x| x.call(x) }.call(

lambda do |myself|

lambda do |arg|

yield(arg, myself.call(myself))

end

end

)

end

sum_of_nested_list = lambda_with_recursive_callback do |arg, recurse|

arg.kind_of?(Numeric) ? arg : arg.map { |item| recurse.call(item) }.inject(&:+)

end

sum_of_nested_list.call([1, [[2,3], [[[4]]]]])

#⇒ 10

Not bad. But hey, let’s DRY things up. Aren’t x.call(x) and myself.call(myself) the same thing?

7.5 The Mockingbird

Yes, x.call(x) and myself.call(myself) are the same thing:

def mockingbird &x

x.call(x)

end

def lambda_with_recursive_callback

mockingbird do |myself|

lambda do |arg|

yield(arg, mockingbird(&myself))

end

end

end

Mockingbirds 46

sum_of_nested_list = lambda_with_recursive_callback do |arg, recurse|

arg.kind_of?(Numeric) ? arg : arg.map { |item| recurse.call(item) }.inject(&:+)

end

sum_of_nested_list.call([1, [[2,3], [[[4]]]]])

#⇒ 10

But does it blend?

lambda_with_recursive_callback { |arg, recurse|

arg.kind_of?(Numeric) ? arg : arg.map { |item| recurse.call(item) }.inject(&:+)

}.call([1, [[2,3], [[[4]]]]])

#⇒ 10

Yes!

And now we have our finished recursive combinator. We are able to create recursive lambdas in
Ruby without relying on environment variables, just on parameters passed to blocks or lambdas.
Our recursive combinator is built on the simplest and most basic of duplicating combinators, the
Mockingbird.

In the next chapter, we’ll build more sophisticated (and practical) recursive combinators. And
while doing so, we’ll take an aggressive approach to separating interfaces from implementations
in algorithms.

8 Refactoring Methods with Recursive
Combinators

In previous chapters, we have met some of Combinatory Logic’s most interesting combinators
like the Kestrel, Thrush, Cardinal, Quirky Bird, and Bluebird. Today we are going to learn how
combinators can help us separate the general form of an algorithm like “divide and conquer” from its
specific concrete steps. Consider the method #sum_squares: It sums the squares of a tree of numbers,
represented as a nested list.

def sum_squares(value)

if value.kind_of?(Enumerable)

value.map do |sub_value|

sum_squares(sub_value)

end.inject() { |x,y| x + y }

else

value ** 2

end

end

p sum_squares([1, 2, 3, [[4,5], 6], [[[7]]]])

=> 140

And the method #rotate: It rotates a square matrix, provided the length of each side is a power of
two:

def rotate(square)

if square.kind_of?(Enumerable) && square.size > 1

half_sz = square.size / 2

sub_square = lambda do |row, col|

square.slice(row, half_sz).map { |a_row| a_row.slice(col, half_sz) }

end

upper_left = rotate(sub_square.call(0,0))

lower_left = rotate(sub_square.call(half_sz,0))

upper_right = rotate(sub_square.call(0,half_sz))

lower_right = rotate(sub_square.call(half_sz,half_sz))

upper_right.zip(lower_right).map { |l,r| l + r } +

upper_left.zip(lower_left).map { |l,r| l + r }

Refactoring Methods with Recursive Combinators 48

else

square

end

end

p rotate([[1,2,3,4], [5,6,7,8], [9,10,11,12], [13,14,15,16]])

=> [[4, 8, 12, 16], [3, 7, 11, 15], [2, 6, 10, 14], [1, 5, 9, 13]]

Our challenge is to refactor them. You could change sub_square from a closure to a private method
(and in languages like Java, you have to do that in the first place). What else? Is there any common
behaviour we can extract from these two methods?

Looking at the two methods, there are no lines of code that are so obviously identical that we could
mechanically extract them into a private helper. Automatic refactoring tools fall down given these
two methods. And yet, there is a really, really important refactoring that should be performed here.

8.1 Divide and Conquer

Both of these methods use the Divide and Conquer¹ strategy.

As described, there are two parts to each divide and conquer algorithm. We’ll start with conquer:
you need a way to decide if the problem is simple enough to solve in a trivial manner, and a trivial
solution. You’ll also need a way to divide the problem into sub-problems if it’s too complex for
the trivial solution, and a way to recombine the pieces back into the solution. The entire process is
carried our recursively.

For example, here’s how #rotate rotated the square. We started with a square matrix of size 4:

[

[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12],

[13, 14, 15, 16]

]

That cannot be rotated trivially, so we divided it into four smaller sub-squares:

¹http://www.cs.berkeley.edu/~vazirani/algorithms/chap2.pdf

http://www.cs.berkeley.edu/~vazirani/algorithms/chap2.pdf
http://www.cs.berkeley.edu/~vazirani/algorithms/chap2.pdf

Refactoring Methods with Recursive Combinators 49

[[

[1, 2], [3, 4],

[5, 6] [7, 8]

]]

[[

[9, 10], [11, 12],

[13, 14] [15, 16]

]]

Those couldn’t be rotated trivially either, so our algorithm divide each of them into four smaller
squares again, giving us sixteen squares of one number each. Those are small enough to rotate
trivially (they do not change), so the algorithm could stop subdividing.

We said there was a recombination step. For #rotate, four sub-squares are recombined into one
square bymoving them counter-clockwise 90 degrees. The sixteen smallest squares were recombined
into four sub-squares like this:

[[

[2, 6], [4, 8],

[1, 5] [3, 7]

]]

[[

[10, 14], [12, 16],

[9, 13] [11, 15]

]]

Then those four squares were recombined into the final result like this:

[[

[4, 8], [12, 16],

[3, 7] [11, 15]

]]

[[

[2, 6], [10, 14],

[1, 5] [9, 13]

]

And smooshed (that is the technical term) back together:

Refactoring Methods with Recursive Combinators 50

[

[4, 8, 12, 16],

[3, 7, 11, 15],

[2, 6, 10, 14],

[1, 5, 9, 13]

]

And Voila! There is your rotated square matrix.

Both rotation and summing the squares of a tree combine the four steps of a divide and conquer
strategy:

1. Deciding whether the problem is divisible into smaller pieces or can be solved trivially,
2. A solution fro the trivial case,
3. A way to divide a non-trivial problem up,
4. And a way to piece it back together.

Here are the two methods re-written to highlight the common strategy. First, #sum_squares_2:

public

def sum_squares_2(value)

if sum_squares_divisible?(value)

sum_squares_recombine(

sum_squares_divide(value).map { |sub_value| sum_squares_2(sub_value) }

)

else

sum_squares_conquer(value)

end

end

private

def sum_squares_divisible?(value)

value.kind_of?(Enumerable)

end

def sum_squares_conquer(value)

value ** 2

end

def sum_squares_divide(value)

Refactoring Methods with Recursive Combinators 51

value

end

def sum_squares_recombine(values)

values.inject() { |x,y| x + y }

end

And #rotate_2:

public

def rotate_2(value)

if rotate_divisible?(value)

rotate_recombine(

rotate_divide(value).map { |sub_value| rotate_2(sub_value) }

)

else

rotate_conquer(value)

end

end

private

def rotate_divisible?(value)

value.kind_of?(Enumerable) && value.size > 1

end

def rotate_conquer(value)

value

end

def rotate_divide(value)

half_sz = value.size / 2

sub_square = lambda do |row, col|

value.slice(row, half_sz).map { |a_row| a_row.slice(col, half_sz) }

end

upper_left = sub_square.call(0,0)

lower_left = sub_square.call(half_sz,0)

upper_right = sub_square.call(0,half_sz)

lower_right = sub_square.call(half_sz,half_sz)

[upper_left, lower_left, upper_right, lower_right]

end

Refactoring Methods with Recursive Combinators 52

def rotate_recombine(values)

upper_left, lower_left, upper_right, lower_right = values

upper_right.zip(lower_right).map { |l,r| l + r } +

upper_left.zip(lower_left).map { |l,r| l + r }

end

Now the common code is glaringly obvious. The main challenge in factoring it into a helper is
deciding whether you want to represent methods like #rotate_divide as lambdas or want to fool
around specifying method names as symbols. Let’s go with lambdas for the sake of writing a clear
example:

public

def sum_squares_3(list)

divide_and_conquer(

list,

:divisible? => lambda { |value| value.kind_of?(Enumerable) },

:conquer => lambda { |value| value ** 2 },

:divide => lambda { |value| value },

:recombine => lambda { |list| list.inject() { |x,y| x + y } }

)

end

def rotate_3(square)

divide_and_conquer(

square,

:divisible? => lambda { |value| value.kind_of?(Enumerable) && value.size > 1 \

},

:conquer => lambda { |value| value },

:divide => lambda do |square|

half_sz = square.size / 2

sub_square = lambda do |row, col|

square.slice(row, half_sz).map { |a_row| a_row.slice(col, half_sz) }

end

upper_left = sub_square.call(0,0)

lower_left = sub_square.call(half_sz,0)

upper_right = sub_square.call(0,half_sz)

lower_right = sub_square.call(half_sz,half_sz)

[upper_left, lower_left, upper_right, lower_right]

end,

:recombine => lambda do |list|

Refactoring Methods with Recursive Combinators 53

upper_left, lower_left, upper_right, lower_right = list

upper_right.zip(lower_right).map { |l,r| l + r } +

upper_left.zip(lower_left).map { |l,r| l + r }

end

)

end

private

def divide_and_conquer(value, steps)

if steps[:divisible?].call(value)

steps[:recombine].call(

steps[:divide].call(value).map { |sub_value| divide_and_conquer(sub_value, \

steps) }

)

else

steps[:conquer].call(value)

end

end

Now we have refactored the common algorithm out. Typically, something like divide and conquer
is treated as a “pattern,” a recipe for writing methods. We have changed it into an abstraction by
writing a #divide_and_conquermethod and passing it our own functions which it combines to form
the final algorithm. That ought to sound familiar: #divide_and_conquer is a combinator that creates
recursive methods for us.

You can also find recursive combinators in other languages like Joy, Factor, and even Javascript (the
recursive combinator presented here as #divide_and_conquer is normally called multirec). Eugene
Lazutkin’s article on [Using recursion combinators in JavaScript](http://lazutkin.com/blog/2008/jun/30/using-
recursion-combinators-javascript/ “”) shows how to use combinators to build divide and conquer
algorithms in Javascript with the Dojo libraries. This example uses binrec, a recursive combinator
for algorithms that always divide their problems in two:

var fib0 = function(n){

return n <= 1 ? 1 :

arguments.callee.call(this, n - 1) +

arguments.callee.call(this, n - 2);

};

var fib1 = binrec("<= 1", "1", "[[n - 1], [n - 2]]", "+");

Refactoring Methods with Recursive Combinators 54

8.2 The Merge Sort

Let’s look at another example, implementing a merge sort². This algorithm has a distinguished
pedigree: It was invented by John Von Neumann in 1945.

Von Neumann was a brilliant and fascinating individual. he is most famous amongst
Computer Scientists for formalizing the computer architecture which now bears his
name. he also worked on game theory, and it was no game to him: He hoped to use
math to advise the United States whether an when to launch a thermonuclear war on
the USSR. If you are interested in reading more, Prisoner’s Dilemma³ is a very fine book
about both game theory and one of the great minds of modern times.

Conceptually, a merge sort works as follows:

• If the list is of length 0 or 1, then it is already sorted.
• Otherwise:

1. Divide the unsorted list into two sublists of about half the size.
2. Sort each sublist recursively by re-applying merge sort.
3. Merge the two sublists back into one sorted list.

The merge sort part will be old hat given our #divide_and_conquer helper:

def merge_sort(list)

divide_and_conquer(

list,

:divisible? => lambda { |list| list.length > 1 },

:conquer => lambda { |list| list },

:divide => lambda do |list|

half_index = (list.length / 2) - 1

[list[0..half_index], list[(half_index + 1)..-1]]

end,

:recombine => lambda { |pair| merge_two_sorted_lists(pair.first, pair.last) }

)

end

The interesting part is our #merge_two_sorted_lists method. Given two sorted lists, our merge
algorithm works like this:

²http://en.wikipedia.org/wiki/Merge_sort
³http://www.amazon.com/gp/product/038541580X?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=

390957&creativeASIN=038541580X

http://en.wikipedia.org/wiki/Merge_sort
http://www.amazon.com/gp/product/038541580X?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=038541580X
http://en.wikipedia.org/wiki/Merge_sort
http://www.amazon.com/gp/product/038541580X?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=038541580X
http://www.amazon.com/gp/product/038541580X?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=038541580X

Refactoring Methods with Recursive Combinators 55

• If either list is of length zero, return the other list.
• Otherwise:

1. Compare the first item of each list using <=>. Let’s call the list which has the “preceding”
first item the preceding list and the list which has the “following” first item the following
list.

2. Create a pair of lists consisting of the preceding item and an empty list, and another pair
of lists consisting of the remainder of the preceding list and the entire following list.

3. Merge each pair of lists recursively by applying merge two sorted lists.
4. Catenate the results together.

As you can tell from the description, this is another divide and conquer algorithm:

def merge_two_sorted_lists(*pair)

divide_and_conquer(

pair,

:divisible? => lambda { |pair| !pair.first.empty? && !pair.last.empty? },

:conquer => lambda do |pair|

if pair.first.empty? && pair.last.empty?

[]

elsif pair.first.empty?

pair.last

else

pair.first

end

end,

:divide => lambda do |pair|

preceding, following = case pair.first.first <=> pair.last.first

when -1: [pair.first, pair.last]

when 0: [pair.first, pair.last]

when 1: [pair.last, pair.first]

end

[

[[preceding.first], []],

[preceding[1..-1], following]

]

end,

:recombine => lambda { |pair| pair.first + pair.last }

)

end

That’s great. Well, that’s barely ok, actually. The problem is that when doing our merge sort, when
we decide which item is the preceding item (least most, front most, whatever you want to call it), we

Refactoring Methods with Recursive Combinators 56

already know that it is a trivial item and that it doesn’t need any further merging. The only reason
we bundle it up in [[preceding.first], []] is because our #divide_and_conquermethod expects
to recursively attempt to solve all of the sub-problems we generate.

In this case, #merge_two_sorted_lists does not really divide a problem into a list of one or more
sub-problems, some of which may or may not be trivially solvable. Instead, it divides a problem into
a part of the solution and a single sub-problem which may or may not be trivially solvable. This
common strategy also has a name, linear recursion⁴.

Let’s write another version of #merge_two_sorted_lists, but his time instead of using #divide_-

and_conquer, we’ll write a linear recursion combinator:

def merge_two_sorted_lists(*pair)

linear_recursion(

pair,

:divisible? => lambda { |pair| !pair.first.empty? && !pair.last.empty? },

:conquer => lambda do |pair|

if pair.first.empty? && pair.last.empty?

[]

elsif pair.first.empty?

pair.last

else

pair.first

end

end,

:divide => lambda do |pair|

preceding, following = case pair.first.first <=> pair.last.first

when -1: [pair.first, pair.last]

when 0: [pair.first, pair.last]

when 1: [pair.last, pair.first]

end

[preceding.first, [preceding[1..-1], following]]

end,

:recombine => lambda { |trivial_bit, divisible_bit| [trivial_bit] + divisible\

_bit }

)

end

def linear_recursion(value, steps)

if steps[:divisible?].call(value)

trivial_part, sub_problem = steps[:divide].call(value)

steps[:recombine].call(

⁴http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Recn/Linear/

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Recn/Linear/
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Recn/Linear/

Refactoring Methods with Recursive Combinators 57

trivial_part, linear_recursion(sub_problem, steps)

)

else

steps[:conquer].call(value)

end

end

You may think this is even better, and it is.

8.3 Separating Declaration from Implementation

Using recursive combinators like #divide_and_conquer and #linear_recursion are abstraction
wins. They make recursive code much easier to read, because you know the general form of the
algorithm and don’t need to pick through it to discover the individual steps. But there’s another
benefit we should consider: Recursive combinators separate declaration from implementation.

Consider #linear_recursion again. This is not the fastest possible implementation. There is a
long and tedious argument that arises when one programmer argues it should be implemented
with iteration for performance, and the other argues it should be implemented with recursion for
clarity, and a third programmer who never uses recursion claims the iterative solution is easier to
understand…

Imagine a huge code base full of #linear_recursion and #divide_and_conquer calls. What happens
if you decide that each one of these algorithms should be implementedwith iteration? Hmmm…How
about we modify #linear_recursion and #divide_and_conquer, and all of the methods that call
them switch from recursion to iteration for free?

Or perhaps we decide that we really should take advantage of multiple threads… Do you see where
this is going? You can write a new implementation and again, all of the existing methods are
upgraded.

Even if you do not plan to change the implementation, let’s face a simple fact: when writing a brand
new recursive or iterative method, you really have two possible sources of bugs: you may not have
declared the solution correctly, and you may not implement it correctly.

Using combinators like #divide_and_conquer simplifies things: You only need to get your declara-
tion of the solution correct, the implementation is taken care of for you. This is a tremendous win
when writing recursive functions.

For these reasons, I strongly encourage the use of recursion combinators, either those supplied here
or ones you write for yourself.

8.4 Practical Recursive Combinators

We’ve seen how recursive combinators like #divide_and_conquer and #linear_recursion are
abstraction wins. They make recursive code much easier to read, because you know the general

Refactoring Methods with Recursive Combinators 58

form of the algorithm and don’t need to pick through it to discover the individual steps.

We also saw that by separating the recursion implementation from the declaration of how to
perform the steps of an algorithm like #rotate, we leave ourselves the opportunity to improve the
performance of our implementation without the risk of adding bugs to our declaration. And today
we’re going to do just that, along with a few tweaks for usability.

In this section, we’re going to optimize our combinators’ performance and make them a little easier
to use with goodies like string_to_proc. To do that, we’re going to work with closures, defining
methods with define_method, and implement functional programming’s partial application. We’ll
wrap up by converting linrec from a recursive to an iterative implementation.

First, a little organization. Here are the original examples. I’ve placed them in a module and named
the combinators multirec and linrec in conformance with common practice:

module RecursiveCombinators

def multirec(value, steps)

if steps[:divisible?].call(value)

steps[:recombine].call(

steps[:divide].call(value).map { |sub_value| multirec(sub_value, steps) }

)

else

steps[:conquer].call(value)

end

end

def linrec(value, steps)

if steps[:divisible?].call(value)

trivial_part, sub_problem = steps[:divide].call(value)

steps[:recombine].call(

trivial_part, linrec(sub_problem, steps)

)

else

steps[:conquer].call(value)

end

end

module_function :multirec, :linrec

end

Since they are also module functions, call them by sending a message to the module:

Refactoring Methods with Recursive Combinators 59

def merge_sort(list)

RecursiveCombinators.multirec(

list,

:divisible? => lambda { |list| list.length > 1 },

:conquer => lambda { |list| list },

:divide => lambda do |list|

half_index = (list.length / 2) - 1

[list[0..half_index], list[(half_index + 1)..-1]]

end,

:recombine => lambda { |pair| merge_two_sorted_lists(pair.first, pair.last) }

)

end

Or you can include the RecursiveCombinators module and call either method directly:

include RecursiveCombinators

def merge_two_sorted_lists(*pair)

linrec(

pair,

:divisible? => lambda { |pair| !pair.first.empty? && !pair.last.empty? },

:conquer => lambda do |pair|

if pair.first.empty? && pair.last.empty?

[]

elsif pair.first.empty?

pair.last

else

pair.first

end

end,

:divide => lambda do |pair|

preceding, following = case pair.first.first <=> pair.last.first

when -1: [pair.first, pair.last]

when 0: [pair.first, pair.last]

when 1: [pair.last, pair.first]

end

[preceding.first, [preceding[1..-1], following]]

end,

:recombine => lambda { |trivial_bit, divisible_bit| [trivial_bit] + divisible\

_bit }

)

end

Refactoring Methods with Recursive Combinators 60

merge_sort([8, 3, 10, 1, 9, 5, 7, 4, 6, 2])

=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Ok, we’re ready for some slightly more substantial work. These methods were fine for illustration,
but I have a few questions for the author(!)

8.5 Spicing things up

First, note that every single time we call a method like merge_sort, we create four new lambdas from
scratch. This seems wasteful, especially since the lambdas never change. Why create some objects
just to throw them away?

On the other hand, it’s nice to be able to use create algorithms without having to define a method by
name. Although I probably wouldn’t do a merge sort anonymously, when I need a one-off quickie,
I might like to write something like:

RecursiveCombinators.multirec(

[1, 2, 3, [[4,5], 6], [[[7]]]],

:divisible? => lambda { |value| value.kind_of?(Enumerable) },

:conquer => lambda { |value| value ** 2 },

:divide => lambda { |value| value },

:recombine => lambda { |list| list.inject() { |x,y| x + y } }

)

=> 140

But when I want a permanent sum of the squares method, I don’t want to write:

def sum_squares(list)

RecursiveCombinators.multirec(

list,

:divisible? => lambda { |value| value.kind_of?(Enumerable) },

:conquer => lambda { |value| value ** 2 },

:divide => lambda { |value| value },

:recombine => lambda { |list| list.inject() { |x,y| x + y } }

)

end

…because that would create four lambdas every time I call the function. There are a couple of ways
around this problem. First, our “recipe” for summing squares is a simple hash. We could extract that
from the method into a constant:

Refactoring Methods with Recursive Combinators 61

SUM_SQUARES_RECIPE = {

:divisible? => lambda { |value| value.kind_of?(Enumerable) },

:conquer => lambda { |value| value ** 2 },

:divide => lambda { |value| value },

:recombine => lambda { |list| list.inject() { |x,y| x + y } }

}

def sum_squares(list)

RecursiveCombinators.multirec(list, SUM_SQUARES_RECIPE)

end

That (and the isomorphic solution where the constant SUM_SQUARES_RECIPE is instead a private
helper method #sum_squares_recipe) is nice if you have some reason you wish to re-use the recipe
elsewhere. But we don’t, so this merely clutters our class up and separates the method definition
from its logic.

I have something in mind. To see what it is, let’s start by transforming our method definition from
using the def keyword to using the define_method private class method. This obviously needs a
module or class to work:

class Practicum

include RecursiveCombinators

define_method :sum_squares do |list|

multirec(

list,

:divisible? => lambda { |value| value.kind_of?(Enumerable) },

:conquer => lambda { |value| value ** 2 },

:divide => lambda { |value| value },

:recombine => lambda { |list| list.inject() { |x,y| x + y } }

)

end

end

Practicum.new.sum_squares([1, 2, 3, [[4,5], 6], [[[7]]]])

As you probably know, any method taking a block can take a lambda using the & operator, so:

Refactoring Methods with Recursive Combinators 62

define_method :sum_squares, &(lambda do |list|

multirec(

list,

:divisible? => lambda { |value| value.kind_of?(Enumerable) },

:conquer => lambda { |value| value ** 2 },

:divide => lambda { |value| value },

:recombine => lambda { |list| list.inject() { |x,y| x + y } }

)

end)

This is useful, because now we can express what we want: a lambda taking one argument that in
turn calls multirec with the other arguments filled in. Functional programmers call this Partial
Application⁵. The idea is that if you have a function or method taking two arguments, if you only
give it one argument you get a function back that takes the other. So:

multirec(x).call(y)

=> multirec(x,y)

Now the drawback with this “standard” implementation of partial application is that we would pass
a list to multirec and get back a function taking a hash of declarations. That isn’t what we want.
We could partially apply things backwards so that multirec(x).call(y) => multirec(y,x) (if
Ruby was a concatenative language, we would be concatenating the multirec combinator with a
thrush). The trouble with that is it is the reverse of how partial application works in every other
programming language⁶ and functional programming library⁷.

Instead, we will switch the arguments to multirec ourselves, so it now works like this:

multirec(

{

:divisible? => lambda { |value| value.kind_of?(Enumerable) },

:conquer => lambda { |value| value ** 2 },

:divide => lambda { |value| value },

:recombine => lambda { |list| list.inject() { |x,y| x + y } }

},

list

)

The drawback with this approach is that we lose a little of Ruby’s syntactic sugar, the ability to
fake named parameters by passing hash arguments without {} if they are the last parameter. And

⁵http://ejohn.org/blog/partial-functions-in-javascript/
⁶http://www.haskell.org/
⁷https://github.com/osteele/functional-javascript/tree

http://ejohn.org/blog/partial-functions-in-javascript/
http://ejohn.org/blog/partial-functions-in-javascript/
http://www.haskell.org/
https://github.com/osteele/functional-javascript/tree
http://ejohn.org/blog/partial-functions-in-javascript/
http://www.haskell.org/
https://github.com/osteele/functional-javascript/tree

Refactoring Methods with Recursive Combinators 63

now, let’s give it the ability to partially apply itself. You can do some stuff with allowing multiple
arguments and counting the number of arguments, but we’re going tomake the wild assumption that
you never attempt a recursive combinator on nil. Here’s multirec, you can infer the implementation
for linrec:

def multirec(steps, optional_value = nil)

worker_proc = lambda do |value|

if steps[:divisible?].call(value)

steps[:recombine].call(

steps[:divide].call(value).map { |sub_value| worker_proc.call(sub_value) }

)

else

steps[:conquer].call(value)

end

end

if optional_value.nil?

worker_proc

else

worker_proc.call(optional_value)

end

end

Notice that you get the same correct result whether you write:

RecursiveCombinators.multirec(

:divisible? => lambda { |value| value.kind_of?(Enumerable) },

:conquer => lambda { |value| value ** 2 },

:divide => lambda { |value| value },

:recombine => lambda { |list| list.inject() { |x,y| x + y } }

).call([1, 2, 3, [[4,5], 6], [[[7]]]])

=> 140

Or:

Refactoring Methods with Recursive Combinators 64

RecursiveCombinators.multirec(

{

:divisible? => lambda { |value| value.kind_of?(Enumerable) },

:conquer => lambda { |value| value ** 2 },

:divide => lambda { |value| value },

:recombine => lambda { |list| list.inject() { |x,y| x + y } }

},

[1, 2, 3, [[4,5], 6], [[[7]]]]

)

=> 140

Let’s go back to what we were trying to do with &:

define_method :sum_squares, &(lambda do |list|

multirec(

list,

:divisible? => lambda { |value| value.kind_of?(Enumerable) },

:conquer => lambda { |value| value ** 2 },

:divide => lambda { |value| value },

:recombine => lambda { |list| list.inject() { |x,y| x + y } }

)

end)

Now we know how to build our lambda:

require 'partial_application_recursive_combinators'

class Practicum

extend PartialApplicationRecursiveCombinators # so we can call multirec in cl\

ass scope

define_method :sum_squares, &multirec(

:divisible? => lambda { |value| value.kind_of?(Enumerable) },

:conquer => lambda { |value| value ** 2 },

:divide => lambda { |value| value },

:recombine => lambda { |list| list.inject() { |x,y| x + y } }

)

end

Practicum.new.sum_squares([1, 2, 3, [[4,5], 6], [[[7]]]])

=> 140

Refactoring Methods with Recursive Combinators 65

You can verify for yourself that no matter how many times you call sum_squares, you do not build
those lambdas again. What we have just done is added partial application to multirec and linrec,
which in turn allows us to ensure that he cost of constructing lambdas for our methods is only done
when the method is defined, not every time it is called.

8.6 Building on a legacy

We have already renamed divide_and_conquer and linear_recursion to bring them into line with
standard practice and other programming languages. Now it’s time for us to bring the parameters–
the declarative lambdas–into line with standard practice.

The four arguments to both methods are normally called cond, then, before, and after:

• cond is the logical inverse of divisible? So if cond(value) evaluates to true, then we do not
need to subdivide the problem.

• then is exactly the same as conquer, if cond then then. That’s the way I think of it.
• before is the same as divide.
• after is the same as recombine.

Things look very similar with the new scheme for now:

require 'legacy_recursive_combinators'

class Practicum

extend LegacyRecursiveCombinators # so we can call multirec in class scope

define_method :sum_squares, &multirec(

:cond => lambda { |value| value.kind_of?(Numeric) }, # the only change right\

now

:then => lambda { |value| value ** 2 },

:before => lambda { |value| value },

:after => lambda { |list| list.inject() { |x,y| x + y } }

)

end

All right, now our combinators will look familiar to functional programmers, and even better when
we look at functional programs using recursive combinators we will understand them at a glance.
Okay, let’s get serious and work on making our combinators easy to use and our code easy to read.

Refactoring Methods with Recursive Combinators 66

8.7 Seriously

As long as you’re writing these lambdas out, writing :cond => isn’t a hardship. And in an
explanatory article like this, it can help at first. However, what if you find a way to abbreviate
things? For example, you might alias lambda to L⁸. Or you might want to use string_to_proc:

string_to_proc.rb

class String

unless ''.respond_to?(:to_proc)

def to_proc &block

params = []

expr = self

sections = expr.split(/\s*->\s*/m)

if sections.length > 1 then

eval sections.reverse!.inject { |e, p| "(Proc.new { |#{p.split(/\s/).jo\

in(', ')}| #{e} })" }, block && block.binding

elsif expr.match(/\b_\b/)

eval "Proc.new { |_| #{expr} }", block && block.binding

else

leftSection = expr.match(/^\s*(?:[+*\/%&|\^\.=<>\[]|!=)/m)

rightSection = expr.match(/[+\-*\/%&|\^\.=<>!]\s*$/m)

if leftSection || rightSection then

if (leftSection) then

params.push('$left')

expr = '$left' + expr

end

if (rightSection) then

params.push('$right')

expr = expr + '$right'

end

else

self.gsub(

/(?:\b[A-Z]|\.[a-zA-Z_$])[a-zA-Z_$\d]*|[a-zA-Z_$][a-zA-Z_$\d]*:\

|self|arguments|'(?:[^'\\]|\\.)*'|"(?:[^"\\]|\\.)*"/, ''

).scan(

/([a-z_$][a-z_$\d]*)/i

) do |v|

params.push(v) unless params.include?(v)

end

⁸http://github.com/gilesbowkett/archaeopteryx/tree/master

http://github.com/gilesbowkett/archaeopteryx/tree/master
http://github.com/gilesbowkett/archaeopteryx/tree/master

Refactoring Methods with Recursive Combinators 67

end

eval "Proc.new { |#{params.join(', ')}| #{expr} }", block && block.bind\

ing

end

end

end

end

So we should support passing the declarative arguments by position as well as by ‘name.’ And with
a final twist, if any of the declarative arguments aren’t already lambdas, we’ll try to create lambdas
by sending them the message to_proc. So our goal is to write what we wrote above or either of the
following and have it “just work:”

define_method :sum_squares, &multirec(

lambda { |value| value.kind_of?(Numeric) }, # the only change right now

lambda { |value| value ** 2 },

lambda { |value| value },

lambda { |list| list.inject() { |x,y| x + y } }

)

include 'string-to_proc'

define_method :sum_squares, &multirec("value.kind_of?(Numeric)", "value ** 2","va\

lue","value.inject(&'+')")

And here is the code that makes it work:

recursive_combinators.rb

module RecursiveCombinators

separate_args = lambda do |args|

if ![1,2,4,5].include?(args.length)

raise ArgumentError

elsif args.length <= 2

steps = [:cond, :then, :before, :after].map { |k| args.first[k].to_proc }

steps.push(args[1]) unless args[1].nil?

steps

else

steps = args[0..3].map { |arg| arg.to_proc }

steps.push(args[4]) unless args[4].nil?

Refactoring Methods with Recursive Combinators 68

steps

end

end

define_method :multirec do |*args|

cond_proc, then_proc, before_proc, after_proc, optional_value = separate_args\

.call(args)

worker_proc = lambda do |value|

if cond_proc.call(value)

then_proc.call(value)

else

after_proc.call(

before_proc.call(value).map { |sub_value| worker_proc.call(sub_value) }

)

end

end

if optional_value.nil?

worker_proc

else

worker_proc.call(optional_value)

end

end

define_method :linrec do |*args|

cond_proc, then_proc, before_proc, after_proc, optional_value = separate_args\

.call(args)

worker_proc = lambda do |value|

trivial_parts, sub_problem = [], value

while !cond_proc.call(sub_problem)

trivial_part, sub_problem = before_proc.call(sub_problem)

trivial_parts.unshift(trivial_part)

end

trivial_parts.unshift(then_proc.call(sub_problem))

trivial_parts.inject do |recombined, trivial_part|

after_proc.call(trivial_part, recombined)

end

end

if optional_value.nil?

worker_proc

else

worker_proc.call(optional_value)

end

Refactoring Methods with Recursive Combinators 69

end

module_function :multirec, :linrec

end

Now when we have trivial lambdas, we can use nice syntactic sugar to express them. string_to_-
proc is not part of our recursive combinators, but making recursive combinators flexible, we make
it “play well with others,” which is a win for our code.

8.8 Separating Implementation from Declaration

In Refactoring Methods with Recursive Combinators, we read the claim that by separating the
recursion implementation from the declaration of how to perform the steps of an algorithm like
#rotate, we leave ourselves the opportunity to improve the performance of our implementation
without the risk of adding bugs to our declaration.

In other words, we can optimize linrec if we want to. Well, we want to. So what we’re going to do
is optimize its performance by trading time for space. Let’s have a quick look at the worker_proc
lambda inside of linrec:

worker_proc = lambda do |value|

if cond_proc.call(value)

then_proc.call(value)

else

trivial_part, sub_problem = before_proc.call(value)

after_proc.call(

trivial_part, worker_proc.call(sub_problem)

)

end

end

As you can see, it is recursive, it calls itself to solve each sub-problem. And here is an iterative
replacement:

Refactoring Methods with Recursive Combinators 70

worker_proc = lambda do |value|

trivial_parts, sub_problem = [], value

while !cond_proc.call(sub_problem)

trivial_part, sub_problem = before_proc.call(sub_problem)

trivial_parts.unshift(trivial_part)

end

trivial_parts.unshift(then_proc.call(sub_problem))

trivial_parts.inject do |recombined, trivial_part|

after_proc.call(trivial_part, recombined)

end

end

This version doesn’t call itself. Instead, it uses an old-fashioned loop, accumulating the results in
an array. In a certain sense, this uses more explicit memory than the recursive implementation.
However, we both know that the recursive version uses memory for its stack, so that’s a bit of
a wash. However, the Ruby stack is limited while arrays can be much larger, so this version can
handle much larger data sets.

If you drop the new version of worker_proc into the linrec definition, each and every method you
define using linrec gets the new implementation, for free. This works because we separated the
implementation of recursive divide and conquer algorithms from the declaration of the steps each
particular algorithm. Here’s our new version of linrec:

define_method :linrec do |*args|

cond_proc, then_proc, before_proc, after_proc, optional_value = separate_args.c\

all(args)

worker_proc = lambda do |value|

trivial_parts, sub_problem = [], value

while !cond_proc.call(sub_problem)

trivial_part, sub_problem = before_proc.call(sub_problem)

trivial_parts.unshift(trivial_part)

end

trivial_parts.unshift(then_proc.call(sub_problem))

trivial_parts.inject do |recombined, trivial_part|

after_proc.call(trivial_part, recombined)

end

end

if optional_value.nil?

worker_proc

else

worker_proc.call(optional_value)

end

end

Refactoring Methods with Recursive Combinators 71

8.9 A Really Simple Recursive Combinator

In [Recursive Lambdas in Ruby usingObject#tap](http://ciaranm.wordpress.com/2008/11/30/recursive-
lambdas-in-ruby-using-objecttap/ “”), Ciaran McCreesh explained how he used #tap to write a
recursive function without cluttering the scope up with an unneeded variable. (If you would like
a refresher, Object#tap is explained in Kestrels⁹).

Ciaran’s final solution was:

lambda do | recurse, spec |

case spec

when AllDepSpec, ConditionalDepSpec

spec.each { | child | recurse.call(recurse, child) }

when SimpleURIDepSpec

puts spec

end

end.tap { | r | r.call(r, id.homepage_key.value) } if id.homepage_key

There are two great things about this solution. First, Ciaran doesn’t need to calculate a result, he is
just performing this computation for its side-effect, puts. Therefore, using a kestrel like #tap signals
that he is not interested in the result. Second, he is using an off-the-shelf component and not writing
a “horrid untyped lambda calculus construct” to get the job done. Fewer moving parts is a laudable
goal.

That being said, when solving other problems, this solution may not meet our needs:

• Since it doesn’t return a result, we cannot use it for functions that compute values and not
just generate side effects;

• Within the lambda, our recurse function must be called with itself as a parameter. This mixes
the mechanics of our recursive implementation up with the semantics of what we’re trying to
accomplish.

If we find ourselves needing to work around these limitations, we’ll need to go a bit further. Let’s
use a brutally trivial example, factorial. (The naive implementation of factorial is a terrible piece of
programming, but it’s simple enough that we can focus on how we’re implementing recursion and
not what we are computing).

We could use one of our existing recursive combinators like linrec:

⁹http://github.com/raganwald/homoiconic/tree/master/2008-10-29/kestrel.markdown#readme

http://github.com/raganwald/homoiconic/tree/master/2008-10-29/kestrel.markdown#readme
http://github.com/raganwald/homoiconic/tree/master/2008-10-29/kestrel.markdown#readme

Refactoring Methods with Recursive Combinators 72

include 'string-to_proc'

linrec('< 2', '1', 'n -> [n, n - 1]', '*').call(5)

=> 120

or perhaps you prefer...

linrec(

lambda { |n| n < 2 },

lambda { |n| 1 },

lambda { |n| [n, n - 1] },

lambda { |n, m| n * m }

).call(5)

=> 120

That gets us what we want without using a untyped lambda calculus construct, because it uses a
combinatorial logic construct instead. But let’s work something out that is closer to the spirit of
Ciaran’s approach. For starters, we can’t use #tap because we need the result of the computation,
so we’ll imagine we have a new method, #rcall. Our first cut will look like this:

class Proc

def rcall(*args)

call(self, *args)

end

end

lambda { |r, n| n < 2 ? 1 : n * r.call(r, n-1) }.rcall(5)

That solves our first problem very nicely: we can call a lambdawith a value and it knows to pass itself
to itself. Now what about our second problem? We are still cluttering up the inside of our function
with passing itself to itself. Instead of calling r.call(r, n-1), can we just call r.call(n-1)?

That would make our function look a lot simpler.

Well, we start with lambda { |r, *args| ... }. But if we are to call r.call(n), we need to pass
in a function like lambda { |*args| ... }. What does that function do? Send the message #rcall
to our original function, of course. So we can write:

Refactoring Methods with Recursive Combinators 73

class Proc

def rcall(*args)

call(lambda { |*args| self.rcall(*args) }, *args)

end

end

lambda { |r, n| n < 2 ? 1 : n * r.call(n-1) }.rcall(5)

=> 120

And that’s it, we’ve accomplished recursion without using any untyped lambda calculus constructs.
It may look at first glance like we’re using an anonymous recursive combinator like Y¹⁰, but we
aren’t. We’re actually taking advantage of Ruby’s self variable, so #rcall does not really implement
anonymous recursion, it just lets us write recursive lambdas without explicitly binding them to a
variable.

And our new method, #rcall, returns a value from our recursion and doesn’t force us to remember
to pass our lambda to itself when making a recursive call.

Cheers!

class Proc

def rcall(*args)

call(lambda { |*args| self.rcall(*args) }, *args)

end

end

¹⁰http://www.ece.uc.edu/~franco/C511/html/Scheme/ycomb.html

http://www.ece.uc.edu/~franco/C511/html/Scheme/ycomb.html
http://www.ece.uc.edu/~franco/C511/html/Scheme/ycomb.html

9 You can’t be serious!?
In Practical Recursive Combinators, we enhanced multirec (a/k/a “Divide and Conquer”) and
linrec (“Linear Recursion”) to accept as arguments any object that supports the #to_proc method.
Today we’re going demonstrate why: We will look at how removing the ceremony around lambdas
makes using combinators like multirec more valuable for code we share with others.

Using recursive_combinators.rb¹ to define how to sum the squares of a nested list of numbers, we
can write:

require 'recursive_combinators'

include RecursiveCombinators

multirec(

lambda { |x| x.kind_of?(Numeric) },

lambda { |x| x ** 2 },

lambda { |x| x },

lambda { |x| x.inject { |sum, n| sum + n } }

)

The trouble with this–to quote a seasonally appropriate character²–is the noise, noise, Noise, NOISE!
All those lambdas and parameter declarations outweigh the actual logic we are declaring, so much
so that declaring this function using our abstraction is longer and may seem more obscure than
declaring it without the abstraction.

This whole thing reminds me of languages where the keywords must be in UPPER CASE. Reading
code in such languages is like listening to a poetry reading where the author shouts the punctuation:

Two roads diverged in a yellow wood COMMA!
And sorry I could not travel both
And be one traveler COMMA! long I stood
And looked down one as far as I could
To where it bent in the undergrowth SEMI-COMMA!!

¹http://github.com/raganwald/homoiconic/tree/master/2008-11-26/recursive_combinators.rb
²http://www.amazon.com/gp/product/B000HA4WDY?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&

creative=390957&creativeASIN=B000HA4WDY

http://github.com/raganwald/homoiconic/tree/master/2008-11-26/recursive_combinators.rb
http://www.amazon.com/gp/product/B000HA4WDY?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=B000HA4WDY
http://github.com/raganwald/homoiconic/tree/master/2008-11-26/recursive_combinators.rb
http://www.amazon.com/gp/product/B000HA4WDY?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=B000HA4WDY
http://www.amazon.com/gp/product/B000HA4WDY?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=B000HA4WDY

You can’t be serious!? 75

Finding ways to abbreviate our declaration is more than just a little “syntactic sugar:” It’s a way
of emphasizing what is important, our algorithms, and de-emphasizing what is not important,
the scaffolding and ceremony of instantiating Proc objects in Ruby. One of those ways is to use
String#to_proc³.

9.1 String to Proc

String#to_proc adds the #to_proc method to the String class in Ruby. This allows you to write
certain simple lambdas as strings instead of using the lambda keyword, the proc keyword, or
Proc.new. The reason why you’d bother is that String#to_proc provides some shortcuts that get
rid of the noise.

gives

String#to_proc provides several key abbreviations: First, -> syntax for lambdas in Ruby 1.8. So
instead of lambda { |x,y| x + y }, you can write 'x,y -> x + y'. I read this out loud as “x and
y gives x plus y.”

This syntax gets rid of the noisy lambda keyword and is much closer to Ruby 1.9 syntax. And frankly,
reading it out loud makes much more sense than reading lambdas aloud. Our example above could
be written:

require 'string_to_proc'

multirec(

'x -> x.kind_of?(Numeric)',

'x -> x ** 2',

'x -> x',

'x -> x.inject { |sum, n| sum + n }'

)

This is a lot better than the version with lambdas, and if the -> seems foreign, it is only because
-> is in keeping with modern functional languages and mathematical notation, while lambda is in
keeping with Lisp and lambda calculus notation without the ability to use a single lambda character
unicode.

inferred parameters

Second, String#to_proc adds inferred parameters: If you do not use ->, String#to_proc attempts
to infer the parameters. So if you write 'x + y', String#to_proc treats it as x,y -> x + y. There
are certain expressions where this doesn’t work, and you have to use ->, but for really simple cases
it works just fine. And frankly, for really simple cases you don’t need the extra scaffolding. Here’s
our example with the first three lambdas using inferred parameters:

³http:string_to_proc.rb

http:string_to_proc.rb
http:string_to_proc.rb

You can’t be serious!? 76

multirec(

'x.kind_of?(Numeric)',

'x ** 2',

'x',

'z -> z.inject { |sum, n| sum + n }'

)

I have good news and bad news about inferred parameters and String#to_proc in
general. It uses regular expressions to do its thing, which means that complicated things
often don’t work. For example, nesting -> only works when writing functions that
return functions. So 'x -> y -> x + y' is a function that takes an x and returns a
function that takes a y and returns x + y. That works. But 'z -> z.inject(&"sum, n

-> sum + n")' does NOT work.

I considered fixing this with more sophisticated parsing, however the simple truth is
this: String#to_proc is not a replacement for lambda, it’s a tool to be used when what
you’re doing is so simple that lambda is overkill. If String#to_proc doesn’t work for
something, it probably isn’t ridiculously simple any more.

it

The third abbreviation is a special case. If there is only one parameter, you can use _ (the underscore)
without naming it. This is often called the “hole” or pronounced “it.” If you use “it,” then String#to_-
proc doesn’t try to infer any more parameters, so this can help you write things like:

multirec(

'_.kind_of?(Numeric)',

'_ ** 2',

'_',

'_.inject { |sum, n| sum + n }'

)

Admittedly, use of “it”/the hole is very much a matter of taste.

point-free

String#to_proc has a fourth and even more extreme abbreviation up its sleeve, point-free style⁴:
“Function points” are what functional programmers usually call parameters. Point-free style consists
of describing how functions are composed together rather than describing what happens with their
arguments. So, let’s say that I want a function that combines .inject with +. One way to say that is
to say that I want a new function that takes its argument and applies an inject to it, and the inject
takes another function with two arguments and applies a + to them:

⁴http://blog.plover.com/prog/haskell/

http://blog.plover.com/prog/haskell/
http://blog.plover.com/prog/haskell/

You can’t be serious!? 77

lambda { |z| z.inject { |sum, n| sum + n } }

The other way is to say that I want to compose .inject and + together. Without getting into a
compose function like Haskell’s . operator, String#to_proc has enough magic to let us write the
above as:

".inject(&'+')"

Meaning “I want a new lambda that does an inject using plus.” Point-free style does require a new
way of thinking about some things, but it is a clear win for simple cases. Proof positive of this is
the fact that Ruby on Rails and Ruby 1.9 have both embraced point-free style with Symbol#to_proc.
That’s exactly how (1..100).inject(&:+)⁵ works!

String#to_proc supports fairly simple cases where you are sending a message or using a binary
operator. So if we wanted to go all out, we could write our example as:

multirec('.kind_of?(Numeric)', '** 2', 'x', ".inject(&'+')")

There’s no point-free magic for the identity function, although this example tempts me
to special case the empty string!

When should we use all these tricks?

String#to_proc provides these options so that you as a programmer can choose your level of
ceremony around writing functions. But of course, you have to use the tool wisely. My personal
rules of thumb are:

1. Embrace inferred parameters for well-known mathematical or logical operations. For these
operations, descriptive parameter names are usually superfluous. Follow the well-known
standard and use x, y, z, and w; or a, b and c; or n, i, j, and k for the parameters. If whatever
it is makes no sense using those variable names, don’t used inferred parameters.

2. Embrace the hole for extremely simple one-parameter lambdas that aren’t intrinsically
mathematical or logical such as methods that use .method_name and for the identity function.

3. Embrace point-free style for methods that look like operators.
4. Embrace -> notation for extremely simple cases where I want to give the parameters a

descriptive name.
5. Use lambdas for everything else.

So I would write:

⁵http://weblog.raganwald.com/2008/02/1100inject.html

http://weblog.raganwald.com/2008/02/1100inject.html
http://weblog.raganwald.com/2008/02/1100inject.html

You can’t be serious!? 78

multirec('_.kind_of?(Numeric)', '** 2', '_', "_.inject(&'+')")

I read the parameters out loud as:

• it kind_of? Numeric;
• raise to the power of two;
• it;
• it inject plus.

And yes, I consider multirec('_.kind_of?(Numeric)', '** 2', '_', "_.inject(&'+')")more
succinct and easier to read than:

def sum_squares(value)

if value.kind_of?(Numeric)

value ** 2

else

value.map do |sub_value|

sum_squares(sub_value)

end.inject { |x,y| x + y }

end

end

If all this is new too you, String#to_procmay seem like gibberish and def sum_squaresmay seem
reassuringly sensible. But try to remember that combinators like multirec are built to disentangle
the question of what we are doing from how we are doing it. This is the third straight post about
recursive combinators using one of three different examples. So of course we know what sum_-
squares does and how it does it.

But try to imagine you are looking at a piece of code that isn’t so simple, that isn’t so obvious. Maybe
it was written by someone else, maybe you wrote it a while ago. If you see:

def rotate(square)

return square unless square.kind_of?(Enumerable) && square.size > 1

half_sz = square.size / 2

sub_square = lambda do |row, col|

square.slice(row, half_sz).map { |a_row| a_row.slice(col, half_sz) }

end

upper_left = rotate(sub_square.call(0,0))

lower_left = rotate(sub_square.call(half_sz,0))

upper_right = rotate(sub_square.call(0,half_sz))

lower_right = rotate(sub_square.call(half_sz,half_sz))

upper_right.zip(lower_right).map { |l,r| l + r } +

upper_left.zip(lower_left).map { |l,r| l + r }

end

You can’t be serious!? 79

Do you see at once how it works? Do you see at a glance whether the recursive strategy was
implemented properly? Can you tell whether there’s something buggy about it? For example, this
code only works rotating square matrices that have sides which are powers of two. What needs to be
changed to fix that? Are you sure you can fix it without breaking the divide and conquer strategy?

For a method like this, I would write:

multirec(

:cond => "!(_.kind_of?(Enumerable) && _.size > 1)",

:then => "_",

:before => lambda do |square|

half_sz = square.size / 2

sub_square = lambda do |row, col|

square.slice(row, half_sz).map { |a_row| a_row.slice(col, half_sz) }

end

upper_left = sub_square.call(0,0)

lower_left = sub_square.call(half_sz,0)

upper_right = sub_square.call(0,half_sz)

lower_right = sub_square.call(half_sz,half_sz)

[upper_left, lower_left, upper_right, lower_right]

end,

:after => lambda do |list|

upper_left, lower_left, upper_right, lower_right = list

upper_right.zip(lower_right).map(&'+') + upper_left.zip(lower_left).map(&'+')

end

end

And be assured that months from now if I wanted to support rotating rectangular matrices of
arbitrary size, I could modify :cond, :before, and :after with confidence that the basic method
was not being broken.

9.2 The Message

The message here is that taken by themselves, tools like recursive combinators or String#to_proc
just look strange. But when we use them together, they reinforce each other and the sum becomes
much greater than the sum of the parts. In the case of String#to_proc, it looks like frivolity to most
Ruby programmers, because they don’t use that many lambdas: Why should they when the existing
syntax makes writing combinators hard to use? But when we have combinators in our hand, we see
how String#to_proc can make them a win. So two things that look weird on their own are a useful
tool when used in conjunction.

Our final example ended up being slightly longer than a naive version, however it is longer in ways
that matter rather than longer in a mindless ceremonial way like some languages.

You can’t be serious!? 80

And that’s the point of languages like Ruby: You have the tools to decide which portions of you
code matter more than others, and to make the parts that matter stand out and the parts that don’t
go away. You may disagree with my choice of what matters for a recursive divide and conquer
algorithm, but I hope we can agree that it’s valuable to be able to make that choice for yourself or
your team.

Seriously.

10 The Hopelessly Egocentric Book
Chapter

In Raymond Smullyan’s delightful book on Combinatory logic, To Mock a Mockingbird¹, Smullyan
explains combinatory logic and derives a number of important results by presenting the various
combinators as songbirds in a forest. One of his concepts is the Hopelessly Egocentric Bird:

We call a bird B hopelessly egocentric if for every bird x, Bx = B. This means that
whatever bird x you call out to B is irrelevant; it only calls B back to you! Imagine
that the bird’s name is Bertrand. When you call out “Arthur,” you get the response
“Bertrand”; when you call out “Raymond,” you get the response “Bertrand”; when you
call out “Ann,” you get the response “Bertrand.” All this bird can ever think about is
itself!

Some folks have proposed that by making Ruby’s nil hopelessly egocentric, we can avoid the need
for monadic idioms like #andand. Let’s examine the idea and see what consequences this has.

10.1 Object-oriented egocentricity

One of the tenets of OO programming is that programs consist of objects that respond to messages
they send each other. A hopelessly egocentric object is easy to imagine: No matter what message
you send it, the hopelessly egocentric object responds with itself:

class HopelesslyEgocentric < BlankSlate

def method_missing(*arguments); self; end

end

Now you can create a hopelessly egocentric object with HopelesslyEgocentric.new and no matter
what message you send it, you will get it back in response. And? What good is this? What can it do?
Why should we put it in our Zoo?

In Objective C, nil is hopelessly egocentric. As Learn Objective-C² puts it, You usually don’t need to
check for nil before calling a method on an object. If you call a method on nil that returns an object,

¹http://www.amazon.com/gp/product/0192801422?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=
0192801422

²http://cocoadevcentral.com/d/learn_objectivec/

http://www.amazon.com/gp/product/0192801422?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0192801422
http://cocoadevcentral.com/d/learn_objectivec/
http://www.amazon.com/gp/product/0192801422?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0192801422
http://www.amazon.com/gp/product/0192801422?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0192801422
http://cocoadevcentral.com/d/learn_objectivec/

The Hopelessly Egocentric Book Chapter 82

you will get nil as a return value. The idea here is that instead of getting a NoMethodError when we
send a message to nil, we get nil back.

Some people like this so much they’ve composed the same semantics for Ruby³:

class NilClass

def method_missing(*args); nil; end

end

Now instead ofwriting person && person.name && person.name.upcase or person.andand.name.andand.upcase,
you write person.name.upcase and either get the person’s name in upper case or nil. Wonderful!
Or is it? Let’s take a look at what we’re trying to accomplish and the limitations of this approach.

queries

Hopelessly egocentric nil works reasonably for querying properties, in otherwords sub-entities when
an entity is constructed by composition, things like .name. I’m quite happy if person.name returns
nil whether we don’t have a person or if the person doesn’t have a name. And we can extend this
to what I would call purely functional transformations like .upcase. Just as ''.upcase is '', it is
reasonable to think of nil.upcase as nil.

Now let’s look at some things that aren’t properties and aren’t purely functional transformations.
What do we do with methods that are intended to update their receiver? Consider a bank account
object. Do we really want to write things like:

person.account = nil

person.account.increment_balance(100)

=> nil

This makes no sense. If we want to give them a hundred dollars, we had better have their actual
account on hand! Clearly there is a huge difference between methods that are queries and methods
that are updates. (Note that andand doesn’t save us either, except by virtue of being explicit rather
than magical so we can eschew it for update methods like #increment_balance.)

updates

Now that we are talking about methods with side-effects, let’s be more specific. Our hopelessly
egocentric nil does return nil to any method. But it has another property, it has no side-effects. This
is sometimes what we want! Let’s look at our nil account again. What about this code:

³http://rubyenrails.nl/articles/2008/02/29/our-daily-method-18-nilclass-method_missing

http://rubyenrails.nl/articles/2008/02/29/our-daily-method-18-nilclass-method_missing
http://rubyenrails.nl/articles/2008/02/29/our-daily-method-18-nilclass-method_missing

The Hopelessly Egocentric Book Chapter 83

person.account.update_attribute(:primary_email, 'reg@braythwayt.com')

To decide what we think of this, we need to be specific about the meaning of nil. Generally, nil
means one of two things:

1. NONE, meaning “There isn’t one of these,” or;
2. UNKNOWN, meaning “There is one of these, but we don’t know what it is.”

person.account.update_attribute(:primary_email, 'reg@braythwayt.com') is an example of
why this difference matters. If person.account is an account, we want to update its primary email
address, of course. And if person.account is NONE, we might be very happy not updating its
primary email address. Perhaps our code looks like this:

class Person < ActiveRecord::Base

belongs_to :account

def update_email(new_email)

self.class.transaction do

update_attribute(:primary_email, new_email)

account.update_attribute(:primary_email, new_email)

end

end

...

end

Person.find(:first, :conditions => {...}).update_email('reg@braythwayt.com')

Meaning, update our person’s primary email address, and if they have an account, update it too. If
nil means NONE, this works. But what if nil really means UNKNOWN rather than NONE? Now it
is wrong to silently fail. Let me give you a very specific way this can happen. When performing
a database query, we can specify the exact columns we want returned. In Active Record, we might
write something like this:

person = Person.find(:first, :conditions => {...}, :select => 'id, name')

What this means is that there is an account_id column in the people table, however we are
deliberately not loading it into person. ActiveRecord will still supply us with a #account method,
however it will return nil. This absolutely, positively means that person.account is UNKNOWN,
not NONE. There could well be an account in our database for this person, and now if we write:

The Hopelessly Egocentric Book Chapter 84

person.update_email('reg@braythwayt.com')

Wedo not want it to silently ignore the account email update, becausewe haven’t loaded the account
associated model. So for UNKNOWN, our two rules are:

1. Querying UNKNOWN returns UNKNOWN;
2. All attempts to update UNKNOWN are errors.

What about NONE?We gave two examples of updates, one ofwhichwas a really bad idea,#increment_-
balance, and the other of which was fine update_attribute(:primary_email, new_email). Thus
we have three rules for NONE:

1. Querying NONE returns NONE;
2. Some updates to NONE may return NONE and have no side effects;
3. Some updates to NONE may be errors.

With a little forethought and design, you may be able to construct one or more classes if your
application for which all updates to NONE return NONE and have no side effects. But for all others,
methods like #increment_balance represent a semantic problem with using a hopelessly egocentric
nil to represent NONE. We also see a problem with writing a hopelessly egocentric nil to handle
UNKNOWN: How does it know which methods are queries and which methods are updates?

If we work really hard and eliminate all possibility of an update to NONE being an error, are there
any other issues with using a hopelessly egocentric nil? Let’s return to our initial case:

person.name

=> nil

person.name.upcase

=> nil

Makes sense. And then we write:

person.name + ", esq."

=> nil

Dubious, but let’s go with it. If this makes sense, we ought to be able to write this as well:

The Hopelessly Egocentric Book Chapter 85

"Mister " + person.name

=> TypeError: can't convert nil into String

Why is this an error?⁴ Things don’t get any better using a hopelessly egocentric nil to handle
UNKNOWN. Even if we can get past the issue of update methods, we have another problem that is
much more difficult to resolve. UNKNOWN introduces tri-value logic:

UNKNOWN == Object.new

=> UNKNOWN

UNKNOWN != Object.new

=> UNKNOWN

UNKNOWN == UNKNOWN

=> UNKNOWN

UNKNOWN != UNKNOWN

=> UNKNOWN

Object.new == UNKNOWN

=> UNKNOWN

Object.new != UNKNOWN

=> UNKNOWN

When you don’t know something’s value, it is neither equal to nor not equal to any other value,
including another unknown value. And our fifth and sixth examples suffer from the same problem
as nil + ", esq." vs. "Mister " + nil. We would need to patch all sorts of other objects to make
equality testing many many other methods work. (What is 42 < UNKNOWN?) But things get worse:

How does truthiness work? In Ruby, you cannot override the way and, or, if, unless, &&, and ||

work.What are the semantics of if UNKNOWN?What do true && UNKNOWN or UNKNOWN or true return?
Before implementing a true UNKNOWN in any language, I would want those questions answered.

Finally, there is actually a fifth and sixth rule that we are ignoring because these examples are in
Ruby rather than a language with an expressive type system. Consider:

'Reg Braithwaite'.wealthy?

=> NoMethodError: undefined method `wealthy?' for "Reg Braithwaite":String

And now we write:

person.name.wealthy? # or...

person.name.andand.wealthy?

⁴http://weblog.raganwald.com/2007/10/too-much-of-good-thing-not-all.html

http://weblog.raganwald.com/2007/10/too-much-of-good-thing-not-all.html
http://weblog.raganwald.com/2007/10/too-much-of-good-thing-not-all.html

The Hopelessly Egocentric Book Chapter 86

What happens if person.name is NONE?What happens if person.name is UNKNOWN?Our problem
here is that #wealthy? is never a valid message to send to something returned by person.name. Our
behaviour ought to be:

• Sending an invalid message to NONE raises a NoMethodError;
• Sending an invalid message to UNKNOWN raises a NoMethodError.

There is no easy way to do this in Ruby, of course. Not only do we have trouble disambiguating
queries from updates, we have trouble disambiguating valid from invalid messages.

For all of these reasons, I am loathe to implement a hopelessly egocentric nil and prefer to use an
explicit idiom like #andand or #try. With explicit idioms, I can deal with the ambiguity between
nil meaning NONE and nil meaning UNKNOWN and make sure my code does not violate the
rules given here. But what I like about the idea of a hopelessly egocentric nil is that thinking the
consequences provokes me to really think about the semantics of my data schemas.

Representing NONE and UNKNOWN values is a subtle problem requiring a deep and pervasive
approach to typing similar to C++’s const keyword and/or writing custom null objects⁵ that
understand which methods are safe to respond egocentrically and which are errors.

⁵http://en.wikipedia.org/wiki/Null_Object_pattern

http://en.wikipedia.org/wiki/Null_Object_pattern
http://en.wikipedia.org/wiki/Null_Object_pattern

11 Bonus Chapter: Separating
Concerns in Coffeescript using
Aspect-Oriented Programming

This chapter isn’t strictly about combinatory logic and it especially isn’t about Ruby programming.
However, once you grasp the underlying fundamental principles, you can apply them in other
environments using other programming languages.

You shouldn’t find it too difficult to relate the content to previous chapters, the title alone provides a
massive hint.

Modern object-oriented software design favours composition over inheritance¹ and celebrates code
that is DRY². The idea is to separate each object’s concerns and responsibility into separate units of
code, each of which have a single responsibility. When two different types of objects share the same
functionality, they do not repeat their implementation, instead they share their implementation.

When composing functionality at the method level of granularity, techniques such as mixins and
delegation are effective design tools. But at a finer level of granularity, we sometimes wish to share
functionality within methods. In a traditional design, we have to extract the shared functionality
into a separate method that is called by other methods.

decomposing methods

You might think of extracting smaller methods from bigger methods as decomposing methods. You
break them into smaller pieces, and thus you can share functionality or rearrange the pieces so that
your code is organized by responsibility.

For example, let’s say that we are writing a game for the nostalgia market, and we wish to use
partially constructed objects to save resources. When we go to actually use the object, we hydrate
it, loading the complete object from persistent storage. This is a coarse kind of lazy evaluation.

Here’s some bogus code:

¹https://en.wikipedia.org/wiki/Composition_over_inheritance
²http://en.wikipedia.org/wiki/Don’t_repeat_yourself

https://en.wikipedia.org/wiki/Composition_over_inheritance
http://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Composition_over_inheritance
http://en.wikipedia.org/wiki/Don't_repeat_yourself

Bonus Chapter: Separating Concerns in Coffeescript using Aspect-Oriented Programming 88

class Wumpus

roar: ->

code that hydrates a Wumpus

...

code that roars

...

run: ->

code that hydrates a Wumpus

...

code that runs

...

class Hunter

draw: (bow) ->

code that hydrates a Hunter

...

code that draws a bow

...

run: ->

code that hydrates a Hunter

...

code that runs

...

We can decompose it into this:

class Wumpus

roar: ->

hydrate(this)

code that roars

...

run: ->

hydrate(this)

code that runs

...

class Hunter

draw: (bow) ->

hydrate(this)

code that draws a bow

...

run: ->

Bonus Chapter: Separating Concerns in Coffeescript using Aspect-Oriented Programming 89

hydrate(this)

code that runs

...

hydrate = (object) ->

code that hydrates the object from storage

composing methods

On an ad hoc basis, decomposing methods is fine. But there is a subtle problem. Implementation
tricks like hydrating objects, memoizing return values, or other performance tweaks are orthogonal
to the mechanics of what methods like roar or run are supposed to do. So why is hydrate(this) in
every method?

Now the obvious answer is, “Ok, it might be orthogonal to the main business of each method, but
it’s just one line.” The trouble with this answer is that method decomposition doesn’t scale. We need
a line for hydration, a line or two for logging, a few lines for error handling, another for wrapping
certain things in a transaction…

Even when each orthogonal concern is boiled down to just one line, you can end up having the
orthogonal concerns take up more space than the main business. And that makes the code hard to
read in practice. You don’t believe me? take a look at just about every programming tutorial ever
written. They almost always say “Hand waving over error handling and this and that” in their code
examples, because they want to make the main business of the code clearer and easier to read.

We ought to do the same thing, move hydration, error handling, logging, transactions, and anything
else orthogonal to the main business of a method out of the method. And we can.

method combinations

Here’s our code again, this time using the YouAreDaChef³ library to provide before combinations:

YouAreDaChef = require('YouAreDaChef.coffee').YouAreDaChef

class Wumpus

roar: ->

...

run: ->

#...

class Hunter

draw: (bow) ->

...

run: ->

³https://github.com/raganwald/YouAreDaChef

https://github.com/raganwald/YouAreDaChef
https://github.com/raganwald/YouAreDaChef

Bonus Chapter: Separating Concerns in Coffeescript using Aspect-Oriented Programming 90

#...

hydrate = (object) ->

code that hydrates the object from storage

YouAreDaChef(Wumpus, Hunter)

.before 'roar', 'draw', 'run', () ->

hydrate(this)

Whenever the roar, draw, or runmethods are called, YouAreDaChef calls hydrate(this) first. And
the two concerns–How a Wumpus works and when it ought to be hydrated–are totally separated.
This isn’t a new idea, it’s called aspect-oriented programming⁴, and practitioners will describe what
we’re doing in terms of method advice and point cuts.

Ruby on Rails programmers are familiar with this idea. If you have ever written any of the following,
you were using Rails’ built-in aspect-oriented programming support:

after_save

validates_each

alias_method_chain

before_filter

These and other features of Rails implement method advice, albeit in a very specific way tuned to
portions of the Rails framework.

the unwritten rule

There is an unwritten rule that says every Ruby programmer must, at some point, write
his or her own AOP implementation –Avdi Grimm

Let’s look at how YouAreTheChef works. Here’s a simplified version of the code for the before

combination:

⁴http://en.wikipedia.org/wiki/Aspect-oriented_programming

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://en.wikipedia.org/wiki/Aspect-oriented_programming

Bonus Chapter: Separating Concerns in Coffeescript using Aspect-Oriented Programming 91

YouAreDaChef: (clazzes...) ->

before: (method_names..., advice) ->

_.each method_names, (name) ->

_.each clazzes, (clazz) ->

if _.isFunction(clazz.prototype[name])

pointcut = clazz.prototype[name]

clazz.prototype[name] = (args...) ->

advice.apply(this, args)

pointcut.call(this, args)

This is really simple, we are composing a method with a function. The method already defined in the
class is called the pointcut, and the function we are supplying is called the advice. Unlike a purely
functional combinator, we are only executing the advice for side-effects, not for its result. But in
object-oriented imperative programming, that’s usually what we want.

other method combinations

That looks handy. But we also want an after method, a way to compose methods in the other order.
Good news, the after combination is exactly what we want. After combinations are very handy for
things like logging method calls or cleaning things up.

But there’s another great use for after combinators, triggering events. Event triggering code is often
very decoupled from method logic: The whole point of events is to invert control so that an object
like a Wumpus doesn’t need to know which objects want to do something after it moves. For example,
a Backbone.js view might be observing the Wumpus and wish to update itself when the Wumpus
moves:

YouAreDaChef(Wumpus, Hunter)

.after 'run', () ->

this.trigger 'move', this

CaveView = Backbone.View.extend

initialize: ->

...

@model.bind 'move', @wumpusMoved

wumpusMoved: (wumpus) ->

...

The code coupling the view to the model has now been separated from the code defining the model
itself.

YouAreDaChef also provides other mechanisms for separating concerns.Around combinations (also
called around advice) are a very general-purpose combinator. With an around combination, the
original method (the pointcut) is passed to the advice function as a parameter, allowing it to be
called at any time.

Bonus Chapter: Separating Concerns in Coffeescript using Aspect-Oriented Programming 92

Around advice is useful for wrapping methods. Using an around combinator, you could bake error
handling and transactions into methods without encumbering their code with implementation
details. In this example, we define the methods to be matched using a regular expression, and
YouAreDaChef passes the result of the match to the advice function, which wraps them in a
transaction and adds some logging:

class EnterpriseyLegume

setId: (@id) ->

setName: (@name) ->

setDepartment: (@department) ->

setCostCentre: (@costCentre) ->

YouAreDaChef(EnterpriseyLegume)

.around /set(.*)/, (pointcut, match, value) ->

performTransaction () ->

writeToLog "#{match[1]}: #{value}"

pointcut(value)

summary

Method combinations are a technique for separating concerns when the level of granularity
is smaller than a method. This makes the code DRY and removes the clutter of orthogonal
responsibilities.

12 Appendix: Finding Joy in
Combinators

In this book, we have looked at a few interesting combinators and some Ruby code inspired by them.
Today we’ll review the definition of a combinator, and from there we’ll learn something intriguing
about an entire family of programming languages, the Concatenative Languages¹.

Let’s start at the beginning: What is a combinator?

One definition of a combinator is a function with no free variables. Another way to put it is that a
combinator is a function that takes one ormore arguments and produces a result without introducing
anything new. In Ruby terms, we are talking about blocks, lambdas or methods that do not call
anything except what has been passed in.

So if I tell you that:

finch.call(a).call(b).call(c)

=> c.call(b).call(a)

Then you know that finch is a combinator because the effect it produces is made up solely of
combining the effects of the things it takes as parameters. That’s easy, but yet…Where is our vaunted
simplicity? Working with Ruby’s lambdas and braces and calls gets in our way. We can learn a lot
from combinatorial logic to help our Ruby programming, but Ruby is a terrible language for actually
learning about combinatorial logic.

12.1 Languages for combinatorial logic

Combinatorial logicians use a much simpler, direct syntax for writing expressions:

Fabc => cba

Whenever a logicianwrites abc, hemeans the same thing aswhen a Rubyist writes a.call(b).call(c).
Note that like Ruby, the precedence in combinatorial logic is to the left, so abc is equivalent to (ab)c
just as in Ruby a.call(b).call(c) is equivalent to (a.call(b)).call(c).

I think you’ll agree that abc is much simpler than a.call(b).call(c). Here’s another look at the
combinators we’ve met in this series, using the simpler syntax:

¹http://en.wikipedia.org/wiki/Concatenative_programming_language

http://en.wikipedia.org/wiki/Concatenative_programming_language
http://en.wikipedia.org/wiki/Concatenative_programming_language

Appendix: Finding Joy in Combinators 94

Kxy => x

Txy => yx

Cxyz => xzy

Q3xyz => z(xy) # Q3 is shorthand for the Quirky bird

Bxyz = x(yz)

Qxyz = y(xz) # Q is shorthand for the Queer bird

There are many, many more combinators, of course. Infinitely more, in fact. We only have names
for some of the most useful. For example, the Warbler Twice Removed, or W** is written:

W**xyzw => xyzww

(Warblers are actually in a whole ‘nother family of birds that introduce duplication. Other members
of that family include the Mockingbird and Starling. They’re incredibly useful for introducing ideas
like iteration and recursion.)

You could say that combinators take a string of symbols (like x, y, z, w, and so forth), then they
introduce some erasing, some duplication, some permutation, and add some parentheses. That they
work to rearrange our string of symbols.

We have seen that parentheses are allowed, and that some combinators introduce parentheses. Before
you say that the combinators introduce new symbols, remember that parentheses are punctuation. If
you think of the symbols as words and the parentheses as punctuation, you see that the combinators
simply rearrange the words and change the punctuation without introducing new words.

Now I said that combinators work with strings of symbols. This was a terrible analogy, because it
made us talk about punctuation and why parentheses are not symbols. Another thing you could say
is that combinator work with lists of symbols, then they re-arrange the symbols, including removing
symbols, introducing sub-lists, and duplicating symbols.

This is more interesting! Now we can see that in our notation, adding parentheses is a way of
introducing a sub list. Let’s revisit the bluebird:

Bxyz = x(yz)

Now what we can say is this: The bluebird takes a list of three symbols and answers a list of one
symbol and a sublist of two symbols. In Ruby:

Appendix: Finding Joy in Combinators 95

bluebird = lambda { |*args|

x, y, z = args

[x, [y, z]]

}

bluebird.call(:x, :y, :z)

=> [:x, [:y, :z]]

This is easy. What about the Thrush?

thrush = lambda { |*args|

x, y = args

[y, x]

}

thrush.call(:x, :y)

=> [:y, :x]

Now let’s pause for a moment. Imagine we had an entire programming language devoted to this
style of programming. The primary thing it does is define combinators that take a list of symbols
and recombine them. Since it works with lists and we are thinking about combinatory logic, we will
represent our expressions as lists:

idiot :x

=> :x

mockingbird :x

=> :x :x

bluebird :x :y :z

=> :x [:y :z]

thrush :x :y

=> :y :x

Wait! Do not shout Lisp! Just because we have lists of things does not mean we are programming in
Lisp!! Let’s keep going, and you will see in the next example that I do not mean Lisp:

Appendix: Finding Joy in Combinators 96

bluebird thrush :x :y :z

=> thrush [:x :y] :z

=> :z [:x :y]

And therefore in our fictitious language we can write:

quirky = bluebird thrush

And thus:

quirky :x :y :z

=> :z [:x :y]

This looks familiar. Have you everwritten a program in Postscript²? Or [Forth](http://en.wikipedia.org/wiki/Forth_-
(programming_language)? What if instead of using a thrush we used a word called swap? Or instead
of a mockingbird we used a word called dup?

12.2 Concatenative languages

Concatenative (or stack-based) programming languages–like Postscript, Forth, Factor³, and Joy⁴–are
almost direct representations of combinatorial logic. There is a list of things, words or combinators
permute the list of things, and the things can be anything: data, other combinators, or even programs.
These languages are called concatenative languages because the primary way to compose programs
and combinators with each other is to concatenate them together, like we did with the bluebird and
thrush above.

For me the purpose of life is partly to have joy. Programmers often feel joy when they
can concentrate on the creative side of programming, So Ruby is designed to make
programmers happy. –Yukihiro Matsumoto

You have probably heard that it is a good idea to learn a new programming language every year. Is
a concatenative language on your list of languages to learn? No? Well, here is the reason to learn
a concatenative language: You will learn to think using combinatorial logic. For example, the Y
Combinator is expressed in Joy as:

²http://en.wikipedia.org/wiki/PostScript
³http://www.factorcode.org/
⁴http://www.latrobe.edu.au/philosophy/phimvt/joy/j00ovr.htmll

http://en.wikipedia.org/wiki/PostScript
http://www.factorcode.org/
http://www.latrobe.edu.au/philosophy/phimvt/joy/j00ovr.htmll
http://en.wikipedia.org/wiki/PostScript
http://www.factorcode.org/
http://www.latrobe.edu.au/philosophy/phimvt/joy/j00ovr.htmll

Appendix: Finding Joy in Combinators 97

[dup cons] swap concat dup cons i

Where dup is a mockingbird, swap is a thrush, i is an idiot bird, and cons and concat are likewise
two other combinators. Writing in Joy is writing directly in combinators.

In other programming languages, combinatorial logic is an underpinning. It helps us explain and
prove certain things, It inspires us to invent certain things. It is behind everything we do. That’s
good. But in a concatenative language, it is not an underpinning or behind a curtain. It is right out
there in front of you. And learning to program in a concatenative language means learning to think
in combinators.

The combinators we’ve discussed in depth so far are all fascinating, however as a basis for writing
programs they are incomplete. You cannot represent every possible program using kestrels, thrushes,
cardinals, quirky birds, bluebirds, and queer birds. To represent all possible programs, we need to
have at least one combinator that duplicates symbols, like a mockingbird or another from its family.

13 Appendix: Source Code
All source code is published under the following license:

The MIT License

#

All contents Copyright (c) 2004-2008 Reginald Braithwaite

<http://braythwayt.com> except as otherwise noted.

#

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

#

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

#

http://www.opensource.org/licenses/mit-license.php

13.1 kestrels

Appendix: Source Code 99

returning.rb

The MIT License

#

All contents Copyright (c) 2004-2008 Reginald Braithwaite

<http://braythwayt.com> except as otherwise noted.

#

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

#

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

#

http://www.opensource.org/licenses/mit-license.php

unless respond_to?(:returning)

def returning(it)

yield it

it

end

end

13.2 thrushes

Appendix: Source Code 100

into.rb

class Object

def into expr = nil

expr.nil? ? yield(self) : expr.to_proc.call(self)

end

end

let.rb

module Kernel

def let it

yield it

end

end

13.3 the cardinal

cardinal.rb

def cardinal_define(name, &proc_over_proc)

define_method_taking_block(name) do |a_value, a_proc|

proc_over_proc.call(a_proc).call(a_value)

end

end

method_body_proc should expect (a_value, a_proc)

see http://coderrr.wordpress.com/2008/10/29/using-define_method-with-blocks-in-\

ruby-18/

def define_method_taking_block(name, &method_body_proc)

self.class.send :define_method, "__cardinal_helper_#{name}__", method_body_proc

eval <<-EOM

def #{name}(a_value, &a_proc)

__cardinal_helper_#{name}__(a_value, a_proc)

end

EOM

end

Appendix: Source Code 101

13.4 quirky birds

andand.rb

module AndAnd

This module is included in Object, so each of these methods are added

to Object when you require 'andand'. Each method is an *adverb*: they are

intended to be enchained with another method, such as receiver.adverb.method

#

The purpose of an adverb is to modify what the primary method returns.

#

Adverbs also take blocks or procs, passing the receiver as an argument to the

block or proc. They retain the same semantics with a block or proc as they

do with a method. This behaviour weakly resembles a monad.

module ObjectGoodies

Returns nil if its receiver is nil, regardless of whether nil actually hand\

les the

actual method ot what it might return.

#

'foo'.andand.size => 3

nil.andand.size => nil

'foo'.andand { |s| s << 'bar' } => 'foobar'

nil.andand { |s| s << 'bar' } => nil

def andand (p = nil)

if self

if block_given?

yield(self)

elsif p

p.to_proc.call(self)

else

self

end

else

if block_given? or p

self

else

MockReturningMe.new(self)

end

end

Appendix: Source Code 102

end

Invokes the method and returns the receiver if nothing is raised. Therefore,

the purpose of calling the method is strictly for side effects. In the block

form, it resembles #tap from Ruby 1.9, and is useful for debugging. It also

resembles #returning from Rails, with slightly different syntax.

#

Object.new.me do |o|

def o.foo

'foo'

end

end

=> your new object

#

In the method form, it is handy for chaining methods that don't ordinarily

return the receiver:

#

[1, 2, 3, 4, 5].me.pop.reverse

=> [4, 3, 2, 1]

def me (p = nil)

if block_given?

yield(self)

self

elsif p

p.to_proc.call(self)

self

else

ProxyReturningMe.new(self)

end

end

unless Object.instance_methods.include?('tap')

alias :tap :me

end

Does not invoke the method or block and returns the receiver.

Useful for comemnting stuff out, especially if you are using #me for

debugging purposes: change the .me to .dont and the semantics of your

program are unchanged.

#

[1, 2, 3, 4, 5].me { |x| p x }

=> prints and returns the array

Appendix: Source Code 103

[1, 2, 3, 4, 5].dont { |x| p x }

=> returns the array without printing it

def dont (p = nil)

if block_given?

self

elsif p

self

else

MockReturningMe.new(self)

end

end

end

end

class Object

include AndAnd::ObjectGoodies

end

unless Module.constants.include?('BlankSlate')

if Module.constants.include?('BasicObject')

module AndAnd

class BlankSlate < BasicObject

end

end

else

module AndAnd

class BlankSlate

def self.wipe

instance_methods.reject { |m| m =~ /^__/ }.each { |m| undef_method m }

end

def initialize

BlankSlate.wipe

end

end

end

end

end

module AndAnd

Appendix: Source Code 104

A proxy that returns its target without invoking the method you

invoke. Useful for nil.andand and #dont

class MockReturningMe < BlankSlate

def initialize(me)

super()

@me = me

end

def method_missing(*args)

@me

end

end

A proxy that returns its target after invoking the method you

invoke. Useful for #me

class ProxyReturningMe < BlankSlate

def initialize(me)

super()

@me = me

end

def method_missing(sym, *args, &block)

@me.__send__(sym, *args, &block)

@me

end

end

end

blank_slate.rb

The MIT License

#

All contents Copyright (c) 2004-2008 Reginald Braithwaite

<http://braythwayt.com> except as otherwise noted.

#

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

#

Appendix: Source Code 105

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

#

http://www.opensource.org/licenses/mit-license.php

unless Module.constants.include?('BlankSlate')

if Module.constants.include?('BasicObject')

class BlankSlate < BasicObject

end

else

class BlankSlate

def self.wipe

instance_methods.reject { |m| m =~ /^__/ }.each { |m| undef_method m }

end

def initialize

BlankSlate.wipe

end

end

end

end

quirky_bird.rb

The MIT License

#

All contents Copyright (c) 2004-2008 Reginald Braithwaite

<http://braythwayt.com> except as otherwise noted.

#

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

Appendix: Source Code 106

furnished to do so, subject to the following conditions:

#

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

#

http://www.opensource.org/licenses/mit-license.php

def quirky_bird_define(name, &value_proc)

define_method_taking_block(name) do |a_value, a_proc|

a_proc.call(value_proc.call(a_value))

end

end

method_body_proc should expect (a_value, a_proc)

see http://coderrr.wordpress.com/2008/10/29/using-define_method-with-blocks-in-\

ruby-18/

def define_method_taking_block(name, &method_body_proc)

self.class.send :define_method, "__quirky_bird_helper_#{name}__", method_body_p\

roc

eval <<-EOM

def #{name}(a_value, &a_proc)

__quirky_bird_helper_#{name}__(a_value, a_proc)

end

EOM

end

def quirky_bird_extend(name, &value_proc)

Object.send(:define_method, name) do

value_proc.call(self)

end

end

Appendix: Source Code 107

quirky_songs.rb

The MIT License

#

All contents Copyright (c) 2004-2008 Reginald Braithwaite

<http://braythwayt.com> except as otherwise noted.

#

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

#

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

#

http://www.opensource.org/licenses/mit-license.php

require 'quirky_bird'

require 'blank_slate'

require 'returning'

quirky_bird_extend(:maybe) do |value|

if value.nil?

returning(BlankSlate.new) do |it|

def it.method_missing(*args)

nil

end

end

else

value

end

end

Appendix: Source Code 108

quirky_bird_extend(:try) do |value|

returning(BlankSlate.new) do |it|

def it.__value__=(arg)

@value = arg

end

def it.method_missing(name, *args)

if @value.respond_to?(name)

@value.send(name, *args)

end

end

it.__value__ = value

end

end

13.5 bluebirds

before_and_after_advice.rb

This code contains ideas snarfed from:

#

http://github.com/up_the_irons/immutable/tree/master

http://blog.jayfields.com/2006/12/ruby-alias-method-alternative.html

http://eigenclass.org/hiki.rb?bounded+space+instance_exec

#

And a heaping side of http://blog.grayproductions.net/articles/all_about_struct

module BeforeAndAfterAdvice

Random ID changed at each interpreter load

UNIQ = "_#{object_id}"

Compositions = Struct.new(:before, :between, :after)

module MethodAdvice; end

module ClassMethods

Example:

#

Appendix: Source Code 109

before :foo, :bar do

...

end

#

This executes the body of the block before the #foo and #bar instance metho\

ds

for side effects without modifying the parameters (if any) passed to #foo

and #bar

#

before :fizz, :buzz do |p1, p2|

...

[p1, p2]

end

#

This executes the body of the block before the #foo and #bar instance metho\

ds

for side efects, AND determines what is passed along as parameters. If the \

block

takes parameters, it acts as a filter, transforming the parameters.

#

It is possible to chain #before advice, and you can add more advice in subc\

lasses:

#

class Foo

def foo(bar); end

end

#

class Bar < Foo

include MethodAdvice

#

before :foo do

...

end

#

end

#

class Blitz < Bar

include MethodAdvice

#

before :foo do |bar|

...

bar

Appendix: Source Code 110

end

#

end

#

def before(*method_symbols, &block)

options = method_symbols[-1].kind_of?(Hash) ? method_symbols.pop : {}

method_symbols.each do |method_sym|

__composed_methods__[method_sym].before.unshift(__unbound_method__(block,\

options[:name]))

__rebuild_method__(method_sym)

end

end

Example:

#

after :foo, :bar do

...

end

#

This executes the body of the block after the #foo and #bar instance methods

for side effects without modifying the return values of the #foo and #bar m\

ethods

#

after :fizz, :buzz do |r|

...

r

end

#

This executes the body of the block after the #foo and #bar instance methods

for side efects, AND determines what is returned from the call. If the block

takes parameters, it acts as a filter, transforming the return value.

#

It is possible to chain #after advice, and you can add more advice in subcl\

asses:

#

class Foo

def foo(bar); end

end

#

class Bar < Foo

include MethodAdvice

#

Appendix: Source Code 111

after :foo do

...

end

#

end

#

class Blitz < Bar

include MethodAdvice

#

after :foo do |r|

...

r

end

#

end

#

def after(*method_symbols, &block)

options = method_symbols[-1].kind_of?(Hash) ? method_symbols.pop : {}

method_symbols.each do |method_sym|

__composed_methods__[method_sym].after.push(__unbound_method__(block, opt\

ions[:name]))

__rebuild_method__(method_sym)

end

end

Removes all advice from the named methods. Intended for testing.

#

def reset_befores_and_afters(*method_symbols)

method_symbols.each do |method_sym|

__composed_methods__[method_sym].before = []

__composed_methods__[method_sym].after = []

__rebuild_method__(method_sym)

end

end

Modified to re-apply advice when a method is overridden. So:

#

class Foo

def foo(bar); end

end

#

class Bar < Foo

Appendix: Source Code 112

include MethodAdvice

#

after :foo do

...

end

#

end

#

class Blitz < Bar

include MethodAdvice

#

def foo(bar)

...

end

#

end

#

In this case the class Blitz overrides the method #foo, but the advice in

class Bar is still applied, the override happens ONLY on the inner method,

not the advice.

#

Note well that super has undefined behaviour in this situation.

#

def method_added(method_sym)

unless instance_variable_get("@#{UNIQ}_in_method_added")

__safely__ do

__composed_methods__[method_sym].between = self.instance_method(method_\

sym)

@old_method_added and @old_method_added.call(method_sym)

__rebuild_method__(method_sym)

end

end

end

def __composed_methods__

ancestral_composer = ancestors.detect { |ancestor| ancestor.instance_variab\

le_defined?(:@__composed_methods__) }

if ancestral_composer

ancestral_composer.instance_variable_get(:@__composed_methods__)

else

@__composed_methods__ ||= Hash.new { |hash, method_sym| hash[method_sym] \

= BeforeAndAfterAdvice::Compositions.new([], self.instance_method(method_sym), []\

Appendix: Source Code 113

) }

end

end

def __rebuild_without_advice__(method_sym, old_method)

if old_method.arity == 0

define_method(method_sym) { old_method.bind(self).call }

else

define_method(method_sym) { |*params| old_method.bind(self).call(*params)\

}

end

end

def __rebuild_advising_no_parameters__(method_sym, old_method, befores, after\

s)

define_method(method_sym) do

befores.each do |before_advice_method|

before_advice_method.bind(self).call

end

afters.inject(old_method.bind(self).call) do |ret_val, after_advice_metho\

d|

after_advice_method.bind(self).call

end

end

end

def __rebuild_advising_with_parameters__(method_sym, old_method, befores, aft\

ers)

define_method(method_sym) do |*params|

afters.inject(

old_method.bind(self).call(

*befores.inject(params) do |acc_params, before_advice_method|

if before_advice_method.arity == 0

before_advice_method.bind(self).call

acc_params

else

before_advice_method.bind(self).call(*acc_params)

end

end

)

) do |ret_val, after_advice_method|

if after_advice_method.arity == 0

Appendix: Source Code 114

after_advice_method.bind(self).call

ret_val

else

after_advice_method.bind(self).call(ret_val)

end

end

end

end

def __rebuild_method__(method_sym)

__safely__ do

composition = __composed_methods__[method_sym]

old_method = composition.between

if composition.before.empty? and composition.after.empty?

__rebuild_without_advice__(method_sym, old_method)

else

arity = old_method.arity

if old_method.arity == 0

__rebuild_advising_no_parameters__(method_sym, old_method, compositio\

n.before, composition.after)

else

__rebuild_advising_with_parameters__(method_sym, old_method, composit\

ion.before, composition.after)

end

end

end

end

def __safely__

was = instance_variable_get("@#{UNIQ}_in_method_added")

begin

instance_variable_set("@#{UNIQ}_in_method_added", true)

yield

ensure

instance_variable_set("@#{UNIQ}_in_method_added", was)

end

end

def __unbound_method__(a_proc, name_prefx = nil)

begin

old_critical, Thread.critical = Thread.critical, true

n = 0

Appendix: Source Code 115

n += 1 while respond_to?(mname="#{name_prefx || '__method_advice'}_#{n}")

MethodAdvice.module_eval{ define_method(mname, &a_proc) }

ensure

Thread.critical = old_critical

end

begin

MethodAdvice.instance_method(mname)

ensure

MethodAdvice.module_eval{ remove_method(mname) } unless name_prefx rescue\

nil

end

end

end

def self.included(receiver)

receiver.extend ClassMethods

receiver.send :include, MethodAdvice

receiver.instance_variable_set("@#{UNIQ}_in_method_added", false)

receiver.instance_variable_set(:@old_method_added, receiver.public_method_def\

ined?(:method_added) && receiver.instance_method(:method_added))

end

end

14 About The Author
When he’s not shipping Ruby, Javascript and Java applications scaling out to millions of users, Reg
“Raganwald” Braithwaite has authored libraries¹ for Javascript and Ruby programming such as Katy,
JQuery Combinators, YouAreDaChef, andand, and others.

He writes about programming on his “Homoiconic²” un-blog as well as general-purpose ruminations
on his posterous space³. He is also known for authoring the popular raganwald programming blog⁴
from 2005-2008.

14.1 contact

Twitter: @raganwald
Email: raganwald@gmail.com

¹http://github.com/raganwald
²http://github.com/raganwald/homoiconic
³http://raganwald.posterous.com
⁴http://weblog.raganwald.com

http://github.com/raganwald
http://github.com/raganwald/homoiconic
http://raganwald.posterous.com
http://weblog.raganwald.com
http://github.com/raganwald
http://github.com/raganwald/homoiconic
http://raganwald.posterous.com
http://weblog.raganwald.com

About The Author 117

Reginald Braithwaite

(Author’s Photograph (c) 2008 JosephHurtado, All Rights Reserved. http://www.flickr.com/photos/trumpetca/.
Cover Photograph (c) 2011 Biker Jun. Some rights reserved⁵.)

⁵http://creativecommons.org/licenses/by-sa/2.0/deed.en

http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://creativecommons.org/licenses/by-sa/2.0/deed.en

	Table of Contents
	The MIT License
	Preface
	Introduction
	Kestrels
	Object initializer blocks
	Inside, an idiomatic Ruby Kestrel
	The Enchaining Kestrel
	The Obdurate Kestrel
	Kestrels on Rails
	Rewriting ``Returning'' in Rails

	The Thrush
	Let

	Songs of the Cardinal
	Building a Cardinal in Ruby

	Quirky Birds and Meta-Syntactic Programming
	A limited interpretation of the Quirky Bird in Ruby
	Embracing the Quirky Bird
	Andand even more

	Aspect-Oriented Programming in Ruby using Combinator Birds
	Giving methods advice
	The super keyword, perhaps you've heard of it?
	The Queer Bird

	Mockingbirds
	Duplicative Combinators
	Recursive Lambdas in Ruby
	Recursive Combinatorics
	Recursive Combinators in Idiomatic Ruby
	The Mockingbird

	Refactoring Methods with Recursive Combinators
	Divide and Conquer
	The Merge Sort
	Separating Declaration from Implementation
	Practical Recursive Combinators
	Spicing things up
	Building on a legacy
	Seriously
	Separating Implementation from Declaration
	A Really Simple Recursive Combinator

	You can't be serious!?
	String to Proc
	The Message

	The Hopelessly Egocentric Book Chapter
	Object-oriented egocentricity

	Bonus Chapter: Separating Concerns in Coffeescript using Aspect-Oriented Programming
	Appendix: Finding Joy in Combinators
	Languages for combinatorial logic
	Concatenative languages

	Appendix: Source Code
	kestrels
	thrushes
	the cardinal
	quirky birds
	bluebirds

	About The Author
	contact

