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A Pull of the Lever: Prefaces

S

Caffe Molinari

“Café Allongé, also called Espresso Lungo, is a drink midway between an Espresso and
Americano in strength. There are two different ways to make it. The first, and the one I
prefer, is to add a small amount of hot water to a double or quadruple Espresso Ristretto.
Like adding a splash of water to whiskey, the small dilution releases more of the complex
flavours in the mouth.

“The second way is to pull an extra long double shot of Espresso. This achieves
approximately the same ratio of oils to water as the dilution method, but also releases
a different mix of flavours due to the longer extraction. Some complain that the long pull
is more bitter and detracts from the best character of the coffee, others feel it releases
even more complexity.

“The important thing is that neither method of preparation should use so much water as
to result in a sickly, pale ghost of Espresso. Moderation in all things.”
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About JavaScript Allongé

JavaScript Allongé is a first and foremost, a book about programming with functions. It’s written in
JavaScript, because JavaScript hits the perfect sweet spot of being both widely used, and of having
proper first-class functions with lexical scope. If those terms seem unfamiliar, don’t worry: JavaScript
Allongé takes great delight in explaining what they mean and why they matter.

JavaScript Allongé begins at the beginning, with values and expressions, and builds from there to
discuss types, identity, functions, closures, scopes, collections, iterators, and many more subjects up
to working with classes and instances.

It also provides recipes for using functions to write software that is simpler, cleaner, and less
complicated than alternative approaches that are object-centric or code-centric. JavaScript idioms
like function combinators and decorators leverage JavaScript’s power to make code easier to read,
modify, debug and refactor.

JavaScript Allongé teaches you how to handle complex code, and it also teaches you how to simplify
code without dumbing it down. As a result, JavaScript Allongé is a rich read releasing many of
JavaScript’s subtleties, much like the Café Allongé beloved by coffee enthusiasts everywhere.

why the “six” edition?

ECMAScript 2015 (formerly called ECMAScript 6 or “ES6”), is ushering in a very large number of
improvements to the way programmers can write small, powerful components and combine them
into larger, fully featured programs. Features like destructuring, block-structured variables, iterables,
generators, and the class keyword are poised to make JavaScript programming more expressive.

Prior to ECMAScript 2015, JavaScript did not include many features that programmers have dis-
covered are vital to writing great software. For example, JavaScript did not include block-structured
variables. Over time, programmers discovered ways to roll their own versions of important features.

For example, block-structured languages allow us to write:

for (int i = 0; i < array.length; ++i) {
/S
}

And the variable i is scoped locally to the code within the braces. Prior to ECMAScript 2015,
JavaScript did not support block-structuring, so programmers borrowed a trick from the Scheme
programming language, and would write:
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var i;

for (i = 0; i < array.length; ++i) {
(function (i) {
/S
P(i)

To create the same scoping with an Immediately Invoked Function Expression, or “IIFE”

Likewise, many programming languages permit functions to have a variable number of arguments,
and to collect the arguments into a single variable as an array. In Ruby, we can write:

def foo (first, *rest)
#-.-

end

Prior to ECMAScript 2015, JavaScript did not support collecting a variable number of arguments
into a parameter, so programmers would take advantage of an awkward work-around and write

things like:

function foo () {
var first = arguments[Q],
rest = [].slice.call(arguments, 1);

Y/

The first edition of JavaScript Allongé explained these and many other patterns for writing
flexible and composable programs in JavaScript, but the intention wasn’t to explain how to work
around JavaScript’s missing features: The intention was to explain why the style of programming
exemplified by the missing features is important.

Working around the missing features was a necessary evil.

But now, JavaScript is gaining many important features, in part because the governing body behind
JavaScript has observed that programmers are constantly working around the same set of limitations.
With ECMASCript 2015, we can write:

for (let i = 0; i < array.length; ++i) {
/)

And i is scoped to the for loop. We can also write:
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function foo (first, ...rest) {
/)
}

And presto, rest collects the rest of the arguments without a lot of malarky involving slicing
arguments. Not having to work around these kinds of missing features makes JavaScript Allongé
a better book, because it can focus on the why to do something and when to do it, instead of on the
how to make it work

JavaScript Allongé, The “Six” Edition packs all the goodness of JavaScript Allongé into a new,
updated package that is relevant for programmers working with (or planning to work with) the
latest version of JavaScript.

that’s nice. is that the only reason?

Actually, no.

If it were just a matter of updating the syntax, the original version of JavaScript Allongé could have
simply iterated, slowly replacing old syntax with new. It would have continued to say much the
same things, only with new syntax.

But there’s more to it than that. The original JavaScript Allongé was not just written to teach
JavaScript: It was written to describe certain ideas in programming: Working with small, indepen-
dent entities that compose together to make bigger programs. Thus, the focus on things like writing
decorators.

As noted above, JavaScript was chosen as the language for Allongé because it hit a sweet spot of
having a large audience of programmers and having certain language features that happen to work
well with this style of programming.

ECMAScript 2015 does more than simply update the language with some simpler syntax for a few
things and help us avoid warts. It makes a number of interesting programming techniques easy to
explain and easy to use. And these techniques dovetail nicely with Allongé’s focus on composing
entities and working with functions.

Thus, the “six” edition introduces classes and mixins. It introduces the notion of implementing
private properties with symbols. It introduces iterators and generators. But the common thread that
runs through all these things is that since they are all simple objects and simple functions, we can use
the same set of “programming with functions” techniques to build programs by composing small,
flexible, and decoupled entities.

We just call some of those functions constructors, others decorators, others functional mixins, and
yet others, policies.

Introducing so many new ideas did require a major rethink of the way the book was organized.
And introducing these new ideas did add substantially to its bulk. But even so, in a way it is
still explaining the exact same original idea that programs are built out of small, flexible functions
composed together.
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What JavaScript Allongé is. And isn’t.

R w
u\mm
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JavaScript Allongé is a book about thinking about programs

JavaScript Allongé is a book about programming with functions. From functions flow many ideas,
from decorators to methods to delegation to mixins, and onwards in so many fruitful directions.

The focus in this book on the underlying ideas, what we might call the fundamentals, and how they
combine to form new ideas. The intention is to improve the way we think about programs. That’s a
good thing.

But while JavaScript Allongé attempts to be provocative, it is not prescriptive. There is absolutely no
suggestion that any of the techniques shown here are the only way to do something, the best way,
or even an acceptable way to write programs that are intended to be used, read, and maintained by
others.

Software development is a complex field. Choices in development are often driven by social
considerations. People often say that software should be written for people to read. Doesn’t that
depend upon the people in question? Should code written by a small team of specialists use the
same techniques and patterns as code maintained by a continuously changing cast of inexperienced
interns?

Choices in software development are also often driven by requirements specific to the type of
software being developed. For example, business software written in-house has a very different
set of requirements than a library written to be publicly distributed as open-source.
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Choices in software development must also consider the question of consistency. If a particular
codebase is written with lots of helper functions that place the subject first, like this:

const mapWith = (iterable, fn) =>
({
[Symbol.iterator]: function* () {
for (let element of iterable) {
yield fn(element);

}
});

Then it can be jarring to add new helpers written that place the verb first, like this:

const filterWith = (fn, iterable) =>
({
[Symbol.iterator]: function* () {
for (let element of iterable) {
if (!!fn(element)) yield element;

}
});

There are reasons why the second form is more flexible, especially when used in combination with
partial application, but does that outweigh the benefit of having an entire codebase do everything
consistently the first way or the second way?

Finally, choices in software development cannot ignore the tooling that is used to create and maintain
software. The use of source-code control systems with integrated diffing rewards making certain
types of focused changes. The use of linters' makes checking for certain types of undesirable code
very cheap. Debuggers encourage the use of functions with explicit or implicit names. Continuous
integration encourages the creation of software in tandem with and factored to facilitate the creation
of automated test suites.

JavaScript Allongé does not attempt to address the question of JavaScript best practices in the wider
context of software development, because JavaScript Allongé isn’t a book about practicing, it’s a
book about thinking.

how this book is organized

JavaScript Allongé introduces new aspects of programming with functions in each chapter, explain-
ing exactly how JavaScript works. Code examples within each chapter are small and emphasize
exposition rather than serving as patterns for everyday use.

'https://en.wikipedia.org/wiki/Lint_
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Following some of the chapters are a series of recipes designed to show the application of the
chapter’s ideas in practical form. While the content of each chapter builds naturally on what
was discussed in the previous chapter, the recipes may draw upon any aspect of the JavaScript
programming language.
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Foreword to the “Six"” edition

ECMAScript 6 (short name: ES6; official name: ECMAScript 2015) was ratified as a standard on
June 17. Getting there took a while — in a way, the origins of ES6 date back to the year 2000:
After ECMAScript 3 was finished, TC39 (the committee evolving JavaScript) started to work on
ECMAScript 4. That version was planned to have numerous new features (interfaces, namespaces,
packages, multimethods, etc.), which would have turned JavaScript into a completely new language.
After internal conflict, a settlement was reached in July 2008 and a new plan was made - to abandon
ECMAScript 4 and to replace it with two upgrades:

« A smaller upgrade would bring a few minor enhancements to ECMAScript 3. This upgrade
became ECMAScript 5.

« A larger upgrade would substantially improve JavaScript, but without being as radical as
ECMAScript 4. This upgrade became ECMAScript 6 (some features that were initially discussed
will show up later, in upcoming ECMAScript versions).

ECMAScript 6 has three major groups of features:

« Better syntax for features that already exist (e.g. via libraries). For example: classes and
modules.
« New functionality in the standard library. For example:
— New methods for strings and arrays
— Promises (for asynchronous programming)
— Maps and sets
« Completely new features. For example: Generators, proxies and WeakMaps.

With ECMAScript 6, JavaScript has become much larger as a language. JavaScript Allongé, the
“Six” Edition is both a comprehensive tour of its features and a rich collection of techniques for
making better use of them. You will learn much about functional programming and object-oriented
programming. And you’ll do so via ES6 code, handed to you in small, easily digestible pieces.

- Axel Rauschmayer Blogger?, trainer® and author of “Exploring ES6*”

*http://www.2ality.com
*http://ecmanauten.de
“http://exploringjs.com
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Forewords to the First Edition

michael fogus

As a life-long bibliophile and long-time follower of Reg’s online work, I was excited when he started
writing books. However, 'm very conservative about books — let’s just say that if there was an
aftershave scented to the essence of “Used Book Store” then I would be first in line to buy. So as you
might imagine I was “skeptical” about the decision to release JavaScript Allongé as an ongoing ebook,
with a pay-what-you-want model. However, Reg sent me a copy of his book and I was humbled.
Not only was this a great book, but it was also a great way to write and distribute books. Having
written books myself, I know the pain of soliciting and receiving feedback.

The act of writing is an iterative process with (very often) tight revision loops. However, the process
of soliciting feedback, gathering responses, sending out copies, waiting for people to actually read
it (if they ever do), receiving feedback and then ultimately making sense out of how to use it takes
weeks and sometimes months. On more than one occasion I've found myself attempting to reify
feedback with content that either no longer existed or was changed beyond recognition. However,
with the Leanpub model the read-feedback-change process is extremely efficient, leaving in its wake
a quality book that continues to get better as others likewise read and comment into infinitude.

In the case of JavaScript Allongé, you’ll find the Leanpub model a shining example of effectiveness.
Reg has crafted (and continues to craft) not only an interesting book from the perspective of a
connoisseur, but also an entertaining exploration into some of the most interesting aspects of his
art. No matter how much of an expert you think you are, JavaScript Allongé has something to teach
you... about coffee. I kid.

As a staunch advocate of functional programming, much of what Reg has written rings true to me.
While not exclusively a book about functional programming, JavaScript Allongé will provide a solid
foundation for functional techniques. However, you’ll not be beaten about the head and neck with
dogma. Instead, every section is motivated by relevant dialog and fortified with compelling source
examples. As an author of programming books I admire what Reg has managed to accomplish and I
envy the fine reader who finds JavaScript Allongé via some darkened channel in the Internet sprawl
and reads it for the first time.

Enjoy.

- Fogus, fogus.me’

matthew knox

A different kind of language requires a different kind of book.

JavaScript holds surprising depths—its scoping rules are neither strictly lexical nor strictly dynamic,
and it supports procedural, object-oriented (in several flavors!), and functional programming. Many

*http://www.fogus.me
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books try to hide most of those capabilities away, giving you recipes for writing JavaScript in a way
that approximates class-centric programming in other languages. Not JavaScript Allongé. It starts
with the fundamentals of values, functions, and objects, and then guides you through JavaScript
from the inside with exploratory bits of code that illustrate scoping, combinators, context, state,
prototypes, and constructors.

Like JavaScript itself, this book gives you a gentle start before showing you its full depth, and like a
Cafe Allongé, it’s over too soon. Enjoy!

—Matthew Knox, mattknox.com®

“http://mattknox.com
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Prelude: Values and Expressions over
Coffee

The following material is extremely basic, however like most stories, the best way to begin is to start
at the very beginning.

Imagine we are visiting our favourite coffee shop. They will make for you just about any drink you
desire, from a short, intense espresso ristretto through a dry cappuccino, up to those coffee-flavoured
desert concoctions featuring various concentrated syrups and milks. (You tolerate the existence of
sugary drinks because they provide a sufficient profit margin to the establishment to finance your
hanging out there all day using their WiFi and ordering a $3 drink every few hours.)

You express your order at one end of their counter, the folks behind the counter perform their magic,
and deliver the coffee you value at the other end. This is exactly how the JavaScript environment
works for the purpose of this book. We are going to dispense with web servers, browsers and other
complexities and deal with this simple model: You give the computer an expression’, and it returns
a value®, just as you express your wishes to a barista and receive a coffee in return.

"https://en.wikipedia.org/wiki/Expression_
®https://en.wikipedia.org/wiki/Value_
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values are expressions

All values are expressions. Say you hand the barista a café Cubano. Yup, you hand over a cup with
some coffee infused through partially caramelized sugar. You say, “I want one of these.” The barista
is no fool, she gives it straight back to you, and you get exactly what you want. Thus, a café Cubano
is an expression (you can use it to place an order) and a value (you get it back from the barista).

Let’s try this with something the computer understands easily:
42

Is this an expression? A value? Neither? Or both?

The answer is, this is both an expression and a value.” The way you can tell that it’s both is very
easy: When you type it into JavaScript, you get the same thing back, just like our café Cubano:

42
J/=> 42

All values are expressions. That’s easy! Are there any other kinds of expressions? Sure! let’s go back
to the coffee shop. Instead of handing over the finished coffee, we can hand over the ingredients.
Let’s hand over some ground coffee plus some boiling water.

Astute readers will realize we're omitting something. Congratulations! Take a sip of espresso. We’ll
get to that in a moment.

Now the barista gives us back an espresso. And if we hand over the espresso, we get the espresso
right back. So, boiling water plus ground coffee is an expression, but it isn’t a value.'’ Boiling water
is a value. Ground coffee is a value. Espresso is a value. Boiling water plus ground coffee is an
expression.

Let’s try this as well with something else the computer understands easily:

"JavaScript" + + "Allonge"

//=> "JavaScript Allonge"

Now we see that “strings” are values, and you can make an expression out of strings and an operator
+. Since strings are values, they are also expressions by themselves. But strings with operators are

°Technically, it’s a representation of a value using Base10 notation, but we needn’t worry about that in this book. You and I both understand
that this means “42,” and so does the computer.
°In some languages, expressions are a kind of value unto themselves and can be manipulated. The grandfather of such languages is Lisp.
JavaScript is not such a language, expressions in and of themselves are not values.
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not values, they are expressions. Now we know what was missing with our “coffee grounds plus hot
water” example. The coffee grounds were a value, the boiling hot water was a value, and the “plus”
operator between them made the whole thing an expression that was not a value.
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values and identity

In JavaScript, we test whether two values are identical with the === operator, and whether they are
not identical with the !== operator:

2 ===
//=> true

'hello' !== 'goodbye'
//=> true

How does === work, exactly? Imagine that you're shown a cup of coffee. And then you’re shown
another cup of coffee. Are the two cups “identical?” In JavaScript, there are four possibilities:

First, sometimes, the cups are of different kinds. One is a demitasse, the other a mug. This
corresponds to comparing two things in JavaScript that have different types. For example, the string
"2" is not the same thing as the number 2. Strings and numbers are different types, so strings and
numbers are never identical:

2 === '2'
//=> false

true !== 'true'
//=> true

Second, sometimes, the cups are of the same type—perhaps two espresso cups—but they have different
contents. One holds a single, one a double. This corresponds to comparing two JavaScript values that
have the same type but different “content.” For example, the number 5 is not the same thing as the
number 2.

true === false
//=> false

2 1==5
//=> true

"two' === 'five'
//=> false

What if the cups are of the same type and the contents are the same? Well, JavaScript’s third and
fourth possibilities cover that.
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value types

Third, some types of cups have no distinguishing marks on them. If they are the same kind of cup,
and they hold the same contents, we have no way to tell the difference between them. This is the
case with the strings, numbers, and booleans we have seen so far.

2 4+ 2 === 4
//=> true

(2 + 2 === 4) === (2 == 5)
//=> true

Note well what is happening with these examples: Even when we obtain a string, number, or boolean
as the result of evaluating an expression, it is identical to another value of the same type with the
same “content.” Strings, numbers, and booleans are examples of what JavaScript calls “value” or
“primitive” types. We'll use both terms interchangeably.

We haven’t encountered the fourth possibility yet. Stretching the metaphor somewhat, some types
of cups have a serial number on the bottom. So even if you have two cups of the same type, and
their contents are the same, you can still distinguish between them.

Cafe Macchiato is also a fine drink, especially when following up on the fortunes of the Azzurri or the standings in
the Giro d’Ttalia

reference types

So what kinds of values might be the same type and have the same contents, but not be
considered identical to JavaScript? Let’s meet a data structure that is very common in contemporary
programming languages, the Array (other languages sometimes call it a List or a Vector).
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An array looks like this: [1, 2, 3]. This is an expression, and you can combine [] with other
expressions. Go wild with things like:

[2-1, 2, 2+1]
[1, 1+1, 1+1+1]

Notice that you are always generating arrays with the same contents. But are they identical the same
way that every value of 42 is identical to every other value of 42? Try these for yourself:

[2_1/ 2/ 2+1] === [1/213]
[1,2,3] === [1, 2, 3]
[1, 2, 3] === [1, 2, 3]

How about that! When you type [1, 2, 3] or any of its variations, you are typing an expression
that generates its own unique array that is not identical to any other array, even if that other array
also looks like [1, 2, 3].It’s as if JavaScript is generating new cups of coffee with serial numbers
on the bottom.

They look the same, but if you examine them with ===, you see that they are different. Every time
you evaluate an expression (including typing something in) to create an array, you're creating a
new, distinct value even if it appears to be the same as some other array value. As we’ll see, this is
true of many other kinds of values, including functions, the main subject of this book.
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Mathematics and Coffee

In computer science, a literal is a notation for representing a fixed value in source code.
Almost all programming languages have notations for atomic values such as integers,
floating-point numbers, and strings, and usually for booleans and characters; some
also have notations for elements of enumerated types and compound values such as
arrays, records, and objects. An anonymous function is a literal for the function type.—
Wikipedia'*

JavaScript, like most languages, has a collection of literals. We saw that an expression consisting
solely of numbers, like 42, is a literal. It represents the number forty-two, which is 42 base 10. Not

"https://en.wikipedia.org/wiki/Literal_(computer_programming)
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all numbers are base ten. If we start a literal with a zero, it is an octal literal. So the literal 942 is 42
base 8, which is actually 34 base 10.

Internally, both @42 and 34 have the same representation, as double-precision floating point™
numbers. A computer’s internal representation for numbers is important to understand. The
machine’s representation of a number almost never lines up perfectly with our understanding of
how a number behaves, and thus there will be places where the computer’s behaviour surprises us
if we don’t know a little about what it’s doing “under the hood”

For example, the largest integer JavaScript can safely® handle is 9007199254740991, or 2°**'- 1. Like
most programming languages, JavaScript does not allow us to use commas to separate groups of

digits.

floating

Most programmers never encounter the limit on the magnitude of an integer. But we mentioned that
numbers are represented internally as floating point, meaning that they need not be just integers.
We can, for example, write 1.5 or 33.33, and JavaScript represents these literals as floating point
numbers.

It’s tempting to think we now have everything we need to do things like handle amounts of
money, but as the late John Belushi would say, “No00000000000000000000.” A computer’s internal
representation for a floating point number is binary, while our literal number was in base ten. This
makes no meaningful difference for integers, but it does for fractions, because some fractions base
10 do not have exact representations base 2.

One of the most oft-repeated examples is this:

1.0
//=> 1

1.0 +1.0
//=> 2

1.0 +1.0 + 1.0
//=> 3

However:

*http://en.wikipedia.org/wiki/Double-precision_floating-point_format

Implementations of JavaScript are free to handle larger numbers. For example, if you type 9007199254740991 + 9007199254740991 into
node. js, it will happily report that the answer is 18014398509481982. But code that depends upon numbers larger than 9007199254740991 may
not be reliable when moved to other implementations.
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0.1
//=> 0.1
0.1 +0.1
//=> 0.2
0.1 +0.1 +0.1
//=> 0.30000000000000004

This kind of “inexactitude” can be ignored when performing calculations that have an acceptable
deviation. For example, when centering some text on a page, as long as the difference between what
you might calculate longhand and JavaScript’s calculation is less than a pixel, there is no observable
error.

But as a rule, if you need to work with real numbers, you should have more than a nodding
acquaintance with the IEEE Standard for Floating-Point Arithmetic'*. Professional programmers
almost never use floating point numbers to represent monetary amounts. For example, “$43.21” will
nearly always be presented as two numbers: 43 for dollars and 21 for cents, not 43.21. In this book,
we need not think about such details, but outside of this book, we must.

operations on numbers

As we’ve seen, JavaScript has many common arithmetic operators. We can create expressions that
look very much like mathematical expressions, for example we can write1 + 1 or2 * 3or42 - 34
oreven6 / 2. These can be combined to make more complex expressions, like2 * 5 + 1.

In JavaScript, operators have an order of precedence designed to mimic the way humans typically
parse written arithmetic. So:

2 %5 +1
//=> 11
1 +5 % 2
//=> 11

JavaScript treats the expressions as if we had written (2 * 5) + 1 and1 + (5 * 2), because the *
operator has a higher precedence than the + operator. JavaScript has many more operators. In a sense,
they behave like little functions. If we write 1 + 2, this is conceptually similar to writing plus(1,
2) (assuming we have a function that adds two numbers bound to the name plus, of course).

In addition to the common +, -, *, and /, JavaScript also supports modulus, %, and unary negation,

“https://en.wikipedia.org/wiki/IEEE _floating_point
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-(457 % 3)
//=> -1

There are lots and lots more operators that can be used with numbers, including bitwise operators
like | and & that allow you to operate directly on a number’s binary representation, and a number
of other operators that perform assignment or logical comparison that we will look at later.
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As Little As Possible About Functions, But No Less

In JavaScript, functions are values, but they are also much more than simple numbers, strings, or
even complex data structures like trees or maps. Functions represent computations to be performed.
Like numbers, strings, and arrays, they have a representation. Let’s start with the second simplest
possible function.*® In JavaScript, it looks like this:

() =0

This is a function that is applied to no values and returns 0. Let’s verify that our function is a value
like all others:

(() = 0)
//=> [Function]

What!? Why didn’t it type back () => @ for us? This seems to break our rule that if an expression
is also a value, JavaScript will give the same value back to us. What’s going on? The simplest and
easiest answer is that although the JavaScript interpreter does indeed return that value, displaying
it on the screen is a slightly different matter. [Function] is a choice made by the people who wrote
Node.js, the JavaScript environment that hosts the JavaScript REPL. If you try the same thing in a
browser, you may see something else.

*The simplest possible function is () => {}, we’ll see that later.
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I'd prefer something else, but I must accept that what gets typed back to us on the screen is arbitrary,
and all that really counts is that it is somewhat useful for a human to read. But we must understand
that whether we see [Function] or () => 0, internally JavaScript has a full and proper function.

functions and identities

You recall that we have two types of values with respect to identity: Value types and reference types.
Value types share the same identity if they have the same contents. Reference types do not.

Which kind are functions? Let’s try them out and see. For reasons of appeasing the JavaScript parser,
we’ll enclose our functions in parentheses:

(() = 0) === (() => 0)
//=> false

Like arrays, every time you evaluate an expression to produce a function, you get a new function that
is not identical to any other function, even if you use the same expression to generate it. “Function”
is a reference type.

applying functions

Let’s put functions to work. The way we use functions is to apply them to zero or more values called
arguments. Just as 2 + 2 produces a value (in this case 4), applying a function to zero or more
arguments produces a value as well.

Here’s how we apply a function to some values in JavaScript: Let’s say that fn_expr is an expression
that when evaluated, produces a function. Let’s call the arguments args. Here’s how to apply a
function to some arguments:

fn_expr(args)

Right now, we only know about one such expression: () => @, so let’s use it. We’ll put it in
parentheses'® to keep the parser happy, like we did above: (() => @). Since we aren’t giving it
any arguments, we’ll simply write () after the expression. So we write:

() = 9)()
//=> 0

°If you’re used to other programming languages, you’ve probably internalized the idea that sometimes parentheses are used to group
operations in an expression like math, and sometimes to apply a function to arguments. If not... Welcome to the ALGOL family of programming
languages!


https://en.wikipedia.org/wiki/ALGOL
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functions that return values and evaluate expressions

We've seen () => @. We know that (() => @)() returns 0, and this is unsurprising. Likewise, the
following all ought to be obvious:

(0= 10
//=> 1
(() => "Hello, JavaScript")()
//=> "Hello, JavaScript"
(() => Infinity)()
//=> Infinity

Well, the last one’s a doozy, but still, the general idea is this: We can make a function that returns a
value by putting the value to the right of the arrow.

In the prelude, we looked at expressions. Values like 0 are expressions, as are things like 40 + 2. Can
we put an expression to the right of the arrow?

(O =1+ 1)0)
//=> 2

(() => "Hello, " + "JavaScript")()
//=> "Hello, JavaScript"

(() => Infinity * Infinity)()
//=> Infinity

Yes we can. We can put any expression to the right of the arrow. For example, (() => 0)() is an
expression. Can we put it to the right of an arrow, like this: () => (() => @)()?

Let’s try it:

(0= (O =)0
//=> 0

Yes we can! Functions can return the value of evaluating another function.

When dealing with expressions that have a lot of the same characters (like parentheses), you may
find it helpful to format the code to make things stand out. So we can also write:
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Q) =
() = 0
)(O)
)0
//=> 0

It evaluates to the same thing, @.

commas

The comma operator in JavaScript is interesting. It takes two arguments, evaluates them both, and
itself evaluates to the value of the right-hand argument. In other words:

(1, 2)
//=> 2

(1 +1, 2 +2)
//=> 4

We can use commas with functions to create functions that evaluate multiple expressions:

(0= 1 +1,2+2)0)
//=> 4

This is useful when trying to do things that might involve side-effects, but we’ll get to that later. In
most cases, JavaScript does not care whether things are separated by spaces, tabs, or line breaks. So
we can also write:

() =
(1 +1, 2 +2)

Or even:
() = (
+ 1,
+ 2
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the simplest possible block

There’s another thing we can put to the right of an arrow, a block. A block has zero or more
statements, separated by semicolons."

So, this is a valid function:
O = {}
It returns the result of evaluating a block that has no statements. What would that be? Let’s try it:

(O = {H0O
//=> undefined

What is this undefined?

undefined

In JavaScript, the absence of a value is written undefined, and it means there is no value. It will crop
up again. undefined is its own type of value, and it acts like a value type:

undefined
//=> undefined

Like numbers, booleans and strings, JavaScript can print out the value undefined.

undefined === undefined
//=> true

(O = {H0O == (O = {}H0O
//=> true

(() = {})() === undefined
//=> true

No matter how you evaluate undefined, you get an identical value back. undefined is a value that
means “I don’t have a value.” But it’s still a value :-)

You might think that undefined in JavaScript is equivalent to NULL in SQL. No. In SQL, two things
that are NULL are not equal to nor share the same identity, because two unknowns can’t be equal. In
JavaScript, every undefined is identical to every other undefined.

"Sometimes, you will find JavaScript that has statements that are separated by newlines without semi-colons. This works because JavaScript
has a feature that can infer where the semi-colons should be most of the time. We will not take advantage of this feature, but it’s helpful to
know it exists.
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void

We’ve seen that JavaScript represents an undefined value by typing undefined, and we’ve generated
undefined values in two ways:

1. By evaluating a function that doesn’t return a value (() => {})(), and;
2. By writing undefined ourselves.

There’s a third way, with JavaScript’s void operator. Behold:

void ©

//=> undefined
void 1

//=> undefined
void (2 + 2)

//=> undefined

void is an operator that takes any value and evaluates to unde fined, always. So, when we deliberately
want an undefined value, should we use the first, second, or third form?*® The answer is, use void.
By convention, use void o.

The first form works but it’s cumbersome. The second form works most of the time, but it is possible
to break it by reassigning undefined to a different value, something we’ll discuss in Reassignment
and Mutation. The third form is guaranteed to always work, so that’s what we will use."

back on the block
Back to our function. We evaluated this:

(O = {H0O
//=> undefined

®Experienced JavaScript programmers are aware that there’s a fourth way, using a function argument. This was actually the preferred
mechanism until void became commonplace.

'°As an exercise for the reader, we suggest you ask your friendly neighbourhood programming language designer or human factors subject-
matter expert to explain why a keyword called void is used to generate an undefined value, instead of calling them both void or both undefined.
We have no idea.
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We said that the function returns the result of evaluating a block, and we said that a block is a
(possibly empty) list of JavaScript statements separated by semicolons.?

Something like: { statement’; statement?; statement®; ... ; statement” }
We haven’t discussed these statements. What’s a statement?

There are many kinds of JavaScript statements, but the first kind is one we’ve already met. An
expression is a JavaScript statement. Although they aren’t very practical, these are valid JavaScript
functions, and they return undefined when applied:

O=>{2+2}
O={1+1;,2+2}

As we saw with commas above, we can rearrange these functions onto multiple lines when we feel
its more readable that way:

But no matter how we arrange them, a block with one or more expressions still evaluates to
undefined:

(O={2+21H0O
//=> undefined

(O)=>{1+1;,2+2 10
//=> undefined

() = {
1+ 1;
2+ 2
131Q)
//=> undefined

As you can see, a block with one expression does not behave like an expression, and a block with
more than one expression does not behave like an expression constructed with the comma operator:

**You can also separate statements with line breaks. Readers who follow internet flame-fests may be aware of something called automatic
semi-colon insertion. Basically, there’s a step where JavaScript looks at your code and follows some rules to guess where you meant to put
semicolons in should you leave them out. This feature was originally created as a kind of helpful error-correction. Some programmers argue that
since it’s part of the language’s definition, it’s fair game to write code that exploits it, so they deliberately omit any semicolon that JavaScript
will insert for them.


http://lucumr.pocoo.org/2011/2/6/automatic-semicolon-insertion/
http://lucumr.pocoo.org/2011/2/6/automatic-semicolon-insertion/
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(() = 2+2)0)
//=> 4

(O=>{2+21H0O
//=> undefined

()= (1 +1,2+2)0
//=> 4

(O)=>{1+1;,2+2 10
//=> undefined

So how do we get a function that evaluates a block to return a value when applied? With the return
keyword and any expression:

(() => { return 0 })()
//=> 0

() = { return 1 })()
//=> 1

(() => { return 'Hello ' + 'World' })()
// 'Hello World'

Thereturn keyword creates a return statement that immediately terminates the function application
and returns the result of evaluating its expression. For example:

() = {
1 +1;
return 2 + 2
nOo
//=> 4

And also:

(0) = {
return 1 + 1;
2+ 2
O
//=> 2

The return statement is the first statement we’'ve seen, and it behaves differently than an expression.
For example, you can’t use one as the expression in a simple function, because it isn’t an expression:
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(() => return 0)()
//=> ERROR

Statements belong inside blocks and only inside blocks. Some languages simplify this by making
everything an expression, but JavaScript maintains this distinction, so when learning JavaScript we
also learn about statements like function declarations, for loops, if statements, and so forth. We’ll
see a few more of these later.

functions that evaluate to functions

If an expression that evaluates to a function is, well, an expression, and if a return statement can
have any expression on its right side... Can we put an expression that evaluates to a function on the
right side of a function expression?

Yes:
()=> () =0

That’s a function! It’s a function that when applied, evaluates to a function that when applied,
evaluates to 0. So we have a function, that returns a function, that returns zero. Likewise:

() => () = true
That’s a function, that returns a function, that returns true:

(() = () = true)(H()
//=> true

We could, of course, do the same thing with a block if we wanted:
() => () => { return true; }

But we generally don’t.

Well. We’ve been very clever, but so far this all seems very abstract. Diffraction of a crystal is
beautiful and interesting in its own right, but you can’t blame us for wanting to be shown a practical
use for it, like being able to determine the composition of a star millions of light years away. So... In
the next chapter, “I'd Like to Have an Argument, Please,” we’ll see how to make functions practical.
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Ah. I'd Like to Have an Argument, Please.”

Up to now, we’ve looked at functions without arguments. We haven’t even said what an argument
is, only that our functions don’t have any.

Most programmers are perfectly familiar with arguments (often called “parameters”). Secondary
school mathematics discusses this. So you know what they are, and I know that you know what
they are, but please be patient with the explanation!

Let’s make a function with an argument:
(room) => {}

This function has one argument, room, and an empty body. Here’s a function with two arguments
and an empty body:

(room, board) => {}

I’'m sure you are perfectly comfortable with the idea that this function has two arguments, room, and
board. What does one do with the arguments? Use them in the body, of course. What do you think
this is?

(diameter) => diameter * 3.14159265

It’s a function for calculating the circumference of a circle given the diameter. I read that aloud
as “When applied to a value representing the diameter, this function returns the diameter times
3.14159265”

Remember that to apply a function with no arguments, we wrote (() => {})(). To apply a function
with an argument (or arguments), we put the argument (or arguments) within the parentheses, like
this:

((diameter) => diameter * 3.14159265)(2)
//=> 6.2831853

You won’t be surprised to see how to write and apply a function to two arguments:

! Abuse of this feature by extending the behaviour of built-in classes is a controversial topic.
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((room, board) => room + board)(800, 150)
//=> 950

) o

a quick summary of functions and bodies

How arguments are used in a body’s expression is probably perfectly obvious to you from
the examples, especially if you've used any programming language (except for the dialect of
BASIC-which I recall from my secondary school-that didn’t allow parameters when you
called a procedure).

Expressions consist either of representations of values (like 3.14159265, true, and
undefined), operators that combine expressions (like 3 + 2), some special forms like [1,
2, 3] for creating arrays out of expressions, or function (arguments) {body-statements}
for creating functions.

One of the important possible statements is a return statement. A return statement accepts
any valid JavaScript expression.

This loose definition is recursive, so we can intuit (or use our experience with other
languages) that since a function can contain a return statement with an expression, we can
write a function that returns a function, or an array that contains another array expression.
Or a function that returns an array, an array of functions, a function that returns an array
of functions, and so forth:

0= 0= {}
0= 11,2, 3]

[1, [2, 8], 4];

call by value

17

Like most contemporary programming languages, JavaScript uses the “call by value” evaluation
strategy?®”. That means that when you write some code that appears to apply a function to an
expression or expressions, JavaScript evaluates all of those expressions and applies the functions
to the resulting value(s).

So when you write:

**http://en.wikipedia.org/wiki/Evaluation_strategy
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((diameter) => diameter * 3.14159265)(1 + 1)
//=> 6.2831853

What happened internally is that the expression1 + 1 was evaluated first, resulting in 2. Then our
circumference function was applied to 2.*

We'll see below that while JavaScript always calls by value, the notion of a “value” has additional
subtlety. But before we do, let’s look at variables.

variables and bindings

Right now everything looks simple and straightforward, and we can move on to talk about
arguments in more detail. And we’re going to work our way up from (diameter) => diameter
* 3.14159265 to functions like:

(x) = (y) = x

(x) => (y) => x justlooks crazy, as if we are learning English as a second language and the teacher
promises us that soon we will be using words like antidisestablishmentarianism. Besides a desire
to use long words to sound impressive, this is not going to seem attractive until we find ourselves
wanting to discuss the role of the Church of England in 19th century British politics.

But there’s another reason for learning the word antidisestablishmentarianism: We might learn how
prefixes and postfixes work in English grammar. It’s the same thing with (x) => (y) => x.Ithasa
certain important meaning in its own right, and it’s also an excellent excuse to learn about functions
that make functions, environments, variables, and more.

In order to talk about how this works, we should agree on a few terms (you may already know them,
but let’s check-in together and “synchronize our dictionaries”). The first x, the one in (x) => ...,
is an argument. The y in function (y) ... is another argument. The second x, the one in => x, is
not an argument, it’s an expression referring to a variable. Arguments and variables work the same
way whether we’re talking about (x) => (y) => x or just plain (x) => x.

Every time a function is invoked (“invoked” means “applied to zero or more arguments”), a new
environment is created. An environment is a (possibly empty) dictionary that maps variables to
values by name. The x in the expression that we call a “variable” is itself an expression that is
evaluated by looking up the value in the environment.

How does the value get put in the environment? Well for arguments, that is very simple. When you
apply the function to the arguments, an entry is placed in the dictionary for each argument. So when
we write:

**We said that you can’t apply a function to an expression. You can apply a function to one or more functions. Functions are values! This
has interesting applications, and they will be explored much more thoroughly in Functions That Are Applied to Functions.
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((x) => x)(2)
/=2

What happens is this:

. JavaScript parses this whole thing as an expression made up of several sub-expressions.
. It then starts evaluating the expression, including evaluating sub-expressions
. One sub-expression, (x) => x evaluates to a function.
. Another, 2, evaluates to the number 2.
. JavaScript now evaluates applying the function to the argument 2. Here's where it gets
interesting...
. An environment is created.
7. The value ‘2’ is bound to the name ‘x’ in the environment.
8. The expression x’ (the right side of the function) is evaluated within the environment we just
created.
9. The value of a variable when evaluated in an environment is the value bound to the variable’s
name in that environment, which is ‘2’
10. And that’s our result.

Gl W N

[®)}

When we talk about environments, we’ll use an unsurprising syntax** for showing their bindings:
{x: 2, ...}.meaning, that the environment is a dictionary, and that the value 2 is bound to the
name x, and that there might be other stuff in that dictionary we aren’t discussing right now.

call by sharing

Earlier, we distinguished JavaScript’s value types from its reference types. At that time, we looked
at how JavaScript distinguishes objects that are identical from objects that are not. Now it is time to
take another look at the distinction between value and reference types.

There is a property that JavaScript strictly maintains: When a value—any value-is passed as an
argument to a function, the value bound in the function’s environment must be identical to the
original.

We said that JavaScript binds names to values, but we didn’t say what it means to bind a name to a
value. Now we can elaborate: When JavaScript binds a value-type to a name, it makes a copy of the
value and places the copy in the environment. As you recall, value types like strings and numbers
are identical to each other if they have the same content. So JavaScript can make as many copies of
strings, numbers, or booleans as it wishes.

What about reference types? JavaScript does not place copies of reference values in any environment.
JavaScript places references to reference types in environments, and when the value needs to be used,
JavaScript uses the reference to obtain the original.

**http://json.org/
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Because many references can share the same value, and because JavaScript passes references as
arguments, JavaScript can be said to implement “call by sharing” semantics. Call by sharing is
generally understood to be a specialization of call by value, and it explains why some values are
known as value types and other values are known as reference types.

And with that, we’re ready to look at closures. When we combine our knowledge of value types,
reference types, arguments, and closures, we’ll understand why this function always evaluates to
true no matter what argument® you apply it to:

(value) =>
((ref1l, ref2) => ref1l === ref2)(value, value)

**Unless the argument is NaN, which isn’t equal to anything, including itself. NaN in JavaScript behaves a lot like NULL in SQL.
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Closures and Scope

It’s time to see how a function within a function works:

((x) => (y) = x)(1)(2)
//=> 1

First off, let’s use what we learned above. Given ( some function) (some argument), we know that
we apply the function to the argument, create an environment, bind the value of the argument to
the name, and evaluate the function’s expression. So we do that first with this code:

((x) = (y) = x)(1)
//=> [Function]

The environment belonging to the function with signature (x) => ... becomes {x: 1, ...}, and
the result of applying the function is another function value. It makes sense that the result value is
a function, because the expression for (x) => ...’s body is:

(y) => x

So now we have a value representing that function. Then we're going to take the value of that
function and apply it to the argument 2, something like this:

((y) = x)(2)

So we seem to get a new environment {y: 2, ...}. How is the expression x going to be evaluated in
that function’s environment? There is no x in its environment, it must come from somewhere else.

This, by the way, is one of the great defining characteristics of JavaScript and languages in the same
family: Whether they allow things like functions to nest inside each other, and if so, how they handle
variables from “outside” of a function that are referenced inside a function. For example, here’s the
equivalent code in Ruby:

lambda { [x|
lambda { |yl x }
H1l[2]

#=> 1

Now let’s enjoy a relaxed Allongé before we continue!
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if functions without free variables are pure, are closures impure?

The function (y) => x is interesting. It contains a free variable, x.>° A free variable is one that is
not bound within the function. Up to now, we’ve only seen one way to “bind” a variable, namely by
passing in an argument with the same name. Since the function (y) => x doesn’t have an argument
named x, the variable x isn’t bound in this function, which makes it “free”

Now that we know that variables used in a function are either bound or free, we can bifurcate
functions into those with free variables and those without:

« Functions containing no free variables are called pure functions.
« Functions containing one or more free variables are called closures.

Pure functions are easiest to understand. They always mean the same thing wherever you use them.
Here are some pure functions we’ve already seen:

O = {}
(x) => x
(x) = (y) = x

The first function doesn’t have any variables, therefore doesn’t have any free variables. The second
doesn’t have any free variables, because its only variable is bound. The third one is actually two
functions, one inside the other. (y) => ... has a free variable, but the entire expression refers to
(x) => ..., and it doesn’t have a free variable: The only variable anywhere in its body is x, which
is certainly bound within (x) =>

From this, we learn something: A pure function can contain a closure.

i pure functions can contain closures, can a closure contain a pure function? Using only
? what we’ve learned so far, attempt to compose a closure that contains a pure function. If
you can’t, give your reasoning for why it’s impossible.

Pure functions always mean the same thing because all of their “inputs” are fully defined by their
arguments. Not so with a closure. If I present to you this pure function (x, y) => x + y, we know
exactly what it does with (2, 2).But what about this closure: (y) => x + y? We can’t say what it
will do with argument (2) without understanding the magic for evaluating the free variable x.

*$You may also hear the term “non-local variable” Both are correct.


https://en.wikipedia.org/wiki/Free_variables_and_bound_variables
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it's always the environment

To understand how closures are evaluated, we need to revisit environments. As we’ve said before,
all functions are associated with an environment. We also hand-waved something when describing
our environment. Remember that we said the environment for ((x) => (y) => x)(1) is {x: 1,
...} and that the environment for ((y) => x)(2) is {y: 2, ...}? Let’s fill in the blanks!

The environment for ((y) => x)(2) is actually {y: 2, '..': {x: 1, ...}}.'..' meanssomething
like “parent” or “enclosure” or “super-environment.” It’s (x) => ...’s environment, because the
function (y) => x is within (x) => ...’s body. So whenever a function is applied to arguments, its

environment always has a reference to its parent environment.

And now you can guess how we evaluate ((y) => x)(2) in the environment {y: 2, '..': {x:
1, ...}}. The variable x isn’t in (y) => ...’s immediate environment, but it is in its parent’s
environment, so it evaluates to 1 and that’s what ((y) => x)(2) returns even though it ended up
ignoring its own argument.

(x) => x is called the I Combinator, or the Identity Function. (x) => (y) => x is called the K
Combinator, or Kestrel. Some people get so excited by this that they write entire books about them,
some are great?, some—how shall I put this—are interesting”if you use Ruby.

*http://www.amzn.com/0192801422?tag=raganwald001-20
*https://leanpub.com/combinators

Functions can have grandparents too:

(x) =
(y) =
(z) => x+y+z
This function does much the same thing as:

(x, y, 2) = x+y+az

Only you call it with (1)(2)(3) instead of (1, 2, 3).The other big difference is that you can call
it with (1) and get a function back that you can later call with (2)(3).


http://www.amzn.com/0192801422?tag=raganwald001-20
https://leanpub.com/combinators
http://www.amzn.com/0192801422?tag=raganwald001-20
https://leanpub.com/combinators

The first sip: Basic Functions 24

The first function is the result of currying? the second function. Calling a curried function with
only some of its arguments is sometimes called partial application®. Some programming languages
automatically curry and partially evaluate functions without the need to manually nest them.

*https://en.wikipedia.org/wiki/Currying
*hitps://en.wikipedia.org/wiki/Partial_application

shadowy variables from a shadowy planet

An interesting thing happens when a variable has the same name as an ancestor environment’s
variable. Consider:

(x) =
(x, y) => x +y

The function (x, y) => x + y is a pure function, because its x is defined within its own environment.
Although its parent also defines an x, it is ignored when evaluating x + y. JavaScript always searches
for a binding starting with the functions own environment and then each parent in turn until it finds
one. The same is true of:

(x) =>
(x, y) =
(w, z) =>
(w) =>

X+ty+z

When evaluating x + y + z, JavaScript will find x and y in the great-grandparent scope and z in the
parent scope. The x in the great-great-grandparent scope is ignored, as are both ws. When a variable
has the same name as an ancestor environment’s binding, it is said to shadow the ancestor.

This is often a good thing.

which came first, the chicken or the egg?

This behaviour of pure functions and closures has many, many consequences that can be exploited
to write software. We are going to explore them in some detail as well as look at some of the other
mechanisms JavaScript provides for working with variables and mutable state.

But before we do so, there’s one final question: Where does the ancestry start? If there’s no other
code in a file, what is (x) => x’s parent environment?


https://en.wikipedia.org/wiki/Currying
https://en.wikipedia.org/wiki/Partial_application
https://en.wikipedia.org/wiki/Currying
https://en.wikipedia.org/wiki/Partial_application
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JavaScript always has the notion of at least one environment we do not control: A global
environment in which many useful things are bound such as libraries full of standard functions.
So when you invoke ((x) => x)(1) in the REPL, its full environment is going to look like this: {x:
1, '..': global environment}.

Sometimes, programmers wish to avoid this. If you don’t want your code to operate directly within
the global environment, what can you do? Create an environment for them, of course. Many
programmers choose to write every JavaScript file like this:

// top of the file
(0 = {

// ... lots of JavaScript ...

DO;
// bottom of the file

The effect is to insert a new, empty environment in between the global environment and your own
functions: {x: 1, '..": {'..': global environment}}. As we’ll see when we discuss mutable state,
this helps to prevent programmers from accidentally changing the global state that is shared by all
code in the program.
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That Constant Coffee Craving

Up to now, all we’ve really seen are anonymous functions, functions that don’t have a name. This
feels very different from programming in most other languages, where the focus is on naming
functions, methods, and procedures. Naming things is a critical part of programming, but all we’ve
seen so far is how to name arguments.

There are other ways to name things in JavaScript, but before we learn some of those, let’s see how
to use what we already have to name things. Let’s revisit a very simple example:

(diameter) => diameter * 3.14159265

What is this “3.14159265” number? PI*’, obviously. We’d like to name it so that we can write
something like:

(diameter) => diameter * PI

In order to bind 3.14159265 to the name PI, we’ll need a function with a parameter of PI applied
to an argument of 3.14159265. If we put our function expression in parentheses, we can apply it to
the argument of 3.14159265:

((PI) =>
/) 2?2?27
)(3.14159265)

What do we put inside our new function that binds 3.14159265 to the name PI when evaluated?
Our circumference function, of course:

((PI) =>
(diameter) => diameter * PI
)(3.14159265)

This expression, when evaluated, returns a function that calculates circumferences. That sounds bad,
but when we think about it, (diameter) => diameter * 3.14159265 is also an expression, that when
evaluated, returns a function that calculates circumferences. All of our “functions” are expressions.
This one has a few more moving parts, that’s all. But we can use it just like (diameter) => diameter
* 3.141592665.

Let’s test it:

*"https://en.wikipedia.org/wiki/Pi


https://en.wikipedia.org/wiki/Pi
https://en.wikipedia.org/wiki/Pi
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((diameter) => diameter * 3.14159265)(2)
//=> 6.2831853

((PI) =>

(diameter) => diameter * PI
)(3.14159265)(2)

//=> 6.2831853

That works! We can bind anything we want in an expression by wrapping it in a function that is
immediately invoked with the value we want to bind.?

inside-out

There’s another way we can make a function that binds 3.14159265 to the name PI and then uses
that in its expression. We can turn things inside-out by putting the binding inside our diameter
calculating function, like this:

(diameter) =>

((P1) =>
diameter * PI)(3.14159265)

It produces the same result as our previous expressions for a diameter-calculating function:

((diameter) => diameter * 3.14159265)(2)
//=> 6.2831853

((PI) =>

(diameter) => diameter * PI
)(3.14159265)(2)

//=> 6.2831853

((diameter) =>
((PI) =
diameter * PI)(3.14159265))(2)
//=> 6.2831853

Which one is better? Well, the first one seems simplest, but a half-century of experience has
taught us that names matter. A “magic literal” like 3.14159265 is anathema to sustainable software
development.

The third one is easiest for most people to read. It separates concerns nicely: The “outer” function
describes its parameters:

*!JavaScript programmers regularly use the idea of writing an expression that denotes a function and then immediately applying it to
arguments. Explaining the pattern, Ben Alman coined the term [Immediately Invoked Function Expression][iife] for it, often abbreviated
“IIFE”



The first sip: Basic Functions 28

(diameter) =>

Y/

Everything else is encapsulated in its body. That’s how it should be, naming PI is its concern, not
ours. The other formulation:

((PI) =>
VY2
)(3.14159265)

“Exposes” naming PI first, and we have to look inside to find out why we care. So, should we always
write this?

(diameter) =>

((P1) =>
diameter * PI)(3.14159265)

Well, the wrinkle with this is that typically, invoking functions is considerably more expensive than
evaluating expressions. Every time we invoke the outer function, we’ll invoke the inner function.
We could get around this by writing

((P1) =
(diameter) => diameter * PI
)(3.14159265)

But then we’ve obfuscated our code, and we don’t want to do that unless we absolutely have to.

What would be very nice is if the language gave us a way to bind names inside of blocks without
incurring the cost of a function invocation. And JavaScript does.

const

Another way to write our “circumference” function would be to pass PI along with the diameter
argument, something like this:

(diameter, PI) => diameter * PI

And we could use it like this:
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((diameter, PI) => diameter * PI)(2, 3.14159265)
//=> 6.2831853

This differs from our example above in that there is only one environment, rather than two. We have
one binding in the environment representing our regular argument, and another our “constant.”
That’s more efficient, and it’s almost what we wanted all along: A way to bind 3.14159265 to a
readable name.

JavaScript gives us a way to do that, the const keyword. We’ll learn a lot more about const in future
chapters, but here’s the most important thing we can do with const:

(diameter) => {
const PI = 3.14159265;

return diameter * PI

The const keyword introduces one or more bindings in the block that encloses it. It doesn’t incur
the cost of a function invocation. That’s great. Even better, it puts the symbol (like PT) close to the
value (3.14159265). That’s much better than what we were writing.

We use the const keyword in a const statement. const statements occur inside blocks, we can’t use
them when we write a fat arrow that has an expression as its body.

It works just as we want. Instead of:
((diameter) =>
((PI) =
diameter * PI)(3.14159265))(2)

Or:

((diameter, PI) => diameter * PI)(2, 3.14159265)
//=> 6.2831853

We write:
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((diameter) => {
const PI = 3.14159265;

return diameter * PI

1(2)
//=> 6.2831853

We can bind any expression. Functions are expressions, so we can bind helper functions:

(d) => {

const calc

(diameter) => {
3.14159265;

const PI

return diameter * PI

¥

return "The circumference is " + calc(d)

Notice calc(d)? This underscores what we’ve said: if we have an expression that evaluates to a
function, we apply it with (). A name that’s bound to a function is a valid expression evaluating to
a function.”

Amazing how such an important idea—naming functions—can be explained en passant in just a few
words. That emphasizes one of the things JavaScript gets really, really right: Functions as “first class
entities.” Functions are values that can be bound to names like any other value, passed as arguments,
returned from other functions, and so forth.

We can bind more than one name-value pair by separating them with commas. For readability, most
people put one binding per line:

(d) = {
const PI = 3.14159265,
calc = (diameter) => diameter * PI;

return "The circumference is " + calc(d)

*We’re into the second chapter and we’ve finally named a function. Sheesh.
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nested blocks

Up to now, we’ve only ever seen blocks we use as the body of functions. But there are other kinds
of blocks. One of the places you can find blocks is in an i f statement. In JavaScript, an i f statement

looks like this:

(n) = {
const even = (x) => {
if (x === 0)

return true;
else

return 'even(x - 1);

}

return even(n)

}

And it works for fairly small numbers:

((n) => {
const even = (x) => {
if (x === 0)

return true;
else
return leven(x - 1);

}

return even(n)

1(13)
//=> false

The if statement is a statement, not an expression (an unfortunate design choice), and its clauses
are statements or blocks. So we could also write something like:

(n) = {
const even = (x) => {
if (x === 0)

return true;
else {
const odd = (y) => leven(y);

return odd(x - 1);

}

return even(n)

}
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And this also works:

((n) => {
const even = (x) => {
if (x === 0)
return true;
else {
const odd = (y) => leven(y);

return odd(x - 1);

}

return even(n)

1)(42)
//=> true

We’ve used a block as the else clause, and since it’s a block, we’ve placed a const statement inside
it.

const and lexical scope

This seems very straightforward, but alas, there are some semantics of binding names that we need
to understand if we're to place const anywhere we like. The first thing to ask ourselves is, what
happens if we use const to bind two different values to the “same” name?

Let’s back up and reconsider how closures work. What happens if we use parameters to bind two
different values to the same name?

Here’s the second formulation of our diameter function, bound to a name using an IIFE:

((diameter_fn) =>
Y/
) (
((PI) =>
(diameter) => diameter * PI
)(3.14159265)

It’s more than a bit convoluted, but it binds ((PI) => (diameter) => diameter * PI)(3.14159265)
to diameter_fn and evaluates the expression that we've elided. We can use any expression in there,
and that expression can invoke diameter_fn. For example:
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((diameter_fn) =>
diameter_fn(2)
) (
((PI) =
(diameter) => diameter * PI
)(3.14159265)

//=> 6.2831853

We know this from the chapter on closures, but even though PI is not bound when we invoke
diameter_fn by evaluating diameter_fn(2), PI is bound when we evaluated (diameter) =>
diameter * PI, and thus the expression diameter * PI is able to access values for PI and diameter
when we evaluate diameter_fn.

This is called lexical scoping®, because we can discover where a name is bound by looking at the
source code for the program. We can see that P is bound in an environment surrounding (diameter)
=> diameter * PI, we don’t need to know where diameter_fn is invoked.

We can test this by deliberately creating a “conflict:”

((diameter_fn) =>

((PI) =
diameter_fn(2)
)(3)
)(
((PI) =>

(diameter) => diameter * PI
)(3.14159265)

//=> 6.2831853

Although we have bound 3 to PI in the environment surrounding diameter_fn(2), the value that
counts is 3.14159265, the value we bound to PI in the environment surrounding (diameter) =
diameter * PL

That much we can carefully work out from the way closures work. Does const work the same way?
Let’s find out:

*°https://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scope_vs._dynamic_scope
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((diameter_fn) => {
const PI = 3;

7

return diameter_fn(2)

I(
(0 = {
const PI = 3.14159265;

return (diameter) => diameter * PI

HO

//=> 6.2831853

Yes. Binding values to names with const works just like binding values to names with parameter
invocations, it uses lexical scope.

are consts also from a shadowy planet?

We just saw that values bound with const use lexical scope, just like values bound with parameters.
They are looked up in the environment where they are declared. And we know that functions create
environments. Parameters are declared when we create functions, so it makes sense that parameters
are bound to environments created when we invoke functions.

But const statements can appear inside blocks, and we saw that blocks can appear inside of other
blocks, including function bodies. So where are const variables bound? In the function environment?
Or in an environment corresponding to the block?

We can test this by creating another conflict. But instead of binding two different variables to
the same name in two different places, we’ll bind two different values to the same name, but one
environment will be completely enclosed by the other.

Let’s start, as above, by doing this with parameters. We’ll start with:

((PI) =
(diameter) => diameter * PI
)(3.14159265)

And gratuitously wrap it in another IIFE so that we can bind PI to something else:
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((PI) =
((PI) =>
(diameter) => diameter * PI
)(3.14159265)

)(3)

This still evaluates to a function that calculates diameters:

((PI) =>
((PI) =>
(diameter) => diameter * PI
)(3.14159265)
)(3)(2)
//=> 6.2831853

And we can see that our diameter * PI expression uses the binding for PI in the closest parent
environment. but one question: Did binding 3.14159265 to PI somehow change the binding in the
“outer” environment? Let’s rewrite things slightly differently:

((P1) => {
((P1) = {})(3);

return (diameter) => diameter * PI;
1)(3.14159265)

Now we bind 3 to PI in an otherwise empty IIFE inside of our IIFE that binds 3.14159265 to PI.
Does that binding “overwrite” the outer one? Will our function return 6 or 6.2831853? This is a
book, you’ve already scanned ahead, so you know that the answer is no, the inner binding does not
overwrite the outer binding:

((P1) = {
((PL) = {})(3);

return (diameter) => diameter * PI;
})(3.14159265)(2)
//=> 6.2831853

We say that when we bind a variable using a parameter inside another binding, the inner binding
shadows the outer binding. It has effect inside its own scope, but does not affect the binding in the
enclosing scope.

So what about const. Does it work the same way?
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((diameter) => {
const PI = 3.14159265;

(0) = {
const PI = 3;
HO;

return diameter * PI;

1(2)
//=> 6.2831853

Yes, names bound with const shadow enclosing bindings just like parameters. But wait! There’s
more!!!

Parameters are only bound when we invoke a function. That’s why we made all these IIFEs. But
const statements can appear inside blocks. What happens when we use a const inside of a block?

We’ll need a gratuitous block. We’ve seen i f statements, what could be more gratuitous than:

if (true) {
// an immediately invoked block statement (IIBS)
}

Let’s try it:

((diameter) => {
const PI = 3;

if (true) {
const PI = 3.14159265;

return diameter * PI;
}
1(2)
//=> 6.2831853

((diameter) => {
const PI = 3.14159265;

if (true) {
const PI = 3;
}
return diameter * PI;
1(2)

//=> 6.2831853
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Ah! const statements don’t just shadow values bound within the environments created by functions,
they shadow values bound within environments created by blocks!

This is enormously important. Consider the alternative: What if const could be declared inside of a
block, but it always bound the name in the function’s scope. In that case, we’d see things like this:

((diameter) => {
const PI = 3.14159265;

if (true) {
const PI = 3;
}
return diameter * PI;
1(2)

//=> would return 6 if const had function scope

If const always bound its value to the name defined in the function’s environment, placing a const
statement inside of a block would merely rebind the existing name, overwriting its old contents.
That would be super-confusing. And this code would “work:”

((diameter) => {
if (true) {
const PI = 3.14159265;
}
return diameter * PI;
1(2)
//=> would return 6.2831853 if const had function scope

Again, confusing. Typically, we want to bind our names as close to where we need them as possible.
This design rule is called the Principle of Least Privilege®!, and it has both quality and security
implications. Being able to bind a name inside of a block means that if the name is only needed in
the block, we are not “leaking” its binding to other parts of the code that do not need to interact
with it.

rebinding

By default, JavaScript permits us to rebind new values to names bound with a parameter. For
example, we can write:

*'https://en.wikipedia.org/wiki/Principle_of_least_privilege
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const evenStevens = (n) => {
if (n === 0) {
return true;
}
else if (n == 1) {
return false;

}
else {

n=n-2;

return evenStevens(n);
}

evenStevens(42)
//=> true

The linen = n - 2; rebinds a new value to the name n. We will discuss this at much greater length
in Reassignment, but long before we do, let’s try a similar thing with a name bound using const.
We’ve already bound evenStevens using const, let’s try rebinding it:

evenStevens = (n) => {
if (n === 0) {
return true;

}
else if (n == 1) {
return false;

}
else {
return evenStevens(n - 2);

//=> ERROR, evenStevens is read-only

JavaScript does not permit us to rebind a name that has been bound with const. We can shadow it
by using const to declare a new binding with a new function or block scope, but we cannot rebind
a name that was bound with const in an existing scope.

This is valuable, as it greatly simplifies the analysis of programs to see at a glance that when
something is bound with const, we need never worry that its value may change.
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Naming Functions

Let’s get right to it. This code does not name a function:
const repeat = (str) => str + str

It doesn’t name the function “repeat” for the same reason that const answer = 42 doesn’t name
the number 42. This syntax binds an anonymous function to a name in an environment, but the
function itself remains anonymous.

the function keyword

JavaScript does have a syntax for naming a function, we use the function keyword. Until
ECMAScript 2015 was created, function was the usual syntax for writing functions.

Here’s our repeat function written using a “fat arrow”

(str) => str + str

And here’s (almost) the exact same function written using the function keyword:
function (str) { return str + str }

Let’s look at the obvious differences:

We introduce a function with the function keyword.

Something else we’re about to discuss is optional.

We have arguments in parentheses, just like fat arrow functions.

We do not have a fat arrow, we go directly to the body.

We always use a block, we cannot write function (str) str + str. This means that if we
want our functions to return a value, we always need to use the return keyword

SRR

If we leave out the “something optional” that comes after the function keyword, we can translate
all of the fat arrow functions that we’ve seen into function keyword functions, e.g.

(n) => (1.618%fn - -1.618%k-n) / 2.236

Can be written as:
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function (n) {
return (1.618%*n - -1.618%*-n) / 2.236;

This still does not name a function, but as we noted above, functions written with the function
keyword have an optional “something else.” Could that “something else” name a function? Yes, of
course.*

Here are our example functions written with names:

const repeat = function repeat (str) {

return str + str;

1

const fib = function fib (n) {
return (1.618%kn - -1.618%*_n) / 2.236;
¥

Placing a name between the function keyword and the argument list names the function. Confus-
ingly, the name of the function is not exactly the same thing as the name we may choose to bind to
the value of the function. For example, we can write:

const double = function repeat (str) {
return str + str;

In this expression, double is the name in the environment, but repeat is the function’s actual name.
This is a named function expression. That may seem confusing, but think of the binding names as
properties of the environment, not of the function. While the name of the function is a property of
the function, not of the environment.

And indeed the name is a property:

double.name
//=> 'repeat'

In this book we are not examining JavaScript’s tooling such as debuggers baked into browsers, but
we will note that when you are navigating call stacks in all modern tools, the function’s binding
name is ignored but its actual name is displayed, so naming functions is very useful even if they
don’t get a formal binding, e.g.

*2“Yes of course?” Well, in chapter of a book dedicated to naming functions, it is not surprising that feature we mention has something to
do with naming functions.
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someBackboneView.on('click', function clickHandler () {
Y/
1)

Now, the function’s actual name has no effect on the environment in which it is used. To whit:

const bindingName = function actualName () {
I/
¥

bindingName
//=> [Function: actualName]

actualName

//=> ReferenceError: actualName is not defined

So “actualName” isn’t bound in the environment where we use the named function expression. Is it
bound anywhere else? Yes it is. Here’s a function that determines whether a positive integer is even
or not. We’ll use it in an IIFE so that we don’t have to bind it to a name with const:

(function even (n) {
if (n === 0) {
return true

}

else return leven(n - 1)

1)(5)
//=> false

(function even (n) {
if (n === 0) {
return true

}

else return l!even(n - 1)

1(2)
//=> true

Clearly, the name even is bound to the function within the function’s body. Is it bound to the function
outside of the function’s body?
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even

//=> Can't find variable: even

even is bound within the function itself, but not outside it. This is useful for making recursive
functions as we see above, and it speaks to the principle of least privilege: If you don’t need to
name it anywhere else, you needn’t.

function declarations

There is another syntax for naming and/or defining a function. It’s called a function declaration
statement, and it looks a lot like a named function expression, only we use it as a statement:

function someName () {

e

This behaves a little like:

const someName = function someName () {

/o

In that it binds a name in the environment to a named function. However, there are two important
differences. First, function declarations are hoisted to the top of the function in which they occur.

Consider this example where we try to use the variable fizzbuzz as a function before we bind a
function to it with const:

(function () {

return fizzbuzz();

const fizzbuzz = function fizzbuzz () {

return "Fizz" + "Buzz";

}
HO

//=> undefined is not a function (evaluating 'fizzbuzz()')

We haven’t actually bound a function to the name fizzbuzz before we try to use it, so we get an
error. But a function declaration works differently:
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(function () {

return fizzbuzz();

function fizzbuzz () {

return "Fizz" + "Buzz";

}

NO
//=> 'FizzBuzz'

Although fizzbuzz is declared later in the function, JavaScript behaves as if we’d written:

(function () {
const fizzbuzz = function fizzbuzz () {

return "Fizz" + "Buzz";

return fizzbuzz();

HO

The definition of the fizzbuzz is “hoisted” to the top of its enclosing scope (an ITFE in this case). This
behaviour is intentional on the part of JavaScript’s design to facilitate a certain style of programming
where you put the main logic up front, and the “helper functions” at the bottom. It is not necessary
to declare functions in this way in JavaScript, but understanding the syntax and its behaviour
(especially the way it differs from const) is essential for working with production code.

function declaration caveats*

Function declarations are formally only supposed to be made at what we might call the “top level”
of a function. Although some JavaScript environments permit the following code, this example is
technically illegal and definitely a bad idea:

(function (camelCase) {
return fizzbuzz();

if (camelCase) {
function fizzbuzz () {

return "Fizz" + "Buzz";

}

else {

function fizzbuzz () {

*3A number of the caveats discussed here were described in Jyrly Zaytsev’s excellent article Named function expressions demystified.


http://kangax.github.com/nfe/
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return "Fizz" + "Buzz";

}

})(true)
//=> '"FizzBuzz'? Or ERROR: Can't find variable: fizzbuzz?

Function declarations are not supposed to occur inside of blocks. The big trouble with expressions
like this is that they may work just fine in your test environment but work a different way in
production. Or it may work one way today and a different way when the JavaScript engine is
updated, say with a new optimization.

Another caveat is that a function declaration cannot exist inside of any expression, otherwise it’s a
function expression. So this is a function declaration:

function trueDat () { return true }
But this is not:
(function trueDat () { return true })

The parentheses make this an expression, not a function declaration.
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Combinators and Function Decorators

higher-order functions

As we’ve seen, JavaScript functions take values as arguments and return values. JavaScript functions
are values, so JavaScript functions can take functions as arguments, return functions, or both.
Generally speaking, a function that either takes functions as arguments, or returns a function, or
both, is referred to as a “higher-order” function.

Here’s a very simple higher-order function that takes a function as an argument:

const repeat = (num, fn) =>
(num > Q)
? (repeat(num - 1, fn), fn(num))
: undefined

repeat(3, function (n) {
console.log( Hello ${n}")
1)
//=>
'Hello 1'
'Hello 2'
'Hello 3'

undefined

Higher-order functions dominate JavaScript Allongé. But before we go on, we’ll talk about some
specific types of higher-order functions.

combinators

The word “combinator” has a precise technical meaning in mathematics:

“A combinator is a higher-order function that uses only function application and earlier
defined combinators to define a result from its arguments”-Wikipedia**

If we were learning Combinatorial Logic, we’d start with the most basic combinators like S, K, and
I, and work up from there to practical combinators. We’d learn that the fundamental combinators
are named after birds following the example of Raymond Smullyan’s famous book To Mock a
Mockingbird™.

**https://en.wikipedia.org/wiki/Combinatory_logic
*>*http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_t1?ie=UTF8&camp=1789&creative=390957&creative ASIN=
B00A1P096Y &linkCode=as2&tag=raganwald001-20


https://en.wikipedia.org/wiki/Combinatory_logic
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20
https://en.wikipedia.org/wiki/Combinatory_logic
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20
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In this book, we will be using a looser definition of “combinator:” Higher-order pure functions
that take only functions as arguments and return a function. We won’t be strict about using only
previously defined combinators in their construction.

Let’s start with a useful combinator: Most programmers call it Compose, although the logicians call
it the B combinator or “Bluebird.” Here is the typical** programming implementation:

const compose = (a, b) =>

(c) = a(b(e))
Let’s say we have:
const addOne = (number) => number + 1;
const doubleOf = (number) => number * 2;

With compose, anywhere you would write

const doubleOfAddOne = (number) => doubleOf(addOne(number));
You could also write:

const doubleOfAddOne = compose(doubleOf, addOne);

This is, of course, just one example of many. You’ll find lots more perusing the recipes in this book.
While some programmers believe “There Should Only Be One Way To Do It,” having combinators
available as well as explicitly writing things out with lots of symbols and keywords has some
advantages when used judiciously.

a balanced statement about combinators

Code that uses a lot of combinators tends to name the verbs and adverbs (like doubleOf, addOne,
and compose) while avoiding language keywords and the names of nouns (like number). So one
perspective is that combinators are useful when you want to emphasize what you’re doing and
how it fits together, and more explicit code is useful when you want to emphasize what you’re
working with.

function decorators

A function decorator is a higher-order function that takes one function as an argument, returns
another function, and the returned function is a variation of the argument function. Here’s a
ridiculously simple decorator:*’

%¢As we'll discuss later, this implementation of the B Combinator is correct in languages like Scheme, but for truly general-purpose use in
JavaScript, it needs to correctly manage the function context.
*"We'll see later why an even more useful version would be written (fn) => (...args) => !fn(...args)
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const not = (fn) => (x) => !fn(x)

So instead of writing !someFunction(42), we can write not(someFunction)(42). Hardly progress.
But like compose, we could write either:

const something = (x) => x != null;
And elsewhere, write:

const nothing = (x) => !something(x);
Or we could write:

const nothing = not(something);

not is a function decorator because it modifies a function while remaining strongly related to the
original function’s semantics. You’ll see other function decorators in the recipes, like once and
maybe. Function decorators aren’t strict about being pure functions, so there’s more latitude for
making decorators than combinators.
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Building Blocks

When you look at functions within functions in JavaScript, there’s a bit of a “spaghetti code” look
to it. The strength of JavaScript is that you can do anything. The weakness is that you will. There
are ifs, fors, returns, everything thrown higgledy piggledy together. Although you needn’t restrict
yourself to a small number of simple patterns, it can be helpful to understand the patterns so that
you can structure your code around some basic building blocks.

composition

One of the most basic of these building blocks is composition:
const cookAndEat = (food) => eat(cook(food));

It’s really that simple: Whenever you are chaining two or more functions together, you’re composing
them. You can compose them with explicit JavaScript code as we’ve just done. You can also generalize
composition with the B Combinator or “compose” that we saw in Combinators and Decorators:

const compose = (a, b) => (c) => a(b(c));
const cookAndEat = compose(eat, cook);

If that was all there was to it, composition wouldn’t matter much. But like many patterns, using it
when it applies is only 20% of the benefit. The other 80% comes from organizing your code such that
you can use it: Writing functions that can be composed in various ways.

In the recipes, we’ll look at a decorator called once: It ensures that a function can only be executed
once. Thereafter, it does nothing. Once is useful for ensuring that certain side effects are not repeated.
We'll also look at maybe: It ensures that a function does nothing if it is given nothing (like nul1 or
undefined) as an argument.

Of course, you needn’t use combinators to implement either of these ideas, you can use if statements.
But once and maybe compose, so you can chain them together as you see fit:

const actuallyTransfer= (from, to, amount) =>
// do something

const invokeTransfer = once(maybe(actuallyTransfer(...)));
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partial application

Another basic building block is partial application. When a function takes multiple arguments, we
“apply” the function to the arguments by evaluating it with all of the arguments, producing a value.
But what if we only supply some of the arguments? In that case, we can’t get the final value, but we
can get a function that represents part of our application.

Code is easier than words for this. The Underscore®® library provides a higher-order function called
map.* It applies another function to each element of an array, like this:

—.map([1, 2, 3], (n) => n *n)
/7= [1, 4, 9]

We don’t want to fool around writing _., so we can use it by writing:*’
const map = _.map;

This code implements a partial application of the map function by applying the function (n) => n
* n as its second argument:

const squareAll = (array) => map(array, (n) => n * n);

The resulting function—squareA11-is still the map function, it’s just that we’ve applied one of its two
arguments already. squareAll is nice, but why write one function every time we want to partially
apply a function to a map? We can abstract this one level higher. mapwith takes any function as an
argument and returns a partially applied map function.

const mapWith = (fn) =>

(array) => map(array, fn);
const squareAll = mapWith((n) => n * n);

squareAll([1, 2, 3])
//=> (1, 4, 9]

We'll discuss mapWith again. The important thing to see is that partial application is orthogonal to
composition, and that they both work together nicely:

*®http://underscorejs.org

*Modern JavaScript implementations provide a map method for arrays, but Underscore’s implementation also works with older browsers
if you are working with that headache.

“’If we don’t want to sort out Underscore, we can also write the following: const map = (a, fn) => a.map(fn);, and trust that it works
even though we haven’t discussed methods yet.


http://underscorejs.org/
http://underscorejs.org/
http://underscorejs.org/
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const safeSquareAll = mapWith(maybe((n) => n * n));

safeSquareAll([1, null, 2, 3])
//=> [1, null, 4, 9]

We generalized composition with the compose combinator. Partial application also has a combinator,
which we’ll see in the partial recipe.
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Magic Names

When a function is applied to arguments (or “called”), JavaScript binds the values of arguments to
the function’s argument names in an environment created for the function’s execution. What we
haven’t discussed so far is that JavaScript also binds values to some “magic” names in addition to
any you put in the argument list.*!

the function keyword

There are two separate rules for these “magic” names, one for when you invoke a function using
the function keyword, and another for functions defined with “fat arrows.” We’ll begin with how
things work for functions defined with the function keyword.

The first magic name is this, and it is bound to something called the function’s context. We will
explore this in more detail when we start discussing objects and classes. The second magic name
is very interesting, it’s called arguments, and the most interesting thing about it is that it contains a
list of arguments passed to a function:

const plus = function (a, b) {
return arguments[0@] + arguments[1];

plus(2,3)
//=>5

Although arguments looks like an array, it isn’t an array: It’s more like an object*” that happens to
bind some values to properties with names that look like integers starting with zero:

const args = function (a, b) {

return arguments;

args(2,3)
J/=> { '@ 2, "1 3 )

arguments always contains all of the arguments passed to a function, regardless of how many are
declared. Therefore, we can write plus like this:

“You should never attempt to define your own bindings against “magic” names that JavaScript binds for you. It is wise to treat them as
read-only at all times.
“*We’ll look at arrays and plain old javascript objects in depth later.
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const plus = function () {

return arguments[0@] + arguments[1];

plus(2,3)
//=>5

When discussing objects, we’ll discuss properties in more depth. Here’s something interesting about
arguments:

const howMany = function () {
return arguments['length'];

howMany ()
//=> 0

howMany( "hello")
//=> 1

howMany( 'sharks', 'are', ‘'apex', 'predators')

//=> 4

The most common use of the arguments binding is to build functions that can take a variable number
of arguments. We’ll see it used in many of the recipes, starting off with partial application and
ellipses.

magic names and fat arrows

The magic names this and arguments have a different behaviour when you invoke a function that
was defined with a fat arrow: Instead of being bound when the function is invoked, the fat arrow
function always acquires the bindings for this and arguments from its enclosing scope, just like any
other binding.

For example, when this expression’s inner function is defined with function, arguments[@] refers
to its only argument, "inner":

(function () {
return (function () { return arguments[@]; })('inner');
})('outer')

//=> "inner"

But if we use a fat arrow, arguments will be defined in the outer environment, the one defined with
function. And thus arguments[@] will refer to "outer", not to "inner":
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(function () {

return (() => arguments[Q])('inner');
})('outer')

//=> "outer"

Although it seems quixotic for the two syntaxes to have different semantics, it makes sense when
you consider the design goal: Fat arrow functions are designed to be very lightweight and are often
used with constructs like mapping or callbacks to emulate syntax.

To give a contrived example, this function takes a number and returns an array representing a row in
a hypothetical multiplication table. It uses mapWith, which we discussed in Building Blocks.*> We’ll
use arguments just to show the difference between using a fat arrow and the function keyword:

const row = function () {
return mapWith((column) => column * arguments[0])(
[1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12]

row(3)
//=> [3,6,9,12,15,18,21,24,27,30, 33, 36

This works just fine, because arguments[@] refers to the 3 we passed to the function row. Our “fat
arrow” function (column) => column * arguments[0@] doesn’t bind arguments when it’s invoked.
But if we rewrite row to use the function keyword, it stops working:

const row = function () {
return mapWith(function (column) { return column * arguments[@] })(
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

row(3)
//=> [1,4,9,16,25,636,49,64,81,100,121,144]

Now our inner function binds arguments[@] every time it is invoked, so we get the same result as if
we’d written function (column) { return column * column }.

Although this example is clearly unrealistic, there is a general design principle that deserves
attention. Sometimes, a function is meant to be used as a Big-F function. It has a name, it is called
by different pieces of code, it’s a first-class entity in the code.

“*Yes, we also used the name mapWith for working with ordinary collections elsewhere. If we were writing a library of functions, we would
have to disambiguate the two kinds of mapping functions with special names, namespaces, or modules. But for the purposes of discussing
ideas, we can use the same name twice in two different contexts. It’s the same idea, after all.
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But sometimes, a function is a small-f function. It’s a simple representation of an expression to be
computed. In our example above, row is a Big-F function, but (column) => column * arguments[@]
is a small-f function, it exists just to give mapWith something to apply.

Having magic variables apply to Big-F functions but not to small-f functions makes it much easier to
use small-f functions as syntax, treating them as expressions or blocks that can be passed to functions
like mapwith.
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Summary

p Functions

Functions are values that can be part of expressions, returned from other functions,
and so forth.

Functions are reference values.

Functions are applied to arguments.

The arguments are passed by sharing, which is also called “pass by value.”

Fat arrow functions have expressions or blocks as their bodies.

function keyword functions always have blocks as their bodies.

Function bodies have zero or more statements.

Expression bodies evaluate to the value of the expression.

Block bodies evaluate to whatever is returned with the return keyword, or to
undefined.

« JavaScript uses const to bind values to names within block scope.
« JavaScript uses function declarations to bind functions to names within function scope.

Function declarations are “hoisted.”

Function application creates a scope.

Blocks also create scopes if const statements are within them.
Scopes are nested and free variable references closed over.
Variables can shadow variables in an enclosing scope.



Recipes with Basic Functions

Before combining ingredients, begin with implements so clean, they gleam.

Having looked at basic pure functions and closures, we’re going to see some practical recipes that
focus on the premise of functions that return functions.

Disclaimer

The recipes are written for practicality, and their implementation may introduce JavaScript features
that haven’t been discussed in the text to this point, such as methods and/or prototypes. The
overall use of each recipe will fit within the spirit of the language discussed so far, even if the
implementations may not.
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Partial Application

In Building Blocks, we discussed partial application, but we didn’t write a generalized recipe for
it. This is such a common tool that many libraries provide some form of partial application. You’ll
find examples in Lemonad** from Michael Fogus, Functional JavaScript*’ from Oliver Steele and the
terse but handy node-ap*® from James Halliday.

These two recipes are for quickly and simply applying a single argument, either the leftmost or
rightmost.*” If you want to bind more than one argument, or you want to leave a “hole” in the
argument list, you will need to either use a generalized partial recipe, or you will need to repeatedly
apply arguments. They are context-agnostic.

const callFirst = (fn, larg) =>
function (...rest) {
return fn.call(this, larg, ...rest);

const calllast = (fn, rarg) =>
function (...rest) {
return fn.call(this, ...rest, rarg);

const greet = (me, you) =>
“Hello, ${you}, my name is ${me}";

const heliosSaysHello = callFirst(greet, 'Helios');

heliosSaysHello('Eartha')

//=> 'Hello, Eartha, my name is Helios

1

const sayHelloToCeline = calllLast(greet, 'Celine');

sayHelloToCeline( 'Eartha')

//=> 'Hello, Celine, my name is Eartha'

As noted above, our partial recipe allows us to create functions that are partial applications of
functions that are context aware. We’d need a different recipe if we wish to create partial applications
of object methods.

We take it a step further, and can use gathering and spreading to allow for partial application with
more than one argument:

“*https://github.com/fogus/lemonad
“Shttp://osteele.com/sources/javascript/functional/
“*https://github.com/substack/node-ap

“’callFirst and calllast were inspired by Michael Fogus’ Lemonad. Thanks!


https://github.com/fogus/lemonad
http://osteele.com/sources/javascript/functional/
https://github.com/substack/node-ap
https://github.com/fogus/lemonad
http://osteele.com/sources/javascript/functional/
https://github.com/substack/node-ap
https://github.com/fogus/lemonad
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const calllLeft = (fn, ...args) =>
(...remainingArgs) =>
fn(...args, ...remainingArgs);
const callRight = (fn, ...args) =>

(...remainingArgs) =>

fn(...remainingArgs, ...args);

58
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Unary

“Unary” is a function decorator that modifies the number of arguments a function takes: Unary takes
any function and turns it into a function taking exactly one argument.

The most common use case is to fix a problem. JavaScript has a .map method for arrays, and many
libraries offer a map function with the same semantics. Here it is in action:

['1', '2', '3'].map(parseFloat)
//=> [1, 2, 3]

In that example, it looks exactly like the mapping function you’ll find in most languages: You pass
it a function, and it calls the function with one argument, the element of the array. However, that’s
not the whole story. JavaScript’s map actually calls each function with three arguments: The element,
the index of the element in the array, and the array itself.

Let’s try it:

[1, 2, 3].map(function (element, index, arr) {
console.log({element: element, index: index, arr: arr})
1)
//=> { element: 1, index: O, arr: [ 1, 2, 3 ] }
// { element: 2, index: 1, arr: [ 1, 2, 3 ] }
// { element: 3, index: 2, arr: [ 1, 2, 3 ] }

’

If you pass in a function taking only one argument, it simply ignores the additional arguments. But
some functions have optional second or even third arguments. For example:

["1', '2', '3'].map(parselnt)
//=> [1, NaN, NaN]

This doesn’t work because parselnt is defined as parseInt(string[, radix]). It takes an optional
radix argument. And when you call parseInt with map, the index is interpreted as a radix. Not good!
What we want is to convert parseInt into a function taking only one argument.

We could write ['1', '2', '3'].map((s) => parselnt(s)), or we could come up with a decorator
to do the job for us:
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const unary = (fn) =>
fn.length === 1
?7 fn
function (something) {
return fn.call(this, something)

And now we can write:

['1", '2', '3"].map(unary(parselnt))
//=> [1, 2, 3]

Presto!

60
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Tap
One of the most basic combinators is the “K Combinator,” nicknamed the “Kestrel:”
const K = (x) => (y) => x;

It has some surprising applications. One is when you want to do something with a value for side-
effects, but keep the value around. Behold:

const tap = (value) =>
(fn) => (
typeof(fn) === 'function' && fn(value),

value

tap is a traditional name borrowed from various Unix shell commands. It takes a value and returns
a function that always returns the value, but if you pass it a function, it executes the function for
side-effects. Let’s see it in action as a poor-man’s debugger:

tap('espresso')((it) => {
console.log( Our drink is '${it}'")
1)

//=> Our drink is 'espresso'

'espresso’
It’s easy to turn off:

tap('espresso')();

//=> 'espresso'
Libraries like Underscore*® use a version of tap that is “uncurried:”

_.tap('espresso', (it) =>
console.log( Our drink is '${it}'")
)i
//=> Our drink is 'espresso'

'espresso’

Let’s enhance our recipe so that it works both ways:

“*http://underscorejs.org


http://underscorejs.org/
http://underscorejs.org/
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const tap = (value, fn) => {
const curried = (fn) => (

typeof(fn) === 'function' && fn(value),
value
)i
return fn === undefined
? curried

. curried(fn);

Now we can write:

tap('espresso')((it) => {
console.log( Our drink is '${it}'")
1)
//=> Our drink is 'espresso'
'espresso’

Or:

tap('espresso', (it) => {
console.log( Our drink is '${it}'")
1)
//=> Our drink is 'espresso'
'espresso’

And if we wish it to do nothing at all, We can write either tap('espresso')() or tap('espresso’,
null)

p.s. tap can do more than just act as a debugging aid. It’s also useful for working with object and
instance methods.
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Maybe

A common problem in programming is checking for null or undefined (hereafter called “nothing,”
while all other values including @, [] and false will be called “something”). Languages like
JavaScript do not strongly enforce the notion that a particular variable or particular property be
something, so programs are often written to account for values that may be nothing.

This recipe concerns a pattern that is very common: A function fn takes a value as a parameter, and
its behaviour by design is to do nothing if the parameter is nothing:

const isSomething = (value) =>
value !== null && value !== void 0©;

const checksForSomething = (value) => {
if (isSomething(value)) ({
// function's true logic

Alternately, the function may be intended to work with any value, but the code calling the function
wishes to emulate the behaviour of doing nothing by design when given nothing:

var something =
isSomething(value)
? doesntCheckForSomething(value)

: value;

Naturally, there’s a function decorator recipe for that, borrowed from Haskell’s maybe monad®,
Ruby’s andand®’, and CoffeeScript’s existential method invocation:

const maybe = (fn) =>
function (...args) {
if (args.length === 0) {
return
}
else {
for (let arg of args) {
if (arg == null) return;
}
return fn.apply(this, args)

}

“https://en.wikipedia.org/wiki/Monad_(functional_programming)#The_Maybe_monad
*°https://github.com/raganwald/andand
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maybe reduces the logic of checking for nothing to a function call:

maybe((a, b, ¢) => a + b + ¢)(1, 2, 3)
//=> 6

maybe((a, b, ¢) => a + b + ¢)(1, null, 3)
//=> undefined

As a bonus, maybe plays very nicely with instance methods, we’ll discuss those later:

function Model () {};

Model . prototype.setSomething = maybe(function (value) {
this.something = value;

});

If some code ever tries to call model.setSomething with nothing, the operation will be skipped.
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Once

once is an extremely helpful combinator. It ensures that a function can only be called, well, once.
Here’s the recipe:

const once = (fn) => {
let done = false;

return function () {

return done ? void @ : ((done = true), fn.apply(this, arguments))

Very simple! You pass it a function, and you get a function back. That function will call your function
once, and thereafter will return undefined whenever it is called. Let’s try it:

const askedOnBlindDate = once(
() => "sure, why not?"

)

askedOnBlindDate()

//=> 'sure, why not?’

askedOnBlindDate()
//=> undefined

askedOnBlindDate()
//=> undefined

It seems some people will only try blind dating once.

(Note: There are some subtleties with decorators like once that involve the intersection of state with
methods. We’'ll look at that again in stateful method decorators.)
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Left-Variadic Functions

A variadic function is a function that is designed to accept a variable number of arguments.’* In
JavaScript, you can make a variadic function by gathering parameters. For example:

const abccec = (a, b, ...c) => {
console.log(a);
console.log(b);
console.log(c);

};

abcce(1, 2, 3, 4, 5)
1
2
[3,4,5]

This can be useful when writing certain kinds of destructuring algorithms. For example, we might
want to have a function that builds some kind of team record. It accepts a coach, a captain, and an
arbitrary number of players. Easy in ECMAScript 2015:

function team(coach, captain, ...players) {
console.log( ${captain} (captain)™);
for (let player of players) {
console.log(player);

}

console.log( “squad coached by ${coach}");

team('Luis Enrique', 'Xavi Hernandez', 'Marc-André ter Stegen',
"Martin Montoya', 'Gerard Piqué')
//=>
Xavi Hernandez (captain)
Marc-André ter Stegen
Martin Montoya
Gerard Piqué
squad coached by Luis Enrique

But we can’t go the other way around:

>'English is about as inconsistent as JavaScript: Functions with a fixed number of arguments can be unary, binary, ternary, and so forth.
But can they be “variary?” No! They have to be “variadic.”
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function team2(...players, captain, coach) {
console.log( ${captain} (captain)™);
for (let player of players) {
console.log(player);

}

console.log( “squad coached by ${coach}");

}
//=> Unexpected token

ECMAScript 2015 only permits gathering parameters from the end of the parameter list. Not the
beginning. What to do?

a history lesson

In “Ye Olde Days,** JavaScript could not gather parameters, and we had to either do backflips with
arguments and .slice, or we wrote ourselves a variadic decorator that could gather arguments
into the last declared parameter. Here it is in all of its ECMAScript-5 glory:

var __slice = Array.prototype.slice;

function rightVariadic (fn) {
if (fn.length < 1) return fn;

return function () {
var ordinaryArgs = (1 <= arguments.length ?
_slice.call(arguments, 0, fn.length - 1) : []),
restOfTheArgsList = __slice.call(arguments, fn.length - 1),
args = (fn.length <= arguments.length ?
ordinaryArgs.concat( [restOfTheArgsList]) : []);

return fn.apply(this, args);

}
};

var firstAndButFirst = rightVariadic(function test (first, butFirst) {
return [first, butFirst]

});

firstAndButFirst('why', 'hello', 'there', 'little', 'droid')
//=> ["why", ["hello", "there", "little", "droid"]]

We don’t need rightvariadic any more, because instead of:

*2 Another history lesson. “Ye” in “Ye Olde,” was not actually spelled with a “Y” in days of old, it was spelled with a thorn, and is pronounced
“the” Another word, “Ye” in “Ye of little programming faith,” is pronounced “ye;” but it’s a different word altogether.


https://en.wikipedia.org/wiki/Thorn_(letter)
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var firstAndButFirst = rightVariadic(
function test (first, butFirst) {
return [first, butFirst]

1);
We now simply write:

const firstAndButFirst = (first, ...butFirst) =>
[first, butFirst];

This is a right-variadic function, meaning that it has one or more fixed arguments, and the rest are
gathered into the rightmost argument.

overcoming limitations

It’s nice to have progress. But as noted above, we can’t write:

const butlLastAndLast = (...butlLast, last) =>
[butLast, last];

That’s a left-variadic function. All left-variadic functions have one or more fixed arguments, and the
rest are gathered into the leftmost argument. JavaScript doesn’t do this. But if we wanted to write
left-variadic functions, could we make ourselves a leftVariadic decorator to turn a function with
one or more arguments into a left-variadic function?

We sure can, by using the techniques from rightvariadic. Mind you, we can take advantage of
modern JavaScript to simplify the code:

const leftVariadic = (fn) => {
if (fn.length < 1) {
return fn;
}
else {
return function (...args) {
const gathered = args.slice(Q, args.length - fn.length + 1),
spread = args.slice(args.length - fn.length + 1);

return fn.apply(
this, [gathered].concat(spread)
)
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3
const butlLastAndLast = leftVariadic((butLast, last) => [butLast, last]);

butLastAndLast('why', 'hello', 'there', 'little', 'droid')
//=> [["why", "hello", "there", "little"], "droid"]

Our leftVariadic function is a decorator that turns any function into a function that gathers
parameters from the left, instead of from the right.

left-variadic destructuring

Gathering arguments for functions is one of the ways JavaScript can destructure arrays. Another
way is when assigning variables, like this:

const [first, ...butFirst] = ['why', 'hello', 'there',6 'little', 'droid'];
first
//=> 'why'

butFirst
//=> ["hello", "there", "little", "droid"]

As with parameters, we can’t gather values from the left when destructuring an array:

const [...butLast, last] = ['why', 'hello', 'there', 'little', 'droid'];
//=> Unexpected token

We could use leftVariadic the hard way:

const [butlLast, last] = leftVariadic((butLast, last) => [butlLast, last])(...['why', \
'hello', 'there', 'little', 'droid']);

butLast
//=> ['why', 'hello', 'there', 'little']

last
//=> 'droid'

But we can write our own left-gathering function utility using the same principles without all the
tedium:
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const leftGather = (outputArraylLength) => {
return function (inputArray) {
return [inputArray.slice(@, inputArray.length - outputArraylLength + 1)].concat(
inputArray.slice(inputArray.length - outputArraylLength + 1)

}
1

const [butlLast, last] = leftGather(2)(['why', 'hello', 'there',6 'little', 'droid']);

butLast
//=> ['why', 'hello', 'there', 'little']

last
//=> 'droid'

With leftGather, we have to supply the length of the array we wish to use as the result, and it
gathers excess arguments into it from the left, just like leftvariadic gathers excess parameters for
a function.
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Compose and Pipeline

Here is the B Combinator, or compose that we saw in Combinators and Decorators:

const compose = (a, b) =>

(¢) => a(b(c))
As we saw before, given:

const addOne = (number) => number + 1;

const doubleOf = (number) => number * 2;

Instead of:

const doubleQfAddOne = (number) => doubleOf(addOne(number));
We could write:

const doubleOfAddOne = compose(doubleOf, addOne);

variadic compose and recursion

If we wanted to implement a compose3, we could write:

const compose3 = (a, b, ¢) => (d) =>

a(b(c(d)))
Or observe that it is really:
const compose3 = (a, b, ¢) => compose(a, (compose(b, c)))

Once we get to compose4, we ask ourselves if there is a better way. For example, if we had a variadic
compose, we could write compose(a, b), compose(a, b, c¢),or compose(a, b, c, d).

We can implement a variadic compose recursively. The easiest way to reason about writing a
recursive compose is to start with the smallest or degenerate case. If compose only took one argument,
it would look like this:
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const compose = (a) => a

The next thing is to have a way of breaking a piece off the problem. We can do this with a variadic
function:

const compose = (a, ...rest) =>

"to be determined"
We can test whether we have the degenerate case:

const compose = (a, ...rest) =>
rest.length === 0
7 a

"to be determined"

If it is not the degenerate case, we need to combine what we have with the solution for the rest. In
other words, we need to combine fn with compose(. . .rest). How do we do that? Well, consider
compose(a, b). We know that compose(b) is the degenerate case, it’s just b. And we know that
compose(a, b)is(c) => a(b(c)).

So let’s substitute compose(b) for b:
compose(a, compose(b)) === (c¢) => a(compose(b)(c))
Now substitute . . .rest for b:
compose(a, compose(...rest)) === (c¢) => a(compose(...rest)(c))
This is our solution:
const compose = (a, ...rest) =>
rest.length ===
7 a
(¢) => a(compose(...rest)(c))
There are others, of course. compose can be implemented with iteration or with . reduce, like this:
const compose = (...fns) =>
(value) =>
fns.reverse().reduce((acc, fn) => fn(acc), value);
But the principle behaviour is the same: To compose a series of functions together, creating a new

one. And the value is the same: We can write smaller, single purpose functions and put them together
in different ways.
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the semantics of compose

With compose, we’re usually making a new function. Although it works perfectly well, we don’t need
to write things like compose(double, addOne)(3) inline to get the result 8. It’s easier and clearer to
write double(addOne(3)).

On the other hand, when working with something like method decorators, it can help to write:

const setter = compose(fluent, maybe);

/S

SomeClass.prototype.setUser = setter(function (user) ({

this.user = user;

});

SomeClass.prototype.setPrivileges = setter(function (privileges) {
this.privileges = privileges;

});

This makes it clear that setter adds the behaviour of both fluent and maybe to each method it
decorates, and it’s sometimes easier to read const setter = compose(fluent, maybe); than:

const setter = (fn) => fluent(maybe(fn));

The take-away is that compose is helpful when we are defining a new function that combines the
effects of existing functions.

pipeline

compose is extremely handy, but one thing it doesn’t communicate well is the order on operations.
compose is written that way because it matches the way explicitly composing functions works in
JavaScript and most other languages: When you write a(b(...)), a happens after b.

Sometimes it makes more sense to compose functions in data flow order, as in “The value flows
through a and then through b.” For this, we can use the pipeline function:
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const pipeline = (...fns) =>
(value) =>
fns.reduce((acc, fn) => fn(acc), value);

const setter = pipeline(addOne, double);

Comparing pipeline to compose, pipeline says “add one to the number and then double it.” Compose
says, “double the result of adding one to the number” Both do the same job, but communicate their
intention in opposite ways.

Saltspring Island Roasting Facility
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Decaf and the Antidote

We’ve seen operators that act on numeric values, like + and %. In addition to numbers, we often need
to represent a much more basic idea of truth or falsehood. Is this array empty? Does this person
have a middle name? Is this user logged in?

JavaScript does have “boolean” values, they’re written true and false:

true
//=> true

false
//=> false

true and false are value types. All values of true are === all other values of true. We can see that
is the case by looking at some operators we can perform on boolean values, !, &&, and | |. To being
with, ! is a unary prefix operator that negates its argument. So:
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ltrue
//=> false

I false
//=> true

The && and || operators are binary infix operators that perform “logical and” and “logical or”
respectively:

false && false //=> false
false && true //=> false
true && false //=> false
true && true //=> true

false || false //=> false

false || true //=> true
true || false //=> true
true || true //=> true

Now, note well: We have said what happens if you pass boolean values to !, &&, and | |, but we've
said nothing about expressions or about passing other values. We’ll look at those presently.

truthiness and the ternary operator

In JavaScript, there is a notion of “truthiness.” Every value is either “truthy” or “falsy.” Obviously,
false is falsy. So are null and undefined, values that semantically represent “no value.” NaN is falsy,
a value representing the result of a calculation that is not a number.”> And there are more: @ is falsy,
a value representing “none of something” The empty string, ' ' is falsy, a value representing having
no characters.

Every other value in JavaScript is “truthy” except the aforementioned false, null, undefined, NaN,
0,and ' '. (Many other languages that have a notion of truthiness consider zero and the empty string
to be truthy, not falsy, so beware of blindly transliterating code from one language to another!)

The reason why truthiness matters is that the various logical operators (as well as the if statement)
actually operate on truthiness, not on boolean values. This affects the way the !,8&, and | | operators
work. We’ll look at them in a moment, but first, we’ll look at one more operator.

JavaScript inherited an operator from the C family of languages, the ternary operator. It’s the only
operator that takes three arguments. It looks like this: first ? second : third. It evaluates first,
and if first is “truthy”, it evaluates second and that is its value. If first is not truthy, it evaluates
third and that is its value.

>*We will not discuss JavaScript’s numeric behaviour in much depth in this book, but the most important thing to know is that it implements
the IEEE Standard for Floating-Point Arithmetic (IEEE 754), a technical standard for floating-point computation established in 1985 by the
Institute of Electrical and Electronics Engineers (IEEE).


https://en.wikipedia.org/wiki/IEEE_floating_point
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This is a lot like the if statement, however it is an expression, not a statement, and that can be
very valuable. It also doesn’t introduce braces, and that can be a help or a hindrance if we want to
introduce a new scope or use statements.

Here're some simple examples of the ternary operator:

true ? 'Hello' : 'Good bye'
//=> 'Hello'
© ? 'Hello' : 'Good bye'

//=> 'Good bye'

[1, 2, 8, 4, 5].length === 5 ? 'Pentatonic' : 'Quasimodal'
//=> 'Pentatonic'

The fact that either the second or the third (but not both) expressions are evaluated can have
important repercussions. Consider this hypothetical example:

const status = isAuthorized(currentUser) ? deleteRecord(currentRecord) : 'Forbidden';

We certainly don’t want JavaScript trying to evaluate deleteRecord(currentRecord) unless isAuthorized(currentl
returns true.

truthiness and operators

Our logical operators !, &&, and | | are a little more subtle than our examples above implied. ! is the
simplest. It always returns false if its argument is truthy, and true is its argument is not truthy:

!5
//=> false

lundefined
//=> true

Programmers often take advantage of this behaviour to observe that !!(someExpression) will
always evaluate to true if someExpression is truthy, and to false if it is not. So in JavaScript (and
other languages with similar semantics), when you see something like ! lcurrentUser(), this is an
idiom that means “true if currentUser is truthy.” Thus, a function like currentUser () is free to return
null, or undefined, or false if there is no current user.

Thus, !! is the way we write “is truthy” in JavaScript. How about && and ||? What haven’t we
discussed?

First, and unlike !, 8& and | | do not necessarily evaluate to true or false. To be precise:
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« && evaluates its left-hand expression.

— Ifits left-hand expression evaluates to something falsy, && returns the value of its left-hand
expression without evaluating its right-hand expression.

— If its left-hand expression evaluates to something truthy, && evaluates its right-hand
expression and returns the value of the right-hand expression.

« || evaluates its left-hand expression.

— If its left-hand expression evaluates to something truthy, || returns the value of its left-
hand expression without evaluating its right-hand expression.

— If its left-hand expression evaluates to something false, || evaluates its right-hand
expression and returns the value of the right-hand expression.

If we look at our examples above, we see that when we pass true and false to && and ||, we do
indeed get true or false as a result. But when we pass other values, we no longer get true or false:

111 2
//=> 1

null && undefined
//=> null

undefined && null
//=> undefined

In JavaScript, && and || aren’t boolean logical operators in the logical sense. They don’t operate
strictly on logical values, and they don’t commute: a || b is not always equal tob || a, and the
same goes for &&.

This is not a subtle distinction.

|1 and && are control-flow operators

We’ve seen the ternary operator: It is a control-flow operator, not a logical operator. The same is
true of && and | |. Consider this tail-recursive function that determines whether a positive integer is
even:

For example:
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const even = (n) =>

n===0 || (n !==1 && even(n - 2))
even(42)

//=> true
If n === 0, JavaScript does not evaluate (n !== 1 && even(n - 2)). This is very important! Imagine
that JavaScript evaluated both sides of the | | operator before determining its value. n === @ would
be true. What about (n !== 1 && even(n - 2))? Well, it would evaluate even(n - 2), or even(-2)
This leads us to evaluaten === @ || (n !== 1 && even(n - 2)) all over again, and this time we

end up evaluating even(-4). And then even(-6). and so on and so forth until JavaScript throws up
its hands and runs out of stack space.

But that’s not what happens. | | and && have short-cut semantics. In this case, if n === @, JavaScript
does not evaluate (n !== 1 && even(n - 2)). Likewise, if n === 1, JavaScript evaluatesn !== 1
&& even(n - 2) as false without ever evaluating even(n - 2).

This is more than just an optimization. It’s best to think of | | and && as control-flow operators. The
expression on the left is always evaluated, and its value determines whether the expression on the
right is evaluated or not.

function parameters are eager

In contrast to the behaviour of the ternary operator, ||, and &&, function parameters are always
eagerly evaluated:

const or = (a, b) => a || b
const and = (a, b) => a && b

const even = (n) =>

or(n === 0, and(n !==1, even(n - 2)))

even(42)

//=> Maximum call stack size exceeded.

Now our expression or(n === @, and(n !== 1, even(n - 2))) is calling functions, and JavaScript
always evaluates the expressions for parameters before passing the values to a function to invoke.
This leads to the infinite recursion we fear.

If we need to have functions with control-flow semantics, we can pass anonymous functions. We
obviously don’t need anything like this for or and and, but to demonstrate the technique:
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const or = (a, b) => a() || b()
const and = (a, b) => a() && b()

const even = (n) =>

or(() => n==20, () = and(() => n !==1, () => even(n - 2)))
even(T7)
//=> false

Here we've passed functions that contain the expressions we want to evaluate, and now we can
write our own functions that can delay evaluation.

summary

« Logical operators are based on truthiness and falsiness, not the strict values true and false.

- | is a logical operator, it always returns true or false.

« The ternary operator (?:), ||, and && are control flow operators, they do not always return
true or false, and they have short-cut semantics.

« Function invocation uses eager evaluation, so if we need to roll our own control-flow semantics,
we pass it functions, not expressions.
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Stacked Cups

Recursion is the root of computation since it trades description for time.—Alan Perlis,
Epigrams in Programming®*

*>*http://www.cs.yale.edu/homes/perlis-alan/quotes.html
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Arrays and Destructuring Arguments

While we have mentioned arrays briefly, we haven’t had a close look at them. Arrays are JavaScript’s
“native” representation of lists. Strings are important because they represent writing. Lists are
important because they represent ordered collections of things, and ordered collections are a
fundamental abstraction for making sense of reality.

array literals

JavaScript has a literal syntax for creating an array: The [ and ] characters. We can create an empty
array:

[]
/7= [

We can create an array with one or more elements by placing them between the brackets and
separating the items with commas. Whitespace is optional:

[1]
/7= [1]

[2, 38, 4]
//=> [2,3,4]

Any expression will work:

/7= [2,3,4]
Including an expression denoting another array:

[OCO0ITTT]

This is an array with one element that is an array with one element that is an array with one element
that is an array with one element that is an empty array. Although that seems like something nobody
would ever construct, many students have worked with almost the exact same thing when they
explored various means of constructing arithmetic from Set Theory.

Any expression will do, including names:
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const wrap = (something) => [something];

wrap("lunch™)

//=> ["lunch"]

Array literals are expressions, and arrays are reference types. We can see that each time an array
literal is evaluated, we get a new, distinct array, even if it contains the exact same elements:

[] === 1]
//=> false

[2 + 2] === [2 + 2]
//=> false

const array_of_one = () => [1];

array_of_one() === array_of_one()
//=> false

element references

Array elements can be extracted using [ and ] as postfix operators. We pass an integer as an index
of the element to extract:

const oneTwoThree = ["one", "two", "three"];

oneTwoThree[0]
//=> 'one'

oneTwoThree[1]
//=> "two'

oneTwoThree[2]
//=> 'three'

As we can see, JavaScript Arrays are zero-based””.

We know that every array is its own unique entity, with its own unique reference. What about the
contents of an array? Does it store references to the things we give it? Or copies of some kind?

**https://en.wikipedia.org/wiki/Zero-based_numbering
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const x

(1,
[x];

a

al@] === x

//=> true, arrays store references to the things you put in them.

destructuring arrays

There is another way to extract elements from arrays: Destructuring, a feature going back to
Common Lisp, if not before. We saw how to construct an array literal using [, expressions, , and ].
Here’s an example of an array literal that uses a name:

const wrap = (something) => [something];
Let’s expand it to use a block and an extra name:

const wrap = (something) => {
const wrapped = [something];

return wrapped;

wrap("package")
//=> ["package"]

The line const wrapped = [something]; is interesting. On the left hand is a name to be bound,
and on the right hand is an array literal, a template for constructing an array, very much like a
quasi-literal string.

In JavaScript, we can actually reverse the statement and place the template on the left and a value
on the right:

const unwrap = (wrapped) => {

const [something] = wrapped;

return something;

unwrap( ["present"])

//=> "present"

The statement const [something] = wrapped; destructures the array represented by wrapped,
binding the value of its single element to the name something. We can do the same thing with
more than one element:
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const surname = (name) => {

const [first, last] = name;
return last;

surname( ["Reginald", "Braithwaite"])
//=> "Braithwaite"

We could do the same thing with (name) => name[1], but destructuring is code that resembles the
data it consumes, a valuable coding style.

Destructuring can nest:

const description = (nameAndOccupation) => {

const [[first, last], occupation] = nameAndOccupation;

return “${first} is a ${occupation}’;

}

description([["Reginald", "Braithwaite"], "programmer"])
//=> "Reginald is a programmer"

gathering

Sometimes we need to extract arrays from arrays. Here is the most common pattern: Extracting the
head and gathering everything but the head from an array:

const [car, ...cdr] = [1, 2, 3, 4, 5];
car

//=> 1
cdr

//=>[2, 3, 4, 5]

car and cdr’® are archaic terms that go back to an implementation of Lisp running on the IBM 704
computer. Some other languages call them first and butFirst, or head and tail. We will use a
common convention and call variables we gather rest, but refer to the ... operation as a “gather,’
following Kyle Simpson’s example.>’

Alas, the ... notation does not provide a universal patten-matching capability. For example, we
cannot write

*https://en.wikipedia.org/wiki/CAR_and_CDR
"Kyle Simpson is the author of You Don’t Know JS, available here
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const [...butLast, last] = [1, 2, 3, 4, 5];
//=> ERROR

const [first, ..., last] [1, 2, 38, 4, 5];

//=> ERROR

Now, when we introduced destructuring, we saw that it is kind-of-sort-of the reverse of array literals.
So if

const wrapped = [something];

Then:

const [unwrapped] = something;

What is the reverse of gathering? We know that:
const [car, ...cdr] = [1, 2, 3, 4, 5];

What is the reverse? It would be:

const cons = [car, ...cdr];

Let’s try it:

const oneTwoThree = ["one", "two", "three"];
["zero", ...oneTwoThree]

//:> [”Zero”l ”OI’)e”/ ”tWO”/ chree H]

It works! We can use . .. to place the elements of an array inside another array. We say that using
... to destructure is gathering, and using it in a literal to insert elements is called “spreading”

destructuring is not pattern matching

Some other languages have something called pattern matching, where you can write something like
a destructuring assignment, and the language decides whether the “patterns” matches at all. If it
does, assignments are made where appropriate.

In such a language, if you wrote something like:
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const [what] = [];

That match would fail because the array doesn’t have an element to assign to what. But this is not
how JavaScript works. JavaScript tries its best to assign things, and if there isn’t something that fits,
JavaScript binds undefined to the name. Therefore:

const [what] = [];

what
//=> undefined

const [which, what, who] = ["duck feet", "tiger tail"];

who
//=> undefined

And if there aren’t any items to assign with . . ., JavaScript assigns an empty array:

const [...they] = [];

they
/7= []

const [which, what, ...they] = ["duck feet", "tiger tail"];

they
/7= []

From its very inception, JavaScript has striven to avoid catastrophic errors. As a result, it often
coerces values, passes undefined around, or does whatever it can to keep executing without failing.
This often means that we must write our own code to detect failure conditions, as we cannot rely
on the language to point out when we are doing semantically meaningless things.

destructuring and return values

Some languages support multiple return values: A function can return several things at once, like a
value and an error code. This can easily be emulated in JavaScript with destructuring:
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const description = (nameAndOccupation) => {
if (nameAndOccupation.length < 2) {

return ["", "occupation missing"]
}
else {
const [[first, last], occupation] = nameAndOccupation;
return [“${first} is a ${occupation}”, "ok"];
}
}
const [reg, status] = description([["Reginald", "Braithwaite"], "programmer"]);
reg

//=> "Reginald is a programmer"
status

//:> "Ok”

destructuring parameters

Consider the way we pass arguments to parameters:

foo()
bar ("smaug")
baz(1, 2, 3)

It is very much like an array literal. And consider how we bind values to parameter names:

const foo = () =>
const bar = (name) =>
(a, b, ¢) =

const baz

It looks like destructuring. It acts like destructuring. There is only one difference: We have not tried
gathering. Let’s do that:
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const numbers = (...nums) => nums;

numbers(1, 2, 3, 4, 5)
//=> [1,2,3,4,5]

const headAndTail = (head, ...tail) => [head, tail];

headAndTail(1, 2, 3, 4, 5)
//=> [1,[2,3,4,5]]

Gathering works with parameters! This is very useful indeed, and we’ll see more of it in a moment.*®

*3Gathering in parameters has a long history, and the usual terms are to call gathering “pattern matching” and to call a name that is bound
to gathered values a “rest parameter.” The term “rest” is perfectly compatible with gather: “Rest” is the noun, and “gather” is the verb. We
gather the rest of the parameters.
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Self-Similarity

Recursion is the root of computation since it trades description for time.—Alan Perlis,
Epigrams in Programming®’

In Arrays and Destructuring Arguments, we worked with the basic idea that putting an array
together with a literal array expression was the reverse or opposite of taking it apart with a
destructuring assignment.

We saw that the basic idea that putting an array together with a literal array expression was the
reverse or opposite of taking it apart with a destructuring assignment.

Let’s be more specific. Some data structures, like lists, can obviously be seen as a collection of items.
Some are empty, some have three items, some forty-two, some contain numbers, some contain
strings, some a mixture of elements, there are all kinds of lists.

But we can also define a list by describing a rule for building lists. One of the simplest, and longest-
standing in computer science, is to say that a list is:

1. Empty, or;
2. Consists of an element concatenated with a list .

Let’s convert our rules to array literals. The first rule is simple: [] is a list. How about the second
rule? We can express that using a spread. Given an element e and a list 1ist, [e, ...list] isa list.
We can test this manually by building up a list:

[]

/7= []

["baz", ...[]]

//=> ["baz"]
["bar", ...["baz"]]

//:> [”bal’”, HbaZH]

["fOO", ...[”bar”, ”baZ"]]

//:> [”fOO”, ”baf”, ”baz”]

Thanks to the parallel between array literals + spreads with destructuring + rests, we can also use
the same rules to decompose lists:

>*http://www.cs.yale.edu/homes/perlis-alan/quotes.html


http://www.cs.yale.edu/homes/perlis-alan/quotes.html
http://www.cs.yale.edu/homes/perlis-alan/quotes.html
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const [first, ...rest] = [];
first
//=> undefined
rest
/7=> []:
const [first, ...rest] = ["foo"];
first
//=> "foo"
rest
//=> ]
const [first, ...rest] = ["foo", "bar"];
first
//=> "foo"
rest
//=> ["bar"]
const [first, ...rest] = ["foo", "bar", "baz"];
first
//=> "foo"
rest

//:> [”bal’", ”baZ"]

For the purpose of this exploration, we will presume the following:*

const isEmpty = ([first, ...rest]) => first === undefined;

isEmpty([])
//=> true

isEmpty([0])
//=> false

isEmpty([[]])
//=> false

Armed with our definition of an empty list and with what we’ve already learned, we can build a
great many functions that operate on arrays. We know that we can get the length of an array using

**Well, actually, the difference between prototypes and classes is like the difference between model homes and blueprints. But prototypes
are not like model homes. In actual fact, the relationship between an object and its prototype is one of delegation. So if a model home had a
kitchen, and you asked the builder to make you a home using the model as a prototype, you could customize your own kitchen. But if you
didn’t want to have your own custom kitchen, you would just use the model home’s kitchen to do all your own cooking. The relationship
between a model home and a house is sometimes described as concatenative inheritance, and JavaScript lets you do that too.


https://medium.com/javascript-scene/common-misconceptions-about-inheritance-in-javascript-d5d9bab29b0a
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its .length. But as an exercise, how would we write a length function using just what we have
already?

First, we pick what we call a terminal case. What is the length of an empty array? @. So let’s start
our function with the observation that if an array is empty, the length is o:

const length = ([first, ...rest]) =>
first === undefined
?7 0
) 777

We need something for when the array isn’t empty. If an array is not empty, and we break it into
two pieces, first and rest, the length of our array is going to be length(first) + length(rest).
Well, the length of first is1, there’s just one element at the front. But we don’t know the length of
rest. If only there was a function we could call... Like length!

const length = ([first, ...rest]) =>
first === undefined
7?70

: 1 + length(rest);
Let’s try it!

length([])
//=> 0

length(["foo"])
//=> 1

length(["foo", "bar", "baz"])
//=> 3

Our length function is recursive, it calls itself. This makes sense because our definition of a list is
recursive, and if a list is self-similar, it is natural to create an algorithm that is also self-similar.

linear recursion
“Recursion” sometimes seems like an elaborate party trick. There’s even a joke about this:

When promising students are trying to choose between pure mathematics and applied
engineering, they are given a two-part aptitude test. In the first part, they are led to a
laboratory bench and told to follow the instructions printed on the card. They find a
bunsen burner, a sparker, a tap, an empty beaker, a stand, and a card with the instructions
“boil water”
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Of course, all the students know what to do: They fill the beaker with water, place the
stand on the burner and the beaker on the stand, then they turn the burner on and use
the sparker to ignite the flame. After a bit the water boils, and they turn off the burner
and are lead to a second bench.

Once again, there is a card that reads, “boil water” But this time, the beaker is on the stand
over the burner, as left behind by the previous student. The engineers light the burner
immediately. Whereas the mathematicians take the beaker off the stand and empty it,
thus reducing the situation to a problem they have already solved.

There is more to recursive solutions that simply functions that invoke themselves. Recursive
algorithms follow the “divide and conquer” strategy for solving a problem:

1. Divide the problem into smaller problems

2. If a smaller problem is solvable, solve the small problem

3. If a smaller problem is not solvable, divide and conquer that problem

4. When all small problems have been solved, compose the solutions into one big solution

The big elements of divide and conquer are a method for decomposing a problem into smaller
problems, a test for the smallest possible problem, and a means of putting the pieces back together.
Our solutions are a little simpler in that we don’t really break a problem down into multiple pieces,
we break a piece off the problem that may or may not be solvable, and solve that before sticking it
onto a solution for the rest of the problem.

This simpler form of “divide and conquer” is called linear recursion. It’s very useful and simple to
understand. Let’s take another example. Sometimes we want to flatten an array, that is, an array of
arrays needs to be turned into one array of elements that aren’t arrays.*!

We already know how to divide arrays into smaller pieces. How do we decide whether a smaller
problem is solvable? We need a test for the terminal case. Happily, there is something along these
lines provided for us:

Array.isArray("foo")
//=> false

Array.isArray(["foo"])
//=> true

The usual “terminal case” will be that flattening an empty array will produce an empty array. The
next terminal case is that if an element isn’t an array, we don’t flatten it, and can put it together
with the rest of our solution directly. Whereas if an element is an array, we’ll flatten it and put it
together with the rest of our solution.

So our first cut at a flatten function will look like this:

“!flatten is a very simple unfold, a function that takes a seed value and turns it into an array. Unfolds can be thought of a “path” through
a data structure, and flattening a tree is equivalent to a depth-first traverse.


https://en.wikipedia.org/wiki/Anamorphism
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const flatten = ([first, ...rest]) => {
if (first === undefined) {
return [];
}
else if (!Array.isArray(first)) {
return [first, ...flatten(rest)];
}
else {
return [...flatten(first), ...flatten(rest)];
}
1
flatten(["foo", [3, 4, [11])

//=> ["foo",3,4]

Once again, the solution directly displays the important elements: Dividing a problem into subprob-
lems, detecting terminal cases, solving the terminal cases, and composing a solution from the solved
portions.

mapping
Another common problem is applying a function to every element of an array. JavaScript has a

built-in function for this, but let’s write our own using linear recursion.

If we want to square each number in a list, we could write:

const squareAll = ([first, ...rest]) => first === undefined

7 []

[first * first, ...squareAll(rest)];

squareAll([1, 2, 3, 4, 5])
//=> [1,4,9,16,25]

And if we wanted to “truthify” each element in a list, we could write:

const truthyAll = ([first, ...rest]) => first === undefined

7 []
[!Ifirst, ...truthyAll(rest)];

truthyAll([null, true, 25, false, "foo"])
//=> [false, true, true, false, true]
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This specific case of linear recursion is called “mapping,” and it is not necessary to constantly write
out the same pattern again and again. Functions can take functions as arguments, so let’s “extract”
the thing to do to each element and separate it from the business of taking an array apart, doing the
thing, and putting the array back together.

Given the signature:
const mapWith = (fn, array) => // ...

We can write it out using a ternary operator. Even in this small function, we can identify the terminal
condition, the piece being broken off, and recomposing the solution.

const mapWith = (fn, [first, ...rest]) =>
first === undefined
? []
[fn(first), ...mapWith(fn, rest)];

mapWith((x) => x * x, [1, 2, 3, 4, 5])
//=> [1,4,9,16,25]

mapWith((x) => !!x, [null, true, 25, false, "foo"])

//=> [false, true, true, false, true]
folding
With the exception of the 1ength example at the beginning, our examples so far all involve rebuilding
a solution using spreads. But they needn’t. A function to compute the sum of the squares of a list of
numbers might look like this:
const sumSquares = ([first, ...rest]) => first === undefined

7?0

first * first + sumSquares(rest);

sumSquares([1, 2, 3, 4, 5])
//=> 55

There are two differences between sumSquares and our maps above:
1. Given the terminal case of an empty list, we return a @ instead of an empty list, and;
2. We catenate the square of each element to the result of applying sumSquares to the rest of the

elements.

Let’s rewrite mapWith so that we can use it to sum squares.
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const foldWith = (fn, terminalValue, [first, ...rest]) =>
first === undefined
7 terminalValue
fn(first, foldWith(fn, terminalValue, rest));

And now we supply a function that does slightly more than our mapping functions:

foldwWith((number, rest) => number * number + rest, 0, [1, 2, 3, 4, 5])
//=> 55

Our foldwith function is a generalization of our mapwith function. We can represent a map as a fold,
we just need to supply the array rebuilding code:

const squareAll = (array) => foldWith((first, rest) => [first * first, ...rest], [],\
array);

squareAll([1, 2, 3, 4, 5])
//=> [1,4,9,16,25]

And if we like, we can write mapWith using foldwith:

const mapWith = (fn, array) => foldWith((first, rest) => [fn(first), ...rest], [], a\
rray),
squareAll = (array) => mapWith((x) => x * x, array);

squareAll([1, 2, 3, 4, 5])
//=> [1,4,9,16,25]

And to return to our first example, our version of length can be written as a fold:

const length = (array) => foldWith((first, rest) => 1 + rest, 0, array);

length([1, 2, 3, 4, 5])
//=> 5

summary

Linear recursion is a basic building block of algorithms. Its basic form parallels the way linear
data structures like lists are constructed: This helps make it understandable. Its specialized cases
of mapping and folding are especially useful and can be used to build other functions. And finally,
while folding is a special case of linear recursion, mapping is a special case of folding.
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Tail Calls (and Default Arguments)

The mapWith and foldwith functions we wrote in Self-Similarity are useful for illustrating the
basic principles behind using recursion to work with self-similar data structures, but they are not
“production-ready” implementations. One of the reasons they are not production-ready is that they
consume memory proportional to the size of the array being folded.

Let’s look at how. Here’s our extremely simple mapWith function again:

const mapWith = (fn, [first, ...rest]) =>
first === undefined
? []
[fn(first), ...mapWith(fn, rest)];

mapWith((x) => x * x, [1, 2, 3, 4, 5])
//=> [1,4,9,16,25]

Let’s step through its execution. First, mapwith((x) => x * x, [1, 2, 3, 4, 5]) is invoked.
first is not undefined, so it evaluates [fn(first), ...mapWith(fn, rest)]. To do that, it has to evaluate
fn(first) and mapWith(fn, rest), then evaluate [fn(first), ...mapWith(fn, rest)].

This is roughly equivalent to writing:

const mapWith = function (fn, [first, ...rest]) {
if (first === undefined) {
return [];
}
else {

const _temp1l = fn(first),
_temp2 = mapWith(fn, rest),
_temp3 = [_templ, ..._temp2];

return _temp3;

Note that while evaluating mapwith(fn, rest), JavaScript must retain the value first or fn(first),
plus some housekeeping information so it remembers what to do with mapWith(fn, rest) when it
has a result. JavaScript cannot throw first away. So we know that JavaScript is going to hang on
to1.

Next, JavaScript invokes mapWith(fn, rest), which is semantically equivalent to mapwith((x) =>
x * x, [2, 3, 4, 5]). And the same thing happens: JavaScript has to hang on to 2 (or 4, or both,
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depending on the implementation), plus some housekeeping information so it remembers what to
do with that value, while it calls the equivalent of mapwith((x) => x * x, [3, 4, 5]).

This keeps on happening, so that JavaScript collects the values 1, 2, 3, 4, and 5 plus housekeeping
information by the time it calls mapwith((x) => x * x, []).It can start assembling the resulting
array and start discarding the information it is saving.

That information is saved on a call stack, and it is quite expensive. Furthermore, doubling the length
of an array will double the amount of space we need on the stack, plus double all the work required
to set up and tear down the housekeeping data for each call (these are called call frames, and they
include the place where the function was called, an environment, and so on).

In practice, using a method like this with more than about 50 items in an array may cause some
implementations to run very slow, run out of memory and freeze, or cause an error.

mapWith((x) => x * x, |

o, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64 66, 67, 68, 69
7@, T, 72, 73, T4 76, 77, 78, 79
80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
99, 91, 92, 93, 94, 95, 96, 97, 98, 99,
o, 1, 2, 3, 4, 5,6, T, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24 26, 27, 28, 29
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64 66, 67, 68, 69
7@, T, 72, 73, T4 76, TT7, 78, 79
80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
99, 91, 92, 93, 94, 95, 96, 97, 98, 99

! 7 ! ! 7

7 ! ! 7

!

7 7 ! 7

! 7 ! ! 7

7 7 ! 7

1)
J/=> 772

Is there a better way? Yes. In fact, there are several better ways. Making algorithms faster is a very
highly studied field of computer science. The one we’re going to look at here is called tail-call
optimization, or “TCO.
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tail-call optimization

A “tail-call” occurs when a function’s last act is to invoke another function, and then return whatever
the other function returns. For example, consider the maybe function decorator:

const maybe = (fn) =>
function (...args) {
if (args.length === 0) {
return;
}
else {
for (let arg of args) {
if (arg == null) return;
}
return fn.apply(this, args);
}

There are three places it returns. The first two don’t return anything, they don’t matter. But the
third is fn.apply(this, args). This is a tail-call, because it invokes another function and returns
its result. This is interesting, because after sorting out what to supply as arguments (this, args),
JavaScript can throw away everything in its current stack frame. It isn’t going to do any more work,
so it can throw its existing stack frame away:.

And in fact, it does exactly that: It throws the stack frame away, and does not consume extra
memory when making a maybe-wrapped call. This is a very important characteristic of JavaScript: If
a function makes a call in tail position, JavaScript optimizes away the function call overhead
and stack space.

That is excellent, but one wrapping is not a big deal. When would we really care? Consider this
implementation of length:

const length = ([first, ...rest]) =>
first === undefined
?7 0

: 1 + length(rest);

The 1ength function calls itself, but it is not a tail-call, because it returns 1 + length(rest), not
length(rest).

The problem can be stated in such a way that the answer is obvious: length does not call itself in
tail position, because it has to do two pieces of work, and while one of them is in the recursive call
to length, the other happens after the recursive call.

The obvious solution?
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converting non-tail-calls to tail-calls

The obvious solution is push the 1 + work into the call to 1ength. Here’s our first cut:

const lengthDelaysWork = ([first, ...rest], numberToBeAdded) =>
first === undefined
7?7 © + numberToBeAdded
lengthDelaysWork(rest, 1 + numberToBeAdded)

lengthDelaysWork( ["foo", "bar", "baz"], @)
//=> 3

This lengthDelaysWork function calls itself in tail position. The1 + work is done before calling itself,
and by the time it reaches the terminal position, it has the answer. Now that we’ve seen how it works,
we can clean up the @ + numberToBeAdded business. But while we’re doing that, it’s annoying to
remember to call it with a zero. Let’s fix that:

const lengthDelaysWork = ([first, ...rest], numberToBeAdded) =>
first === undefined
? numberToBeAdded
lengthDelaysWork(rest, 1 + numberToBeAdded)

const length = (n) =>
lengthDelaysWork(n, 0);

Or we could use partial application:

const calllast = (fn, ...args) =>
(...remainingArgs) =>
fn(...remainingArgs, ...args);

const length = calllast(lengthDelaysWork, 0);

length(["foo", "bar", "baz"])
//=> 3

This version of length calls uses lengthDelaysWork, and JavaScript optimizes that not to take up
memory proportional to the length of the string. We can use this technique with mapwith:
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const mapWithDelaysWork = (fn, [first, ...rest], prepend) =>
first === undefined
? prepend
. mapWithDelaysWork(fn, rest, [...prepend, fn(first)]);

const mapWith = calllLast(mapWithDelaysWork, []);

mapWith((x) => x * x, [1, 2, 3, 4, 5])
J/=> [1,4,9,16,25]

We can use it with ridiculously large arrays:

mapWith((x) => x * x, [

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30 31 32 33 34 35 36 37 38 39,
40, 41 42 43 44 45 46 47 48 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
79, T4, T2, 73, 74, 75, 76, 77, 78, 179,
80 81 82 83 84 85 86 87 88 89,
90 91 92 93 94 95 96 o7 98, 99,

7 ! ! 7

! ! !

! 7 ’ !

7 7 7 !

s

2080, 2081, 2082, 2983, 2984, 2085, 2086, 2087, 2088, 2089,
2000, 2091, 2992, 2993, 2994, 2095, 2096, 2097, 2998, 2999 ])

//=> [0,1,4,9,16,25,36,49,64,81,100,121,144, 169,196,
Brilliant! We can map over large arrays without incurring all the memory and performance overhead
of non-tail-calls. And this basic transformation from a recursive function that does not make a

tail call, into a recursive function that calls itself in tail position, is a bread-and-butter pattern for
programmers using a language that incorporates tail-call optimization.

factorials

Introductions to recursion often mention calculating factorials:

In mathematics, the factorial of a non-negative integer n, denoted by n!, is the product of
all positive integers less than or equal to n. For example:
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5 =5 x 4 x 3 x 2 x 1 =120.

The naive function for calcuating the factorial of a positive integer follows directly from the
definition:

const factorial = (n) =>
n::
7 n

n * factorial(n - 1);

factorial(1)
//=> 1

factorial(5)
//=> 120

While this is mathematically elegant, it is computational filigree®”.

Once again, it is not tail-recursive, it needs to save the stack with each invocation so that it can take
the result returned and compute n * factorial(n - 1). We can do the same conversion, pass in
the work to be done:

const factorialWithDelayedWork = (n, work) =>
n ===
7 work
factorialWithDelayedWork(n - 1, n * work);

const factorial = (n) =>
factorialWithDelayedWork(n, 1);

Or we could use partial application:
const calllLast = (fn, ...args) =>
(...remainingArgs) =>
fn(...remainingArgs, ...args);

const factorial = calllast(factorialWithDelayedWork, 1);

factorial(1)
//=> 1

factorial(5)
//=> 120

“*https://en.wikipedia.org/wiki/Filigree


https://en.wikipedia.org/wiki/Filigree
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As before, we wrote a factorialWithDelayedWork function, then used partial application (calllLast)
to make a factorial function that took just the one argument and supplied the initial work value.

default arguments

Our problem is that we can directly write:

const factorial = (n, work) =>
n ===
7 work

factorial(n - 1, n * work);

factorial(1, 1)
//=> 1

factorial(5, 1)
//=> 120

But it is hideous to have to always add a 1 parameter, we’d be demanding that everyone using the
factorial function know that we are using a tail-recursive implementation.

What we really want is this: We want to write something like factorial(6), and have JavaScript
automatically know that we really mean factorial(6, 1). But when it calls itself, it will call
factorial(5, 6) and that will not mean factorial(5, 1).

JavaScript provides this exact syntax, it’s called a default argument, and it looks like this:

const factorial = (n, work = 1) =>
n === 1
? work

factorial(n - 1, n * work);

factorial(1)
//=> 1

factorial(6)
//=> 720

By writing our parameter list as (n, work = 1) =>, we're stating that if a second parameter is not
provided, work is to be bound to 1. We can do similar things with our other tail-recursive functions:
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const length = ([first, ...rest], numberToBeAdded = 0) =>
first === undefined
? numberToBeAdded
length(rest, 1 + numberToBeAdded)

length(["foo", "bar", "baz"])

//=> 3
const mapWith = (fn, [first, ...rest], prepend = []) =>
first === undefined
? prepend

: mapWith(fn, rest, [...prepend, fn(first)]);

mapWith((x) => x * x, [1, 2, 3, 4, 5])
J/=> [1,4,9,16,25]

Now we don’t need to use two functions. A default argument is concise and readable.

defaults and destructuring

We saw earlier that destructuring parameters works the same way as destructuring assignment. Now
we learn that we can create a default parameter argument. Can we create a default destructuring
assignment?

const [first, second = "two"] = ["one"];
“${first} . ${second}"
//=> "one . two"
const [first, second = "two"] = ["primus", "secundus"];

“${first} . ${second}’

//=> "primus . secundus"

How very useful: defaults can be supplied for destructuring assignments, just like defaults for
parameters.
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Garbage, Garbage Everywhere

KOFFIE
IETS LEKKERS 18

Garbage Day

We have now seen how to use Tail Calls to execute mapWith in constant space:

const mapWith = (fn, [first, ...rest], prepend = []) =>
first === undefined
? prepend

: mapWith(fn, rest, [...prepend, fn(first)]);

mapWith((x) => x * x, [1, 2, 3, 4, 5])
J/=> [1,4,9,16,25]

105

But when we try it on very large arrays, we discover that it is still very slow. Much slower than the
built-in .map method for arrays. The right tool to discover why it’s still slow is a memory profiler,

but a simple inspection of the program will reveal the following:

Every time we call mapwith, we're calling [ .. .prepend, fn(first)]. To do that, we take the array
in prepend and push fn(first) onto the end, creating a new array that will be passed to the next

invocation of mapWith.
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Worse, the JavaScript Engine actually copies the elements from prepend into the new array one at a
time. That is very laborious.*’

The array we had in prepend is no longer used. In GC environments, it is marked as no longer being
used, and eventually the garbage collector recycles the memory it is using. Lather, rinse, repeat: Ever
time we call mapWith, we're creating a new array, copying all the elements from prepend into the
new array, and then we no longer use prepend.

We may not be creating 3,000 stack frames, but we are creating three thousand new arrays and
copying elements into each and every one of them. Although the maximum amount of memory
does not grow, the thrashing as we create short-lived arrays is very bad, and we do a lot of work
copying elements from one array to another.

Key Point: Our [first, ...rest] approach to recursion is slow because that it creates
a lot of temporary arrays, and it spends an enormous amount of time copying elements
into arrays that end up being discarded.

So here’s a question: If this is such a slow approach, why do some examples of “functional”
algorithms work this exact way?

It needn’t always be so: Programmers have developed specialized data structures that make operations like this cheap, often by arranging
for structures to share common elements by default, and only making copies when changes are made. But this is not how JavaScript’s built-in
arrays work.
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The IBM 704

some history

Once upon a time, there was a programming language called Lisp®*, an acronym for LISt Processing.*
Lisp was one of the very first high-level languages, the very first implementation was written for
the IBM 704°° computer. (The very first FORTRAN implementation was also written for the 704).

The 704 had a 36-bit word, meaning that it was very fast to store and retrieve 36-bit values. The CPU’s
instruction set featured two important macros: CAR would fetch 15 bits representing the Contents of
the Address part of the Register, while CDR would fetch the Contents of the Decrement part of the
Register.

In broad terms, this means that a single 36-bit word could store two separate 15-bit values and it

**https://en.wikipedia.org/wiki/Lisp_

®Lisp is still very much alive, and one of the most interesting and exciting programming languages in use today is Clojure, a Lisp dialect
that runs on the JVM, along with its sibling ClojureScript, Clojure that transpiles to JavaScript.

“https://en.wikipedia.org/wiki/IBM_704
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was very fast to save and retrieve pairs of values. If you had two 15-bit values and wished to write
them to the register, the CONS macro would take the values and write them to a 36-bit word.

Thus, CONS put two values together, CAR extracted one, and CDR extracted the other. Lisp’s basic data
type is often said to be the list, but in actuality it was the “cons cell,” the term used to describe
two 15-bit values stored in one word. The 15-bit values were used as pointers that could refer to a
location in memory, so in effect, a cons cell was a little data structure with two pointers to other
cons cells.

Lists were represented as linked lists of cons cells, with each cell’s head pointing to an element and
the tail pointing to another cons cell.

Having these instructions be very fast was important to those early designers: They
were working on one of the first high-level languages (COBOL and FORTRAN being
the others), and computers in the late 1950s were extremely small and slow by today’s
standards. Although the 704 used core memory, it still used vacuum tubes for its logic.
Thus, the design of programming languages and algorithms was driven by what could be
accomplished with limited memory and performance.

Here’s the scheme in JavaScript, using two-element arrays to represent cons cells:

(al d) :> [al d]/
([a, d]) = a,
([a, d]) = d4;

const cons

car

cdr
We can make a list by calling cons repeatedly, and terminating it with nul1:

const oneToFive = cons(1, cons(2, cons(3, cons(4, cons(5, null)))));

oneToFive

//=> [1,[2,[3,[4,[5null]]]]]

Notice that though JavaScript displays our list as if it is composed of arrays nested within each other
like Russian Dolls, in reality the arrays refer to each other with references, so [1, [2, [3, [4, [5,nul1]]]]]
is actually more like:
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const nodeb5 = [5,null],
node4 = [4, node5],
node3 = [3, node4],
node2 = [2, node3d],
nodel = [1, node2];

const oneToFive = nodel;

This is a Linked List®, it’s just that those early Lispers used the names car and cdr after the hardware
instructions, whereas today we use words like data and reference. But it works the same way: If
we want the head of a list, we call car on it:

car(oneToFive)
//=> 1

car is very fast, it simply extracts the first element of the cons cell.

But what about the rest of the list? cdr does the trick:

cdr(oneToFive)

//=> [2,[3,[4,[5 null]]]]

Again, it’s just extracting a reference from a cons cell, it’s very fast. In Lisp, it’s blazingly fast because
it happens in hardware. There’s no making copies of arrays, the time to cdr a list with five elements
is the same as the time to cdr a list with 5,000 elements, and no temporary arrays are needed. In
JavaScript, it’s still much, much, much faster to get all the elements except the head from a linked
list than from an array. Getting one reference to a structure that already exists is faster than copying
a bunch of elements.

So now we understand that in Lisp, a lot of things use linked lists, and they do that in part because
it was what the hardware made possible.

Getting back to JavaScript now, when we write [first, ...rest] to gather or spread arrays,
we’re emulating the semantics of car and cdr, but not the implementation. We’re doing something
laborious and memory-inefficient compared to using a linked list as Lisp did and as we can still do
if we choose.

That being said, it is easy to understand and helps us grasp how literals and destructuring works, and
how recursive algorithms ought to mirror the self-similarity of the data structures they manipulate.
And so it is today that languages like JavaScript have arrays that are slow to split into the equivalent
of a car/cdr pair, but instructional examples of recursive programs still have echoes of their Lisp
origins.

We'll look at linked lists again when we look at Plain Old JavaScript Objects.

“"https://en.wikipedia.org/wiki/Linked_list
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so why arrays

If [first, ...rest] is so slow, why does JavaScript use arrays instead of making everything a
linked list?

Well, linked lists are fast for a few things, like taking the front element off a list, and taking the
remainder of a list. But not for iterating over a list: Pointer chasing through memory is quite a bit
slower than incrementing an index. In addition to the extra fetches to dereference pointers, pointer
chasing suffers from cache misses. And if you want an arbitrary item from a list, you have to iterate
through the list element by element, whereas with the indexed array you just fetch it.

We have avoided discussing rebinding and mutating values, but if we want to change elements of
our lists, the naive linked list implementation suffers as well: When we take the cdr of a linked list,
we are sharing the elements. If we make any change other than cons-ing a new element to the front,
we are changing both the new list and the old list.

Arrays avoid this problem by pessimistically copying all the references whenever we extract an
element or sequence of elements from them (We’ll see this explained later in Mutation).

For these and other reasons, almost all languages today make it possible to use a fast array or vector
type that is optimized for iteration, and even Lisp now has a variety of data structures that are
optimized for specific use cases.

summary

Although we showed how to use tail calls to map and fold over arrays with [first, ...rest],in
reality this is not how it ought to be done. But it is an extremely simple illustration of how recursion
works when you have a self-similar means of constructing a data structure.
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Plain Old JavaScript Objects

Lists are not the only way to represent collections of things, but they are the “oldest” data structure
in the history of high level languages, because they map very closely to the way the hardware is
organized in a computer. Lists are obviously very handy for homogeneous collections of things, like
a shopping list:

const remember = ["the milk", "the coffee beans", "the biscotti"];
And they can be used to store heterogeneous things in various levels of structure:

const user = [["Reginald", "Braithwaite"],[ "author", ["JavaScript Allongé", "JavaSc\
ript Spessore", "CoffeeScript Ristretto"]]];

Remembering that the name is the first item is error-prone, and being expected to look atuser [0] [1]
and know that we are talking about a surname is unreasonable. So back when lists were the only
things available, programmers would introduce constants to make things easier on themselves:

const NAME = 0

7

FIRST = O,
LAST = 1,
OCCUPATION = 1,
TITLE = O,

RESPONSIBILITIES = 1;
const user = [["Reginald", "Braithwaite"],[ "author", ["JavaScript Allongé", "JavaSc\
ript Spessore", "CoffeeScript Ristretto"]]];

Now they could write user [NAME] [LAST] or user [OCCUPATION] [TITLE] instead of user[@][1] or
user [1][@]. Over time, this need to build heterogeneous data structures with access to members by
name evolved into the Dictionary®® data type, a mapping from a unique set of objects to another set
of objects.

Dictionaries store key-value pairs, so instead of binding NAME to @ and then storing a name in an
array at index @, we can bind a name directly to name in a dictionary, and we let JavaScript sort out
whether the implementation is a list of key-value pairs, a hashed collection, a tree of some sort, or
anything else.

JavaScript has dictionaries, and it calls them “objects.” The word “object” is loaded in programming
circles, due to the widespread use of the term “object-oriented programming” that was coined by
Alan Kay but has since come to mean many, many things to many different people.

In JavaScript, an object is a map from string keys to values.

“®*https://en.wikipedia.org/wiki/Associative_array
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literal object syntax

JavaScript has a literal syntax for creating objects. This object maps values to the keys year, month,
and day:

{ year: 2012, month: 6, day: 14 }
Two objects created with separate evaluations have differing identities, just like arrays:

{ year: 2012, month: 6, day: 14 } === { year: 2012, month: 6, day: 14 }
//=> false

Objects use [] to access the values by name, using a string:

{ year: 2012, month: 6, day: 14 }['day']
//=> 14

Values contained within an object work just like values contained within an array, we access them
by reference to the original:

const unique = () => [],
X = unique(),

y = unique(),

z = unique(),

o

{a: x, by, c: z1};

o['a'] === x && o['b'] ===y && o['c'] ===z
//=> true

Names needn’t be alphanumeric strings. For anything else, enclose the label in quotes:

{ 'first name': 'reginald', 'last name': 'lewis' }['first name']
//=> 'reginald'

If the name is an alphanumeric string conforming to the same rules as names of variables, there’s a
simplified syntax for accessing the values:
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const date = { year: 2012, month: 6, day: 14 };

date['day'] === date.day
//=> true

Expressions can be used for keys as well. The syntax is to enclose the key’s expression in [ and ]:

["p" + "i"]: 3.14159265
//=> {"pi":3.14159265}

All containers can contain any value, including functions or other containers, like a fat arrow
function:

const Mathematics = {
abs: (a) => a <@ ? -a : a

};

Mathematics.abs(-5)
//=>5

Or proper functions:

const SecretDecoderRing = {
encode: function (plaintext) {
return plaintext
.split('")
.map( char => char.charCodeAt() )
.map( code => code + 1 )
.map( code => String.fromCharCode(code) )
.join('');
1,
decode: function (cyphertext) {
return cyphertext
.split('")
.map( char => char.charCodeAt() )
.map( code => code - 1 )
.map( code => String.fromCharCode(code) )
.join('');

}

Or named function expressions:
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const SecretDecoderRing = {
encode: function encode (plaintext) {
return plaintext
.split('")
.map( char => char.charCodeAt() )
.map( code => code + 1 )
.map( code => String.fromCharCode(code) )
.join('");
1
decode: function decode (cyphertext) {
return cyphertext
.split('")
.map( char => char.charCodeAt() )
.map( code => code - 1 )
.map( code => String.fromCharCode(code) )
Jjoin('');

It is very common to associate named function expressions with keys in objects, and there is a
“compact method syntax” for binding named function expressions to keywords:

const SecretDecoderRing = {
encode (plaintext) {
return plaintext
.split('")
.map( char => char.charCodeAt() )
.map( code => code + 1 )
.map( code => String.fromCharCode(code) )
Ljoin('');
1
decode (cyphertext) ({
return cyphertext
.split('")
.map( char => char.charCodeAt() )
.map( code => code - 1 )
.map( code => String.fromCharCode(code) )

Sjoin('");

(There are some other technical differences between binding a named function expression and using
compact method syntax, but they are not relevant here. We will generally prefer compact method
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syntax whenever we can.)

destructuring objects

Just as we saw with arrays, we can write destructuring assignments with literal object syntax. So,
we can write:

const user = {
name: { first: "Reginald",

last: "Braithwaite"

},
occupation: { title: "Author",
responsibilities: [ "JavaScript Allongé",
"JavaScript Spessore",
"CoffeeScript Ristretto"

};

user .name. last
//=> "Braithwaite"

user .occupation.title
//=> "Author"

And we can also write:

const {name: { first: given, last: surname}, occupation: { title: title } } = user;

surname
//=> "Braithwaite"

title
//=> "Author"

And of course, we destructure parameters:
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const description = ({name: { first: given }, occupation: { title: title } }) =>
“${given} is a ${title}";

description(user)
//=> "Reginald is a Author"

Terrible grammar and capitalization, but let’s move on. It is very common to write things like title:
title when destructuring objects. When the label is a valid variable name, it’s often the most obvious
variable name as well. So JavaScript supports a further syntactic optimization:

const description = ({name: { first }, occupation: { title } }) =>
“${first} is a ${title}";

description(user)
//=> "Reginald is a Author"

And that same syntax works for literals:

const abbrev = ({name: { first, last }, occupation: { title } }) => {
return { first, last, title};

abbrev(user)
//=> {"first":"Reginald", "last":"Braithwaite", "title": "Author"}

revisiting linked lists

Earlier, we used two-element arrays as nodes in a linked list:

const cons = (a, d) => [a, d],
([a, d]) = a,

([a, 4]) = d4;

car

cdr

In essence, this simple implementation used functions to create an abstraction with named elements.
But now that we’'ve looked at objects, we can use an object instead of a two-element array. While
we're at it, let’s use contemporary names. So our linked list nodes will be formed from { first,
rest }

In that case, a linked list of the numbers 1, 2, and 3 will look like this: { first: 1, rest: { first:
2, rest: { first: 3, rest: EMPTY } } }.

We can then perform the equivalent of [first, ...rest] with direct property accessors:
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const EMPTY = {};
const OneTwoThree = { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY } } \

};

OneTwoThree. first
//=> 1

OneTwoThree.rest
//=> {"first":2, "rest":{"first":3, "rest":{}}}

OneTwoThree.rest.rest. first
//=> 3

Taking the length of a linked list is easy:

const length = (node, delayed = Q) =>
node === EMPTY
? delayed
length(node.rest, delayed + 1);

length(OneTwoThree)
//=> 3

What about mapping? Well, let’s start with the simplest possible thing, making a copy of a list. As
we saw above, and discussed in Garbage, Garbage Everywhere, it is fast to iterate forward through
a linked list. What isn’t fast is naively copying a list:

const slowcopy = (node) =>
node === EMPTY
? EMPTY
. { first: node.first, rest: slowcopy(node.rest)};

slowcopy (OneTwoThree)
J/=> {"first":1, "rest":{"first":2, "rest":{"first":3, "rest": {}}}}

The problem here is that linked lists are constructed back-to-front, but we iterate over them front-
to-back. So to copy a list, we have to save all the bits on the call stack and then construct the list
from back-to-front as all the recursive calls return.

We could follow the strategy of delaying the work. Let’s write that naively:
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const copy2 = (node, delayed = EMPTY) =>
node === EMPTY
7 delayed
. copy2(node.rest, { first: node.first, rest: delayed });

copy2(OneTwoThree)
//=> {"first":3, "rest":{"first":2, "rest":{"first":1, "rest":{}}}}

Well, well, well. We have unwittingly reversed the list. This makes sense, if lists are constructed
from back to front, and we make a linked list out of items as we iterate through it, we’re going to
get a backwards copy of the list. This isn’t a bad thing by any stretch of the imagination. Let’s call
it what it is:

const reverse = (node, delayed = EMPTY) =>
node === EMPTY
? delayed
. reverse(node.rest, { first: node.first, rest: delayed });

And now, we can make a reversing map:

const reverseMapWith = (fn, node, delayed = EMPTY) =>
node === EMPTY
? delayed
. reverseMapWith(fn, node.rest, { first: fn(node.first), rest: delayed });

reverseMapWith((x) => x * x, OneTwoThree)
//=> {"first":9, "rest":{"first":4, "rest":{"first":1, " "rest":{}}}}

And a regular mapwith follows:

const reverse = (node, delayed = EMPTY) =>
node === EMPTY
? delayed
. reverse(node.rest, { first: node.first, rest: delayed });

const mapWith = (fn, node, delayed = EMPTY) =>
node === EMPTY
? reverse(delayed)
: mapWith(fn, node.rest, { first: fn(node.first), rest: delayed });

mapWith((x) => x * x, OneTwoThree)
//=> {"first":1, "rest":{"first":4, "rest":{"first":9, "rest":{}}}}
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Our mapWith function takes twice as long as a straight iteration, because it iterates over the entire list
twice, once to map, and once to reverse the list. Likewise, it takes twice as much memory, because
it constructs a reverse of the desired result before throwing it away.

Mind you, this is still much, much faster than making partial copies of arrays. For a list of length n,
we created n superfluous nodes and copied n superfluous values. Whereas our naive array algorithm
created 2n superfluous arrays and copied n” superfluous values.
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Mutation

Cupping Grinds

In JavaScript, almost every type of value can mutate. Their identities stay the same, but not their
structure. Specifically, arrays and objects can mutate. Recall that you can access a value from within
an array or an object using []. You can reassign a value using [] =:

const oneTwoThree = [1, 2, 3];
oneTwoThree[0] = 'one';
oneTwoThree

//=> [ 'one', 2, 3]

You can even add a value:
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const oneTwoThree = [1, 2, 3];
oneTwoThree[3] = 'four';
oneTwoThree

/= [ 1, 2, 3, 'four' ]
You can do the same thing with both syntaxes for accessing objects:

const name = {firstName: 'Leonard', lastName: 'Braithwaite'};
name.middleName = 'Austin'
name

//=> { firstName: 'Leonard’,

// lastName: 'Braithwaite',

// middleName: 'Austin' }

We have established that JavaScript’s semantics allow for two different bindings to refer to the same
value. For example:

const allHallowsEve = [2012, 10, 31]
const halloween = allHallowsEve;

Both halloween and allHallowsEve are bound to the same array value within the local environment.
And also:

const allHallowsEve = [2012, 10, 31];
(function (halloween) {

/S
})(allHallowsEve);

There are two nested environments, and each one binds a name to the exact same array value. In
each of these examples, we have created two aliases for the same value. Before we could reassign
things, the most important point about this is that the identities were the same, because they were
the same value.

This is vital. Consider what we already know about shadowing:

const allHallowsEve = [2012, 10, 31];
(function (halloween) {

halloween = [2013, 10, 31];
})(allHallowsEve);
allHallowsEve

//=> [2012, 10, 31]

The outer value of allHallowsEve was not changed because all we did was rebind the name
halloween within the inner environment. However, what happens if we mutate the value in the
inner environment?
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const allHallowsEve = [2012, 10, 31];
(function (halloween) {

halloween[Q] = 2013;
})(allHallowsEve);
allHallowsEve

//=> [2013, 10, 31]

This is different. We haven’t rebound the inner name to a different variable, we’ve mutated the value
that both bindings share. Now that we’ve finished with mutation and aliases, let’s have a look at it.

JavaScript permits the reassignment of new values to existing bindings, as well as the
reassignment and assignment of new values to elements of containers such as arrays and
objects. Mutating existing objects has special implications when two bindings are aliases of
the same value.

Note well: Declaring a variable const does not prevent us from mutating its value, only from
rebinding its name. This is an important distinction.

mutation and data structures

Mutation is a surprisingly complex subject. It is possible to compute anything without ever mutating
an existing entity. Languages like Haskell*> don’t permit mutation at all. In general, mutation makes
some algorithms shorter to write and possibly faster, but harder to reason about.

One pattern many people follow is to be liberal with mutation when constructing data, but
conservative with mutation when consuming data. Let’s recall linked lists from Plain Old JavaScript
Objects. While we’re executing the mapwith function, we’re constructing a new linked list. By this
pattern, we would be happy to use mutation to construct the list while running mapWith.

But after returning the new list, we then become conservative about mutation. This also makes sense:
Linked lists often use structure sharing. For example:

“https://en.wikipedia.org/wiki/Haskell_
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const EMPTY = {};
const OneToFive = { first: 1,
rest: {
first: 2,
rest: {
first: 3,
rest: {
first: 4,
rest: {
first: 5,
rest: EMPTY } } } } };

OneToFive

123

//=> {"first":1,"rest":{"first":2, "rest":{"first":"three", "rest":{"first":"four", "\

rest":{"first":"five","rest":{}}}}}}
const ThreeToFive = OneToFive.rest.rest;

ThreeToFive
//=> {"first":3,"rest":{"first":4,"rest": {"first":5,"rest":{}}}}

ThreeToFive. first = "three";
ThreeToFive.rest. first = "four";

ThreeToFive.rest.rest.first = "five";

ThreeToFive

//=> {"first":"three",6 "rest":{"first":"four",6 "rest":{"first":"five",K "rest":{}}}}

OneToFive

//=> {"first":1,"rest":{"first":2,"rest":{"first":"three", "rest":{"first":"four",6 "\

rest":{"first":"five","rest":{}}}}}}

Changes made to ThreeToFive affect OneToFive, because they share the same structure. When
we wrote ThreeToFive = OneToFive.rest.rest;, we weren’'t making a brand new copy of
{"first":3,"rest":{"first":4,"rest":{"first":5,"rest":{}}}}, we were getting a reference to

the same chain of nodes.

Structure sharing like this is what makes linked lists so fast for taking everything but the first item
of a list: We aren’t making a new list, we're using some of the old list. Whereas destructuring an

array with [first, ...rest] does make a copy, so:
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const OneToFive = [1, 2, 3, 4, 5];

OneToFive
//=> [1,2,3,4,5]

const [a, b, ...ThreeToFive] = OneToFive;

ThreeToFive

//=> [3, 4, 5]

ThreeToFive[Q] = "three";
ThreeToFive[1] = "four";
ThreeToFive[2] = "five";

ThreeToFive
//=> ["three", "four", "five"]

OneToFive
//=> [1,2,3,4,5]

The gathering operation [a, b, ...ThreeToFive] is slower, but “safer”

So back to avoiding mutation. In general, it’s easier to reason about data that doesn’t change. We
don’t have to remember to use copying operations when we pass it as a value to a function, or extract
some data from it. We just use the data, and the less we mutate it, the fewer the times we have to
think about whether making changes will be “safe.”

building with mutation

As noted, one pattern is to be more liberal about mutation when building a data structure. Consider
our copy algorithm. Without mutation, a copy of a linked list can be made in constant space by
reversing a reverse of the list:

const reverse = (node, delayed = EMPTY) =>
node === EMPTY
? delayed
. reverse(node.rest, { first: node.first, rest: delayed });

const copy = (node) => reverse(reverse(node));

If we want to make a copy of a linked list without iterating over it twice and making a copy we
discard later, we can use mutation:
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const copy = (node, head = null, tail = null) => {

if (node === EMPTY) {
return head;

}

else if (tail === null) {

const { first, rest } = node;
const newNode = { first, rest };
return copy(rest, newNode, newNode);
}
else {
const { first, rest } = node;
const newNode = { first, rest };
tail.rest = newNode;
return copy(node.rest, head, newNode);

This algorithm makes copies of nodes as it goes, and mutates the last node in the list so that it can
splice the next one on. Adding a node to an existing list is risky, as we saw when considering the
fact that OneToF ive and ThreeToF ive share the same nodes. But when we’re in the midst of creating
a brand new list, we aren’t sharing any nodes with any other lists, and we can afford to be more
liberal about using mutation to save space and/or time.

Armed with this basic copy implementation, we can write mapWith:

const mapWith = (fn, node, head = null, tail = null) => {

if (node === EMPTY) {
return head;

}

else if (tail === null) {

const { first, rest } = node;
const newNode = { first: fn(first), rest };
return mapWith(fn, rest, newNode, newNode);
}
else {
const { first, rest } = node;
const newNode = { first: fn(first), rest };
tail.rest = newNode;

return mapWith(fn, node.rest, head, newNode);

mapWith((x) => 1.0 / x, OneToFive)
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//=> {"first":1, "rest":{"first":0.5, "rest":{"first":0.3333333333333333, "rest":{"fi\
rst":0.25, "rest": {"first":0.2,"rest":{}}}}}}
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Reassignment

Like some imperative programming languages, JavaScript allows you to re-assign the value bound
to parameters. We saw this earlier in rebinding:

By default, JavaScript permits us to rebind new values to names bound with a parameter. For
example, we can write:

const evenStevens = (n) => {
if (n === 0) {
return true;
}
else if (n == 1) {
return false;
}
else {
n=n-2;

return evenStevens(n);

evenStevens(42)
//=> true

The linen = n - 2; rebinds a new value to the name n. We will discuss this at much greater length
in Reassignment, but long before we do, let’s try a similar thing with a name bound using const.
We’ve already bound evenStevens using const, let’s try rebinding it:

evenStevens = (n) => {
if (n === 0) {
return true;

}
else if (n == 1) {
return false;

}

else {
return evenStevens(n - 2);

//=> ERROR, evenStevens is read-only

JavaScript does not permit us to rebind a name that has been bound with const. We can shadow it
by using const to declare a new binding with a new function or block scope, but we cannot rebind
a name that was bound with const in an existing scope.
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Rebinding parameters is usually avoided, but what about rebinding names we declare within a
function? What we want is a statement that works like const, but permits us to rebind variables.
JavaScript has such a thing, it’s called let:

let age = 52;

age = 93;
age
//=> 53

We took the time to carefully examine what happens with bindings in environments. Let’s take the
time to explore what happens with reassigning values to variables. The key is to understand that we
are rebinding a different value to the same name in the same environment.

So let’s consider what happens with a shadowed variable:

(O = {
let age = 49;

if (true) {
let age = 50;
}
return age;
»HO
//=> 49

Using let to bind 50 to age within the block does not change the binding of age in the outer
environment because the binding of age in the block shadows the binding of age in the outer
environment, just like const. We go from:

{age: 49, '..': global-environment}

To:

{age: 50, '..': {age: 49, '..': global-environment}}
Then back to:

{age: 49, '..': global-environment}

However, if we don’t shadow age with 1et, reassigning within the block changes the original:
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() = {
let age = 49;

if (true) {
age = 50;
}

return age;

1O
//=> 50
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Like evaluating variable labels, when a binding is rebound, JavaScript searches for the binding in
the current environment and then each ancestor in turn until it finds one. It then rebinds the name

in that environment.

mixing let and const

Some programmers dislike deliberately shadowing variables. The suggestion is that shadowing a
variable is confusing code. If you buy that argument, the way that shadowing works in JavaScript

exists to protect us from accidentally shadowing a variable when we move code around.

If you dislike deliberately shadowing variables, you’ll probably take an even more opprobrious view

of mixing const and let semantics with a shadowed variable:

(O = {
let age = 49;

if (true) {
const age = 50;
}
age = 951;
return age;
HO
//=> 51

Shadowing a let with a const does not change our ability to rebind the variable in its original scope.

And:
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(0 = {

const age

49;

if (true)
let age = 50;

—~

}
age = 52;
return age;

DO
//=> ERROR: age is read-only

Shadowing a const with a let does not permit it to be rebound in its original scope.

var

JavaScript has one more way to bind a name to a value, var.”

var looks a lot like let:

const factorial = (n) => {
let x = n;
if (x === 1) {
return 1;
}
else {
X

return n * factorial(x);

factorial(5)
//=> 120

const factorial2 = (n) => {

var X = n;

if (x === 1) {
return 1;

}

else {
--x;

return n * factorial2(x);

""How many have we seen so far? Well, parameters bind names. Function declarations bind names. Named function expressions bind
names. const and let bind names. So that’s five different ways so far. And there are more!
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factorial2(5)
//=> 120

But of course, it’s not exactly like let. It’s just different enough to present a source of confusion.
First, var is not block scoped, it’s function scoped, just like function declarations:

(0= {

var age = 49;

if (true)
var age

}

return age;

HO
//=> 50

—~

50;

Declaring age twice does not cause an error(!), and the inner declaration does not shadow the outer
declaration. All var declarations behave as if they were hoisted to the top of the function, a little
like function declarations.

But, again, it is unwise to expect consistency. A function declaration can appear anywhere within
a function, but the declaration and the definition are hoisted. Note this example of a function that
uses a helper:

const factorial = (n) => {
return innerFactorial(n, 1);

function innerFactorial (x, y) {
if (x == 1) {
return y;

}
else {
return innerfFactorial(x-1, x * y);

factorial(4)
//=> 24

JavaScript interprets this code as if we had written:
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const factorial = (n) => {
let innerFactorial = function innerFactorial (x, y) {
if (x == 1) {
return y;

}
else {
return innerFactorial(x-1, x * y);

return innerFactorial(n, 1);

JavaScript hoists the let and the assignment. But not so with var:

const factorial = (n) => {
return innerFactorial(n, 1);

var innerFactorial = function innerFactorial (x, y) {
if (x == 1) {
return y;

}

else {
return innerfFactorial(x-1, x * y);

factorial(4)
//=> undefined is not a function (evaluating 'innerFactorial(n, 1)')

JavaScript hoists the declaration, but not the assignment. It is as if we’d written:
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const factorial = (n) => {
let innerFactorial = undefined;
return innerFactorial(n, 1);

innerFactorial = function innerFactorial (x, y) {
if (x == 1) {
return y;
}
else {
return innerfFactorial(x-1, x * y);

factorial(4)
//=> undefined is not a function (evaluating 'innerFactorial(n, 1)')

In that way, var is a little like const and let, we should always declare and bind names before using
them. But it’s not like const and let in that it’s function scoped, not block scoped.

why const and 1et were invented

const and let are recent additions to JavaScript. For nearly twenty years, variables were declared
with var (not counting parameters and function declarations, of course). However, its functional
scope was a problem.

We haven’t looked at it yet, but JavaScript provides a for loop for your iterating pleasure and
convenience. It looks a lot like the for loop in C. Here it is with var:

var sum = 0;

for (var i = 1; i <= 100; i++) {
sum = sum + i

}

sum
//=> 5050

Hopefully, you can think of a faster way to calculate this sum.”* And perhaps you have noticed that
var i = 1 is tucked away instead of being at the top as we prefer. But is this ever a problem?

"'There is a well known story about Karl Friedrich Gauss when he was in elementary school. His teacher got mad at the class and told
them to add the numbers 1 to 100 and give him the answer by the end of the class. About 30 seconds later Gauss gave him the answer. The
other kids were adding the numbers like this:1 + 2 + 3 + . . . . + 99 + 100 = ? But Gauss rearranged the numbers to add them like this:
(1 +100) + (2 + 99) + (3 +98) + . . . . + (50 + 51) = ? If you notice every pair of numbers adds up to 101. There are 50 pairs of
numbers, so the answer is 50101 = 5050. Of course Gauss came up with the answer about 20 times faster than the other kids.
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Yes. Consider this variation:

var introductions = [],
names = ['Karl', 'Friedrich', 'Gauss'];

for (var i = 0; 1 < 3; i++) {

introductions[i] = "Hello, my name is " + names[i]
}
introductions

//=> [ 'Hello, my name is Karl',

// '"Hello, my name is Friedrich’,

// '"Hello, my name is Gauss' |
So far, so good. Hey, remember that functions in JavaScript are values? Let’s get fancy!

var introductions = [],
names = ['Karl', 'Friedrich', 'Gauss'];
for (var i = 0; 1 < 3; i++) {
introductions[i] = (soAndSo) =»>
“Hello, ${soAndSo}, my name is ${names[i]}"
}
introductions
//=> [ [Function],
// [Function],

// [Function] ]
Again, so far, so good. Let’s try one of our functions:

introductions[1]('Raganwald")

//=> 'Hello, Raganwald, my name is undefined'
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What went wrong? Why didn’t it give us ‘Hello, Raganwald, my name is Friedrich’? The answer is
that pesky var i. Remember that i is bound in the surrounding environment, so it’s as if we wrote:
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var introductions = [],
names = ['Karl', 'Friedrich', 'Gauss'],

i = undefined;

for (i = 0; i < 3; i++) {
introductions[i] = function (soAndSo) {
return "Hello, " + soAndSo + ", my name is " + names[i]

}

introductions

Now, at the time we created each function, i had a sensible value, like @, 1, or 2. But at the time we
call one of the functions, i has the value 3, which is why the loop terminated. So when the function
is called, JavaScript looks i up in its enclosing environment (its closure, obviously), and gets the
value 3. That’s not what we want at all.

The error wouldn'’t exist at all if we’d used let in the first place

let introductions = [],

names = ['Karl', 'Friedrich', 'Gauss'];

for (let i = 0; i < 3; i++) {
introductions[i] = (soAndSo) =>
“Hello, ${soAndSo}, my name is ${names[i]}"
}
introductions[1]('Raganwald")
//=> 'Hello, Raganwald, my name is Friedrich’

This small error was a frequent cause of confusion, and in the days when there was no block-scoped
let, programmers would need to know how to fake it, usually with an ITFE:

var introductions = [],

names = ['Karl', 'Friedrich', 'Gauss'];

for (var i = 0; 1 < 3; i++) {
((1) = {
introductions[i] = (soAndSo) =>
“Hello, ${soAndSo}, my name is ${names[i]}"
}
P(i)
}
introductions[1]('Raganwald")
//=> 'Hello, Raganwald, my name is Friedrich’
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Now we’re creating a new inner parameter, i and binding it to the value of the outer i. This works,
but let is so much simpler and cleaner that it was added to the language in the ECMAScript 2015
specification.

In this book, we will use function declarations sparingly, and not use var at all. That does not mean
that you should follow the exact same practice in your own code: The purpose of this book is to
illustrate certain principles of programming. The purpose of your own code is to get things done.
The two goals are often, but not always, aligned.
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Copy on Write

,‘;.- 0

The Coffee Cow

We've seen how to build lists with arrays and with linked lists. We’ve touched on an important
difference between them:

« When you take the rest of an array with destructuring ([first, ...rest]), you are given a
copy of the elements of the array.

« When you take the rest of a linked list with its reference, you are given the exact same nodes
of the elements of the original list.

The consequence of this is that if you have an array, and you take it’s “rest,” your “child” array is
a copy of the elements of the parent array. And therefore, modifications to the parent do not affect
the child, and modifications to the child do not affect the parent.
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Whereas if you have a linked list, and you take it’s “rest,” your “child” list shares its nodes with the
“parent” list. And therefore, modifications to the parent also modify the child, and modifications to

the child also modify the parent.

Let’s confirm our understanding:

const parentArray = [1, 2, 3];

const [aFirst, ...childArray] = parentArray;

parentArray[2] = "three";

childArray[@] = "two";
parentArray

//=> [1,2, "three"]
childArray

//=> ["two", 3]

const EMPTY = { first: {}, rest: {} };

const parentList = { first: 1, rest: { first:

const childList = parentlList.rest;

parentList.rest.rest.first = "three";
childlList.first = "two";

parentList

2, rest: { first: 3, rest: EMPTY }}};

//=> {"first":1,"rest":{"first":"two", "rest":{"first": "three", "rest":{"first":{}, "\

rest":{}}}}}
childList

//=> {"first":"two",6 "rest":{"first":"three", "rest":{"first":{}, "rest":{}}}}

This is remarkably unsafe. If we know that a list doesn’t share any elements with another list, we can
safely modify it. But how do we keep track of that? Add a bunch of bookkeeping to track references?
We'll end up reinventing reference counting and garbage collection.

a few utilities

before we go any further, let’s write a few naive list utilities so that we can work at a slightly higher

level of abstraction:
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const copy = (node, head = null, tail = null) => {

if (node === EMPTY) {
return head;

}

else if (tail === null) {

const { first, rest } = node;
const newNode = { first, rest };
return copy(rest, newNode, newNode);
}
else {
const { first, rest } = node;
const newNode = { first, rest };
tail.rest = newNode;
return copy(node.rest, head, newNode);

const first = ({first, rest}) => first;
const rest = ({first, rest}) => rest;

const reverse = (node, delayed = EMPTY) =>
node === EMPTY
? delayed
. reverse(rest(node), { first: first(node), rest: delayed });

const mapWith = (fn, node, delayed = EMPTY) =>
node === EMPTY
? reverse(delayed)
: mapWith(fn, rest(node), { first: fn(first(node)), rest: delayed });

const at = (index, list) =>
index ===
? first(list)
: at(index - 1, rest(list));

const set = (index, value, list, originallList = list) =>
index === 0
? (list.first = value, originallList)
. set(index - 1, value, rest(list), originallList)

const parentList = { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY }}};

const childList = rest(parentlList);

139
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set(2, "three", parentlList);
set(0, "two", childlList);

parentList

//=> {"first":1,"rest":{"first":"two", "rest”:{"first": "three", "rest":{"first":{}, "\
rest":{}}}}}
childlList

//=> {"first":"two","rest":{"first":"three", "rest":{"first":{}, "rest":{}}}}

Our new at and set functions behave similarly to array[index] and array[index] = value. The
main difference is that array[index] = value evaluates to value, while set(index, value, list)
evaluates to the modified 1ist.

copy-on-read

So back to the problem of structure sharing. One strategy for avoiding problems is to be pessimistic.
Whenever we take the rest of a list, make a copy.

const rest = ({first, rest}) => copy(rest);

const parentList = { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY }}};
const childList = rest(parentlList);

const newParentList = set(2, "three", parentlList);
set(@, "two", childList);

parentlList

//=> {"first":1, "rest":{"first":2, "rest":{"first":"three", "rest":{"first":{}, "rest\
" {1
childList

//=> {"first":"two",6 "rest":{"first":3, "rest": {"first":{}, "rest":{}}}}

This strategy is called “copy-on-read”, because when we attempt the parent to “read” the value of
a child of the list, we make a copy and read the copy of the child. Thereafter, we can write to the
parent or the copy of the child freely.

As we expected, making a copy lets us modify the copy without interfering with the original. This is,
however, expensive. Sometimes we don’t need to make a copy because we won’t be modifying the
list. Our mapWith function would be very expensive if we make a copy every time we call rest (node).

There’s also a bug: What happens when we modify the first element of a list? But before we fix that,
let’s try being lazy about copying.
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copy-on-write
Why are we copying? In case we modify a child list. Ok, what if we do this: Make the copy when

we know we are modifying the list. When do we know that? When we call set. We’ll restore our
original definition for rest, but change set:

const rest = ({first, rest}) => rest;

Il
v

const set = (index, value, list)
index ===
? { first: value, rest: list.rest }
. { first: list.first, rest: set(index - 1, value, list.rest) };

const parentList = { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY }}};
const childlList = rest(parentlList);

const newParentList = set(2, "three", parentlList);
const newChildList = set(®, "two", childlList);

Our original parent and child lists remain unmodified:

parentlList

//=> {"first":1,"rest":{"first":2, "rest":{"first":3, "rest":{"first":{}, "rest": {}}}\
3
childlList

//=> {"first":2, "rest":{"first":3, "rest":{"first":{}, "rest":{}}}}

But our new parent and child lists are copies that contain the desired modifications, without
interfering with each other:

newParentlList

//=> {"first":1,"rest":{"first":2, "rest":{"first":"three", "rest":{"first":{}, "rest\
"1
newChildList

//=> {"first":"two", "rest":{"first":3,"rest":{"first":{}, "rest":{}}}}

And now functions like mapwith that make copies without modifying anything, work at full speed.

This strategy of waiting to copy until you are writing is called copy-on-write, or “COW:”

Copy-on-write is the name given to the policy that whenever a task attempts to make
a change to the shared information, it should first create a separate (private) copy of
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that information to prevent its changes from becoming visible to all the other tasks.—
Wikipedia’

Like all strategies, it makes a tradeoff: It’'s much cheaper than pessimistically copying structures
when you make an infrequent number of small changes, but if you tend to make a lot of changes to
some that you aren’t sharing, it’s more expensive.

Looking at the code again, you see that the copy function doesn’t copy on write: It follows the pattern
that while constructing something, we own it and can be liberal with mutation. Once we’re done
with it and give it to someone else, we need to be conservative and use a strategy like copy-on-read
or copy-on-write.

"https://en.wikipedia.org/wiki/Copy-on-write
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Tortoises, Hares, and Teleporting Turtles

A good long while ago (The First Age of Internet Startups), someone asked me one of those pet
algorithm questions. It was, “Write an algorithm to detect a loop in a linked list, in constant space.”

I’'m not particularly surprised that I couldn’t think up an answer in a few minutes at the time. And
to the interviewer’s credit, he didn’t terminate the interview on the spot, he asked me to describe

the kinds of things going through my head.

[ think I told him that [ was trying to figure out if I could adapt a hashing algorithm such as XORing
everything together. This is the “trick answer” to a question about finding a missing integer from a
list, so I was trying the old, “Transform this into a problem you’ve already solved”” meta-algorithm.
We moved on from there, and he didn’t reveal the “solution.”

I went home and pondered the problem. [ wanted to solve it. Eventually, I came up with something
and tried it (In Java!) on my home PC. I sent him an email sharing my result, to demonstrate my
ability to follow through. I then forgot about it for a while. Some time later, I was told that the
correct solution was:
const EMPTY = null;

const isEmpty = (node) => node === EMPTY;

const pair = (first, rest = EMPTY) => ({first, rest});

const list = (...elements) => {

const [first, ...rest] = elements;
return elements.length === 0
? EMPTY

. pair(first, list(...rest))

const forceAppend = (list1, list2) => {
if (isEmpty(list1)) {
return "FAIL!"
}
if (isEmpty(listi.rest)) {
listl.rest = list2;
}
else {
forceAppend(listl.rest, list2);
}

"http://www-users.cs.york.ac.uk/susan/joke/3.htm#boil
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const tortoiseAndHare = (aPair) => {
let tortoisePair = aPair,
harePair = aPair.rest;

while (true) {
if (isEmpty(tortoisePair) || isEmpty(harePair)) {
return false;

}

if (tortoisePair.first === harePair.first) {

return true;

harePair = harePair.rest;

if (isEmpty(harePair)) {
return false;

}

if (tortoisePair.first === harePair.first) {
return true;

tortoisePair = tortoisePair.rest;
harePair = harePair.rest;

}
};

const alList = list(1, 2, 3, 4, 5);

tortoiseAndHare(alList)
//=> false

forceAppend(alList, alList.rest.rest);

tortoiseAndHare(alList);
//=> true

This algorithm is called “The Tortoise and the Hare,” and was discovered by Robert Floyd in the
1960s. You have two node references, and one traverses the list at twice the speed of the other. No
matter how large it is, you will eventually have the fast reference equal to the slow reference, and
thus you’ll detect the loop.

At the time, I couldn’t think of any way to use hashing to solve the problem, so I gave up and tried to
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fit this into a powers-of-two algorithm. My first pass at it was clumsy, but it was roughly equivalent
to this:

const teleportingTurtle = (list) => {
let speed = 1,
rabbit = list,
turtle = rabbit;

while (true) {
for (let i = 0; i <= speed; i +=1) {
rabbit = rabbit.rest;
if (rabbit == null) {

return false;

}

if (rabbit === turtle) {
return true;

}

}
turtle = rabbit;

speed *= 2;

}

return false;

1
const alList = list(1, 2, 3, 4, 5);

teleportingTurtle(alList)
//=> false

forceAppend(alList, alList.rest.rest);

teleportingTurtle(alList);
//=> true

Years later, I came across a discussion of this algorithm, The Tale of the Teleporting Turtle’. It seems
to be faster under certain circumstances, depending on the size of the loop and the relative costs of
certain operations.

What’s interesting about these two algorithms is that they both tangle two separate concerns: How
to traverse a data structure, and what to do with the elements that you encounter. In Functional
Iterators, we’ll investigate one pattern for separating these concerns.

"*http://www.penzba.co.uk/Writings/TheTeleporting Turtle.html
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Functional Iterators

Let’s consider a remarkably simple problem: Finding the sum of the elements of an array. In tail-
recursive style, it looks like this:

const arraySum = ([first, ...rest], accumulator = Q) =>
first === undefined
? accumulator

. arraySum(rest, first + accumulator)

arraySum([1, 4, 9, 16, 25])
//=> 55

As we saw earlier, this entangles the mechanism of traversing the array with the business of
summing the bits. So we can separate them using fold:

const calllLeft = (fn, ...args) =>
(...remainingArgs) =>

fn(...args, ...remainingArgs);

const foldArrayWith = (fn, terminalValue, [first, ...rest]) =>
first === undefined
7 terminalValue
fn(first, foldArrayWith(fn, terminalValue, rest));

const arraySum = calllLeft(foldArrayWith, (a, b) => a + b, 0);

arraySum([1, 4, 9, 16, 25])
//=> 55

The nice thing about this is that the definition for arraySum mostly concerns itself with summing,
and not with traversing over a collection of data. But it still relies on foldArrayWith, so it can only
sum arrays.

What happens when we want to sum a tree of numbers? Or a linked list of numbers?

Well, we call arraysum with an array, and it has baked into it a method for traversing the array.
Perhaps we could extract both of those things. Let’s rearrange our code a bit:
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const callRight = (fn, ...args) =>
(...remainingArgs) =>
fn(...remainingArgs, ...args);
const foldArrayWith = (fn, terminalValue, [first, ...rest]) =>
first === undefined

? terminalValue
fn(first, foldArrayWith(fn, terminalValue, rest));

const foldArray = (array) => callRight(foldArrayWith, array);
const sumFoldable = (folder) => folder((a, b) => a + b, 0);

sumFoldable(foldArray([1, 4, 9, 16, 25]))
//=> 55

What we’ve done is turn an array into a function that folds an array with const foldArray = (array)
=> callRight(foldArrayWith, array);. The sumFoldable function doesn’t care what kind of data
structure we have, as long as it’s foldable.

Here it is summing a tree of numbers:

const callRight = (fn, ...args) =>
(...remainingArgs) =>
fn(...remainingArgs, ...args);

const foldTreeWith = (fn, terminalValue, [first, ...rest]) =>
first === undefined
? terminalValue
. Array.isArray(first)
? fn(foldTreeWith(fn, terminalValue, first), foldTreeWith(fn, terminalValue, r\
est))
fn(first, foldTreeWith(fn, terminalValue, rest));

const foldTree = (tree) => callRight(foldTreeWith, tree);
const sumFoldable = (folder) => folder((a, b) => a + b, 0);

sumFoldable(foldTree([1, [4, [9, 16]], 25]))
//=> 55

We’ve found another way to express the principle of separating traversing a data structure from the
operation we want to perform on that data structure, we’ve completely separated the knowledge of
how to sum from the knowledge of how to fold an array or tree (or anything else, really).
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iterating

Folding is a universal operation, and with care we can accomplish any task with folds that could
be accomplished with that stalwart of structured programming, the for loop. Nevertheless, there is
some value in being able to express some algorithms as iteration.

JavaScript has a particularly low-level version of for loop that mimics the semantics of the
language. Summing the elements of an array can be accomplished with:

const arraySum = (array) => {

let sum = ©;

for (let i = 0; i < array.length; ++i) {
sum += array[i];

}

return sum

arraySum([1, 4, 9, 16, 25])
//=> 55

Once again, we’re mixing the code for iterating over an array with the code for calculating a sum.
And worst of all, we’re getting really low-level with details like knowing that the elements of an
array are indexed with consecutive integers that begin with o.

We can write this a slightly different way, using a while loop:

const arraySum = (array) => {
let done,
sum = 0,
i=0;
while ((done = i == array.length, !done)) {
const value = array[i++];
sum += value;

}

return sum
arraySum([1, 4, 9, 16, 25])
//=> 55

Notice that buried inside our loop, we have bound the names done and value. We can put those into
a POJO (a Plain Old JavaScript Object). It’ll be a little awkward, but we’ll be patient:
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const arraySum = (array) => {
let iter,
sum = 0,

index = 0O;

while (
(eachlteration = {
done: index === array.length,
value: index < array.length ? array[index] : undefined
},
++index,

leachIteration.done)

sum += eachlteration.value;
return sum;

arraySum([1, 4, 9, 16, 25])
//=> 55

With this code, we make a POJO that has done and value keys. All the summing code needs to know
is to add eachIteration.value. Now we can extract the ickiness into a separate function:

const arraylterator = (array) => {
let i = 0;

return () => {
const done = i === array.length;
return {
done,
value: done ? undefined : array[i++]

const iteratorSum = (iterator) => {
let eachlteration,
sum = 0;
while ((eachlteration = iterator(), !eachIteration.done)) {
sum += eachlteration.value;
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}

return sum;

iteratorSum(arraylterator([1, 4, 9, 16, 25]))
//=> 55

Now this is something else. The arrayIterator function takes an array and returns a function we

can call repeatedly to obtain the elements of the array. The iteratorSum function iterates over the
elements by calling the iterator function repeatedly until it returns { done: true }.

We can write a different iterator for a different data structure. Here’s one for linked lists:

const EMPTY = null;

const isEmpty = (node) => node === EMPTY;

const pair = (first, rest = EMPTY) => ({first, rest});

const list = (...elements) => {
const [first, ...rest] = elements;

return elements.length ===
? EMPTY
pair(first, list(...rest))

const print = (aPair) =>
isEmpty(aPair)
o wn

“${aPair.first} ${print(aPair.rest)}"

const listlIterator = (aPair) =>

() = {
const done = isEmpty(aPair);
if (done) {
return {done};
}
else {

const {first, rest} = aPair;

aPair = aPair.rest;

return { done, value: first }
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const iteratorSum = (iterator) => {
let eachlteration,
sum = 0;;

while ((eachlteration = iterator(), !eachIteration.done)) {

sum += eachlteration.value;

}

return sum

const alistlIterator = listlterator(list(1, 4, 9, 16, 25));

iteratorSum(alListIterator)
//=> 55

unfolding and laziness

Iterators are functions. When they iterate over an array or linked list, they are traversing something
that is already there. But they could just as easily manufacture the data as they go. Let’s consider
the simplest example:

const NumberlIterator = (number = 0) =>
() = ({ done: false, value: number++ })

fromOne = NumberIterator(1);

fromOne().value;
//=> 1
fromOne().value;
//=> 2
fromOne().value;
//=> 3
fromOne( ) .value;
//=> 4
fromOne().value;

//=> 5

And here’s another one:
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const Fibonaccilterator = () => {
let previous = 0O,

current = 1;

return () => {
const value = current;

[previous, current] = [current, current + previous];
return {done: false, value};
b
¥

const fib = Fibonaccilterator()

fib().value
//=> 1
fib().value
//=> 1
fib().value
//=> 2
fib().value
//=> 3
fib().value
//=> 5

A function that starts with a seed and expands it into a data structure is called an unfold. It’s the
opposite of a fold. It’s possible to write a generic unfold mechanism, but let’s pass on to what we
can do with unfolded iterators.

For starters, we can map an iterator, just like we map a collection:

const maplteratorWith = (fn, iterator) =>
() = {

const {done, value} = iterator();

return ({done, value: done ? undefined : fn(value)});

const squares = maplteratorWith((x) => x * x, NumberlIterator(1));

squares().value
//=> 1

squares().value
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//=> 4
squares().value
//=> 9

This business of going on forever has some drawbacks. Let’s introduce an idea: A function that takes
an iterator and returns another iterator. We can start with take, an easy function that returns an
iterator that only returns a fixed number of elements:

const take = (iterator, numberToTake) => {
let count = ©;

return () => {
if (++count <= numberToTake) ({
return iterator();
} else {
return {done: true};

};
};

const toArray = (iterator) => {
let eachlteration,
array = [];

while ((eachlteration = iterator(), !eachIlteration.done)) {
array.push(eachlteration.value);

}

return array;
toArray(take(Fibonaccilterator(), 5))
//=> [1, 1, 2, 3, 5]

toArray(take(squares, 5))
//=> [1, 4, 9, 16, 25]

How about the squares of the first five odd numbers? We’ll need an iterator that produces odd
numbers. We can write that directly:
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const odds = () => {
let number = 1;

return () => {
const value = number;

number += 2;

!

return {done: false, value};

const squareOf = calllLeft(maplteratorWith, (x) => x * x)

toArray(take(squareOf(odds()), 5))
//=> [1, 9, 25, 49, 81]

We could also write a filter for iterators to accompany our mapping function:

const filterlIteratorWith = (fn, iterator) =»
O = {
do {
const {done, value} = iterator();
} while (!done && !fn(value));
return {done, value};

const oddsOf = callleft(filterIteratorWith, (n) => n % 2 === 1);

toArray(take(squareOf(oddsOf(NumberIterator(1))), 5))
//=> [1, 9, 25, 49, 81]

Mapping and filtering iterators allows us to compose the parts we already have, rather than writing
a tricky bit of code with ifs and whiles and boundary conditions.

bonus

Many programmers coming to JavaScript from other languages are familiar with three “canonical”
operations on collections: folding, filtering, and finding. In Smalltalk, for example, they are known
as collect, select, and detect.

We haven’t written anything that finds the first element of an iteration that meets a certain criteria.
Or have we?
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const firstInlteration = (fn, iterator) =>
take(filterIteratorWith(fn, iterator), 1);

This is interesting, because it is lazy: It doesn’t apply fn to every element in an iteration, just enough
to find the first that passes the test. Whereas if we wrote something like:

const firstInArray = (fn, array) =>
array.filter(fn)[0];

JavaScript would apply fn to every element. If array was very large, and fn very slow, this would
consume a lot of unnecessary time. And if fn had some sort of side-effect, the program could be

buggy.

caveat

Please note that unlike most of the other functions discussed in this book, iterators are stateful. There
are some important implications of stateful functions. One is that while functions like take(. . .)
appear to create an entirely new iterator, in reality they return a decorated reference to the original
iterator. So as you traverse the new decorator, you're changing the state of the original!

For all intents and purposes, once you pass an iterator to a function, you can expect that you no
longer “own” that iterator, and that its state either has changed or will change.
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Making Data Out Of Functions

Coffee served at the CERN particle accelerator

In our code so far, we have used arrays and objects to represent the structure of data, and we have
extensively used the ternary operator to write algorithms that terminate when we reach a base case.

For example, this 1ength function uses a functions to bind values to names, POJOs to structure nodes,
and the ternary function to detect the base case, the empty list.
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const EMPTY = {};
const OneTwoThree = { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY } } \
b

OneTwoThree. first
//=> 1

OneTwoThree.rest. first

//=> 2

OneTwoThree.rest.rest. first
//=> 3

const length = (node, delayed = 0) =>
node === EMPTY
? delayed
length(node.rest, delayed + 1);

length(OneTwoThree)
//=> 3

A very long time ago, mathematicians like Alonzo Church, Moses Schonfinkel, Alan Turning, and
Haskell Curry and asked themselves if we really needed all these features to perform computations.
They searched for a radically simpler set of tools that could accomplish all of the same things.

They established that arbitrary computations could be represented a small set of axiomatic compo-
nents. For example, we don’t need arrays to represent lists, or even POJOs to represent nodes in a
linked list. We can model lists just using functions.

To Mock a Mockingbird” established the metaphor of songbirds for the combinators, and

ever since then logicians have called the K combinator a “kestrel,” the B combinator a
“bluebird,” and so forth.

The oscin.es’® library contains code for all of the standard combinators and for experi-
menting using the standard notation.

Let’s start with some of the building blocks of combinatory logic, the K, I, and V combinators,
nicknamed the “Kestrel”, the “Idiot Bird”, and the “Vireo:”

"*http://www.amazon.com/gp/product/0192801422/ref=as_li_ss_t1?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&
creative=390957&creative ASIN=0192801422
"®http://oscin.es


http://www.amazon.com/gp/product/0192801422/ref=as_li_ss_tl?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0192801422
http://oscin.es/
http://www.amazon.com/gp/product/0192801422/ref=as_li_ss_tl?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0192801422
http://www.amazon.com/gp/product/0192801422/ref=as_li_ss_tl?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0192801422
http://oscin.es/
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const K = (x) => (y) => x;
const I = (x) => (x);
const V = (x) => (y) = (2) = z(x)(y);

the kestrel and the idiot

A constant function is a function that always returns the same thing, no matter what you give it.
For example, (x) => 42 is a constant function that always evaluates to 42. The kestrel, or K, is a
function that makes constant functions. You give it a value, and it returns a constant function that
gives that value.

For example:

const K = (x) => (y) => x;
const fortyTwo = K(42);

fortyTwo(6)
//=> 42

fortyTwo("Hello")
//=> 42

The identity function is a function that evaluates to whatever parameter you pass it. So 1(42) =>
42. Very simple, but useful. Now we’ll take it one more step forward: Passing a value to K gets a
function back, and passing a value to that function gets us a value.

Like so:

K(6)(7)
//=> 6

K(12)(24)
//=> 12

This is very interesting. Given two values, we can say that K always returns the first value: K(x) (y)
=> x (that’s not valid JavaScript, but it’s essentially how it works).

Now, an interesting thing happens when we pass functions to each other. Considerk(1). From what
we just wrote, K(x)(y) => x SoK(I)(x) => I.Makes sense. Now let’s tack one more invocation on:
What isK(I)(x)(y)? IfK(I)(x) => I,thenK(I)(x)(y) === I(y) whichisy.

Therefore, K(I)(x)(y) => y:
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K(I)(6)(T)
/S/=> T

K(I)(12)(24)
J/=> 24

Aha! Given two values, K(1) always returns the second value.

K("primus")("secundus")

//=> "primus"

K(I)("primus")("secundus")

//=> "secundus"
If we are not feeling particularly academic, we can name our functions:

const first = K,
second = K(I);

first("primus")("secundus")
//=> "primus"

second("primus")("secundus")

//=> "secundus"

This is very interesting. Given two values, we can say thatk always returns the first value,
and given two values, K(I) always returns the second value.

backwardness

Our first and second functions are a little different than what most people are used to when we
talk about functions that access data. If we represented a pair of values as an array, we’d write them
like this:
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const first = ([first, second]) => first,
second = ([first, second]) => second;

const latin = ["primus", "secundus"];

first(latin)

//=> "primus"

second(latin)
//=> "secundus"

Or if we were using a POJO, we’d write them like this:

const first = ({first, second}) => first,

second = ({first, second}) => second;
const latin = {first: "primus", second: "secundus"};

first(latin)

//=> "primus"

second(latin)
//=> "secundus"

In both cases, the functions first and second know how the data is represented, whether it be an
array or an object. You pass the data to these functions, and they extract it.

But the first and second we built out of K and I don’t work that way. You call them and pass them
the bits, and they choose what to return. So if we wanted to use them with a two-element array,
we’d need to have a piece of code that calls some code.

Here’s the first cut:

const first = K,
second = K(I);

const latin = (selector) => selector("primus")("secundus");

latin(first)
//=> "primus"

latin(second)

//=> "secundus"
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Our latin data structure is no longer a dumb data structure, it’s a function. And instead of passing
latin to first or second, we pass first or second to latin. It’s exactly backwards of the way we
write functions that operate on data.

the vireo

Given that our 1atin data is represented as the function (selector) => selector("primus")("secundus"),
our obvious next step is to make a function that makes data. For arrays, we'd write cons = (first,
second) => [first, second].For objects we'd write: cons = (first, second) => {first, second}.

In both cases, we take two parameters, and return the form of the data.

For “data” we access withK and K (1), our “structure” is the function (selector) => selector("primus")("secundus'
Let’s extract those into parameters:

(first, second) => (selector) => selector(first)(second)

For consistency with the way combinators are written as functions taking just one parameter, we’ll
curry’’ the function:

(first) => (second) => (selector) => selector(first)(second)

Let’s try it, we’ll use the word pair for the function that makes data (When we need to refer to a
specific pair, we’ll use the name aPair by default):

const first = K,
second = K(I),
pair = (first) => (second) => (selector) => selector(first)(second);

const latin = pair("primus")("secundus");

latin(first)

//=> "primus"

latin(second)
//=> "secundus"

It works! Now what is this pair function? If we change the names to x, y, and z, we get: (x) => (y)
=> (z) => z(x)(y). That’s the V combinator, the Vireo! So we can write:

""https://en.wikipedia.org/wiki/Currying


https://en.wikipedia.org/wiki/Currying
https://en.wikipedia.org/wiki/Currying
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const first = K,
second = K(I),
pair = V;

const latin = pair("primus")("secundus");

latin(first)

//=> "primus"

latin(second)

//=> "secundus"

As an aside, the Vireo is a little like JavaScript’s .apply function. It says, “take these two
values and apply them to this function.” There are other, similar combinators that apply
values to functions. One notable example is the “thrush” or T combinator: It takes one
value and applies it to a function. It is known to most programmers as . tap.

Armed with nothing more thank, I, and v, we can make a little data structure that holds two values,
the cons cell of Lisp and the node of a linked list. Without arrays, and without objects, just with
functions. We’d better try it out to check.

lists with functions as data

Here’s another look at linked lists using POJOs. We use the term rest instead of second, but it’s
otherwise identical to what we have above:

const first = ({first, rest}) => first,
({first, rest}) => rest,

pair = (first, rest) => ({first, rest}),
EMPTY = ({});

rest

const 1123 = pair(1, pair(2, pair(3, EMPTY)));

first(1123)
//=> 1

first(rest(1123))
//=> 2

first(rest(rest(1123)))
//=3

We can write length and mapWith functions over it:



Composing and Decomposing Data

const length = (aPair) =>
aPair === EMPTY
? 0
: 1 + length(rest(aPair));

length(1123)
//=> 3

const reverse = (aPair, delayed = EMPTY) =>
aPair === EMPTY
? delayed

. reverse(rest(aPair), pair(first(aPair), delayed));
const mapWith = (fn, aPair, delayed = EMPTY) =>
aPair === EMPTY
? reverse(delayed)
: mapWith(fn, rest(aPair), pair(fn(first(aPair)), delayed));

const doubled = mapWith((x) => x * 2, 1123);

first(doubled)
//=> 2

first(rest(doubled))
J/=> 4

first(rest(rest(doubled)))
//=> 6

Can we do the same with the linked lists we build out of functions? Yes:

const first = K,
rest = K(I),
pair =V,

EMPTY = (() => {});

const 1123 = pair(1)(pair(2)(pair(3)(EMPTY)));

1123(first)
//=> 1

1123(rest)(first)
//=> 2

163
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return 1123(rest)(rest)(first)
//=> 3

We write them in a backwards way, but they seem to work. How about 1ength?

const length = (aPair) =>
aPair === EMPTY
?7 0
: 1 + length(aPair(rest));

length(1123)
//=> 3

And mapWith?

const reverse = (aPair, delayed = EMPTY) =>
aPair === EMPTY
? delayed
. reverse(aPair(rest), pair(aPair(first))(delayed));

const mapWith = (fn, aPair, delayed = EMPTY) =>
aPair === EMPTY
? reverse(delayed)
: mapWith(fn, aPair(rest), pair(fn(aPair(first)))(delayed));

const doubled = mapWith((x) => x * 2, 1123)

doubled(first)
//=> 2

doubled(rest)(first)
//=> 4

doubled(rest)(rest)(first)
//=> 6

Presto, we can use pure functions to represent a linked list. And with care, we can do amazing
things like use functions to represent numbers, build more complex data structures like trees, and in
fact, anything that can be computed can be computed using just functions and nothing else.

But without building our way up to something insane like writing a JavaScript interpreter using
JavaScript functions and no other data structures, let’s take things another step in a slightly different
direction.
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We used functions to replace arrays and POJOs, but we still use JavaScript’s built-in operators to
test for equality (===) and to branch ?:.

say “please”

We keep using the same pattern in our functions:aPair === EMPTY ? doSomething : doSomethingElse.
This follows the philosophy we used with data structures: The function doing the work inspects the
data structure.

We can reverse this: Instead of asking a pair if it is empty and then deciding what to do, we can ask
the pair to do it for us. Here’s length again:

const length = (aPair) =>
aPair === EMPTY
?7 0
: 1 + length(aPair(rest));

Let’s presume we are working with a slightly higher abstraction, we’ll call it a 1ist. Instead of
writing length(list) and examining a list, we’ll write something like:

const length = (list) => list(

() = o,

(aPair) => 1 + length(aPair(rest)))
),

Now we’ll need to write first and rest functions for a list, and those names will collide with the
first and rest we wrote for pairs. So let’s disambiguate our names:

const pairFirst K,
pairRest = K(I),
pair = V;

const first = (list) => list(
() => "ERROR: Can't take first of an empty list",
(aPair) => aPair(pairFirst)

);

const rest = (list) => list(
() => "ERROR: Can't take first of an empty list",
(aPair) => aPair(pairRest)

);
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const length = (list) => list(
() = o,
(aPair) => 1 + length(aPair(pairRest))
),
We'll also write a handy list printer:
const print = (list) => list(
O =,
(aPair) => “${aPair(pairFirst)} ${print(aPair(pairRest))}"
),
How would all this work? Let’s start with the obvious. What is an empty list?
const EMPTYLIST = (whenEmpty, unlessEmpty) => whenEmpty()

And what is a node of a list?

const node = (x) => (y) =
(whenEmpty, unlessEmpty) => unlessEmpty(pair(x)(y));

Let’s try it:
const 1123 = node(1)(node(2)(node(3)(EMPTYLIST)));

print(1123)
//=> 1 2 3

166

We can write reverse and mapWith as well. We aren’t being super-strict about emulating combina-

tory logic, we'll use default parameters:

const reverse = (list, delayed = EMPTYLIST) => list(
() => delayed,

(aPair) => reverse(aPair(pairRest), node(aPair(pairFirst))(delayed))

);

print(reverse(1123));
//=> 3 2 1

const mapWith = (fn, list, delayed = EMPTYLIST) =>
list(
() => reverse(delayed),
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(aPair) => mapWith(fn, aPair(pairRest), node(fn(aPair(pairFirst)))(delayed))
);

print(mapWith(x => x * x, reverse(1123)))
//=> 941

We have managed to provide the exact same functionality that === and ?: provided, but using
functions and nothing else.

functions are not the real point

There are lots of similar texts explaining how to construct complex semantics out of functions.
You can establish that K and K(I) can represent true and false, model magnitudes with Church
Numerals’ or Surreal Numbers’”, and build your way up to printing FizzBuzz.

The superficial conclusion reads something like this:

Functions are a fundamental building block of computation. They are “axioms” of
combinatory logic, and can be used to compute anything that JavaScript can compute.

However, that is not the interesting thing to note here. Practically speaking, languages like JavaScript
already provide arrays with mapping and folding methods, choice operations, and other rich
constructs. Knowing how to make a linked list out of functions is not really necessary for the working
programmer. (Knowing that it can be done, on the other hand, is very important to understanding
computer science.)

Knowing how to make a list out of just functions is a little like knowing that photons are the
Gauge Bosons® of the electromagnetic force. It’s the QED of physics that underpins the Maxwell’s
Equations of programming. Deeply important, but not practical when you’re building a bridge.

So what is interesting about this? What nags at our brain as we’re falling asleep after working our
way through this?

a return to backward thinking

To make pairs work, we did things backwards, we passed the first and rest functions to the
pair, and the pair called our function. As it happened, the pair was composed by the vireo (or V
combinator): (x) => (y) => (z) => z(x)(y).

But we could have done something completely different. We could have written a pair that stored
its elements in an array, or a pair that stored its elements in a POJO. All we know is that we can
pass the pair function a function of our own, at it will be called with the elements of the pair.

The exact implementation of a pair is hidden from the code that uses a pair. Here, we’ll prove it:

"®https://en.wikipedia.org/wiki/Church_encoding
"*https://en.wikipedia.org/wiki/Surreal_number
#https://en.wikipedia.org/wiki/Gauge_boson


https://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Surreal_number
https://en.wikipedia.org/wiki/Gauge_boson
https://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Surreal_number
https://en.wikipedia.org/wiki/Gauge_boson
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const first = K,
second = K(I),
pair = (first) => (second) => {
const pojo = {first, second};

return (selector) => selector(pojo.first)(pojo.second);

¥
const latin = pair("primus")("secundus");

latin(first)

//=> "primus"

latin(second)
//=> "secundus"

This is a little gratuitous, but it makes the point: The code that uses the data doesn’t reach in and
touch it: The code that uses the data provides some code and asks the data to do something with it.

The same thing happens with our lists. Here’s 1ength for lists:

const length = (list) => list(
() = o,
(aPair) => 1 + length(aPair(pairRest)))
);

We’re passing 1ist what we want done with an empty list, and what we want done with a list that
has at least one element. We then ask list to do it, and provide a way for 1ist to call the code we
pass in.

We won’t bother here, but it’s easy to see how to swap our functions out and replace them with
an array. Or a column in a database. This is fundamentally not the same thing as this code for the

length of a linked list:

const length = (node, delayed = 0) =>
node === EMPTY
? delayed
length(node.rest, delayed + 1);

The line node === EMPTY presumes a lot of things. It presumes there is one canonical empty list value.
It presumes you can compare these things with the === operator. We can fix this with an isEmpty
function, but now we’re pushing even more knowledge about the structure of lists into the code that
uses them.



Composing and Decomposing Data 169

Having a list know itself whether it is empty hides implementation information from the code
that uses lists. This is a fundamental principle of good design. It is a tenet of Object-Oriented
Programming, but it is not exclusive to OOP: We can and should design data structures to hide
implementation information from the code that use them, whether we are working with functions,
objects, or both.

There are many tools for hiding implementation information, and we have now seen two particularly
powerful patterns:

« Instead of directly manipulating part of an entity, pass it a function and have it call our function
with the part we want.

« And instead of testing some property of an entity and making a choice of our own with ?: (or
if), pass the entity the work we want done for each case and let it test itself.
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Café Diplomatico in Toronto’s Little Italy
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Disclaimer

The recipes are written for practicality, and their implementation may introduce JavaScript features
that haven’t been discussed in the text to this point, such as methods and/or prototypes. The
overall use of each recipe will fit within the spirit of the language discussed so far, even if the
implementations may not.
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mapWith

In JavaScript, arrays have a .map method. Map takes a function as an argument, and applies it to
each of the elements of the array, then returns the results in another array. For example:

[1, 2, 8, 4, 5].map(x => x * x)
J/=> [1, 4, 9, 16, 25]

We could write a function that behaves like the .map method if we wanted:

const map = (list, fn) =>
list.map(fn);

This recipe isn’t for map: It’s for mapWith, a function that wraps around map and turns any other
function into a mapper. mapWith is very simple:*!

const mapWith = (fn) => (list) => list.map(fn);

mapWith differs from map in two ways. It reverses the arguments, taking the function first and the
list second. It also “curries” the function: Instead of taking two arguments, it takes one argument
and returns a function that takes another argument.

That means that you can pass a function tomapwith and get back a function that applies that mapping
to any array. For example, we might need a function to return the squares of an array. Instead of
writing a a wrapper around . map:

const squaresOf = (list) =>
list.map(x => x * x);

squaresOf([1, 2, 3, 4, 5])
J//=> [1, 4, 9, 16, 25]

We can call mapWith in one step:

*1Yes, we also used the name mapWith for working with ordinary collections elsewhere. If we were writing a library of functions, we would
have to disambiguate the two kinds of mapping functions with special names, namespaces, or modules. But for the purposes of discussing
ideas, we can use the same name twice in two different contexts. It’s the same idea, after all.
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const squaresOf = mapWith(n => n * n);

squaresOf([1, 2, 3, 4, 5])
//=> [1, 4, 9, 16, 25]

If we didn’t use mapWith, we’d could have also used callRight with map to accomplish the same
result:

const squaresOf = callRight(map, n => n * n);

squaresOf([1, 2, 3, 4, 5])
//=> [1, 4, 9, 16, 25]

Both patterns take us to the same destination: Composing functions out of common pieces, rather
than building them entirely from scratch. mapwith is a very convenient abstraction for a very
common pattern.

mapWith was suggested by ludicast™

#http://github.com/ludicast
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Flip
We wrote mapWith like this:

const mapWith = (fn) => (list) => list.map(fn);

Let’s consider the case whether we have a map function of our own, perhaps from the allong.es®
library, perhaps from Underscore® . We could write our function something like this:

const mapWith = (fn) => (list) => map(list, fn);

Looking at this, we see we're conflating two separate transformations. First, we're reversing the
order of arguments. You can see that if we simplify it:

const mapWith = (fn, list) => map(list, fn);

Second, we're “currying” the function so that instead of defining a function that takes two
arguments, it returns a function that takes the first argument and returns a function that takes the
second argument and applies them both, like this:

const mapper = (list) => (fn) => map(list, fn);
Let’s return to the implementation of mapwith that relies on a map function rather than a method:
const mapWith = (fn) => (list) => map(list, fn);

We’re going to extract these two operations by refactoring our function to paramaterize map. The
first step is to give our parameters generic names:

const mapWith = (first) => (second) => map(second, first);
Then we wrap the entire thing in a function and extract map

const wrapper = (fn) =>
(first) => (second) => fn(second, first);

What we have now is a function that takes a function and “flips” the order of arguments around,
then curries it. So let’s call it f1ipAndCurry:

#https://github.com/raganwald/allong.es
#http://underscorejs.org
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const flipAndCurry = (fn) =>
(first) => (second) => fn(second, first);

Sometimes you want to flip, but not curry:

const flip = (fn) =>
(first, second) => fn(second, first);

This is gold. Consider how we define mapWith now:
var mapWith = flipAndCurry(map);

Much nicer!

self-currying flip

Sometimes we’ll want to flip a function, but retain the flexibility to call it in its curried form (pass
one parameter) or non-curried form (pass both). We could make that into flip:

const flip = (fn) =>
function (first, second) {

if (arguments.length === 2) {
return fn(second, first);

}

else {

return function (second) {
return fn(second, first);
};
s
¥

Now if we write mapWith = flip(map), we can call mapwith(fn, list) ormapWith(fn)(list), our
choice.

flipping methods

When we learn about context and methods, we’ll see that f1ip throws the current context away, so
it can’t be used to flip methods. A small alteration gets the job done:
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const flipAndCurry = (fn) =>
(first) =>
function (second) {
return fn.call(this, second, first);

const flip = (fn) =>
function (first, second) {
return fn.call(this, second, first);

const flip = (fn) =>
function (first, second) {

if (arguments.length === 2) {

return fn.call(this, second, first);
}
else {

return function (second) {
return fn.call(this, second, first);
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Object.assign

It’s very common to want to “extend” an object by assigning properties to it:

const inventory = {
apples: 12,
oranges: 12

};

inventory.bananas = 54;
inventory.pears = 24;

It’s also common to want to assign the properties of one object to another:

for (let fruit in shipment) {
inventory|[fruit] = shipment[fruit]

Both needs can be met with Ob ject .assign, a standard function. You can copy an object by extending
an empty object:

Object.assign({}, {
apples: 12,
oranges: 12

P
//=> { apples: 12, oranges: 12 }

You can extend one object with another:

const inventory = {
apples: 12,
oranges: 12

¥

const shipment = {
bananas: 54,
pears: 24

Object.assign(inventory, shipment)
//=> { apples: 12,
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/7 oranges: 12,
// bananas: 54,
// pears: 24 }

And when we discuss prototypes, we will use Ob ject.assign to turn this:

const Queue = function () {
this.array = [];
this.head = 0;
this.tail = -1

¥

Queue .prototype.pushTail
/S

b

Queue.prototype.pullHead = function () {
Y/

b

Queue.prototype.isEmpty = function () {
V7

function (value) {

Into this:

const Queue = function () {
Object.assign(this, {
array: [],
head: 0,
tail: -1
)
};

Object.assign(Queue.prototype, {
pushTail (value) {

V/am

1

pullHead () {
VA

3,

isEmpty () {
/)

}

});
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Assigning properties from one object to another (also called “cloning” or “shallow copying”) is a
basic building block that we will later use to implement more advanced paradigms like mixins.
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Why?
This is the canonical Y Combinator?®:

const Y = (f) =>
( x = f(v = x(x)(v)) )
x = f(v = x(x)(v))
);

You use it like this:

const factorial = Y(function (fac) {
return function (n) {
return (n == 0 ? 1 : n * fac(n - 1));
}
1)

factorial(5)
//=> 120

Why? It enables you to make recursive functions without needing to bind a function to a name in
an environment. This has little practical utility in JavaScript, but in combinatory logic it’s essential:
With fixed-point combinators it’s possible to compute everything computable without binding
names.

So again, why include the recipe? Well, besides all of the practical applications that combinators
provide, there is this little thing called The joy of working things out.

There are many explanations of the Y Combinator’s mechanism on the internet, but resist the
temptation to read any of them: Work it out for yourself. Use it as an excuse to get familiar with
your environment’s debugging facility.

One tip is to use JavaScript to name things. For example, you could start by writing:

const Y = (f) => {
const something = x => f(v => x(x)(v));

return something(something);

1

What is this something and how does it work? Another friendly tip: Change some of the fat arrow
functions inside of it into named function expressions to help you decipher stack traces.

Work things out for yourself!

®https://en.wikipedia.org/wiki/Fixed-point_combinator#Example_in_JavaScript
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A Warm Cup: Basic Strings and
Quasi-Literals

er A
2

Coffee and a Book
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An expression is any valid unit of code that resolves to a value.—Mozilla Development
Network: Expressions and operators®

Like most programming languages, JavaScript also has string literals, like ' fubar' or 'fizzbuzz'.
Special characters can be included in a string literal by means of an escape sequence. For example,
the escape sequence \n inserts a newline character in a string literal, like this: ' first line\nsecond

line'.

There are operators that can be used on strings. The most common is +, it concatenates:

"fu' + 'bar'
//=> '"fubar'

String manipulation is extremely common in programming. Writing is a big part of what makes us
human, and strings are how JavaScript and most other languages represent writing.

quasi-literals

JavaScript supports quasi-literal strings, a/k/a “Template Strings” or “String Interpolation Expres-
sions” A quasi-literal string is something that looks like a string literal, but is actually an expression.
Quasi-literal strings are denoted with back quotes, and most strings that can be expressed as literals
have the exact same meaning as quasi-literals, e.g.

“foobar™
//=> 'foobar'

“fizz® + “buzz®

//=> 'fizzbuzz'

Quasi-literals go much further. A quasi-literal can contain an expression to be evaluated. Old-
school lispers call this “unquoting,” the more contemporary term is “interpolation.” An unquoted
expression is inserted in a quasi-literal with ${expression}. The expression is evaluated, and the
result is coerced to a string, then inserted in the quasi-string.

For example:

“A popular number for nerds is ${40 + 2}°

//=> "'A popular number for nerds is 42'

A quasi-literal is computationally equivalent to an expression using +. So the above expression could
also be written:

#https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators
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'"A popular number for nerds is ' + (40 + 2)

//=> "'A popular number for nerds is 42'

However, there is a big semantic difference between a quasi-literal and an expression. Quasi-literals
are expressions that resemble their result. They’re easier to read and it’s easier to avoid errors like
the following:

"A popular number for nerds is' + (40 + 2)

//=> 'A popular number for nerds 1s42’'

evaluation time

Like any other expression, quasi-literals are evaluated late, when that line or lines of code is
evaluated.

So for example,

const name = "Harry";
const greeting = (name) => “Hello my name is ${name}";

greeting('Arthur Dent')
//=> 'Hello my name is Arthur Dent'

JavaScript evaluates the quasi-literal when the function is invoked and the quasi-literal inside the
function’s body is evaluated. Thus, name is not bound to "Harry", it is bound to 'Arthur Dent', the
value of the parameter when the function is invoked.

This is exactly what we’d expect if we’d written it like this:

const greeting = (name) => 'Hello my name is ' + name;

greeting('Arthur Dent')
//=> '"Hello my name is Arthur Dent'
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Life measured out by coffee spoons

So far, we have discussed what many call “pure functional” programming, where every expression
is necessarily idempotent®”, because we have no way of changing state within a program using the
tools we have examined.

We’ve also explored functions that rebind names within themselves as part of performing their
calculations. And we briefly touched upon the notion of mutating an object as part of building it.
But we have avoided objects that are meant to be changed, objects that model state.

It’s time to change everything.

#https://en.wikipedia.org/wiki/ldempotence
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Encapsulating State with Closures

OOP to me means only messaging, local retention and protection and hiding of state-
process, and extreme late-binding of all things.—Alan Kay®*®

We’re going to look at encapsulation using JavaScript’s functions and objects. We’re not going to
call it object-oriented programming, mind you, because that would start a long debate. This is just
plain encapsulation,®” with a dash of information-hiding.

what is hiding of state-process, and why does it matter?

In computer science, information hiding is the principle of segregation of the design
decisions in a computer program that are most likely to change, thus protecting other
parts of the program from extensive modification if the design decision is changed. The
protection involves providing a stable interface which protects the remainder of the
program from the implementation (the details that are most likely to change).

Written another way, information hiding is the ability to prevent certain aspects of a class
or software component from being accessible to its clients, using either programming
language features (like private variables) or an explicit exporting policy.

-Wikipedia™

Consider a stack’® data structure. There are three basic operations: Pushing a value onto the top
(push), popping a value off the top (pop), and testing to see whether the stack is empty or not
(isEmpty). These three operations are the stable interface.

Many stacks have an array for holding the contents of the stack. This is relatively stable. You could
substitute a linked list, but in JavaScript, the array is highly efficient. You might need an index, you
might not. You could grow and shrink the array, or you could allocate a fixed size and use an index
to keep track of how much of the array is in use. The design choices for keeping track of the head
of the list are often driven by performance considerations.

If you expose the implementation detail such as whether there is an index, sooner or later some
programmer is going to find an advantage in using the index directly. For example, she may need
to know the size of a stack. The ideal choice would be to add a size function that continues to hide
the implementation. But she’s in a hurry, so she reads the index directly. Now her code is coupled to
the existence of an index, so if we wish to change the implementation to grow and shrink the array,
we will break her code.

#http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en

#9“A language construct that facilitates the bundling of data with the methods (or other functions) operating on that data”-Wikipedia
*https://en.wikipedia.org/wiki/Information_hiding

*https://en.wikipedia.org/wiki/Stack _
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The way to avoid this is to hide the array and index from other code and only expose the operations
we have deemed stable. If and when someone needs to know the size of the stack, we’ll add a size
function and expose it as well.

Hiding information (or “state”) is the design principle that allows us to limit the coupling between
components of software.

how do we hide state using javascript?

We’ve been introduced to JavaScript’s objects, and it’s fairly easy to see that objects can be used to
model what other programming languages call (variously) records, structs, frames, or what-have-
you. And given that their elements are mutable, they can clearly model state.

Given an object that holds our state (an array and an index’?), we can easily implement our three
operations as functions. Bundling the functions with the state does not require any special “magic”
features. JavaScript objects can have elements of any type, including functions.

To make our stack work, we need a way for our functions to refer to our stack. We’ll do that by
making sure it has a name. We can do that with an ITFE:

const stack = (() => {
const obj = {
array: [],
index: -1,

push (value) {
return obj.array[obj.index += 1] = value
),

pop () {
const value = obj.array[obj.index];

obj.array[obj.index] = undefined;
if (obj.index >= 0) {

obj.index -=1
}

return value

},
isEmpty () {
return obj.index < 0

}
};

return obj;

NO;

°?Yes, there’s another way to track the size of the array, but we don’t need it to demonstrate encapsulation and hiding of state.
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stack.isEmpty()
//=> true
stack.push('hello')
//=> 'hello'
stack.push('JavaScript')
//=> '"JavaScript'
stack.isEmpty()
//=> false
stack.pop()
//=> 'JavaScript'
stack.pop()
//=> 'hello'
stack.isEmpty()
//=> true

method-ology

187

In this text, we lurch from talking about “functions that belong to an object” to “methods.” Other
languages may separate methods from functions very strictly, but in JavaScript every method is a

function, but not all functions are methods.

The view taken in this book is that a function is a method of an object if it belongs to that object and
interacts with that object in some way. So the functions implementing the operations on the stack

are all absolutely methods of the stack.

But these two wouldn’t be methods. Although they “belong” to an object, they don’t interact with

it:

min: (x, y) =>
x <y 7x 1y
max: (x, y) =>

X>y ?7x .y

hiding state

Our stack does bundle functions with data, but it doesn’t hide its state. “Foreign” code could interfere

with its array or index. So how do we hide these? We already have a closure, let’s use it:
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const stack = (() => {
let array = [],
index = -1;

!

const obj = {
push (value) { return array[index += 1] = value },

pop () {
const value = array[index];

array[index] = undefined;
if (index >= 0) {
index -= 1
}
return value
},
isEmpty () { return index < 0 }
¥

return obj;

HO;

stack.isEmpty()
//=> true
stack.push('hello')
//=> 'hello'
stack.push('JavaScript')
//=> '"JavaScript'
stack.isEmpty()
//=> false
stack.pop()
//=> "JavaScript'
stack.pop()
//=> 'hello'
stack.isEmpty()
//=> true
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Coffee DOES grow on trees

We don’t want to repeat this code every time we want a stack, so let’s make ourselves a “stack
maker” The temptation is to wrap what we have above in a function:

const Stack = () =>

() = {
let array = [],
index = -1;
const obj = {
push (value) { return array[index += 1] = value },
pop () {

const value = array[index];

array[index] = undefined;
if (index >= 0) {

index -= 1
}

return value

3
isEmpty () { return index < 0 }

};

return obj;

NO;

But there’s an easier way :-)
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const Stack = () => {
const array = [];
let index = -1;

return {
push (value) { return array[index += 1] = value },

pop () {
const value = array[index];

array[index] = undefined;
if (index >= 0) {

index -= 1
}

return value

H
isEmpty () { return index < 0 }

const stack = Stack();
stack.push("Hello");
stack.push("Good bye");

stack.pop()

//=> "Good bye"
stack.pop()

//=> "Hello"

Now we can make stacks freely, and we’ve hidden their internal data elements. We have methods
and encapsulation, and we’ve built them out of JavaScript’s fundamental functions and objects. In
Constructors and Classes, we'll look at JavaScript’s support for class-oriented programming and
some of the idioms that functions bring to the party.

is encapsulation “object-oriented?”

We’ve built something with hidden internal state and “methods,” all without needing special def or
private keywords. Mind you, we haven’t included all sorts of complicated mechanisms to support
inheritance, mixins, and other opportunities for debating the nature of the One True Object-Oriented
Style on the Internet.

Then again, the key lesson experienced programmers repeat—although it often falls on deaf ears—is
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Composition instead of Inheritance® So maybe we aren’t missing much.

*http://www.c2.com/cgi/wiki?CompositionInsteadOfInheritance
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Composition and Extension

composition

A deeply fundamental practice is to build components out of smaller components. The choice of how
to divide a component into smaller components is called factoring, after the operation in number
theory *°.

The simplest and easiest way to build components out of smaller components in JavaScript is also
the most obvious: Each component is a value, and the components can be put together into a single
object or encapsulated with a closure.

Here’s an abstract “model” that supports undo and redo composed from a pair of stacks (see
Encapsulating State), and a Plain Old JavaScript Object:

We can set and get attributes on a model

// helper function
//
// For production use, consider what to do about
// deep copies and own keys
const shallowCopy = (source) => {
const dest = {};

for (let key in source) {
dest[key] = sourcelkey]

}

return dest

};

const Stack = () => {
= [

let index = -1;

const array

return {
push (value) {
array[index += 1] = value
1

pop () {
let value = array[index];

if (index >= 0) {
index -= 1

**And when you take an already factored component and rearrange things so that it is factored into a different set of subcomponents
without altering its behaviour, you are refactoring.
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}
return value

H

isEmpty () {
return index < 0

const Model = function (initialAttributes) {
const redoStack = Stack();
let attributes = shallowCopy(initialAttributes || {});

const undoStack = Stack(),
obj = {
set: (attrsToSet) => {

undoStack .push(shallowCopy(attributes));

if (!redoStack.isEmpty()) {
redoStack.length = 0;

}

for (let key in (attrsToSet || {})) {
attributes[key] = attrsToSet[key]

}

return obj
1,
undo: () => {
if (!undoStack.isEmpty()) {
redoStack . push(shallowCopy(attributes));
attributes = undoStack.pop()
}

return obj
},
redo: () => {
if (!redoStack.isEmpty()) {
undoStack . push(shallowCopy(attributes));
attributes = redoStack.pop()
}

return obj
1
get: (key) => attributes[key],
has: (key) => attributes.hasOwnProperty(key),
attributes: () => shallowCopy(attributes)
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return obj

};

const model = Model();
model .set({"Doctor": "de Grasse"});
model .set({"Doctor": "Who"});
model .undo()
model .get("Doctor")
//=> "de Grasse"

The techniques used for encapsulation work well with composition. In this case, we have a “model”
that hides its attribute store as well as its implementation that is composed of an undo stack and
redo stack.

extension

Another practice that many people consider fundamental is to extend an implementation. Meaning,
they wish to define a new data structure in terms of adding new operations and semantics to an
existing data structure.

Consider a queue’:

const Queue = () => {
let array = [],
head = 0,
tail = -1;
return {

pushTail: (value) => array[++tail] = value,
pullHead: () => {
if (tail >= head) {
const value = array[head];

array[head] = undefined;
++head;
return value
}
}
isEmpty: () => tail < head

}
};

**http://duckduckgo.com/Queue_
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const queue = Queue();
queue.pushTail("Hello");
queue.pushTail("JavaScript");
queue.pushTail("Allongé");

queue.pullHead()
//=> "Hello"

queue.pullHead()
//=> "JavaScript"

195

Now we wish to create a deque”® by adding pullTail and pushHead operations to our queue.’
Unfortunately, encapsulation prevents us from adding operations that interact with the hidden data

structures.

This isn’t really surprising: The entire point of encapsulation is to create an opaque data structure
that can only be manipulated through its public interface. The design goals of encapsulation and

extension are always going to exist in tension.

Let’s “de-encapsulate” our queue:

const Queue = function () {
const queue = {

array: [],

head: 0,

tail: -1,

pushTail: (value) =>
queue.array[++queue.tail] = value,

pullHead: () => {
if (queue.tail >= queue.head) {

const value = queue.array[queue.head];

queue.array[queue.head] = undefined;

queue.head += 1;
return value
}
}
isEmpty: () =>
queue.tail < queue.head
¥
return queue
b

**https://en.wikipedia.org/wiki/Double-ended_queue

“Before you start wondering whether a deque is-a queue, we said nothing about types and classes. This relationship is called was-a, or

“implemented in terms of a
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Now we can extend a queue into a deque:

const extend = function (consumer, ...providers) {
for (let i = 0; i < providers.length; ++i) {

const provider = providers[i];

for (let key in provider) {
if (provider.hasOwnProperty(key)) {
consumer [key] = provider [key]

}

return consumer

¥

const Dequeue = function () {
const deque = Queue(),
INCREMENT = 4;

return Object.assign(deque, {
size: () => deque.tail - deque.head + 1,
pullTail: () => {
if (!deque.isEmpty()) {
const value = deque.array[deque.tail];

deque.array[deque.tail] = undefined;
deque.tail -=1;
return value

}
}
pushHead: (value) => {
if (deque.head === 0) {
for (let i = deque.tail; i <= deque.head; i++) {
deque.array[i + INCREMENT] = deque.array[i]
}
deque.tail += INCREMENT
deque.head += INCREMENT
1
return deque.array[deque.head -= 1] = value
}

})
};

Presto, we have reuse through extension, at the cost of encapsulation.



Stir the Allongé: Objects and State 197

encapsulation resists breakage but can also be difficult to refactor in other ways. Be mindful
of when it’s best to Compose and when it’s best to Extend.

P Encapsulation and Extension exist in a natural state of tension. A program with elaborate
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This and That

Let’s take another look at extensible objects. Here’s a Queue:

const Queue = () => {
const queue = {
array: [],
head: O,
tail: -1,
pushTail (value) {
return queue.array[++queue.tail] = value
3
pullHead () {
if (queue.tail >= queue.head) ({
const value = queue.array[queue.head];

queue.array[queue.head] = undefined;
queue.head += 1;
return value
}
},
isEmpty () {
return queue.tail < queue.head;
}
¥
return queue

};
const queue = Queue();

queue.pushTail('Hello');
queue.pushTail('JavaScript');

Let’s make a copy of our queue using Object.assign:

const copyOfQueue = Object.assign({}, queue);

queue !== copyOfQueue
//=> true

Wait a second. We know that array values are references. So it probably copied a reference to the
original array. Let’s make a copy of the array as well:
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copyOfQueue.array = [];
for (let i = 0; i < 2; ++i) {

copyOfQueue.array[i] = queue.array[i]

Now let’s pull the head off the original:

queue.pul lHead()
//=> 'Hello'

If we've copied everything properly, we should get the exact same result when we pull the head off
the copy:

copyOfQueue.pullHead()
//=> 'JavaScript'

What!? Even though we carefully made a copy of the array to prevent aliasing, it seems that our two
queues behave like aliases of each other. The problem is that while we’ve carefully copied our array
and other elements over, the closures all share the same environment, and therefore the functions in
copyOfQueue all operate on the first queue’s private data, not on the copies.

This is a general issue with closures. Closures couple functions to environments, and that makes them
very elegant in the small, and very handy for making opaque data structures. Alas, their strength
in the small is their weakness in the large. When you’re trying to make reusable components, this
coupling is sometimes a hindrance.

Let’s take an impossibly optimistic flight of fancy:

const AmnesiacQueue = () =>
({

array: [],
head: O,
tail: -1,
pushTail (myself, value) {

return myself.array[myself.tail += 1] = value
}
pullHead (myself) {

if (myself.tail >= myself.head) {

let value = myself.array[myself.head];
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myself.array[myself.head] = void 0;
myself.head += 1;
return value
}
},
isEmpty (myself) {
return myself.tail < myself.head
}
1)

const queueWithAmnesia = AmnesiacQueue();

queueWithAmnesia.pushTail (queueWithAmnesia, 'Hello');
queueWithAmnesia.pushTail (queueWithAmnesia, 'JavaScript');
queueWithAmnesia.pullHead(queueWithAmnesia)

//=> "Hello"

The AmnesiacQueue makes queues with amnesia: They don’t know who they are, so every time we
invoke one of their functions, we have to tell them who they are. You can work out the implications
for copying queues as a thought experiment: We don’t have to worry about environments, because
every function operates on the queue you pass in.

The killer drawback, of course, is making sure we are always passing the correct queue in every
time we invoke a function. What to do?

what's all this?

Any time we must do the same repetitive thing over and over and over again, we industrial humans
try to build a machine to do it for us. JavaScript is one such machine. When we write a function
expression using the compact method syntax (or use the function keyword instead of the fat
arrow), and then invoke that function using . notation, JavaScript binds the “receiver” of a “method
invocation” to the special name this.

Our AmnesiacQueue already uses compact method notation. So, we’ll remove myself from the
parameter list, and rename it to this within the body of each function:
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const BetterQueue = () =>
({

array: [],
head: O,
tail: -1,
pushTail (value) {

return this.array[this.tail += 1] = value
3
pullHead () {

if (this.tail >= this.head) {

let value = this.array[this.head];

this.array[this.head] = undefined;
this.head += 1;
return value
}
}
iskmpty () {
return this.tail < this.head
}
1)

Now we are relying on JavaScript to set the value of this whenever we invoke one of these functions
using the . or [ and ] operators.

In other words, when we write:

const betterQueue = BetterQueue();

betterQueue.pushTail('Hello');
betterQueue.pushTail('JavaScript');
betterQueue.pullHead()

We expect that JavaScript will invoke the functions we’ve bound to pushTail and pullHead, and
automatically bind betterQueue to the name this within them. And indeed it does: Every time you
invoke a function that is a member of an object, JavaScript binds that object to the name this in the
environment of the function just as if it was an argument.”’

Now, does this solve our original problem? Can we make copies of an object? Recall that the problem
was that when we used a closure for private data, copying references to an object’s functions meant
that we were using functions that still referred to the original closure, and therefore shared the same
private data.

*"JavaScript also does other things with this as well, but this is all we care about right now.
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Now our functions refer to members of the object, and use this to ensure that they are referring to
the object receiving a message. Let’s see if this does, indeed, allow us to copy objects:

const copyOfQueue = Object.assign({}, betterQueue)
copyOfQueue.array []
for (let i = 0; 1 < 2; ++i) {

copyOfQueue.array[i] = betterQueue.array[i]

}

betterQueue.pullHead()
//=> 'Hello'

copyOfQueue.pullHead()
//=> 'Hello'

Presto, we now have a way to copy arrays. By getting rid of the closure and taking advantage of
this, we have functions that are more easily portable between objects, and the code is simpler as
well. This is very important. Being able to copy objects is an example of a larger concern: Being able
to share functions between objects. That’s how classes work. That’s how extending objects works.
Being able to share functions means being able to compose and reuse functionality.

There is more to this than we've discussed here. We’ll explore things in more detail later, in What
Context Applies When We Call a Function?.

Closures tightly couple functions to the environments where they are created limiting their
flexibility. Using this alleviates the coupling. Copying objects is but one example of where
that flexibility is needed.
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What Context Applies When We Call a Function?

In This and That, we learned that when a function is denoted using the function keyword, and
is called as an object method, the name this is bound in its environment to the object acting as a
“receiver.” For example:

const someObject = {
returnMyThis () {
return this;
}
¥

someOb ject.returnMyThis() === someObject
//=> true

We’ve constructed a method that returns whatever value is bound to this when it is called. It returns
the object when called, just as described.

it's all about the way the function is called

JavaScript programmers talk about functions having a “context” when being called. this is bound
to the context.”® The important thing to understand is that the context for a function being called is
set by the way the function is called, not the function itself.

This is an important distinction. Consider closures: As we discussed in Closures and Scope, a
function’s free variables are resolved by looking them up in their enclosing functions’ environments.
You can always determine the functions that define free variables by examining the source code of
a JavaScript program, which is why this scheme is known as Lexical Scope.

A function’s context cannot be determined by examining the source code of a JavaScript program.
Let’s look at our example again:

°*Too bad the language binds the context to the name this instead of the name context!
*’https://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scoping
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const someObject = {
someFunction () {
return this;
}
1

someOb ject .someFunction() === someObject
//=> true
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What is the context of the function someOb ject . someFunction? Don’t say someOb ject! Watch this:

const someFunction = someObject.someFunction;

someFunction === someObject.someFunction
//=> true

someFunction() === someObject
//=> false

It gets weirder:

const anotherObject = {
someFunction: someObject.someFunction

}

anotherOb ject.someFunction === someOb ject.someFunction
//=> true

anotherOb ject.someFunction() === anotherObject
//=> true

anotherOb ject.someFunction() === someObject
//=> false

So it amounts to this: The exact same function can be called in two different ways, and you end up
with two different contexts. If you call it using someObject .someFunction() syntax, the context is
set to the receiver. If you call it using any other expression for resolving the function’s value (such

as someFunction()), you get something else.

Let’s investigate:
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(someOb ject.someFunction)() == someObject
//=> true

someObject [ 'someFunction']() === someObject
//=> true

const name = 'someFunction';

someObject[name] () === someObject
//=> true

Interesting!

let baz;

(baz = someObject.someFunction)() === this
//=> true

How about:

const arr = [ someObject.someFunction ];

arr[0]() == arr
//=> true

It seems that whether you usea.b() ora['b']() ora[n]() or (a.b)(), you get context a.

const returnThis = function () { return this };

const aThirdObject = {
someFunction () {
return returnThis()

}
}
returnThis() === this
//=> true
aThirdObject.someFunction() === this
//=> true

And if youdon’tusea.b() ora['b']() ora[n]() or (a.b)(), you get the global environment for a
context, not the context of whatever function is doing the calling. To simplify things, when you call a
function with . or [] access, you get an object as context, otherwise you get the global environment.
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setting your own context

There are actually two other ways to set the context of a function. And once again, both are
determined by the caller. At the very end of objects everywhere?, we’ll see that everything in
JavaScript behaves like an object, including functions. We’ll learn that functions have methods
themselves, and one of them is call.

Here’s call in action:

returnThis() === aThirdObject
//=> false

returnThis.call(aThirdObject) === aThirdObject
//=> true

anotherObject.someFunction.call(someObject) === someObject
//=> true

When You call a function with call, you set the context by passing it in as the first parameter. Other
arguments are passed to the function in the normal manner. Much hilarity can result from call
shenanigans like this:

const a = [1,2,3],
b = [4,5,6];

a.concat([2,1])
//=>[1,2,3,2,1]

a.concat.call(b,[2,1])
//=> [4,5,6,2,1]

But now we thoroughly understand what a.b() really means: It’s synonymous with a.b.call(a).
Whereas in a browser, ¢() is synonymous with c.call(window).

arguments

JavaScript has another automagic binding in every function’s environment. arguments is a special
object that behaves a little like an array.**

For example:

1%yst enough to be frustrating, to be perfectly candid!
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const third = function () {

return arguments[2]

}
third(77, 76, 75, 74, 73)
//= 75
Gathering arguments with ... accomplishes most of the use cases people have for using the

arguments special binding, and in addition, gathering works with both fat arrows and with the
function keyword, whereas arguments only works with the function keyword.

There are a few things that arguments can do that gathering cannot do, for example if you declare a
function with function (a, b, ¢) { ... },arguments holds the arguments passed to the function
even though you haven’t declared a parameter to be gathered. It works alongside the declared
parameters.

But by and large, we will gather parameters in this book.

application and contextualization

Hold that thought for a moment. JavaScript also provides a fourth way to set the context for a
function. apply is a method implemented by every function that takes a context as its first argument,

and it takes an array or array-like thing of arguments as its second argument. That’s a mouthful,
let’s look at an example:

third.call(this, 1,2,3,4,5)
//=> 3

third.apply(this, [1,2,3,4,5])
//=> 3

Now let’s put the two together. Here’s another travesty:

const a = [1,2,3],
accrete = a.concat;

accrete([4,5])
//=> Gobbledygook!

We get the result of concatenating [4,5] onto an array containing the global environment. Not what
we want! Behold:
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const contextualize = (fn, context) =>
(...args) =>
fn.apply(context, args)

const accrete2 = contextualize(a.concat, a);
accrete2([4,5]);
//:> [ 1/ 2/ 3/ 4/ 5 ]

Our contextualize function returns a new function that calls a function with a fixed context. It can
be used to fix some of the unexpected results we had above. Consider:

var aFourthObject = {},
returnThis = function () { return this; };

aFourthOb ject.uncontextualized = returnThis;
aFourthObject.contextualized = contextualize(returnThis, aFourthObject);

aFourthObject.uncontextualized() === aFourthObject
//=> true

aFourthObject.contextualized() === aFourthObject
//=> true

Both are true because we are accessing them with aFourthobject. Now we write:

var uncontextualized = aFourthObject.uncontextualized,
contextualized = aFourthObject.contextualized;

uncontextualized() === aFourthObject;
//=> false

contextualized() === aFourthObject
//=> true

When we call these functions without using aFourthObject., only the contextualized version
maintains the context of aFourthObject.

We'll return to contextualizing methods later, in Binding. But before we dive too deeply into special
handling for methods, we need to spend a little more time looking at how functions and methods
work.
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Method Decorators

In function decorators, we learned that a decorator takes a function as an argument, returns a
function, and there’s a semantic relationship between the two. If a function is a verb, a decorator is
an adverb.

Decorators can be used to decorate methods provided that they carefully preserve the function’s
context. For example, here is a naive version of maybe for one argument:

1l
v

const maybe = (fn)

X => x != null ? fn(x) : x;
We use it like this:

const plusl = x => x + 1;

plus1(1)

//=> 2
plus1(0)

//=> 1
plusi(null)

//=> 1
plusi1(undefined)

//=> null

const maybePlus1 = maybe(plusi);

maybePlus1 (1)

//=> 2
maybePlus1(0)

//=> 1
maybePlus1(null)

//=> null
maybePlusi (undefined)

//=> undefined

This version doesn’t preserve the context, so it can’t be used as a method decorator. Instead, we have
to convert the decoration from a fat arrow to a function function:
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const maybe = (fn) =>
function (x) {
return x != null ? fn(x) : x;

};
And then use .call to preserve this:

const maybe = (fn) =>

function (x) {

return x != null ? fn.call(this, x)

};
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Now that we have a “proper function,” we can also handle variadic functions and methods. This

variation only invokes the decorated function if none of the arguments are null or undefined:

const maybe = (fn) =>
function (...args) {

for (const i in args) {

if (args[i] == null) return args[i];

}
return fn.apply(this, args);

};

But back to basics. As long as we are correctly preserving this by one, using a function, and two,

invoking the decorated function with .call(this,

methods as well as functions.

Now we can write things like:

const someObject = {

setSize: maybe(function (size) {

this.size = size;

P

And this is correctly set:

...) or .apply(this,

...), we can decorate
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someOb ject.setSize(5);
someOb ject
//=> { setSize: [Function], size: 5 }

someObject.setSize(null);
someOb ject
//=> { setSize: [Function], size: 5 }

Using .call or .apply and arguments is substantially slower than writing function decorators that
don’t set the context, so it might be right to sometimes write function decorators that aren’t usable
as method decorators. However, in practice you’re far more likely to introduce a defect by failing to
pass the context through a decorator than by introducing a performance pessimization, so the default
choice should be to write all function decorators in such a way that they are “context agnostic.”

In some cases, there are other considerations to writing a method decorator. If the decorator
introduces state of any kind (such as once and memoize do), this must be carefully managed for
the case when several objects share the same method through the mechanism of the prototype or
through sharing references to the same function.
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Summary

p Objects, Mutation, and State

« State can be encapsulated/hidden with closures.
Encapsulations can be aggregated with composition.
Encapsulation resists extension.

The automagic binding this facilitates sharing of functions.
» Functions can be named and declared with a name.



Recipes with Objects, Mutations, and
State

The Intestines of an Espresso Machine

Disclaimer

The recipes are written for practicality, and their implementation may introduce JavaScript features
that haven’t been discussed in the text to this point, such as methods and/or prototypes. The
overall use of each recipe will fit within the spirit of the language discussed so far, even if the

implementations may not.
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Memoize

Consider that age-old interview quiz, writing a recursive fibonacci function (there are other ways to
derive a fibonacci number, of course). Here’s an implementation that doesn’t use a named function
expression. The reason for that omission will be explained later:

const fibonacci = (n) =>
n < 2
7 n
fibonacci(n-2) + fibonacci(n-1);

[0,1,2,8,4,5,6,7,8] .map(fibonacci)
//=> [0,1,1,2,3,5,8,13,21]

We'll time it:

s = (new Date()).getTime()

fibonacci (45)

( (new Date()).getTime() - s ) / 1000
//=> 15.194

Why is it so slow? Well, it has a nasty habit of recalculating the same results over and over and over
again. We could rearrange the computation to avoid this, but let’s be lazy and trade space for time.
What we want to do is use a lookup table. Whenever we want a result, we look it up. If we don’t
have it, we calculate it and write the result in the table to use in the future. If we do have it, we
return the result without recalculating it.

Here’s our recipe:

const memoized = (fn) => {
const lookupTable = {};

return function (...args) {
const key = JSON.stringify(this, args);

return lookupTable[key] || (lookupTable[key] = fn.apply(this, args));

}

We can apply memoized to a function and we will get back a new function that “memoizes” its
results so that it never has to recalculate the same value twice. It only works for functions that are
“idempotent,” meaning functions that always return the same result given the same argument(s).
Like fibonacci:

Let’s try it:
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const fastFibonacci = memoized(
(n) =>
n <2
7 n
fastFibonacci(n-2) + fastFibonacci(n-1)

);

fastFibonacci(45)
//=> 1134903170

We get the result back instantly. It works! You can use memoize with all sorts of “idempotent” pure
functions. by default, it works with any function that takes arguments which can be transformed
into JSON using JavaScript’s standard library function for this purpose.

If you have another strategy for turning the arguments into a string key, we’ll need to make a version
that allows you to supply an optional keymaker function:

const memoized = (fn, keymaker = JSON.stringify) => {
const lookupTable = {};

return function (...args) {

const key = keymaker.apply(this, args);

return lookupTable[key] || (lookupTable[key] = fn.apply(this, args));

memoizing recursive functions

We deliberately picked a recursive function to memoize, because it demonstrates a pitfall when
combining decorators with named functional expressions. Consider this implementation that uses
a named functional expression:
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var fibonacci = function fibonacci (n) {

if (n < 2) {
return n

}

else {

return fibonacci(n-2) + fibonacci(n-1)

If we try to memoize it, we don’t get the expected speedup:

var fibonacci = memoized( function fibonacci (n) {
if (n < 2) {
return n
}
else {
return fibonacci(n-2) + fibonacci(n-1)
}
1)

That’s because the function bound to the name fibonacci in the outer environment has been
memoized, but the named functional expression binds the name fibonacci inside the unmemoized
function, so none of the recursive calls to fibonacci are ever memoized. Therefore we must write:

var fibonacci = memoized( function (n) {

if (n < 2) {
return n

}

else {

return fibonacci(n-2) + fibonacci(n-1)

}
});

If we need to prevent a rebinding from breaking the function, we’ll need to use the module pattern.
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getWith

getWith is a very simple function. It takes the name of an attribute and returns a function that
extracts the value of that attribute from an object:

const getWith = (attr) => (object) => object[attr]
You can use it like this:
const inventory = {

apples: 0,

oranges: 144,

eggs: 36
};

getWith('oranges')(inventory)
//=> 144

This isn’t much of a recipe yet. But let’s combine it with mapWith:
const inventories = |

{ apples: @, oranges: 144, eggs: 36 },

{ apples: 240, oranges: 54, eggs: 12 },

{ apples: 24, oranges: 12, eggs: 42 }
1;

mapWith(getWith('oranges'))(inventories)
J/=> [ 144, 54, 12 ]

That’s nicer than writing things out “longhand:”

mapWith((inventory) => inventory.oranges)(inventories)
J/=> [ 144, 54, 12 ]

getWith plays nicely with maybe as well. Consider a sparse array. You can use:
mapWith(maybe(getWith('oranges')))

To get the orange count from all the non-null inventories in a list.

what’s in a name?

Why is this called getwith? Consider this function that is common in languages that have functions
and dictionaries but not methods:
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const get = (object, attr) => object[attr];

You might ask, “Why use a function instead of just using []?” The answer is, we can manipulate
functions in ways that we can’t manipulate syntax. For example, do you remember from flip that
we can define mapwith from map?

var mapWith = flip(map);
We can do the same thing with getWwith, and that’s why it’s named in this fashion:

var getWith = flip(get)
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pluckWith
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This pattern of combining mapWith and getWith is very frequent in JavaScript code. So much so,

that we can take it up another level:
const pluckWith = (attr) => mapWith(getWith(attr));
Or even better:

const pluckWith = compose(mapWith, getWith);

And now we can write:

const inventories = |
{ apples: 0, oranges: 144, eggs: 36 },
{ apples: 240, oranges: 54, eggs: 12 },
{ apples: 24, oranges: 12, eggs: 42 }
1;

pluckWith('eggs')(inventories)
//=> [ 36, 12, 42 ]

Libraries like Underscore'* provide pluck, the flipped version of pluckWith:

_.pluck(inventories, 'eggs')
J/=> [ 36, 12, 42 ]

Our recipe is terser when you want to name a function:

const eggsByStore = pluckWith('eggs');

VS.

const eggsByStore = (inventories) =>
_.pluck(inventories, 'eggs');

And of course, if we have pluck we can use flip to derive pluckWith:

19http://underscorejs.org
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const pluckWith = flip(_.pluck);
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Deep Mapping

mapWith is an excellent tool, but from time to time you will find yourself working with arrays that
represent trees rather than lists. For example, here is a partial list of sales extracted from a report of
some kind. It’s grouped in some mysterious way, and we need to operate on each item in the report.

const report =

[ [ { price: 1.99, id: 1 },
{ price: 4.99, id: 2 },
{ price: 7.99, id: 3 1},
{ price: 1.99, id: 4 },
{ price: 2.99, id: 5 },
{ price: 6.99, id: 6 } ],
[ { price: 5.99, id: 21 },
{ price: 1.99, id: 22 },
{ price: 1.99, id: 23 1},
{ price: 1.99, id: 24 },
{ price: 5.99, id: 25 } ],
V7
[ { price: 7.99, id: 221 },
{ price: 4.99, id: 222 },
{ price: 7.99, id: 223 },
{ price: 10.99, id: 224 },
{ price: 9.99, id: 225 },
{ price: 9.99, id: 226 } ] 1;

We could nest some mapWiths, but we humans are tool users. If we can use a stick to extract tasty
ants from a hole to eat, we can automate working with arrays:

const deepMapWith = (fn) =>
function innerdeepMapWith (tree) {
return Array.prototype.map.call(tree, (element) =>
Array.isArray(element)
? innerdeepMapWith(element)
fn(element)
)i
¥

And now we can use deepMapWith on a tree the way we use mapWith on a flat array:
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deepMapWith(getWith('price'))(report)
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We’ll have another look at trees of data when we look at Treelterators for Collections.
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The Coffee Factory: “Object-Oriented
Programming”

Programming with objects and classes began in Norway in the late 1960s with the Simula'®?

programming language. Its creators, Ole-Johan Dahl and Kristen Nygaard, did not use those words
to describe what would eventually become the dominant paradigm in computing.

A decade later, Dr. Alan Kay coined the phrase “Object-Oriented Programming” along with co-
creating the Smalltalk'® programming language. He has famously said that to him, “OOP” was
objects communicating with each other using messages, and that other languages copied the things
that didn’t matter from Smalltalk, and ignored the things he thought did matter.

Since that time, languages have either bolted object-ish ideas on top of their existing paradigms
(like Object Pascal'** and OCaml'*), baked them in alongside other paradigms (like JavaScript), or
embraced objects wholeheartedly.

That being said, there really is no one definition of “object-oriented.” For one thing, there is no one
definition of “object.”

objects

Some languages, like Smalltalk and Ruby'®, treat an object as a fully encapsulated entity. There is
no access to an object’s private state, all you can do is invoke one of its methods. Other languages,
like Java, permit objects to access each other’s state.

Some languages (again, like Java) have very rigid objects and classes, it is impossible or awkward to
add new methods or properties to objects at run time. Some are flexible about adding methods and
properties at run time. And yet other languages treat objects as dictionaries, where properties and
even methods can be added, modified, or removed with abandon.

So we can see that the concept of “object” is flexible across languages.

classes

The concept of “class” is also flexible across languages. Object-oriented languages do not uniformly
agree on whether classes are necessary, much less how they work. For example, The Common Lisp

19%https://en.wikipedia.org/wiki/Simula
19https://en.wikipedia.org/wiki/Smalltalk
1%https://en.wikipedia.org/wiki/Object_Pascal
%https://en.wikipedia.org/wiki/OCaml
1%https://en.wikipedia.org/wiki/Ruby_
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Object System defines behaviour with classes, and it also defines behaviour with generic functions.
The Self*” and NewtonScript'*® languages have prototypes instead of classes.

So some “O0” languages have objects, but not classes.

C++ has classes, but they are not “first-class entities.” You can’t assign a class to a variable or pass
it to a function. You can, however, manipulate the constructors for classes, the functions that make
new objects. But you can’t manipulate those constructors to change the behaviour of objects that
have already been constructed, instance behaviour is early-bound by default.

Ruby has classes, and they’re first-class entities. You can ask an object for its class, you can put a
class in a variable, pass it to a method, or return it from a method, just like every other entity in the
language. Classes in Ruby and Smalltalk even have their own class, they are instances of Class!'*
Instance behaviour is late-bound and open for extension.'*’

constructors

Some languages allow programs to construct objects independently, others (notably those that are
heavily class-centric) require that objects always be constructed by their classes. Some languages
allow any function or method to be used as a constructor, others require a special syntax or
declaration for constructors.

prototypes are not classes

Prototypical languages like Self and NewtonScript eschew classes altogether, using prototypes to
define common behaviour for a set of objects. The difference between a prototype and a class is
similar to the difference between a model home and a blueprint for a home.

You can say to a builder, “make me a home just like that model home,” and the builder makes you a
home that has a lot in common with the model home. You then decorate your home with additional
personalization. But the model home is, itself, a home. Although you may choose to keep it empty,
you could in principle move a family into it. This is different than asking a builder to make you a
home based on a blueprint. The blueprint may specify the features of the home, but it isn’t a home.
It could never be used as a home.

Prototypes are like model homes, and classes are like blueprints. Classes are not like the objects they
describe.'"*

https://en.wikipedia.org/wiki/Self

19%https://en.wikipedia.org/wiki/NewtonScript

19If the class of a class is Class, what class is the class of Class? In Ruby, Class.class == Class. In Smalltalk, it is MetaClass, which opens
up the possibility for changing the way classes behave in a deep way.

11%Abuse of this feature by extending the behaviour of built-in classes is a controversial topic.

MWell, actually, the difference between prototypes and classes is like the difference between model homes and blueprints. But prototypes
are not like model homes. In actual fact, the relationship between an object and its prototype is one of delegation. So if a model home had a
kitchen, and you asked the builder to make you a home using the model as a prototype, you could customize your own kitchen. But if you
didn’t want to have your own custom kitchen, you would just use the model home’s kitchen to do all your own cooking. The relationship
between a model home and a house is sometimes described as concatenative inheritance, and JavaScript lets you do that too.


https://en.wikipedia.org/wiki/Self_
https://en.wikipedia.org/wiki/NewtonScript
https://en.wikipedia.org/wiki/Self_
https://en.wikipedia.org/wiki/NewtonScript
https://medium.com/javascript-scene/common-misconceptions-about-inheritance-in-javascript-d5d9bab29b0a
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“object-oriented programming” can mean almost anything

From this whirlwind tour of “object-oriented programming,” we can see that the ideas behind
“object-oriented programming” have some common roots in the history of programming languages,
but each language implements its own particular flavour in its own particular way.

Thus, when we talk about “objects” and “prototypes” and “classes” in JavaScript, we’re talking about
objects, prototypes, and classes as implemented in JavaScript. And we must keep in mind that other
languages can have a radically different take on these ideas.

the javascript approach

JavaScript has objects, and by default, those objects are dictionaries. By default, objects directly
manipulate each other’s state. Methods can be added to, or removed from objects at run time.

JavaScript has optional prototypes. Prototypes are objects in the same sense that model homes are
homes.

In JavaScript, object and array literals construct objects that delegate behaviour to the stan-
dard library’s object prototype and array prototype, respectively. JavaScript also supports using
Object.create to construct objects with or without a prototype, and new to construct objects using
a constructor function.

Using prototypes and constructor functions, JavaScript programs can emulate many of the features
of classes in other languages. JavaScript also has a class keyword that provides syntactic sugar for
writing constructor functions and prototypes in a declarative fashion.

By default, a JavaScript class is a constructor composed with an object as its associated prototype.
This can be denoted with the class keyword, by working with a function’s default .prototype
property, or by composing functions and objects independently.

JavaScript classes are constructors, but they are more than C++ constructors, in that manipulation
of their prototype extends or modifies the behaviour of the instances they create. JavaScript classes
take a minimalist approach to OO in the same sense that JavaScript objects take a minimal approach
to OO. For example, behaviour can be mixed into an object, a prototype, or a class using the exact
same mechanism, because objects, prototypes, and a constructor’s prototype are all objects that are
open to extension.

In sum, JavaScript is not exactly like any other object-oriented programming language, and its classes
aren’t like any other language that features classes, but then again, neither is any other object-
oriented programming language, and neither are any other classes.
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Some different sized and coloured coffee pots by Antti Nurmesniemi, perhaps his most known design.
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Iteration and Iterables

MEDIL 4 DECAF
o1 1RU

Coffee Labels at the Saltspring Coffee Processing Facility

Many objects in JavaScript can model collections of things. A collection is like a box containing
stuff. Sometimes you just want to move the box around. But sometimes you want to open it up and
do things with its contents.

Things like “put a label on every bag of coffee in this box,” Or, “Open the box, take out the bags of
decaf, and make a new box with just the decaf” Or, “go through the bags in this box, and take out
the first one marked ‘Espresso’ that contains at least 454 grams of beans”

All of these actions involve going through the contents one by one. Acting on the elements of a
collection one at a time is called iterating over the contents, and JavaScript has a standard way to
iterate over the contents of collections.

a look back at functional iterators

When discussing functions, we looked at the benefits of writing Functional Iterators. We can do the
same thing for objects. Here’s a stack that has its own functional iterator method:



Served by the Pot: Collections 228

const Stackl = () =
({
array:[],
index: -1,
push (value) {
return this.array[this.index += 1] = value;
3

pop () {
const value = this.array[this.index];

this.array[this.index] = undefined;
if (this.index >= 0) {
this.index -= 1
}
return value
}

isEmpty () {
return this.index < 0

b
iterator () {

let iterationlndex = this.index;

return () => {
if (iterationIndex > this.index) {
iterationIndex = this.index;

}
if (iterationIndex < 0) {

return {done: true};

}

else {
return {done: false, value: this.array[iterationIndex--]}

}
});

const stack = Stack1();
stack.push("Greetings");
stack.push("to");

stack.push("you!")

const iter = stack.iterator();
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iter().value

//:> ”you.’ "
iter().value
//:> Hto "

The way we’ve written .iterator as a method, each object knows how to return an iterator for
itself.

The . iterator() method is defined with shorthand equivalent to iterator: function iterator()
{ ... }.Note that it uses the function keyword, so when we invoke it with stack.iterator(),
JavaScript sets this to the value of stack. But what about the function .iterator() returns? It is
defined with a fat arrow () => { ... }. What is the value of this within that function?

Since JavaScript doesn’t bind this within a fat arrow function, we follow the same rules of variable
scoping as any other variable name: We check in the environment enclosing the function. Although
the .iterator() method has returned, its environment is the one that encloses our () => { ... }
function, and that’s where this is bound to the value of stack.

Therefore, the iterator function returned by the .iterator() method has this bound to the stack
object, even though we call it with iter().

And here’s a sum function implemented as a fold over a functional iterator:

const iteratorSum = (iterator) => {
let eachlteration,
sum = 0;

while ((eachlteration = iterator(), !eachIlteration.done)) {
sum += eachlteration.value;

}

return sum

We can use it with our stack:
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const stack = Stack1();

stack.push(1);
stack.push(2);
stack.push(3);

iteratorSum(stack.iterator())

//=> 6

We could save a step and write collectionSum, a function that folds over any object, provided that
the object implements an . iterator method:

const collectionSum = (collection) => {
const iterator = collection.iterator();

let eachlteration,
sum = Q;

while ((eachlteration = iterator(), !eachIlteration.done)) {
sum += eachlteration.value;

}

return sum

collectionSum(stack)

//=> 6

If we write a program with the presumption that “everything is an object,” we can write maps, folds,
and filters that work on objects. We just ask the object for an iterator, and work on the iterator. Our
functions don’t need to know anything about how an object implements iteration, and we get the
benefit of lazily traversing our objects.

This is a good thing.

iterator objects

Iteration for functions and objects has been around for many, many decades. For simple linear
collections like arrays, linked lists, stacks, and queues, functional iterators are the simplest and easiest
way to implement iterators.

In programs involving large collections of objects, it can be handy to implement iterators as objects,
rather than functions. The mechanics of iterating can then be factored using the same tools that are
used to factor the mechanics of all other objects in the system.
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Fortunately, an iterator object is almost as simple as an iterator function. Instead of having a function
that you call to get the next element, you have an object with a .next() method.

Like this:

const Stack2 = () =>
({
array: [],
index: -1,
push (value) {
return this.array[this.index += 1] = value;
3

pop () {
const value = this.array[this.index];

this.array[this.index] = undefined;
if (this.index >= 0) {
this.index -= 1
}
return value
}

iskmpty () {
return this.index < 0
},
iterator () {
let iterationlndex = this.index;

return {
next () {

if (iterationIndex > this.index) {
iterationIndex = this.index;

}

if (iterationIndex < 0) {
return {done: true};

}

else {
return {done: false, value: this.array[iterationIndex--]}
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const stack = Stack2();

stack.push(2000);
stack.push(10);
stack.push(5)

const collectionSum = (collection) => {

const iterator = collection.iterator();

let eachlteration,
sum = 0;

while ((eachlteration = iterator.next(), !eachIteration.done)) {
sum += eachlteration.value;

}

return sum

collectionSum(stack)
//=> 2015

Now our .iterator() method is returning an iterator object. When working with objects, we do
things the object way. But having started by building functional iterators, we understand what is
happening underneath the object’s scaffolding.

iterables

People have been writing iterators since JavaScript was first released in the late 1990s. Since there
was no particular standard way to do it, people used all sorts of methods, and their methods returned
all sorts of things: Objects with various interfaces, functional iterators, you name it.

So, when a standard way to write iterators was added to the JavaScript language, it didn’t make
sense to use a method like . iterator() for it: That would conflict with existing code. Instead, the
language encourages new code to be written with a different name for the method that a collection
object uses to return its iterator.

To ensure that the method would not conflict with any existing code, JavaScript provides a symbol.
Symbols are unique constants that are guaranteed not to conflict with existing strings. Symbols are a
longstanding technique in programming going back to Lisp, where the GENSYM function generated...
You guessed it... Symbols.'*?

The expression Symbol . iterator evaluates to a special symbol representing the name of the method
that objects should use if they return an iterator object.

2You can read more about JavaScript symbols in Axel Rauschmayer’s Symbols in ECMAScript 2015.


http://www.2ality.com/2014/12/es6-symbols.html
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Our stack does, so instead of binding the existing iterator method to the name iterator, we bind
it to the Symbol.iterator. We’ll do that using the [ ] syntax for using an expression as an object
literal key:

const Stack3 = () =>
({
array: [],
index: -1,
push (value) {
return this.array[this.index += 1] = value;
}

pop () {
const value = this.array[this.index];

this.array[this.index] = undefined;
if (this.index >= 0) {
this.index -= 1
}
return value
),

iskEmpty () {
return this.index < 0
}
[Symbol.iterator] () {
let iterationIndex = this.index;

return {
next () {

if (iterationIndex > this.index) {
iterationIndex = this.index;

}

if (iterationIndex < 0) {
return {done: true};

}

else {

return {done: false, value: this.array[iterationIndex--]}

const stack = Stack3();
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stack.push(2000);
stack.push(10);
stack.push(5)

const collectionSum = (collection) => {
const iterator = collection[Symbol.iterator]();

let eachlteration,
sum = 0;

while ((eachlteration = iterator.next(), !eachIteration.done)) {

sum += eachlteration.value;

}

return sum

collectionSum(stack)
//=> 2015

Using [Symbol . iterator] instead of .iterator seems like adding an extra moving part for nothing.
Do we get anything in return?

Indeed we do. Behold the for. . .of loop:

const iterableSum = (iterable) => {
let sum = 0;

for (const num of iterable) {
sum += num;

}

return sum

iterableSum(stack)
//=> 2015

The for. . .of loop works directly with any object that is iterable, meaning it works with any object
that has a Symbol . iterator method that returns an object iterator. Here’s another linked list, this
one is iterable:
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const EMPTY = {
isEmpty: () => true
b

const isEmpty = (node) => node === EMPTY;

const Pair1 = (first, rest = EMPTY) =>
({
first,
rest,
isEmpty () { return false },
[Symbol.iterator] () {

let currentPair = this;

return {
next () {
if (currentPair.isEmpty()) {

return {done: true}

}
else {
const value = currentPair.first;
currentPair = currentPair.rest;
return {done: false, value}
}
}
}
}
1)

const list = (...elements) => {
const [first, ...rest] = elements;

return elements.length ===
? EMPTY
Pair1(first, list(...rest))

const someSquares = list(1, 4, 9, 16, 25);

iterableSum(someSquares)
//=> 55

235
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As we can see, we can use for . . .of with linked lists just as easily as with stacks. And there’s one
more thing: You recall that the spread operator (. . .) can spread the elements of an array in an array
literal or as parameters in a function invocation.

Now is the time to note that we can spread any iterable. So we can spread the elements of an iterable
into an array literal:

[ 'some squares', ...someSquares]
//=> ["some squares", 1, 4, 9, 16, 25]

And we can also spread the elements of an array literal into parameters:

const firstAndSecondElement = (first, second) =>
({first, second})

firstAndSecondElement(. . .stack)
//=> {"first":5, "second":10}

This can be extremely useful.

One caveat of spreading iterables: JavaScript creates an array out of the elements of the iterable. That
might be very wasteful for extremely large collections. For example, if we spread a large collection
just to find an element in the collection, it might have been wiser to iterate over the element using
its iterator directly.

And if we have an infinite collection, spreading is going to fail outright as we’re about to see.

iterables out to infinity

Iterables needn’t represent finite collections:

const Numbers = {
[Symbol.iterator] () {
let n = Q;

return {
next: () =>

({done: false, value: n++})

There are useful things we can do with iterables representing an infinitely large collection. But let’s
point out what we can’t do with them:
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['all the numbers', ...Numbers]
//=> infinite loop!

firstAndSecondElement(. . .Numbers)
//=> 1Infinite loop!

Attempting to spread an infinite iterable into an array is always going to fail.

ordered collections

The iterables we’re discussing represent ordered collections. One of the semantic properties of an
ordered collection is that every time you iterate over it, you get its elements in order, from the
beginning. For example:

const abc = ["a", "b", "c"];

for (const i of abc) {

console.log(i)

/)=

a

for (const i of abc) {
console.log(i)

/7=
a
b
c

This is accomplished with our own collections by returning a brand new iterator every time we call
[Symbol.iterator], and ensuring that our iterators start at the beginning and work forward.

Iterables needn’t represent ordered collections. We could make an infinite iterable representing
random numbers:
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const RandomNumbers = {
[Symbol.iterator]: () =>
({
next () {
return {value: Math.random()};

1))

for (const i of RandomNumbers) {
console.log(i)

/)=
0.494052127469331
0.835459444206208
0.1408337657339871

for (const i of RandomNumbers) {
console.log(i)

/)=
0.7845381607767195
0.4956772483419627
0.20259276474826038

Whether you work with the same iterator over and over, or get a fresh iterable every time, you are
always going to get fresh random numbers. Therefore, RandomNumbers is not an ordered collection.

Right now, we’re just looking at ordered collections. To reiterate (hah), an ordered collection
represents a (possibly infinite) collection of elements that are in some order. Every time we get
an iterator from an ordered collection, we start iterating from the beginning.

operations on ordered collections

Let’s define some operations on ordered collections. Here’s mapWith, it takes an ordered collection,
and returns another ordered collection representing a mapping over the original:'**

3Yes, we also used the name mapWith for working with ordinary collections elsewhere. If we were writing a library of functions, we would
have to disambiguate the two kinds of mapping functions with special names, namespaces, or modules. But for the purposes of discussing
ideas, we can use the same name twice in two different contexts. It’s the same idea, after all.
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const mapWith = (fn, collection) =>

({
[Symbol.iterator] () {
const iterator = collection[Symbol.iterator]();
return {
next () {
const {done, value} = iterator.next();
return ({done, value: done ? undefined : fn(value)});
}
}
}
1)

This illustrates the general pattern of working with ordered collections: We make them iterables,
meaning that they have a [Symbol.iterator] method, that returns an iterator. An iterator is also
an object, but with a .next() method that is invoked repeatedly to obtain the elements in order.

Many operations on ordered collections return another ordered collection. They do so by taking
care to iterate over a result freshly every time we get an iterator for them. Consider this example for
mapWith:

const Evens = mapWith((x) => 2 * x, Numbers);

for (const i of Evens) {
console.log(i)

/=2
0
2
4

for (const i of Evens) {
console.log(i)
1
//=>
Q
2
4
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Numbers is an ordered collection. We invoke mapWith((x) => 2 * x, Numbers) and get Evens. Evens
works just as if we’'d written this:

const Evens = {
[Symbol.iterator] () {
const iterator = Numbers[Symbol.iterator]();

return {
next () {
const {done, value} = iterator.next();

return ({done, value: done ? undefined : 2 *value});

}
b

Every time we write for (const i of Evens), JavaScript calls Evens[Symbol.iterator] (). That in
turns means it executes const iterator = Numbers[Symbol.iterator](); every time we write for
(const i of Evens), and that means that iterator starts at the beginning of Numbers.

So, Evens is also an ordered collection, because it starts at the beginning each time we get a fresh
iterator over it. Thus, mapWith has the property of preserving the collection semantics of the iterable
we give it. So we call it a collection operation.

Mind you, we can also map non-collection iterables, like RandomNumbers:

const ZeroesToNines = mapWith((n) => Math.floor(1@ * n), RandomNumbers);

for (const i of ZeroesToNines) {
console.log(i)

/=2
5
1
9

for (const i of ZeroesToNines) {
console.log(i)

/)=
3
6
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mapWith can get a new iterator from RandomNumbers each time we iterate over ZeroesToNines, but if
RandomNumbers doesn’t behave like an ordered collection, that’s not mapwith’s fault. RandomNumbers
is a stream, not an ordered collection, and thus mapwith returns another iterable behaving like a
stream.

Here are two more operations on ordered collections, filterWith and untilWith:

const filterWith = (fn, iterable) =>

({
[Symbol.iterator] () {
const iterator = iterable[Symbol.iterator]();

return {
next () {
do {
const {done, value} = iterator.next();
} while (!done && !fn(value));

return {done, value};

}
});

const untilWith = (fn, iterable) =>

({
[Symbol.iterator] () {
const iterator = iterable[Symbol.iterator]();

return {
next () {
let {done, value} = iterator.next();
done = done || fn(value);
return ({done, value: done ? undefined : value});

}
)

Like mapWith, they preserve the ordered collection semantics of whatever you give them.
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And here’s a computation performed using operations on ordered collections: We’ll create an ordered
collection of square numbers that end in one and are less than 1,000:

const Squares = mapWith((x) => x * x, Numbers);
const EndWithOne = filterWith((x) => x % 10 === 1, Squares);
const UpTo1@@0 = untilWith((x) => (x > 1000), EndWithOne);

[...UpTo1000]
//=>
[1,81,121,361,441,841,961]

[...UpTo1000Q]
//=>
[1,81,121,361,441,841,961]

As we expect from an ordered collection, each time we iterate over UpTo1000, we begin at the
beginning.
For completeness, here are two more handy iterable functions. first returns the first element of an

iterable (if it has one), and rest returns an iterable that iterates over all but the first element of an
iterable. They are equivalent to destructuring arrays with [first, ...rest]:

const first = (iterable) =>

iterable[Symbol.iterator]().next().value;

const rest = (iterable) =>

({
[Symbol.iterator] () {
const iterator = iterable[Symbol.iterator]();

iterator.next();
return iterator;

}
)

like our other operations, rest preserves the ordered collection semantics of its argument.
from

Having iterated over a collection, are we limited to for..do and/or gathering the elements in an
array literal and/or gathering the elements into the parameters of a function? No, of course not, we
can do anything we like with them.

One useful thing is to write a . from function that gathers an iterable into a particular collection type.
JavaScript’s built-in Array class already has one:
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Array. from(UpTo1000)
//=> [1,81,121,361,441,841,961]

We can do the same with our own collections. As you recall, functions are mutable objects. And we
can assign properties to functions with a . or even [ and ]. And if we assign a function to a property,
we’ve created a method.

So let’s do that:

Stack3. from = function (iterable) {
const stack = this();

for (let element of iterable) {
stack.push(element);

}

return stack;

Pair1.from = (iterable) =>
(function iterationTolList (iteration) {
const {done, value} = iteration.next();

return done ? EMPTY : Pairi(value, iterationToList(iteration));
})(iterable[Symbol.iterator]())

Now we can go “end to end,” If we want to map a linked list of numbers to a linked list of the squares
of some numbers, we can do that:

const numberList = Pairi.from(untilWith((x) => x > 10, Numbers));

Pair1. from(Squares)
//=> {"first":o,
"rest":{"first":1,
"rest":{"first":4,

"rest":{

summary

Iterators are a JavaScript feature that allow us to separate the concerns of how to iterate over a
collection from what we want to do with the elements of a collection. Iterable ordered collections
can be iterated over or gathered into another collection.

Separating concerns with iterators speaks to JavaScript’s fundamental nature: It’s a language that
wants to compose functionality out of small, singe-responsibility pieces, whether those pieces are
functions or objects built out of functions.
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Generating Iterables

nando Mafra (www.fmafra.com)

Banco do Café

Iterables look cool, but then again, everything looks amazing when you’re given cherry-picked
examples. What is there they don’t do well?

Let’s consider how they work. Whether it’s a simple functional iterator, or an iterable object with a
.next() method, an iterator is something we call repeatedly until it tells us that it’s done.

Iterators have to arrange their own state such that when you call them, they compute and return the
next item. This seems blindingly obvious and simple. If, for example, you want numbers, you write:
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const Numbers = {
[Symbol.iterator]: () => {
let n = ©;

return {
next: () =>

({done: false, value: n++})

}
};

The Numbers iterable returns an object that updates a mutable variable, n, to deliver number after
number. How hard can this be?

Well, we’ve written our iterator as a server. It waits until given a request, and then it returns exactly
one item. Then it waits for the next request. There is no concept of pushing numbers out from
the iterator, just waiting until a number is pulled out of the iterator by whatever code consumes
numbers.

Of course, when we have some code that makes a bunch of something, we don’t usually write it like
that. We usually just write something like:

let n = 0;

while (true) {
console.log(n++)

}

And magically, the numbers would pour forth. We would generate numbers. Let’s put that beside
the code for the iterator, minus the iterable scaffolding:

// Iteration
let n = 0;

7

0=

({done: false, value: n++})

// Generation
let n = ©;

while (true) {
console. log(n++)

}
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They’re of approximately equal complexity. So why bring up generation? Well, there are some
collections that are much easier to generate than to iterate over. Let’s look at one:

recursive iterators

Iterators maintain state, that’s what they do. Generators have to manage the exact same amount of
state, but sometimes, it’s much easier to manage that state in a generator. One of those cases is when
we have to recursively enumerate something.

For example, iterating over a tree. Given an array that might contain arrays, let’s say we want to
generate all the “leaf” elements, i.e. elements that are not, themselves, iterable.

// Generation
const islterable = (something) =>
I lsomething[Symbol.iterator];

const generate = (iterable) => {
for (let element of iterable) {
if (islterable(element)) {
generate(element)
}
else {

console. log(element)

generate([1, [2, [3, 4], 5]])
//=>
1

O > W N

Very simple. Now for the iteration version. We’ll write a functional iterator to keep things simple,
but it’s easy to see the shape of the basic problem:
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// Iteration
const islterable = (something) =>
I Isomething[Symbol .iterator];

const treelterator = (iterable) => {
const iterators = [ iterable[Symbol.iterator]() ];

return () => {
while (!!iterators[@]) {
const iterationResult = iterators[0].next();

if (iterationResult.done) {
iterators.shift();
}
else if (islterable(iterationResult.value)) {
iterators.unshift(iterationResult.value[Symbol.iterator]());
}
else {
return iterationResult.value;

return;

const i = treelterator([1, [2, [3, 4], 511);
let n;

while (n = i()) {
console.log(n)
}
//=>
1

O B W N

If you peel off isIterable and ignore the way that the iteration version uses [Symbol . iterator] and
.next, we're left with the fact that the generating version calls itself recursively, and the iteration
version maintains an explicit stack. In essence, both the generation and iteration implementations
have stacks, but the generation version’s stack is implicit, while the iteration version’s stack is
explicit.
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A less kind way to put it is that the iteration version is greenspunning something built into our
programming language: We're reinventing the use of a stack to manage recursion, because writing
our code to respond to a function call makes us turn a simple recursive algorithm inside-out.

state machines

Some iterables can be modelled as state machines. Let’s revisit the Fibonacci sequence. Again. One
way to define it is:

« The first element of the fibonacci sequence is zero.
« The second element of the fibonacci sequence is one.
« Every subsequent element of the fibonacci sequence is the sum of the previous two elements.

Let’s write a generator:

// Generation

const fibonacci = () => {
let a, b;
console.log(a = 0);

console.log(b = 1);

while (true) {
[a, b] = [b, a + b];
console.log(b);

fibonacci()
//=>
%]

= 00 O W N =~ -

34
55
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89
144

The thing to note here is that our fibonacci generator has three states: generating @, generating
1, and generating everything after that. This isn’t a good fit for an iterator, because iterators have
one functional entry point and therefore, we’d have to represent our three states explicitly, perhaps
using a state pattern'*:

We'll keep it simple:

// Iteration
let a, b, state

I
]

const fibonacci
switch (state) {

case 0:
state = 1

return a

I
—~
~

1

v
—~

case 1:
state = 2;
return b = 1

case 2:
[a, b] = [b, a + b];
return b

}
¥

while (true) {
console.log(fibonacci());
}
//=>
%]

= 00 00 W N -

3
21
34

https://en.wikipedia.org/wiki/State_pattern
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o5
89
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Again, this is not particularly horrendous, but like the recursive example, we’re explicitly greenspun-
ning the natural linear state. In a generator, we write “do this, then this, then this” In an iterator,
we have to wrap that up and explicitly keep track of what step we’re on.

So we see the same thing: The generation version has state, but it’s implicit in JavaScript’s linear
control flow. Whereas the iteration version must make that state explicit.

javascript’s generators

It would be very nice if we could sometimes write iterators as a . next () method that gets called, and
sometimes write out a generator. Given the title of this chapter, it is not a surprise that JavaScript
makes this possible.

We can write an iterator, but use a generation style of programming. An iterator written in a
generation style is called a generator. To write a generator, we write a function, but we make two
changes:

1. We declare the function using the function * syntax. Not a fat arrow. Not a plain function.
2. We don’t return values or output them to console.log. We “yield” values using the yield
keyword.

When we invoke the function, we get an iterator object back. Let’s start with the degenerate example,
the empty iterator:'*®

function * empty () {};

empty().next()
//=>

{"done" :true}

When we invoke empty, we get an iterator with no elements. This makes sense, because empty never
yields anything. We call its .next () method, but it’s done immediately.

Generator functions can take an argument. Let’s use that to illustrate yield:

">We wrote a generator declaration. We can also write const empty = function * () {} to bind an anonymous generator to the empty
keyword, but we don’t need to do that here.
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function * only (something) {
yield something;

¥
only("you").next()

/7=

{"done": false, value: "you"}

Invokingonly("you") returns an iterator that we can call with .next(), and it yields "you". Invoking
only more than once gives us fresh iterators each time:

only("you").next()
//=>
{"done": false, value: "you"}
only("the lonely").next()
//=>

{"done": false, value: "the lonely"}
We can invoke the same iterator twice:

const sixteen = only("sixteen");
sixteen.next()
//=>
{"done": false, value: "sixteen"}
sixteen.next()

/)=

{"done" :true}
It yields the value of something, and then it’s done.

generators are coroutines

Here’s a generator that yields three numbers:
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const oneTwoThree = function * () {
yield 1;
yield 2;
yield 3;

1

oneTwoThree() .next()
//=>

{"done": false, value: 1}

oneTwoThree().next()
//=>
{"done": false, value: 1}

oneTwoThree().next()
//=>

{"done": false, value: 1}
const iterator = oneTwoThree();

iterator.next()
//=>

{"done": false, value: 1}

iterator.next()
//=>

{"done": false, value: 2}

iterator.next()
//=>

{"done": false, value: 3}

iterator.next()
//=>

{"done" :true}

This is where generators behave very, very differently from ordinary functions. What happens
semantically?

1. We call oneTwoThree() and get an iterator.
2. The iterator is in a nascent or “newborn” state.
3. When we call interator.next(), the body of our generator begins to be evaluated.
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4. The body of our generator runs until it returns, ends, or encounters a yield statement, which
isyield 1;.
« The iterator suspends its execution.
« The iterator wraps1 in {done: false, value: 1} and returns that from the call to . next().
« The rest of the program continues along its way until it makes another call to iterator.next().
» The iterator resumes execution from the point where it yielded the last value.
5. The body of our generator runs until it returns, ends, or encounters the next yield statement,
which isyield 2;.
« The iterator suspends its execution.
« The iterator wraps 2 in {done: false, value: 2} and returns that from the call to . next().
« The rest of the program continues along its way until it makes another call to iterator.next().
« The iterator resumes execution from the point where it yielded the last value.
6. The body of our generator runs until it returns, ends, or encounters the next yield statement,
which isyield 3;.
« The iterator suspends its execution.
« The iterator wraps 3 in {done: false, value: 3} and returns that from the call to . next().
» Therest of the program continues along its way until it makes another call to i terator . next().
« The iterator resumes execution from the point where it yielded the last value.

7. The body of our generator runs until it returns, ends, or encounters the next yield statement.
There are no more lines of code, so it ends.

« The iterator returns {done: true} from the call to .next (), and every call to this iterator’s
.next () method will return {done: true} from now on.

This behaviour is not unique to JavaScript, generators are called coroutines'*® in other languages:

Coroutines are computer program components that generalize subroutines for nonpre-
emptive multitasking, by allowing multiple entry points for suspending and resuming
execution at certain locations. Coroutines are well-suited for implementing more familiar
program components such as cooperative tasks, exceptions, event loop, iterators, infinite
lists and pipes.

Instead of thinking of there being one execution context, we can imagine that there are two execution
contexts. With an iterator, we can call them the producer and the consumer. The iterator is the
producer, and the code that iterates over it is the consumer. When the consumer calls .next(),
it “suspends” and the producer starts running. When the producer yields a value, the producer
suspends and the consumer starts running, taking the value from the result of calling .next().

Of course, generators need not be implemented exactly as coroutines. For example, a “transpiler”
might implement oneTwoThree as a state machine, a little like this (there is more to generators, but
we’ll see that later):

%https://en.wikipedia.org/wiki/Coroutine
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const oneTwoThree = function () {

let state = 'newborn';

return {
next () {
switch (state) {
case 'newborn’:
state = 1;
return {value: 1};

case 1:

state = 2;

return {value: 2}
case 2:

state = 3;

return {value: 3}
case 3:

return {done: true};

}
};

But no matter how JavaScript implements it, our mental model is that a generator function returns an
iterator, and that when we call . next(), it runs until it returns, ends, or yields. If it yields, it suspends
its own execution and the consuming code resumes execution, until . next () is called again, at which
point the iterator resumes its own execution from the point where it yielded.

generators and iterables

Our generator function oneTwoThree is not an iterator. It’s a function that returns an iterator when
we invoke it. We write the function to yield values instead of return a single value, and JavaScript
takes care of turning this into an object with a .next () function we can call.

If we call our generator function more than once, we get new iterators. As we saw above, we called
oneTwoThree three times, and each time we got an iterator that begins at1 and counts to 3. Recalling
the way we wrote ordered collections, we could make a collection that uses a generator function:



Served by the Pot: Collections 255

const ThreeNumbers = {
[Symbol.iterator]: function * () {
yield 1;
yield 2;
yield 3

for (const i of ThreeNumbers) {
console.log(i);

//=>
1
2
3

[...ThreeNumbers]
//=>
(1,2,3]

const iterator = ThreeNumbers[Symbol.iterator]();

iterator.next()
//=>

{"done": false, value: 1}

iterator.next()
//=>
{"done": false, value: 2}

iterator.next()
//=>

{"done": false, value: 3}

iterator.next()
//=>
{"done" :true}

Now we can use it in a for...of loop, spread it into an array literal, or spread it into a function
invocation, because we have written an iterable that uses a generator to return an iterator from its
[Symbol.iterator] method.

This pattern is encouraged, so much so that JavaScript provides a concise syntax for writing
generator methods for objects:
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const ThreeNumbers = {
*[Symbol.iterator] () {
yield 1;
yield 2;
yield 3

}

This object declares a [Symbol.iterator] function that makes it iterable. Because it’s declared
*[Symbol . iterator], it’s a generator instead of an iterator.

So to summarize, ThreeNumbers is an object that we've made iterable, by way of writing a generator
method for [Symbol .iterator].

more generators
Generators can produce infinite streams of values:

const Numbers = {
*[Symbol.iterator] () {
let i = 0Q;

while (true) {
yield i++;

}
};

for (const i of Numbers) {
console.log(i);

}

//=>
%]

= O 0 N O O b W N -
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Our OneTwoThree example used implicit state to output the numbers in sequence. Recall that we
wrote Fibonacci using explicit state:

const Fibonacci = {
[Symbol.iterator]: () => {
let a =0, b =1, state = 0;

return {
next: () => {
switch (state) {

case 0:

state = 1;

return {value: a};
case 1:

state = 2;

return {value: b};
case 2:
[a, b] = [b, a + b];

return {value: b};

for (let n of Fibonacci) {
console.log(n)

1

//=>
%]

= 00 Ol W N =~

34
o5
89
144
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And here is the Fibonacci ordered collection, implemented with a generator method:

const Fibonacci = {
*[Symbol.iterator] () {

let a, b;
yield a = 0;
yield b = 1;

while (true) {
[a, b] = [b, a + b]
yield b;

for (const i of Fibonacci) {
console.log(i);

1

//=>
%]

= 00 O W N =

34
o5
89
144

We’ve writing a function that returns an iterator, but we used a generator to do it. And the generator’s
syntax allows us to use JavaScript’s natural management of state instead of constantly rolling our
own.

Of course, we could just as easily write a generator function for Fibonacci numbers:
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function * fibonacci () {

let a, b;

yield a

yield b

while (true) {
[a, b] = [b, a + b]
yield b;

for (const i of fibonacci()) {
console.log(i);

}
/7=
0

= 00 O W N -
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yielding iterables

Here’s a first crack at a function that returns an iterable object for iterating over trees:

Q;

1;

259
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const islterable = (something) =>
I Isomething[Symbol.iterator];

const Treelterable = (iterable) =>
({
[Symbol.iterator]: function * () {
for (const e of iterable) {
if (islterable(e)) {
for (const ee of Treelterable(e)) {
yield ee;

}

else {

yield e;

}
D)

for (const i of Treelterable([1, [2, [3, 4], 5]1])) {
console.log(i);

}

//=>
1

O B W N

We’ve gone with the full iterable here, a Treelterable(iterable) returns an iterable that treats
iterable as a tree. It works, but as we’ve just seen, a function that returns an iterable can often be
written much more simply as a generator, rather than a function that returns an iterable object:'"’

""This may not work with various transpilers and other incomplete ECMAScript 2015 implementations. Check the documentation. For
example, you must enable the “high compliancy” mode in BabelJS. This is off by default to provide the highest possible performance for code
bases that do not need to use features like this.


http://babeljs.io/
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function * tree (iterable) {
for (const e of iterable) {
if (islIterable(e)) {
for (const ee of tree(e)) {
yield ee;

}
else {
yield e;

}
¥

for (const i of tree([1, [2, [3, 4], 5]]1)) {
console.log(i);

1

//=>
1

O B W N

We take advantage of the for . . .of loop in a plain and direct way: For each element e, if it is iterable,
treat it as a tree and iterate over it, yielding each of its elements. If e is not an iterable, yield e.

JavaScript handles the recursion for us using its own execution stack. This is clearly simpler than
trying to maintain our own stack and remembering whether we are shifting and unshifting, or
pushing and popping.

But while we’re here, let’s look at one bit of this code:

for (const ee of tree(e)) {
yield ee;

These three lines say, in essence, “yield all the elements of TreeIterable(e), in order.” This comes up
quite often when we have collections that are compounds, collections made from other collections.

Consider this operation on iterables:
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function * append (...iterables) {
for (const iterable of iterables) {
for (const element of iterable) {
yield element;

const lyriCS - append([nan’ ”b”, HCH]I ["Oﬂe", ”tWO”, chreen]’ ["dO", ureu umeu]);

for (const word of lyrics) {

console. log(word);

/=

a

one
two
three
do

re

me

append iterates over a collection of iterables, one element at a time. Things like arrays can be easily
catenated, but append iterates lazily, so there’s no need to construct intermediary results.

Tucked inside of it is the same three-line idiom for yielding each element of an iterable. There is an
abbreviation for this, we can use yield * to yield all the elements of an iterable:

function * append (...iterables) {
for (const iterable of iterables) {
yield * iterable;

const ].y.'flCS = append( [nan , ||b|| , Ilc|l] , "Oﬂe" , ”tWO”, "thl’ee"] , [udou , ureu umeu] ),

for (const word of lyrics) {
console.log(word);

/7=

a
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one
two
three
do

re

me
yield * yields all of the elements of an iterable, in order. We can use it in tree, too:

const islterable = (something) =>
I l'something[Symbol . iterator];

function * tree (iterable) {
for (const e of iterable) {
if (islterable(e)) {
yield * tree(e);
}
else {

yield e;

for (const i of tree([1, [2, [3, 4], 5]])) {
console.log(i);

}

//=>
1

O B W N

yield* is handy when writing generator functions that operate on or create iterables.

rewriting iterable operations

Now that we know about iterables, we can rewrite our iterable operations as generators. Instead of:
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const mapWith = (fn, iterable) =>

({
[Symbol.iterator]: () => {
const iterator = iterable[Symbol.iterator]();

return {
next: () => {
const {done, value} = iterator.next();
return ({done, value: done ? undefined : fn(value)});

}
});

We can write:

function * mapWith (fn, iterable) {
for (const element of iterable) {
yield fn(element);

264

No need to explicitly construct an object that has a [Symbol . iterator] method. No need to return
an object with a .next() method. No need to fool around with {done} or {value}, justyield values

until we’re done.

We can do the same thing with our other operations like filterwith and untilwith. Here’re our

iterable methods rewritten as generators:

function * mapWith(fn, iterable) {
for (const element of iterable) {
yield fn(element);

function * filterWith (fn, iterable) {
for (const element of iterable) {
if (!!fn(element)) yield element;

function * untilWith (fn, iterable) {
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for (const element of iterable) {
if (fn(element)) break;
yield fn(element);

first works directly with iterators and remains unchanged, butrest can be rewritten as a generator:

const first = (iterable) =>
iterable[Symbol.iterator]().next().value;

function * rest (iterable) {
const iterator = iterable[Symbol.iterator]();

iterator.next();
yield * iterator;

Ssummary

A generator is a function that is defined with function * and usesyield (or yield *) to generate
values. Using a generator instead of writing an iterator object that has a .next() method allows us
to write code that can be much simpler for cases like recursive iterations or state patterns. And we
don’t need to worry about wrapping our values in an object with .done and .value properties.

This is especially useful for making iterables.
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Lazy and Eager Collections

The operations on iterables are tremendously valuable, but let’s reiterate why we care: In JavaScript,
we build single-responsibility objects, and single-responsibility functions, and we compose these
together to build more full-featured objects and algorithms.

Composing an iterable with amapIterable method cleaves the responsibility for knowing
how to map from the fiddly bits of how a linked list differs from a stack

in the older style of object-oriented programming, we built “fat” objects. Each collection knew how
to map itself (.map), how to fold itself (.reduce), how to filter itself (. filter) and how to find one
element within itself (. find). If we wanted to flatten collections to arrays, we wrote a .toArray
method for each type of collection.

Over time, this informal “interface” for collections grows by accretion. Some methods are only added
to a few collections, some are added to all. But our objects grow fatter and fatter. We tell ourselves
that, well, a collection ought to know how to map itself.

But we end up recreating the same bits of code in each .map method we create, in each .reduce
method we create, in each . filter method we create, and in each . find method. Each one has its
own variation, but the overall form is identical. That’s a sign that we should work at a higher level
of abstraction, and working with iterables is that higher level of abstraction.

This “fat object” style springs from a misunderstanding: When we say a collection should know
how to perform a map over itself, we don’t need for the collection to handle every single detail.
That would be like saying that when we ask a bank teller for some cash, they personally print every
bank note.

implementing methods with iteration

Object-oriented collections should definitely have methods for mapping, reducing, filtering, and
finding. And they should know how to accomplish the desired result, but they should do so by
delegating as much of the work as possible to operations like mapWith.

Composing an iterable with a mapIterable method cleaves the responsibility for knowing how
to map from the fiddly bits of how a linked list differs from a stack. And if we want to create
convenience methods, we can reuse common pieces.

Here is LazyCollection, a mixin we can use with any ordered collection that is also an iterable:
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const extend = function (consumer, ...providers) {
for (let i
const provider = providers[i];

0; i < providers.length; ++i) {

for (let key in provider) {
if (provider.hasOwnProperty(key)) {
consumer [key] = provider [key]

}

return consumer

};

const LazyCollection = {
map(fn) {
return Object.assign({
[Symbol.iterator]: () => {
const iterator = this[Symbol.iterator]();

return {
next: () => {
const {
done, value
} = iterator.next();

return ({
done, value: done ? undefined : fn(value)

});

}
}, LazyCollection);

},

reduce(fn, seed) {
const iterator = this[Symbol.iterator]();
let iterationResult,
accumulator = seed;

while ((iterationResult = iterator.next(), !iterationResult.done)) {
accumulator = fn(accumulator, iterationResult.value);

}

return accumulator;

}I
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filter(fn) {
return Object.assign({
[Symbol.iterator]: () => {
const iterator = this[Symbol.iterator]();

return {
next: () => {
do {
const {

done, value
} = iterator.next();
} while (!done && !fn(value));
return {

done, value

};

}
}, LazyCollection)

},

find(fn) {
return Object.assign({
[Symbol.iterator]: () => {
const iterator = this[Symbol.iterator]();

return {
next: () => {
let {

done, value
} = iterator.next();

done = done || fn(value);

return ({
done, value: done ? undefined : value

});

}
}, LazyCollection)

}I



Served by the Pot: Collections

until(fn) {
return Object.assign({
[Symbol.iterator]: () => {
const iterator = this[Symbol.iterator]();

return {
next: () => {
let {

done, value
} = iterator.next();

done = done || fn(value);
return ({
done, value: done ? undefined : value
1)
}
}
}
}, LazyCollection)
H
first() {

return this[Symbol.iterator]().next().value;

},

rest() {
return Object.assign({
[Symbol.iterator]: () => {
const iterator = this[Symbol.iterator]();

iterator.next();
return iterator;

}
}, LazyCollection);

},

take(numberToTake) {
return Object.assign({
[Symbol.iterator]: () => {
const iterator = this[Symbol.iterator]();
let remainingElements = numberToTake;

269
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return {
next: () => {
let {

done, value
} = iterator.next();

done = done || remainingElements-- <= 0;

return ({
done, value: done ? undefined : value

1),

}
}
}
}, LazyCollection);

To use LazyCollection, we mix it into an any iterable object. For simplicity, we’ll show how to mix
it into Numbers and Pair. But it can also be mixed into prototypes (a/k/a “classes”), traits, or other

OO constructs:

const Numbers = Object.assign({
[Symbol.iterator]: () => {
let n = ©;

return {

next: () =>

({done: false, value: n++})

}
}, LazyCollection);

// Pair, a/k/a linked lists

const EMPTY = {
isEmpty: () => true
¥

const isEmpty = (node) => node === EMPTY;
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const Pair = (car, cdr = EMPTY) =>
Object.assign({
car,
cdr,
isEmpty: () => false,
[Symbol.iterator]: function () {

let currentPair = this;

return {
next: () => {
if (currentPair.isEmpty()) {

return {done: true}

else {
const value = currentPair.car;
currentPair = currentPair.cdr;
return {done: false, value}

}
}, LazyCollection);

Pair.from = (iterable) =>
(function iterationTolList (iteration) {
const {done, value} = iteration.next();

return done ? EMPTY : Pair(value, iterationTolList(iteration));

})(iterable[Symbol.iterator]());
// Stack

const Stack = () =>
Object.assign({
array: [],
index: -1,
push: function (value) {
return this.array[this.index += 1] = value;
1
pop: function () {
const value = this.array[this.index];

271
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this.array[this.index] = undefined;
if (this.index >= 0) {
this.index -= 1

}

return value

1

isEmpty: function () {
return this.index < ©

1

[Symbol.iterator]: function () {
let iterationIndex = this.index;

return {
next: () => {

if (iterationIndex > this.index) {
iterationIndex = this.index;

}

if (iterationIndex < 0) {
return {done: true};

}

else {
return {done: false, value: this.array[iterationIndex--]}

}
}, LazyCollection);

Stack.from = function (iterable) {
const stack = this();

for (let element of iterable) {

stack.push(element);

}

return stack;

// Pair and Stack in action

Stack.from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
.map((x) => x * x)
filter((x) => x % 2 == 0)
.first()
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//=> 100

Pair.from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
.map((x) => x * x)
filter((x) => x % 2 == 0)

.reduce((seed, element) => seed + element, 0)

//=> 220

lazy collection operations

“Laziness” is a very pejorative word when applied to people. But it can be an excellent strategy for
efficiency in algorithms. Let’s be precise: Laziness is the characteristic of not doing any work until
you know you need the result of the work.

Here’s an example. Compare these two:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
.map((x) => x * x)
filter((x) => x % 2 == 0)
.reduce((seed, element) => seed + element, 0)

Pair.from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
.map((x) => x * x)
filter((x) => x % 2 == 0)
.reduce((seed, element) => seed + element, 0)

Both expressions evaluate to 220. And the array is faster in practice, because it is a built-in data type
that performs its work in the engine, while the linked list does its work in JavaScript.

But it’s still illustrative to dissect something important: Array’s .map and . filter methods gather
their results into new arrays. Thus, calling .map. filter.reduce produces two temporary arrays that
are discarded when .reduce performs its final computation.

Whereas the .map and . filter methods on Pair work with iterators. They produce small iterable
objects that refer back to the original iteration. This reduces the memory footprint. When working
with very large collections and many operations, this can be important.

The effect is even more pronounced when we use methods like first, until, or take:
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Stack.from([ @, 41, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29])
.map((x) => x * x)
filter((x) => x % 2 == 0)
.first()

This expression begins with a stack containing 30 elements. The top two are 29 and 28. It maps to
the squares of all 30 numbers, but our code for mapping an iteration returns an iterable that can
iterate over the squares of our numbers, not an array or stack of the squares. Same with . filter,
we get an iterable that can iterate over the even squares, but not an actual stack or array.

Finally, we take the first element of that filtered, squared iterable and now JavaScript actually iterates
over the stack’s elements, and it only needs to square two of those elements, 29 and 28, to return the
answer.

We can confirm this:

Stack.from([ @, 1, 2, 3, 4, 5, 6, T, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29])
.map((x) => {
console.log( squaring ${x}");

’ 7

return x * x

)

filter((x) = {
console.log( filtering ${x}");
return x % 2 == 0

)
.first()

//=>
squaring 29
filtering 841
squaring 28
filtering 784
784

If we write the almost identical thing with an array, we get a different behaviour:
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[0, 1, 2, 3, 4, 5, 6, 7, 8, 09,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
.reverse()
map((x) => {
console. log( squaring ${x});
return x * x
b
filter((x) => {
console.log( filtering ${x}");
return x % 2 == 0

1) [o]

//=>
squaring ©
squaring 1
squaring 2
squaring 3

squaring 28
squaring 29
filtering 0
filtering 1
filtering 4

filtering 784
filtering 841
784

275

Arrays copy-on-read, so every time we perform a map or filter, we get a new array and perform all

the computations. This might be expensive.

You recall we briefly touched on the idea of infinite collections? Let’s make iterable numbers. They

have to be lazy, otherwise we couldn’t write things like:
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const Numbers = Object.assign({
[Symbol.iterator]: () => {
let n = ©;

return {
next: () =>

({done: false, value: n++})

}
}, LazyCollection);

const firstCubeOver1234 =
Numbers
.map((x) => x * x * x)
.filter((x) => x > 1234)
.first()

//=> 1331

Balanced against their flexibility, our “lazy collections” use structure sharing. If we mutate a
collection after taking an iterable, we might get an unexpected result. This is why “pure” functional
languages like Haskell combine lazy semantics with immutable collections, and why even “impure”
languages like Clojure emphasize the use of immutable collections.

eager collections

An eager collection, like an array, returns a collection of its own type from each of the methods.
We can make an eager collection out of any collection that is gatherable, meaning it has a . from
method:

const extend = function (consumer, ...providers) {
for (let i = 0; i < providers.length; ++i) {
const provider = providers[i];
for (let key in provider) {
if (provider.hasOwnProperty(key)) {
consumer [key] = provider [key]

}

return consumer

};
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const EagerCollection = (gatherable) =>

({

map(fn) {
const original = this;

return gatherable. from(
(function* () {
for (let element of original) {
yield fn(element);
}
HO
);
),

reduce(fn, seed) {
let accumulator = seed;

for(let element of this) {

accumulator = fn(accumulator, element);

}

return accumulator;

}I

filter(fn) {
const original = this;

return gatherable. from(
(function* () {
for (let element of original) {
if (fn(element)) yield element;
}
HO
);
),

find(fn) {
for (let element of this) {
if (fn(element)) return element;
}
3

until(fn) {

const original = this;

277
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return gatherable. from(
(function* () {
for (let element of original) {
if (fn(element)) break;
yield element;

}
I1Q)
);
}
first() {
return this[Symbol.iterator]().next().value;
}
rest() {
const iteration = this[Symbol.iterator]();
iteration.next();
return gatherable. from(
(function* () {
yield * iteration;
I1Q)
),
return gatherable.from(iterable);
}

take(numberToTake) {
const original = this;
let numberRemaining = numberToTake;

return gatherable. from(
(function* () {
for (let element of original) {
if (numberRemaining-- <= Q) break;
yield element;
}
I1Q)
);

});

Here is our Pair implementation. Pair is gatherable, because it implements
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.from(). We mix
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EagerCollection(Pair) into it, and this gives it all of our collection methods, which each method
returning a new list of pairs:

const EMPTY = {
isEmpty: () => true
};

const isEmpty = (node) => node === EMPTY;

const Pair = (car, cdr = EMPTY) =>
Object.assign({

isEmpty: () => false,
[Symbol.iterator]: function () {
let currentPair = this;

return {
next: () => {
if (currentPair.isEmpty()) {
return {done: true}

else {
const value = currentPair.car;
currentPair = currentPair.cdr;
return {done: false, value}

}
}, EagerCollection(Pair));

Pair.from = (iterable) =>
(function iterationTolList (iteration) {

const {done, value} = iteration.next();

return done ? EMPTY : Pair(value, iterationTolList(iteration));
})(iterable[Symbol.iterator]());

Pair.from([1, 2, 3, 4, 5]).map(x => x * 2)
//=>

"car": 2,
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cdr": {"car": 4,
" "o, llcarll : 6

cdr

7
"car": 8,

n "o,

cdr

n

cdr": {"car": 10,

"edr": {}

280
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Interlude: The Carpenter Interviews for a Job

“The Carpenter” was a JavaScript programmer, well-known for a meticulous attention to detail and
love for hand-crafted, exquisitely joined code. The Carpenter normally worked through personal
referrals, but from time to time a recruiter would slip through his screen. One such recruiter was
Bob Plissken. Bob was well-known in the Python community, but his clients often needed experience
with other languages.

Plissken lined up a technical interview with a well-funded startup in San Francisco. The Carpenter
arrived early for his meeting with “Thing Software,” and was shown to conference room 13. A few
minutes later, he was joined by one of the company’s developers, Christine.

the problem

After some small talk, Christine explained that they liked to ask candidates to whiteboard some
code. Despite his experience and industry longevity, the Carpenter did not mind being asked to
demonstrate that he was, in fact, the person described on the resumé.

Many companies use white-boarding code as an excuse to have a technical conversation with a
candidate, and The Carpenter felt that being asked to whiteboard code was an excuse to have a
technical conversation with a future colleague. “Win, win” he thought to himself.
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Christine intoned the question, as if by rote:

Consider a finite checkerboard of unknown size. On each square, we randomly place an
arrow pointing to one of its four sides. A chequer is placed randomly on the checkerboard.
Each move consists of moving the chequer one square in the direction of the arrow in the
square it occupies. If the arrow should cause the chequer to move off the edge of the
board, the game halts.

The problem is this: The game board is hidden from us. A player moves the chequer,
following the rules. As the player moves the chequer, they calls out the direction of
movement, e.g. “T, —, T, |, T, —..” Write an algorithm that will determine whether the
game halts, strictly from the called out directions, in finite time and space.

“So,” The Carpenter asked, “I am to write an algorithm that takes a possibly infinite stream of..”

Christine interrupted. “To save time, we have written a template of the solution for you in
ECMASCript 2015 notation. Fill in the blanks. Your code should not presume anything about the
game-board’s size or contents, only that it is given an arrow every time though the while loop. You
may use babeljs.io"”’, or ES6Fiddle’* to check your work. “

8https://www.flickr.com/photos/stigrudeholm/6710684795
%http://babeljs.io
2%http://www.es6fiddle.net


https://www.flickr.com/photos/stigrudeholm/6710684795
http://babeljs.io/
http://www.es6fiddle.net/
https://www.flickr.com/photos/stigrudeholm/6710684795
http://babeljs.io/
http://www.es6fiddle.net/
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Christine quickly scribbled on the whiteboard:

const Game = (size = 8) => {

// initialize the board
const board = [];
for (let 1 = 0; i < size; ++i) {
board[i] = [];
for (let j = 0; j < size; ++j) {
[i]

board [j] = '0O000' [Math. floor(Math.random() * 4)];

// initialize the position

let initialPosition = [
2 + Math.floor(Math.random() * (size - 4)),
2 + Math.floor(Math.random() * (size - 4))

1;

/) ??2?
let [x, y] = initialPosition;
const MOVE = {
ot ([x, oyl = [x -1, y],
"ot ([x, yI) = [x + 1, y],
ot (Ix, yl) =[x,y - 1],
"0t ([x, yl) = [x, y + 1]
};

while (x >= 0 && y >=0 && x < size && y < size) {
const arrow = board[x][y];

/) 7?77

[x, y] = MOVE[arrow] ([x, v]);
}
/) 2?2?22
};

“What,” Christine asked, “Do you write in place of the three // ??? placeholders to determine
whether the game halts?”
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the carpenter’s solution

The Carpenter was not surprised at the problem. Bob Plissken was a crafty, almost reptilian recruiter
that traded in information and secrets. Whenever Bob sent a candidate to a job interview, he
debriefed them afterwards and got them to disclose what questions were asked in the interview.
He then coached subsequent candidates to give polished answers to the company’s pet technical
questions.

And just as companies often pick a problem that gives them broad latitude for discussing alternate
approaches and determining that depth of a candidate’s experience, The Carpenter liked to sketch
out solutions that provided an opportunity to judge the interviewer’s experience and provide an
easy excuse to discuss the company’s approach to software design.

Bob had, in fact, warned The Carpenter that “Thing” liked to ask either or both of two questions:
Determine how to detect a loop in a linked list, and determine whether the chequerboard game
would halt. To save time, The Carpenter had prepared the same answer for both questions.

The Carpenter coughed softly, then began. “To begin with, I'll transform a game into an iterable that
generates arrows, using the ‘Starman’ notation for generators. I'll refactor a touch to make things
clearer, for example I'll extract the board to make it easier to test:”

const MOVE = {
"ot (Ix, yl) = [x -1, y],
"ot ([x, yl) = [x + 1, y],
0t (Ix, yl) = [x, y + 1],
0t (Ix, yl) =[x, y - 1]
¥

const Board = (size = 8) => {

// initialize the board
const board = [];
for (let i = 0; i < size; ++i) {
board[i] = [];
for (let j = 0; j < size; ++j) {
board[i][j] = 'O000' [Math.floor(Math.random() * 4)];
}

// Initialize the position

const position = |
Math. floor(Math.random() * size),
Math. floor(Math.random() * size)

1;



Served by the Pot: Collections 285

return {board, position};

};
const Game = ({board, position}) => {
const size = board[Q].length;

return ({
*[Symbol.iterator] () {
let [x, y] = position;

while (x >= 0 && y >=0 && x < size & y < size) {
const direction = board[y][x];

yield direction;
[x, y] = MOVE[direction]([x, y]);

}
});
};

“Now that we have an iterable, we can transform the iterable of arrows into an iterable of positions.”
The Carpenter sketched quickly. “We want to take the arrows and convert them to positions. For
that, we’ll map the Game iterable to positions. A statefulMap is a lazy map that preserves state from
iteration to iteration. That’s what we need, because we need to know the current position to map
each move to the next position”

“This is a standard idiom we can obtain from libraries, we don’t reinvent the wheel. I’ll show it here
for clarity:”

const statefulMapWith = (fn, seed, iterable) =>

({
*[Symbol.iterator] () {
let value,
state = seed;
for (let element of iterable) {
[state, value] = fn(state, element);
yield value;
}
}

)
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“Armed with this, it’s straightforward to map an iterable of directions to an iterable of strings
representing positions:”

const positionsOf = (game) =>
statefulMapWith(
(position, direction) => {
const [x, y] = MOVE[direction](position);

position = [x, y];

return [position, “x: ${x}, y: ${y} 1;
3
[0, o],
game);

The Carpenter reflected. “Having turned our game loop into an iterable, we can now see that our
problem of whether the game terminates is isomorphic to the problem of detecting whether the
positions given ever repeat themselves: If the chequer ever returns to a position it has previously
visited, it will cycle endlessly.”

“We could draw positions as nodes in a graph, connected by arcs representing the arrows. Detecting
whether the game terminates is equivalent to detecting whether the graph contains a cycle.”
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X=2 | X1=0 | x,=6 | x3=3 | x4=1 | x3=6

The Tortoise and the Hare

“There’s an old joke that a mathematician is someone who will take a five-minute problem, then
spend an hour proving it is equivalent to another problem they have already solved. I approached
this question in that spirit. Now that we have created an iterable of values that can be compared
with ===, I can show you this function:”
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const tortoiseAndHare = (iterable) => {
const hare = iterable[Symbol.iterator]();
let hareResult = (hare.next(), hare.next());

for (let tortoiseValue of iterable) {
hareResult = hare.next();

if (hareResult.done) {

return false;

}

if (tortoiseValue === hareResult.value) {

return true;

hareResult = hare.next();

if (hareResult.done) {
return false;

}

if (tortoiseValue === hareResult.value) {

return true;

}

return false;

};

“A long time ago,” The Carpenter explained, “Someone asked me a question in an interview. I have
never forgotten the question, or the general form of the solution. The question was, Given a linked
list, detect whether it contains a cycle. Use constant space.”

“This is, of course, the most common solution, it is Floyd’s cycle-finding algorithm'?*, although there
is some academic dispute as to whether Robert Floyd actually discovered it or was misattributed by
Knuth”

“Thus, the solution to the game problem is:”

*https://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare


https://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare
https://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare
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const terminates = (game) =>
tortoiseAndHare(positionsOf(game))

const test = |
[HDII, ”D”,"

["O0","O
(g, o,
["O0","D0
1;

terminates(Game({board: test, position: [0, 0]}))
//=> false

terminates(Game({board: test, position: [3, 0]}))
//=> true

terminates(Game({board: test, position: [0, 3]}))
//=> false

terminates(Game({board: test, position: [3, 3]}))
//=> false

“This solution makes use of iterables and a single utility function, statefulMapwith. It also cleanly
separates the mechanics of the game from the algorithm for detecting cycles in a graph.”

the aftermath

The Carpenter sat down and waited. This type of solution provided an excellent opportunity to
explore lazy versus eager evaluation, the performance of iterators versus native iteration, single
responsibility design, and many other rich topics.

The Carpenter was confident that although nobody would write this exact code in production,
prospective employers would also recognize that nobody would try to detect whether a chequer
game terminates in production, either. It’s all just a pretext for kicking off an interesting conversa-
tion, right?

Christine looked at the solution on the board, frowned, and glanced at the clock on the wall. “Well,

where has the time gone?”

“We at the Thing Software company are very grateful you made some time to visit with us, but alas,
that is all the time we have today. If we wish to talk to you further, we’ll be in touch”

The Carpenter never did hear back from them, but the next day there was an email containing a
generous contract from Friends of Ghosts (“‘FOG”), a codename for a stealth startup doing interesting
work, and the Thing interview was forgotten.

Some time later, The Carpenter ran into Bob Plissken at a local technology meet-up. “John! What
happened at Thing?” Bob wanted to know, “I asked them what they thought of you, and all they
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would say was, Writes unreadable code. I thought it was a lock! I thought you’d finally make your
escape from New York.”

The Carpenter smiled. “I forgot about them, it’s been a while. So, do They Live?”

after another drink

A few drinks later, The Carpenter was telling his Thing story and an engineer named Kidu
introduced themself.

*?https://www.flickr.com/photos/jlhopgood/6795353385


https://www.flickr.com/photos/jlhopgood/6795353385
https://www.flickr.com/photos/jlhopgood/6795353385
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“I'worked at Thing, and Christine told us about your solution. I had a look at the code you left on the
whiteboard. Of course, white-boarding in an interview situation is notoriously unreliable, so small
defects are not important. But I couldn’t help but notice that your solution doesn’t actually meet the
stated requirements for a different reason:”

“The hasCycle function, a/k/a Tortoise and Hare, requires two separate iterators to do its job.
Whereas the problem as stated involves a single stream of directions. You’re essentially calling for
the player to clone themselves and call out the directions in parallel”

The Carpenter thought about this for a moment. “Kidu, you’re right, that’s a fantastic observation.
I should have used a Teleporting Tortoise!”

// implements Teleporting Tortoise
// cycle detection algorithm.
const hasCycle = (iterable) => {
let iterator = iterable[Symbol.iterator](),

teleportDistance = 1;

while (true) {
let {value, done} = iterator.next(),
tortoise = value;
if (done) return false;

for (let i = 0; i < teleportDistance; ++i) {
let {value, done} = iterator.next(),
hare = value;

if (done) return false;

if (tortoise === hare) return true;
}
teleportDistance *= 2;
}
return false;

};

Kidu shrugged. “You know, the requirement asked for a finite space algorithm, not a constant state
algorithm. Doesn’t it make sense to go with a faster finite space algorithm? There’s no benefit to
constant space if finite space is sufficient.”
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const hasCycle = (orderedCollection) => {

const visited = new Set();

for (let element of orderedCollection) ({
if (visited.has(element)) {

return true;

}

visited.add(element);

}

return false;

};

The Carpenter stared at Kidu’s solution. “T guess,” he allowed, “It isn’t always necessary to make a
solution so awesome it would please the Ghosts of Mars.”
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Interactive Generators

We used generators to build iterators that maintain implicit state. We saw how to use them for
recursive unfolds and state machines. But there are other times we want to build functions that
maintain implicit state. Let’s start by looking at a very simple example of a function that can be
written statefully.

Consider, for example, the moves in a game. The moves a player makes are a stream of values, just
like the contents of an array can be consider a stream of values. But of course, iterating over a stream
of moves requires us to wait for the game to be over so we know what moves were made.

Let’s take a look at a very simple example, naughts and crosses'** (We really ought to do something

like Chess, but that might be a little out of scope for this chapter). To save space, we’ll ignore rotations
and reflections, and we’ll model the first player’s moves as a stream.

The first player will always be o, and they will always place their chequer in the top-left corner,
coincidentally numbered o:

**https://en.wikipedia.org/wiki/naughts-and- crosses


https://en.wikipedia.org/wiki/naughts-and-crosses
https://en.wikipedia.org/wiki/naughts-and-crosses
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ol 112

o4
| 415

e e
| | 8

ol x| 2
oo
31415
4o
ol 71 8

For 2, 4,5, 7, or 8, we play 3 and win. But if x moves 3, we play 8:
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ol x| 2
B R
x| 415
B T
x| 718

If x plays 4, we play 7 and win. If x plays anything else, including 7, we play 4 and win.

representing naughts and crosses as a stateless function

We could plays naughts and crosses as a stateless function. We encode each position of the board in
some fashion, and then we build a dictionary from positions to moves. For example, the entry for:

And the entry for:
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o | x|
B R
ol x|
B T
o | |

We can encode the board in several different ways. We could use multiline strings with formatting
just as we’'ve written it here, but it is a design smell to couple presentation with modelling. Our
function should be just as useful on a teletype as it would be backing a DOM game that uses a table,
or a browser game that draws on Canvas.

Let’s use an array. So this:

— 4+ — 4+ —
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o | x|
B R
x | |
B T
o | |

1 1 1 1 1 1

7 X ! !
1 1 1 ' 1 1

7 ! !
1 1 1 1 1 1

’ 14
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We can use a POJO to make a map from positions to moves. We’ll use the [] notation for keys, it
allows us to use any expression as a key, and JavaScript will convert it to a string. So if we write:

const movelLookupTable

[l

14 14 ’
1 1 1 1 1 1
14 14 ’
1 1 1 1 1 1
14 14
1]: o,
[l
'O', 'X‘, 1 1,
1 1 1 1 1 1
14 14 ’
1 1 1 1 1 [
14 14
1]: 6,
[l
'O', 'X‘, ‘X',
1 1 1 1 1 1
14 14 ’
|O| 1 1 1 1
14 14
1]: 3,
[l
1 II 'X‘, 1 ',
1 1, 1 |’ 1 v/
1 1 1 1 1 1
14 14
11: 8,
[l
'O', 1 ‘, 1 ',
1 1, 1 |’ 1 v/
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11: 8,
[l
o x,
lol, 1 |’ |l L}
11: 3,
[l
o x,
lol, IX|’ |l L}
11: 3,
[l
o, txt,
oty
1]: 8
//
1
We get
{

And if we want to look up what move to make, we can write:

movelLookupTable| [

OI XI 7

o

o', 'x',
1]

//=> 3

And from there, a stateless function to play naughts-and-crosses is trivial:
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statelessNaughtsAndCrosses( [

O/ X/ !

e

o', 'xt,
D)

//=> 3

representing naughts and crosses as a stateful function

Our statelessNaughtsAndCrosses function pushes the work of tracking the game’s state onto us,
the player. What if we want to exchange moves with the function? In that case, we need a stateful
function. Our “API” will work like this: When we want a new game, we’ll call a function that will
return a game function, We’ll call the game function repeatedly, passing our moves, and get the
opponent’s moves from it.

Something like this:

const aNaughtsAndCrossesGame = statefulNaughtsAndCrosses();

// our opponent makes the first move
aNaughtsAndCrossesGame( )
//=> 0

// then we move, and get its next move back
aNaughtsAndCrossesGame(1)
//=> 6

// then we move, and get its next move back
aNaughtsAndCrossesGame(4)

//=> 3

We can build this out of our statelessNaughtsAndCrosses function:
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const statefulNaughtsAndCrosses = () => {
const state = [

return (x = false) => {

if (x) {
if (state[x] === "' ") {
state[x] = 'x';
}
else throw "occupied!"
}
let o = movelLookupTable[state];
state[o] = 'o';
return o;

}
};

const aNaughtsAndCrossesGame = statefulNaughtsAndCrosses();

// our opponent makes the first move
aNaughtsAndCrossesGame( )
//=> 0

// then we move, and get its next move back
aNaughtsAndCrossesGame(1)
//=> 6

// then we move, and get its next move back
aNaughtsAndCrossesGame (4 )
//=> 3

Let’s recap what we have: We have a stateful function, but we built it by wrapping a stateless function
in a function that updates state based on the moves we provide. The state is encoded entirely in data.

this seems familiar

When we looked at generators, we saw that some iterators are inherently stateful, but sometimes it
is awkward to represent them in a fully stateless fashion. Sometimes there is a state machine that is
naturally represented implicitly in JavaScript’s control flow rather than explicitly in data.
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We’ve done almost the exact same thing here with our naughts and crosses game. A game like this
is absolutely a state machine, and we’ve explicitly coded those states into the lookup table. Which
leads us to wonder: Is there a way to encode those states implicitly, in JavaScript control flow?

If we were in full control of the interaction, it would be easy to encode the game play as a decision
tree instead of as a lookup table. For example, we could do this in a browser:

function browserNaughtsAndCrosses () {
const x1 = parselnt(prompt('o plays 0, where does x play?'));
switch (x1) {

case 1:
const x2 = parselnt(prompt('o plays 6, where does x play?'));
switch (x2) {

case
case

case

N O N

case
case 8:
alert('o plays 3');
break;

case 3:
const x3 = parselnt(prompt('o plays 8, where does x play?'));
switeh (x3) {

case 2:

case O:

case 7:
alert('o plays 4');
break;

case 4:
alert('o plays 7');
break;

break;

7o
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Naughts and crosses is simple enough that the lookup function seems substantially simpler, in part
because linear code doesn’t represent trees particularly well. But we can clearly see that if we wanted
to, we could represent the state of the program implicitly in a decision tree.

However, our solution inverts the control. We aren’t calling our function with moves, it’s calling us.
With iterators, we wrote a generator function using function *, and then used yield to yield values
while maintaining the implicit state of the generator’s control flow.

Can we do the same thing here? At first glance, no. How do we get the player’s moves to the generator
function? But the first glance is deceptive, because we only see what we’ve seen so far. Let’s see how
it would actually work.

interactive generators

So far, we have called iterators (and generators) with . next (). But what if we pass a value to .next()?
If we could do that, a generator function that played naughts and crosses would look like this:

If it was possible, how would it work?

function* generatorNaughtsAndCrosses () {
const x1 = yield ©O;
switch (x1) {

case 1:
const x2 = yield 6;
switch (x2) {

case
case

case

N O N

case

case 8:
yield 3;
break;

case 3:
const x3 = yield 8;
switech (x3) {

case 2:

case O:

case T:
yield 4;
break;
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case 4:
yield 7;
break;
}
}
break;
e

const aNaughtsAndCrossesGame = generatorNaughtsAndCrosses();

We can then get the first move by calling .next (). Thereafter, we call .next(...) and pass in our
moves (The very first call has to be .next() without any arguments, because the generator hasn’t
started yet. If we wanted to pass some state to the generator before it begins, we’d do that with
parameters.):

aNaughtsAndCrossesGame.next().value
//=> 0

aNaughtsAndCrossesGame . next (1) .value
//=> 6

aNaughtsAndCrossesGame.next(3).value
//=> 8

aNaughtsAndCrossesGame.next(7).value
//=> 4

Our generator function maintains state implicitly in its control flow, but returns an iterator that we
call, it doesn’t call us. It isn’t a collection, it has no meaning if we try to spread it into parameters
or as the subject of a for. . .of block.

But the generator function allows us to maintain state implicitly. And sometimes, we want to use
implicit state instead of explicitly storing state in our data.

summary

We have looked at generators as ways of making iterators over static collections, where state
is modelled implicitly in control flow. But as we see here, it’s also possible to use a generator
interactively, passing values in and receiving a value in return, just like an ordinary function.
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Again, the salient difference is that an “interactive” generator is stateful, and it embodies its state in
its control flow.
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Basic Operations on Iterables

Here are the operations we’ve defined on Iterables. As discussed, they preserve the collection
semantics of the iterable they are given:

operations that transform one iterable into another

function * mapWith(fn, iterable) {
for (const element of iterable) {
yield fn(element);

function * mapAllWith (fn, iterable) {
for (const element of iterable) {
yield * fn(element);

function * filterWith (fn, iterable) {
for (const element of iterable) {
if (!!fn(element)) yield element;

function * compact (iterable) {
for (const element of iterable) {
if (element != null) yield element;

function * untilWith (fn, iterable) {
for (const element of iterable) {
if (fn(element)) break;
yield fn(element);

function * rest (iterable) {

const iterator = iterable[Symbol.iterator]();

iterator.next();
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yield * iterator;

function * take (numberToTake, iterable) ({
const iterator = iterable[Symbol.iterator]();

for (let i = 0; i < numberToTake; ++i) {
const { done, value } = iterator.next();
if (!done) yield value;

operations that compose two or more iterables into an iterable

function * zip (...iterables) {
const iterators = iterables.map(i => i[Symbol.iterator]());

while (true) {
const pairs = iterators.map(j => j.next()),
dones = pairs.map(p => p.done),
values = pairs.map(p => p.value);

if (dones.indexOf(true) >= Q) break;
yield values;

}
};

function * zipWith (zipper, ...iterables) {
const iterators = iterables.map(i => i[Symbol.iterator]());

while (true) {
const pairs = iterators.map(j => j.next()),
dones = pairs.map(p => p.done),

values = pairs.map(p => p.value);

if (dones.indexOf(true) >= Q) break;
yield zipper(...values);

}
1

Note: zip is also the following special case of zipWith:
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const zip = callFirst(zipWith, (...values) => values);

operations that transform an iterable into a value

const reduceWith = (fn, seed, iterable) => {
let accumulator = seed;

for (const element of iterable) {
accumulator = fn(accumulator, element);

}

return accumulator;

¥

const first = (iterable) =>
iterable[Symbol.iterator]().next().value;

memoizing an iterable

function memoize (generator) {
const memos = {},
iterators = {};

return function * (...args) {
const key = JSON.stringify(args);
let i = 0;

if (memos[key] == null) {
memos [key] = [];
iterators[key] = generator(...args);

while (true) {
if (i < memos[key].length) {
yield memos[key] [i++];
}
else {
const { done, value } = iterators[key].next();

if (done) {
return;

} else {



Served by the Pot: Collections 308

yield memos[key][i++] = value;
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gyt

P » s . O . .
Uniqueness” is an important quality in society and in programs.

Programmers often spend a lot of time trying to define “sameness:” JavaScript programmers know
that "foo" === "foo" is always true, but new String("foo") === new String("foo") is always
false, and how tricky it is to define what we mean when we say that { foo: "bar" } is semantically
equivalent to { foo: "bar" }.

Programmers don’t think about it quite as much, but entities being different from each other is also
important. We know that function () {} !== function () {}.But having objects that we know
to be different from each other can be very useful.

Any sufficiently complicated C or Fortran program contains an ad hoc, informally-
specified, bug-ridden, slow implementation of half of Common Lisp.-Greenspun’s Tenth


https://en.wikipedia.org/wiki/Greenspun's_tenth_rule
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Rule***

In older versions of JavaScript, programmers would hack together unique objects, using timestamps,
GUIDS, counters and other techniques. None of which are individually wrong, but when there are
99 different ways to do the same thing that everybody ends up doing, the important parts of our
code become obfuscated under the weight of our ad hoc, informally-specified, bug-ridden, slow
implementations of Common Lisp’s gensym'*’.

So Symbol was added to the language. In its simplest form, Symbol is a function that returns a unique
entity. No two symbols are alike, ever:

Symbol() !=== Symbol()
Symbols have string representations, although they may appear cryptic:**°

Symbol().toString()

//=> Symbol(undefined)_u.mwfoblvw5
Symbol().toString()

//=> Symbol (undefined)_s.niklxrko8m
Symbol().toString()

//=> Symbol (undefined)_s.mbsi4nduh

You can add your own text to help make it intelligible:

Symbol("Allongé").toString()

//=> Symbol(Allongé)_s.52x692eab
Symbol ("Allongé").toString()

//=> Symbol (Allongé)_s.q6hg51x01p
Symbol ("Allongé").toString()

//=> Symbol (Allongé)_s.jiiTeyiyza

There are some ways that JavaScript makes symbols especially handy. Using symbols as property
names, for example.

privacy with symbols

When we use a symbol as a property name, it is automatically unique and non-enumerable. It is still
possible to discover its existence and retrieve its value, but it is not possible for accidentally access
or overwrite a property that uses a symbol as its key.

Therefore, we can give objects private properties with symbols. Consider this:

?*https://en.wikipedia.org/wiki/Greenspun’s_tenth_rule
3http://www.lispdoc.com/?q=gensym
?“The exact representation depends upon the implementation


https://en.wikipedia.org/wiki/Greenspun's_tenth_rule
https://en.wikipedia.org/wiki/Greenspun's_tenth_rule
http://www.lispdoc.com/?q=gensym
https://en.wikipedia.org/wiki/Greenspun's_tenth_rule
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const Queue = () =>

array: [],
head: 0,
tail: -1,
pushTail (value) {

return this[array][this[tail] += 1] = value
3
pullHead () {

if (this[tail] >= this[head]) {

let value = this[array][this[head]];

this[array][this[head]] = undefined;
this[head] += 1;
return value
}
}
iskmpty () {
return this[tail] < this[head]
}

});

let g = Queue();

g.pushTail('hello');

g.pushTail('symbols");

g.pullHead()

//=> 'hello'
q

//=> {"array":["hello", "symbols"], "head":0, "tail":1}
gq.tail

//=> 1

311

Because we used compact method syntax, the pushTail, pullHead, and isEmpty properties are not
“enumerable,” so they don’t show up in the console. But other code can access them. The array,
head, and tail properties are enumerable and accessible.

Let’s use symbols for these properties instead:
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const array = Symbol(),
head Symbol(),
tail Symbol();

const Queue = () =>

({
[array]: [],
[head]: 0O,
[tail]: -1,

pushTail (value) {
return this[array][this[tail] += 1] = value
}
pullHead () {
if (this[tail] >= this[head]) {
let value = this[array][this[head]];

this[array] [this[head]] = undefined;
this[head] += 1;
return value
}
3
isEmpty () {
return this[tail] < this[head]
}
1)

let g = Queue();
g.pushTail('hello');

g.pushTail('symbols');

g.pullHead()

//=> 'hello'
q

/7= {}
g.tail

//=> undefined

Now the array, head, and tail properties are not enumerable and they aren’t accessible by those
names because they’re actually symbols assigned to the array, head, and tail variables.
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*"Krups Machines (c) 2010 Shadow Becomes White, some rights reserved
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Why Metaobjects?

In computer science, a metaobject is an object that manipulates, creates, describes, or
implements other objects (including itself). The object that the metaobject is about is called
the base object. Some information that a metaobject might store is the base object’s type,
interface, class, methods, attributes, parse tree, etc.

-Wikipedia'*®

It is possible to write software using objects alone. When we need behaviour for an object, we can
give it methods by binding functions to keys in the object:

const sam = {
firstName: 'Sam’,
lastName: 'Lowry',
fullName () {
return this.firstName + " " + this.lastName;
},
rename (first, last) {
this.firstName = first;
this.lastName = last;

return this;

We call this a “naive” object. It has state and behaviour, but it lacks division of responsibility between
its state and its behaviour.

This lack of separation has two drawbacks. First, it intermingles properties that are part of the
model domain (such as firstName), with methods (and possibly other properties, although none
are shown here) that are part of the implementation domain. Second, when we needed to share
common behaviour, we could have objects share common functions, but does it not scale: There’s
no sense of organization, no clustering of objects and functions that share a common responsibility.

Metaobjects solve the lack-of-separation problem by separating the domain-specific properties
of objects from their implementation-specific properties and the functions that represent their
behaviour.

The basic principle of the metaobject is that we separate the mechanics of behaviour from the domain
properties of the base object. This has immediate engineering benefits, and it’s also the foundation
for designing programs with formal classes, expectations, and delegation.

8https://en.wikipedia.org/wiki/Metaobject


https://en.wikipedia.org/wiki/Metaobject
https://en.wikipedia.org/wiki/Metaobject
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Mixins, Forwarding, and Delegation

The simplest possible metaobject in JavaScript is a mixin. Consider our naive object:

const sam = {
firstName: 'Sam',
lastName: 'Lowry',
fullName () {
return this.firstName + " " + this.lastName;
},
rename (first, last) {
this.firstName = first;
this.lastName = last;

return this;

We can separate its domain properties from its behaviour:

const sam = {
firstName: 'Sam',
lastName: 'Lowry'

};

const Person = {
fullName () {
return this.firstName + " " + this.lastName;
1
rename (first, last) {
this.firstName = first;
this.lastName = last;

return this;

}
};

And use Object.assign to mix the behaviour in:

315
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Object.assign(sam, Person);

sam.rename
//=> [Function]

This allows us to separate the behaviour from the properties in our code.

Our Person object is a mixin, it provides functionality to be mixed into an object with a function
like Ob ject . assign. Mixins are not “copied” into objects in the sense of making brand new versions
of each of their functions: Object.assign copies references to each function from the mixin into the
target object.

We can test this for ourselves:

sam. fullName === Person. fullName
//=> true

sam.rename === Person.rename
//=> true

If we want to use the same behaviour with another object, we can do that:

const peck = {
firstName: 'Sam',
lastName: 'Peckinpah'

};

Object.assign(peck, Person);

And of course, that object gets references to the original functions as well:

sam. fullName === peck. fullName
//=> true

sam.rename === peck.rename
//=> true

Thus, many objects can mix one object in.

Things get even better: One object can mix many objects in:
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const HasCareer = {
career () {
return this.chosenCareer;

},
setCareer (career) {
this.chosenCareer = career;

return this;

}
};

Object.assign(peck, Person, HasCareer);

peck.setCareer('Director');

Since many objects can all mix the same object in, and since one object can mix many objects into
itself, there is a many-to-many relationship between objects and mixins.

forwarding

Another way to build a metaobject that defines behaviour for another object is by having the object
forward one or more method calls to a metaobject.

function forward (receiver, metaobject, ...methods) {
methods. forEach(function (methodName) {

receiver [methodName] = (...args) => metaobject[methodName](...args)

});

return receiver;

¥

This function forwards methods to another object. Any other object, it could be a metaobject specit-
ically designed to define behaviour, or it could be a domain object that has other responsibilities.
Like mixins, one object might forward method invocations to more than one metaobject.

In this example, we start with an investment portfolio metaobject that has a networth method:
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const portfolio = (function () {
const investments = Symbol();

return {

[investments]: [],

addInvestment (investment) {
this[investments] .push(investment);

3

netWorth () {
return this[investments].reduce(

function (acc, investment) {

return acc + investment.value;

};
NO;

And next we create an investor who has a portfolio of investments:
const investor = forward({}, portfolio, "addInvestment", "netWorth"),

investor.addInvestment({ type: "art", value: 1000000 })
investor.addInvestment({ type: "art", value: 2000000 })
investor.netWorth()

//=> 3000000

forwarding

Forwarding is a relationship between an object that receives a method invocation receiver and a
provider object. They may be peers. The provider may be contained by the consumer. Or perhaps
the provider is a metaobject.

When forwarding, the provider object has its own state. There is no special binding of function
contexts, instead the consumer object has its own methods that forward to the provider and return
the result. Our forward function above handles all of that, iterating over the provider’s properties
and making forwarding methods in the consumer.

The key idea is that when forwarding, the provider object handles each method in its own context.
And because there is a forwarding method in the consumer object and a handling method in the
provider, the two can be varied independently. Each forwarding function invokes the method in the
provider by name. So we can do this:
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portfolio.netWorth = function () {

return "I'm actually bankrupt!";

}

We're overwriting the method in the portfolio object, but not the forwarding function. So now,
our investor object will forward invocations of netWorth to the new function, not the original.

We say that mixing in is “early bound,” while forwarding is “late bound:” We’ll look up the method
when it’s invoked.

shared forwarding

The premise of a mixin is that every time you mix the metaobject’s behaviour into an object, the
receiver holds the state for the behaviour being mixed in. Thus, you can mix the same metaobject
into many objects, and they each will have their own state.

Forwarding does not work this way. When objects A and B both forward to C, the private state for
Cis held in C, and thus A and B share state. Sometimes this is what we want. but if it isn’t, we must
be very careful about using forwarding.

summarizing what we know so far

So now we have two things: Mixing in a mixin, and forwarding to a first-class object. And we’ve
seen that mixins execute in the context of the receiver, but forwarding is late-bound.

Which provokes a question: What is evaluated in the receiver’s context, but late-bound, not early-
bound?

delegation

Let’s build it. Here’s a version of the forward function, modified to evaluate method invocation in
the receiver’s context:

function delegate (receiver, metaobject, ...methods) ({
methods. forEach(function (methodName) {

receiver [methodName] = (...args) => metaobject[methodName].apply(receiver, args)

});

return receiver;

};

This new delegate function does exactly the same thing as the forward function, but the line that
does the delegation looks like this:
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receiver [methodName] = (...args) => metaobject[methodName] .apply(receiver, args)

It uses the receiver as the context instead of the provider. This has all the same coupling implications
that our mixins have, of course. And it layers in additional indirection. But unlike a mixin and
like forwarding, the indirection gives us some late binding, allowing us to modify the metaobject’s
methods after we have delegated behaviour from a receiver to it.

delegation vs. forwarding

Delegation and forwarding are both very similar. One metaphor that might help distinguish them
is to think of receiving an email asking you to donate some money to a worthy charity.

« If you forward the email to a friend, and the friend donates money, the friend is donating their
own money and getting their own tax receipt.

« If you delegate responding to your accountant, the accountant donates your money to the
charity and you receive the tax receipt.

In both cases, the other entity does the work when you receive the email.
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Later Binding

When comparing Mixins to Delegation, we noted that Mixins are early bound and Delegation is late
bound. Let’s be specific. Given:

const Incrementor = {
increment () {
++this._value;

return this;

},

value (optionalValue) {
if (optionalValue != null) {
this._value = optionalValue;

}

return this._value;

}
};

const counter = Object.assign({}, Incrementor);
We are mixing Incrementor into counter. At some point later, we encounter:
counter.value(42);

What function handles the invocation of .value? because we mixed Incrementor into counter,
it’s the same function as Incrementor.counter. We don’t look that up when counter.value(42)
is evaluated, because that was bound to counter.value when we extended counter. This is early

binding.

However, given:

const counter = {};
delegate(counter, Incrementor);
// ...time passes...

counter.value(42);

We again are most likely invoking Incrementor .value, but now we are determining this at the time
counter.value(42) is evaluated. We bound the target of the delegation, Incrementor, to counter,
but we are going to look the actual property of Incrementor.value up when it is invoked. This is
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late binding, and it is useful in that we can make some changes to Incrementor after the delegation
has been set up, perhaps to add some logging.

It is very nice not to have to do things like this in a very specific order: When things have to be done
in a specific order, they are coupled in time. Late binding is a decoupling technique.

but wait, there’s more

But we can get even later than that. Although the specific function is late bound, the target of the
delegation, Incrementor, is early bound. We can late bind that too! Here’s a variation on delegate:

function delegateToOwn (receiver, propertyName, ...methods) {
methods. forEach(function (methodName) {
receiver [methodName] = function () {
const metaobject = receiver [propertyName];
return metaobject[methodName] .apply(receiver, arguments);
)
1)

return receiver;

};

This function sets things up so that an object can delegate to one of its own properties, instead of an
arbitrary object. It’s quite common for an object to forward methods to one of its own properties.
In this manner, objects can be constructed using composition.

Let’s take another look at the investor example. Here’s the portfolio we used before. modified to
use the receiver’s context like a mixin:

const portfolio = (function () {
const investmentsProperty = Symbol();

return {

addInvestment (investment) {

this[investmentsProperty] || (this[investmentsProperty] = []);
return this[investmentsProperty].push(investment);

b

netWorth () {
this[investmentsProperty] || (this[investmentsProperty] = []);

return this[investmentsProperty] .reduce(
function (acc, investment) ({

return acc + investment.value;

}I
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2]
)
}
¥
DO;

Next we’ll make that a property of our investor, and delegate to the nestEgg property by name, not
the object itself:

const investor = {

nestEgg: portfolio

delegateToOwn(investor, 'nestEgg', 'addInvestment', 'netWorth');

investor.addInvestment({ type: "art", value: 1000000 })
investor.addInvestment({ type: "art", value: 2000000 })
investor.netWorth()

//=> 3000000

Our investor object delegates the addInvestment and netWorth methods to its own nestEgg
property. So far, this is just like the delegate method above. But consider what happens if we decide
to assign a new portfolio to our investor:

const companyRetirementPlan = {
netWorth () {
return 1500000 ;

investor.nestEgg = companyRetirementPlan;

investor.netWorth()
//=> 1500000

The delegateToOwn delegation now delegates to companyRetirementPlan, because it is bound to the
property name, not to the original object. This seems questionable for portfolios—what happens to
the old portfolio when you assign a new one?-but has tremendous application for modeling classes
of behaviour that change dynamically.
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state machines

A very common use case for this delegation is when building finite state machines'*’. As described in
the book Understanding the Four Rules of Simple Design'*° by Corey Haines, you could implement
Conway’s Game of Life"** using i f statements. Hand waving furiously over other parts of the system,
you might get:

const Universe = {
/S
numberOfNeighbours (location) {
/)
}
1

const thisGame = Object.assign({}, Universe);

const Cell = {
alive () {
return this._alive;
1
numberOfNeighbours () {
return thisGame.numberOfNeighbours(this._location);
1
aliveInNextGeneration () {
if (this.alive()) {

return (this.numberOfNeighbours() === 3);
}
else {
return (this.numberOfNeighbours() === 2 || this.numberOfNeighbours() === 3);
}
}
¥

const someCell = Object.assign({
_alive: true,
_location: {x: -15, y: 12}

}, Cell);

132 ;

One of the many insights from Understanding the Four Rules of Simple Design**? is that this business
of having an i f (alive()) in the middle of a method is a hint that cells are stateful.

?%https://en.wikipedia.org/wiki/Finite-state_machine
*%https://leanpub.com/4rulesofsimpledesign
*https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
*?https://leanpub.com/4rulesofsimpledesign
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We can extract this into a state machine using delegation to a property:

const Alive = {
alive () {
return true;
1,
aliveInNextGeneration () {
return (this.numberOfNeighbours() === 3);
}
¥

const Dead = {
alive () {
return false;
1
aliveInNextGeneration () {
return (this.numberOfNeighbours() === 2 || this.numberOfNeighbours() === 3);
}
};

const FsmCell = {
numberOfNeighbours () {
return thisGame.numberOfNeighbours(this._location);

delegateToOwn(Cell, '_state', ['alive', 'alivelnNextGeneration']);

const someFsmCell = Object.assign({
_state: Alive,
_location: {x: -15, y: 12}

}, FsmCell);

someFsmCell delegatesalive andaliveInNextGeneration toits _state property, and you can change
its state with assignment:

someFsmCell._state = Dead;
In practice, states would be assigned en masse, but this demonstrates one of the simplest possible
state machines. In the wild, most business objects are state machines, sometimes with multiple,

loosely coupled states. Employees can be:

« In or out of the office;
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e« On probation, on contract, or permanent;
o Part time or full time.

Delegation to a property representing state takes advantage of late binding to break behaviour into
smaller components that have cleanly defined responsibilities.

late bound forwarding

The exact same technique can be used for forwarding to a property, and forwarding to a property
can also be used for some kinds of state machines. Forwarding to a property has lower coupling than
delegation, and is preferred where appropriate.
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Delegation via Prototypes

At this point, we're discussed separating behaviour from object properties using metaobjects while
avoiding discussion of prototypes. This is deliberate, because what we have achieved is developing
a vocabulary for describing what a prototype is.

Let’s review what we know so far:

const Person = {
fullName: function () {
return this.firstName + " " + this.lastName;
},
rename: function (first, last) {
this.firstName = first;
this.lastName = last;
return this;
}
};

So far, just like any other metaobject we’d use as a mixin, or perhaps with delegation.

const sam = Object.create(Person);

sam

/7= {}

This is different. Instead of creating an object and then using Object.assign to incorporate
behaviour from a metaobject, we’re using Ob ject.create, a built-in method that creates the object
while simultaneously associating it with a prototype.

The methods fullName and rename do not appear in its string representation. We’ll find out why in
a moment.

sam. ful1Name
//=> [Function]
sam.rename
//=> [Function]
sam.rename( 'Samuel ', 'Ballard')
//=> { firstName: 'Samuel', lastName: 'Ballard' }
sam. fullName()
//=> 'Samuel Ballard'

And yet, they appear to be properties of sam, and we can invoke them in the usual fashion.
Furthermore, we can tell that when the methods are invoked, the current context is being set to
the receive, sam: That’s why invoking rename sets sam. firstName and sam.lastName.
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So far this is almost identical to using a mixin or delegation, but not a private mixin or forwarding
because methods are evaluated in sam’s scope. The only difference appears to be how sam is displayed
in the console. We recall that the big difference between a mixin and delegation is whether the
methods are early or late bound.

So, if we change a method in Person, then if prototypes are early bound, sam’s behaviour will not
change. Whereas if methods are late bound, sam’s behaviour will change. Let’s try it:

Person. fullName = function () {
return this.lastName + ', ' + this.firstName;

};

sam. fullName()
//=> 'Ballard, Samuel'

Aha! Prototypes have delegation semantics: They are late bound, and evaluated in the receiver’s
context. This is exactly why many programmers say that prototypes are a delegation mechanism.

We've already seen delegation implemented via method proxies. Now we see it implemented via
prototypes.

prototypes are strictly many-to-one.

Delegation is a many-to-many relationship. One object can directly delegate to more than one
metaobject, and more than one object can directly delegate to the same metaobject. This is not
the case with prototypes: Object.create only allows you to specific one prototype for an object
you’re creating. You can change the prototype of an Object with Object.setprototype0f, but each
object can onlyhave one prototype at a time.

sharing prototypes

Several objects can share one prototype:

const sam = Object.create(Person);

const saywhatagain = Object.create(Person);

sam and saywhatagain both share the Person prototype, so they both share the rename and ful1Name
methods. But they each have their own properties, so:
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sam.rename( 'Samuel ', 'Ballard');

saywhatagain.rename( 'Samuel', 'Jackson');

sam. fullName()
//=> 'Samuel Ballard'

saywhatagain. ful 1Name()

//=> 'Samuel Jackson'

The limitation of this scheme becomes apparent when we consider behaviours that need to be
composed. Given Person, IsAuthor, and HasBooks, if we have some people that are authors, some
that have children, some that aren’t authors and don’t have children, and some authors that have
children, prototypes cannot directly manage these behaviours without duplication.

prototypes are open for extension

With forwarding and delegation, the body of the method being proxied is late-bound because it is
looked up by name when the method is invoked. This differs from mixins, where the body of the
method is early bound by reference at the time the metaobject is mixed in.

const methodNames = (object) =>
Object.keys(object).filter(key => typeof(object[key]) == 'function")

function delegate (receiver, metaobject, ...methods = methodNames(metaobject)) {
methods. forEach(function (methodName) {
receiver [methodName] = (...args) => metaobject[methodName].apply(receiver, args)

});

return receiver;

};

const lowry = {};
delegate(lowry, Person);

lowry.rename( 'Sam', 'Lowry');

Person. fullName = function () {

return this.firstName[0] +
¥
lowry. fullName();

//=> 'S. Lowry'

+ this.lastName;

Prototypes and delegation both allow you to change the body of a method after a metaobject has
been bound to an object.
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But what happens if we add an entirely new method to our metaobject?

Person.surname = function () {
return this.lastName;

}

An object using our method proxies does not delegate the new method to its metaobject, because
we never created a method proxy for surname:

lowry.surname()
//=> TypeError: Object #<Object> has no method 'surname'

Whereas, an object using a prototype does delegate the new method to the prototype:

sam.surname()
//=> 'Ballard'

Prototypes late bind the method bodies and they late bind the identities of the methods being
delegated. So you can add and remove methods to a prototype, and the behaviour of all of the
objects bound to that prototype will be changed.

We say that prototypes are open for extension, because you can extend their behaviour after creating
objects with them. We say that mixins are closed for extension, because behaviour added to a mixin
does not change any of the objects that have already incorporated it.

summarizing

Prototypes are a special kind of delegation mechanism that is built into JavaScript. Delegating
through prototypes is:

1. Late bound on method bodies, just like delegation through method proxies;

2. Late bound on the method identities, which is superior to delegation through method proxies;
3. Evaluated in the receiver’s context, just like delegation.

4. Open for extension, unlike mixins, forwarding, and explicit delegation.

Prototypes are usually the first form of metaobject that many developers learn in JavaScript, and
quite often the last.

...one more thing!

There is one more way that delegation via prototypes differs from delegation via method proxies,
and it’s very important. We recall from above that object delegating to a prototype appear differently
in the console than objects delegating via method proxies:
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sam
//=> { firstName: 'Samuel', lastName: 'Ballard' }

lowry
//=>
{ fullName: [Function],
rename: [Function],
firstName: 'Sam',
lastName: 'Lowry' }

The reason is very simple: The code for representing an object in the console iterates over its “own”
properties, properties that belong to the object itself and not its prototype. In the case of sam, those are
firstName and lastName, but not fullName or rename because those are properties of the prototype.

Whereas in the case of lowry, fullName and rename are properties of Person, but there are also
function proxies that are properties of the lowry object itself.

We can test this for ourselves using the . hasOwnProperty method:

sam.hasOwnProperty('fullName");
//=> false

lowry .hasOwnProperty( ' fullName');
//=> true

One of the goals of metaobjects is to separate domain properties (such as firstName) from behaviour
(such as . fullName()). All of our metaobject techniques allow us to do that in our written code, but
prototypes do this extremely effectively in the runtime structure of the objects themselves.

This is extremely useful.
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Shared Prototypes

We can create a very simple object and associate it with a prototype:

const Person = {
fullName () {
return this.firstName + " " + this.lastName;
3
rename (first, last) {
this.firstName = first;
this.lastName = last;
return this;
}
¥

const sam = Object.create(Person);
This associates behaviour with our object:
sam.rename('sam', 'hill');

sam. fullName();
//=> 'sam hill'
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There is no way to associate more than one prototype with the same object, but we can associate

more than one object with the same prototype:

const bewitched = Object.create(Person);
bewitched.rename('Samantha', 'Stephens');

Although they share the prototype, their individual properties (as access with this), are separate:

sam

//=> { firstName: 'sam', lastName: 'hill' }
bewitched

//=> { firstName: 'Samantha', lastName: 'Stephens' }

This is very convenient.

prototype chains

Consider our HasCareer mixin:
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const HasCareer = {
career () {
return this.chosenCareer;
1
setCareer (career) {
this.chosenCareer = career;
return this;
}
};

We can use it as a prototype, of course. But we already want to use Person as a prototype.
What can we do? Obviously, we can combine Person and HasCareer into a “fat prototype” called
PersonWithCareer. This is not great, a general principle of software is that entities should have a
single clearly defined responsibility.

Even if we weren’t hung up on single responsibility, another issue is that not all people have careers,
so we need one prototype for people, and another for people with careers.

The catch is, another principle of good design is that every piece of knowledge should have one
unambiguous representation. The knowledge of what makes a person falls into this category. If we
were to add another method to Person, would we remember to add it to PersonWithCareer?

Let’s work from two principles:

1. Any object can have an object as its prototype, and any object can be a prototype.
2. The behaviour of an object consists of all of its own behaviour, plus all the behaviour of its
prototype.

When we say any object can have a prototype, does that include objects used as prototypes? Yes.
Objects used as prototypes can have prototypes of their own.

Let’s try it. First things first:

const PersonWithCareer = Object.create(Person);
Now let’s mix HasCareer into PersonWithCareer:
Object.assign(PersonWithCareer, HasCareer);

And now we can use PersonWithCareer as a prototype:
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const goldie = Object.create(PersonWithCareer);
goldie.rename( 'Samuel', 'Goldwyn');
goldie.setCareer('Producer');

Why does this work?

Imagine that we were writing a JavaScript (or other OO) language implementation. Method
invocation is incredibly messy, full of special optimizations and so forth, but perhaps we only have
ten days to get it done, so we might proceed like this without even thinking about prototype chains:

function invokeMethod(receiver, methodName, listOfArguments) ({
return invokeMethodWithContext(receiver, receiver, methodName, 1listOfArguments);

function invokeMethodWithContext(context, receiver, methodName, listOfArguments) {
const prototype;

if (receiver.hasOwnProperty(methodName)) ({
return receiver [methodName] .apply(context, 1istOfArguments);
}
else if (prototype = Object.getPrototypeOf(receiver)) {
return invokeMethodWithContext(context, prototype, methodName, 1istOfArguments);
}
else {

throw 'Method Missing ' + methodName;

}

Very simple: If the object implements the method, invoke it with .apply. If the object doesn’t
implement it but has a prototype, ask the prototype to implement it in the original receiver’s context.
What if the prototype doesn’t implement it but has a prototype of its own? Well, we’ll recursively

try that object too. Conceptually, this is what happens when we write:

goldie. fullName()
//=> 'Samuel Goldwyn'

In theory, the JavaScript engine walks up a chain starting with the goldie object, followed by our
PersonWithCareer prototype followed by our Person prototype.

trees

Chaining prototypes is a useful technique, however it has some limitations. Because objects can
have only one prototype, you cannot model all combinations of responsibilities solely with prototype
chains. The classic example is known as “The W Pattern:”
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Let’s consider three prototypes to be used for employees in a factory: Laborer, Manager, and
OnProbation.

All employees are either Laborer or Manager, but not both. So far, very easy, they can be prototypes.
Some labourers are also on probation, as are some managers. How do we handle this with prototype
chains?

s

Labourer OnProbation Manager
Labourers Probatlonary Probatlonary Managers
Labourers Managers

Labourers, Managers, and OnProbation

Well, we can’t have Laborer or Manager share OnProbation as a prototype, because then all labourers
and managers would be on probation. And if we make OnProbation have Laborer as its prototype,
there’s no way to have a manager also be on probation without making it also a laborer, and that’s
not allowed.

Quite simply, a tree is an insufficient mechanism for modeling this relationship.

Prototype chains model trees, but most domain responsibilities cannot be represented as trees, so we
must either revert to using “fat prototypes,” or find another way to represent responsibilities, such
as mixing metaobjects into prototypes.

prototypes and mixins

We’ve seen how to use Object.assign to mix functionality directly into objects. Prototypes are
objects, so it follows that we can mix functionality into prototypes. We used this technique when
we created the PersonWithCareer shared prototype.

We can extend this technique when we run into limitations with prototype chains:
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const Laborer = {
/)

};

const Manager = {
VA

4

const Probationary = {
/S

};

const LaborerOnProbation

const ManagerOnProbation
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Object.assign({}, Laborer, Probationary);
Object.assign({}, Manager, Probationary);

Using mixins, we have created prototypes that model combining labor/management with proba-

tionary status.

caveat programmer

Whether we’re using prototype chains or mixins, we’re introducing coupling. As discussed in Mixins,
Forwarding, and Delegation, prototypes that are brought into proximity with each other (by placing
them anywhere in the same chain, or by mixing them into the same object) become deeply coupled
because they both have complete access to an object’s private internal state through this.

To reduce this coupling, we have to find a way to insulate prototypes from each other. Techniques
like forwarding, while straightforward to use directly on an object or through a singleton prototype,
require special handling when used in a shared prototype.

We’ll discuss this at more length when we look at classes.
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Decaf espresso

Now that we’ve explored objects in some depth, it’s time to acknowledge something that even small
children know: Everything in JavaScript behaves like an object, everything in JavaScript behaves
like an instance of a function, and therefore everything in JavaScript behaves as if it inherits some
methods from a prototype and/or has some elements of its own.

For example:
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3.14159265.toPrecision(5)
//=> '3.1415"

'FORTRAN, SNOBOL, LISP, BASIC'.split(', ')
//=> [ 'FORTRAN',
# ' SNOBOL ',
# 'LISP',
# 'BASIC' ]

[ 'FORTRAN',
"SNOBOL ',
"LISP',
'BASIC' ].length
//=> 4

Functions themselves are instances, and they have methods. For example, every function has a
method call. call’s first argument is a context: When you invoke .call on a function, it invoked
the function, setting this to the context. It passes the remainder of the arguments to the function.
It seems like objects are everywhere in JavaScript!

You may have noticed that we use “weasel words” to describe how everything in JavaScript behaves
like an object. Everything behaves as if it delegates behaviour to a prototype.

The full explanation is this: As you know, JavaScript has “value types” like String, Number, and
Boolean. As noted in the first chapter, value types are also called primitives, and one consequence
of the way JavaScript implements primitives is that they aren’t objects. Which means they can be
identical to other values of the same type with the same contents, but the consequence of certain
design decisions is that value types don’t actually have methods or prototypes.

So. Value types don’t have methods or prototypes. And yet:

"Spence Olham".split(' ')
//=> ["Spence”, "Olham"]

Somehow, when we write "Spence Olham".split(' '), the string "Spence Olham" isn’t an object,
it doesn’t have methods, but it does a damn fine job of impersonating an object with a String
prototype. How does "Spence Olham" impersonate an object?

JavaScript pulls some legerdemain. When you do something that treats a value like an object,
JavaScript checks to see whether the value actually is an object. If the value is actually a primitive,**
JavaScript temporarily makes an object that is a kinda-sorta copy of the primitive and that kinda-
sorta copy has methods and you are temporarily fooled into thinking that "Spence Olham" has a
.split method.

**Recall that Strings, Numbers, Booleans and so forth are value types and primitives. We're calling them primitives here.
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These kinda-sorta copies are called String instances as opposed to String primitives. And the
instances have methods, while the primitives do not. How does JavaScript make an instance out
of a primitive? With new, of course.”®* Let’s try it:

The string instance looks just like our string primitive. But does it behave like a string primitive?
Not entirely:

new String("Spence Olham") === "Spence Olham"
//=> false

Aha! It’s an object with its own identity, unlike string primitives that behave as if they have a
canonical representation. If we didn’t care about their identity, that wouldn’t be a problem. But if
we carelessly used a string instance where we thought we had a string primitive, we could run into
a subtle bug:

if (userName === "Spence Olham") {
getMarried();
goCamping()

That code is not going to work as we expect should we accidentally bind new String("Spence
Olham") to userName instead of the primitive "Spence Olham".

This basic issue that instances have unique identities but primitives with the same contents have
the same identities—is true of all primitive types, including numbers and booleans: If you create an
instance of anything with new, it gets its own identity.

There are more pitfalls to beware. Consider the truthiness of string, number and boolean primitives:

"' ? "truthy' : '"falsy'
//=> '"falsy'

© ? 'truthy' : 'falsy'
//=> 'falsy'

false ? 'truthy' : 'falsy'
//=> 'falsy'

Compare this to their corresponding instances:

13We’ll read all about the new keyword in COnstructors and new.
new String(“Spence Olham”) /= “Spence Olham”
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new String('') ? 'truthy' : 'falsy'
//=> 'truthy'

new Number(@) ? 'truthy' : 'falsy'
//=> 'truthy'

new Boolean(false) ? 'truthy' : 'falsy'

//=> 'truthy'

Our notion of “truthiness” and “falsiness” is that all instances are truthy, even string, number, and
boolean instances corresponding to primitives that are falsy.

There is one sure cure for “JavaScript Impostor Syndrome.” Just as new PrimitiveType(...) creates
an instance that is an impostor of a primitive, PrimitiveType( . ..) creates an original, canonicalized
primitive from a primitive or an instance of a primitive object.

For example:

String(new String("Spence Olham")) === "Spence Olham"
//=> true

Getting clever, we can write this:

const original = function (unknown) {

return unknown.constructor (unknown)

}

original(true) === true
//=> true

original(new Boolean(true)) === true
//=> true

Of course, original will not work for your own creations unless you take great care to emulate the
same behaviour. But it does work for strings, numbers, and booleans.



Finish the Cup: Constructors and
Classes

Other languages call their objects “beans,” but serve extra-weak coffee in an attempt to be all things to all people

As discussed in Encapsulating State, JavaScript objects are very simple, yet the combination of
objects, functions, and closures can create powerful data structures. We’ve also seen how to use
Metaobjects to separate behaviour from domain properties, and to share functionality amongst many
different objects. And finally, we saw that one particular type of metaobject, a prototype, provides
us with a robust model for delegation.

In this section, we will return to prototypes, and see how to use JavaScript’s class keyword to write
one style of “object-oriented” JavaScript.
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Constructors and new

Let’s strip a function down to the bare essentials:
const Ur = function () {};

Or the equivalent:

function Ur () {};

This doesn’t look like it has anything to do with objects and constructing things: It doesn’t have an
expression that yields a Plain Old JavaScript Object when the function is applied. Yet, there is a way
to make an object out of it. Behold the power of the new keyword:

new Ur()

/7= A}
We got an object back! What can we find out about this object?

new Ur() === new Ur()
//=> false

Every time we call new with a function and get an object back, we get a unique object. We could call
these “Objects created with the new keyword,” but this would be cumbersome. So we’re going to call
them instances. Instances of what? Instances of the function that creates them. So given const i =
new Ur(), we say that i is an instance of Ur.

We also say that Ur is the constructor of i, and that Ur is a constructor function. Therefore, an
instance is an object created by using the new keyword on a constructor function, and that function
is the instance’s constructor.

An instance is an object created by using the new keyword on a constructor function, and
that function is the instance’s constructor.

constructors, instances, and prototypes

There’s more. Here’s something you may not know about functions, every function has a . prototype
property by default:
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Ur .prototype
/7= A}

We remember prototypes. What do we know about the prototype property of every function? Let’s
run our standard test:

(function () {}).prototype === (function () {}).prototype
//=> false

Every function is initialized with its own unique value for the .prototype property. What does it
do? Is it related to the prototypes we saw with Metaobjects? Let’s try something:

Ur .prototype.language = 'JavaScript';

const continent = new Ur();
/7= A{}
continent.language
//=> '"JavaScript'

That’s very interesting! Instances seem to behave as if they delegate to their constructors prototype,
just as if we’d created them using Object.create(Ur.prototype).

We can actually test this directly:

Ur.prototype. isPrototypeOf(continent)
//=> true

And we can inspect the prototype of our continent directly:

Object.getPrototypeOf(continent) === Ur.prototype
//=> true

Let’s try a few things:
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continent.language = 'CoffeeScript';
continent

//=> {language: 'CoffeeScript'}
continent. language

//=> 'CoffeeScript'
Ur .prototype. language

'JavaScript'

You can set elements of an instance, and they “override” the constructor’s prototype, but they don’t
actually change the constructor’s prototype. Let’s make another instance and try something else.

const another = new Ur();
/7= {1}
another . language
//=> "JavaScript'

New instances don’t acquire any changes made to other instances. Makes sense. And:

Ur.prototype.language = 'Sumerian'
another. language

//=> 'Sumerian'

Even more interesting: Changing the constructor’s prototype changes the behaviour of all of its
instances. This is the prototype/delegation relationship we have already seen with Ob ject.create.

Speaking of prototypes, here’s something else that’s very interesting:

continent.constructor
//=> [Function]

continent.constructor === Ur
//=> true

Every instance we create with new acquires a constructor element that is initialized to their
constructor function. Objects we don’t create with new still have a constructor element, it’s a built-
in function:

{}.constructor
//=> [Function: Object]

If that’s true, what about prototypes? Do they have constructors?
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Ur .prototype.constructor
//=> [Function]
Ur.prototype.constructor === Ur
//=> true

Very interesting!

revisiting this idea of queues

Let’s rewrite our Queue to use new and . prototype, using this and Object.assign:

const Queue = function () {
Object.assign(this, {
array: [],
head: 0,
tail: -1
)
};

Object.assign(Queue.prototype, {
pushTail (value) {
return this.array[this.tail += 1] = value
}
pullHead () {
let value;

if (!this.isEmpty()) {
value = this.array[this.head]
this.array[this.head] = void 0;
this.head += 1;
return value
}
3
isEmpty () {
return this.tail < this.head
}
1)

You recall that when we first looked at this, we only covered the case where a function that belongs
to an object is invoked. Now we see another case: When a function is invoked by the new operator,
this is set to the new object being created. Thus, our code for Queue initializes the queue.
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You can see why this is so handy in JavaScript: We wouldn’t be able to define functions in the
prototype that worked on the instance if JavaScript didn’t give us an easy way to refer to the instance
itself.

how do constructors compare to object.create?

Let’s summarize what we know:

When we use the new keyword with a function, we construct an object. The function is called with
its context (this) set to the new object, and the new object delegates behaviour to whatever object
is in the function’s . prototype property.

When we use Object.create, we create a new object and that object delegates its behaviour to
whatever object we pass to Object .create. If we want to do any other initialization with the object,
we can do that in a separate step.

Roughly speaking, we could use Object.create to emulate the obvious features of the new keyword.
Let’s try it. We'll start with worksLikeNew, a function that takes a constructor and some optional
arguments, and acts like the new keyword:

function worksLikeNew (constructor, ...args) {
const instance = Object.create(constructor.prototype);

instance.constructor = constructor;
const result = constructor.apply(instance, args);
return result === undefined ? instance : result;

function NamedContinent (name) ({

this.name = name;

}

NamedContinent.prototype.description = function () { return A continent named "${th\
is.name}"> };

const na = worksLikeNew(NamedContinent, "North America");

na.description()

//=> A continent named "North America"

So do we need the new keyword, given that we can emulate it? Well, one could argue that we don’t
need multiplication for positive integers:
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const times = (a, b) =>
a ===
? 0

b + times(a-1, b);

Programming is a process of choosing and making abstractions, and combining constructor func-
tions with the new keyword provides a single abstraction that handles several duties:

« The constructor’s prototype provides a metaobject for describing the behaviour of every
instance created with the constructor.

« The .constructor property of each instance provides an identifier for associating instances
with constructors.

« The constructor’s own code provides initialization for each instance.

We can do all these things with Object.create, but if we want to do exactly these things, and little
else, new and a constructor function are easier, simpler, and familiar at a glance to other JavaScript
programmers.

But when we want to do more, or different things, it might be better to use Object.create directly.



Finish the Cup: Constructors and Classes 348

Why Classes in JavaScript?

JavaScript programmers have been using constructors for a very long time. Long enough to notice
several drawbacks with them:

1. There are too many “moving parts.” Why is it necessary to define a constructor function, then
manipulate its prototype property in a separate step?
2. Why is chaining prototypes so complicated?

Experienced JavaScript programmers generally responded by moving in either of two directions:
Some programmers noticed that working directly with prototypes was simpler than doing every-
thing with constructors, and gravitated towards using Ob ject . create directly, using the techniques
we’ve discussed in the section on Metaobjects.

This approach is more flexible and powerful than using constructors, however it often seems
unfamiliar to people who have been taught that objects should always be associated with a hierarchy
of classes.

abstractioneering

Other experienced JavaScript programmers embraced classes, but paved over the awkwardness of
constructors and prototypes by building their own class abstractions. For example:

const clazz = (...args) => {

let superclazz, properties, constructor;

if (args.length === 1) {

[superclazz, properties] = [Object, args[0]];
}
else [superclazz, properties] = args;

if (properties.constructor) {
constructor = function (...args) {

return properties.constructor.apply(this, args)

}

else constructor = function () {};

constructor . prototype = Object.create(superclazz.prototype);
Object.assign(constructor.prototype, properties);
Object.defineProperty(

constructor.prototype,
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'constructor’,

{ value: constructor }

)

return constructor;

With this clazz function, we can write a Queue like this:

const Queue = clazz({
constructor: function () {
Object.assign(this, {

array: [],

head: 0,

tail: -1
1)

1,

pushTail: function (value) {
return this.array[this.tail += 1] = value
1
pullHead: function () {
if (!this.isEmpty()) {
let value = this.array[this.head]
this.array[this.head] = void 0;
this.head += 1;
return value
}
1,
isEmpty: function () {
return this.tail < this.head
}
1)

And we can write a Dequeue that “subclasses” a Queue like this:
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const Dequeue = clazz(Queue, {
constructor: function () {
Queue.prototype.constructor.call(this)
1
size: function () {
return this.tail - this.head + 1
1
pullTail: function () {
if (!this.isEmpty()) {
let value = this.array[this.tail];
this.array[this.tail] = void 0;
this.tail -= 1;

return value

}
1,
pushHead: function (value) {
if (this.head === 0) {
for (let i = this.tail; i >= this.head; --i) {
this.array[i + this.constructor.INCREMENT] = this.array[i]
}
this.tail += this.constructor.INCREMENT;
this.head += this.constructor.INCREMENT
}
this.array[this.head -= 1] = value
}
1)

Dequeue. INCREMENT = 4;

Chaining prototypes is handled for us, and we can set up the constructor function and the prototype’s
methods in one step. And there’s a lot to be said for making “classes” out of prototypes. Because
prototypes are “just objects,” and methods are “just functions,” we can re-use a lot of the techniques
we’ve already developed for objects and functions with our prototypes and methods.

why prototypes being objects is a win

For example, we can use Object.assign to mix functionality into our classes:
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const HasManager = {
function setManager (manager) ({
this.removeManager();
this.manager = manager;
manager .addReport(this);
return this;
1
function removeManager () {
if (this.manager) {
this.manager.removeReport(this);
this.manager = undefined;
}
return this;
}
b

const Manager = clazz(Person, {

constructor: function (first, last) {
Person.call(this, first, last);

1

function addReport (report) {
this.reports().add(report);
return this;

1

function removeReport (report) {
this.reports().delete(report);

return this;

}
function reports () {
return this._reports || (this._reports = new Set());
}
1)

const MiddleManager = clazz(Manager, {
constructor: function (first, last) {
Manager.call(this, first, last);

}

1)
Object.assign(MiddleManager.prototype, HasManager);

const Worker = clazz(Person, {
constructor: function (first, last) {
Person.call(this, first, last);
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}
});

Object.assign(Worker .prototype, HasManager);
Or even more declaratively:

const HasManager = {
function setManager (manager) {
this.removeManager();
this.manager = manager;
manager .addReport(this);
return this;
3
function removeManager () {
if (this.manager) {
this.manager.removeReport(this);
this.manager = undefined;
}
return this;
}
};

const Manager = clazz(Person, {
constructor: function (first, last) {
Person.call(this, first, last);
}
function addReport (report) {
this.reports().add(report);
return this;
}
function removeReport (report) {
this.reports().delete(report);
return this;
}
function reports () {
return this._reports || (this._reports = new Set());
}
1)

const MiddleManager = clazz(Manager, Object.assign({
constructor: function (first, last) {
Manager.call(this, first, last);

352
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}, HasManager));

const Worker = clazz(Person, Object.assign({
constructor: function (first, last) {
Person.call(this, first, last);

}
}, HasManager));

Likewise, decorating methods is as easy with these “classes” as it is with any other method:

const fluent = (methodBody) =>
function (...args) {
methodBody .apply(this, args);
return this;

const Manager = clazz(Person, {
constructor: function (first, last) {
Person.call(this, first, last);
H
addReport: fluent(function (report) {
this.reports().add(report);
1,
removeReport: fluent(function (report) ({
this.reports().delete(report);
b,
function reports () {
return this._reports || (this._reports = new Set());
}
1)

const MiddleManager = clazz(Manager, Object.assign({
constructor: function (first, last) {
Manager.call(this, first, last);

}

}, HasManager));

const Worker = clazz(Person, Object.assign({
constructor: function (first, last) {
Person.call(this, first, last);

}
}, HasManager));
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the problem with rolling our own classes

Building abstractions is a fundamental activity in programming. So it is not wrong to take basic
tools like prototypes and build upwards from them.

However. JavaScript is a simple and elegant language, and being able to write something like clazz
in 20-ish lines of code is wonderful. It is not a hardship to read 20 lines of code to figure out how
something works. Unless you have to read twenty lines of code every time you read a new program.

If everyone, or a very large number of people, are building roughly the same abstractions, but doing
them in slightly different ways, each program is nice, but the ecosystem as a whole is a mess. Every
time we read a new program, we have to figure out whether they are using raw constructors, rolling
their own class abstraction, or using classes from various libraries.

For this reason (and perhaps others), the class keyword was added to the JavaScript language.
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Classes with c1ass

Vac Pot Upper Chamber

JavaScript now has a simple way to write a “class.” Here’s a simple class written with clazz:

const Person = clazz({
constructor: function (first, last) {
this.rename(first, last);

},
fullName: function () {
return this.firstName + " " + this.lastName;

1,

rename: function (first, last) {
this.firstName = first;
this.lastName = last;
return this;
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}
});

And here it is with the class keyword:

class Person {
constructor (first, last) {
this.rename(first, last);
}
fullName () {
return this.firstName + " " + this.lastName;
}
rename (first, last) {
this.firstName = first;
this.lastName = last;
return this;
}
4

And here’s a Dequeue to show “inheritance:”

class Dequeue extends Queue {
constructor() {
Queue.prototype.constructor.call(this)
}
size() {
return this.tail - this.head + 1
}
pullTail() {
if (!this.isEmpty()) {
let value = this.array[this.tail];
this.array[this.tail] = void 0;
this.tail -= 1;

return value

}
pushHead(value) {

if (this.head === 0) {
for (let i = this.tail; i >= this.head; --i) {
this.array[i + this.constructor.INCREMENT] = this.array[i]

}
this.tail += this.constructor.INCREMENT;
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this.head += this.constructor.INCREMENT
}

this.array[this.head -= 1] = value
}
¥

Dequeue. INCREMENT = 4;
The interesting thing about Dequeue is that it works whether we write our Queue like this:

function Queue () {
Object.assign(this, {
array: [],
head: O,
tail: -1
1)

Object.assign(Queue.prototype, {
pushTail: function (value) {
return this.array[this.tail += 1] = value
1
pullHead: function () {
if (!this.isEmpty()) {
let value = this.array[this.head]
this.array[this.head] = void 0;
this.head += 1;
return value
}
}
isEmpty: function () {
return this.tail < this.head
}
1)

Or like this:
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const Queue = clazz({
constructor: function () {
Object.assign(this, {
array: [],

head: 0,
tail: -1
1)

}I

pushTail: function (value) {

return this.array[this.tail += 1]

1,
pullHead: function () {

if (!this.isEmpty()) {

let value = this.array[this.head]

this.array[this.head] =
this.head += 1;
return value

}

},
isEmpty: function () {

return this.tail < this.head

}
});

Or even like this:

class Queue {
constructor () {
Object.assign(this, {

array: [],

head: 0,

tail: -1
1)

}
pushTail (value) {

return this.array[this.tail += 1]

}
pullHead () {
if (!this.isEmpty()) {

let value = this.array[this.head]
this.array[this.head] = void 0;

this.head += 1;

return value

358
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}
isEmpty () {
return this.tail < this.head

It turns out that “classes” in JavaScript are fully compatible with constructors and prototypes. That’s
because behind the scenes, they’re almost indistinguishable. In basic use, the class keyword is
syntactic sugar for writing constructor functions with prototypes.

There is some extra magic for handling super (and a few other nice-to-have features like getters and
setters), but by design, and to maximize compatibility with existing code bases, the class keyword
is a declarative way to write functions and prototypes.

classes are values

When we write:

class Person {
constructor (first, last) {
this.rename(first, last);
}
fullName () {
return this.firstName + " " + this.lastName;
}
rename (first, last) {
this.firstName = first;
this.lastName = last;

return this;

}
¥

It looks like we are creating a global class named Person. Some other languages sometimes have
this idea that class names have a special significance and that they’re always global, although you
can namespace them in certain ways, and the mechanism behind class names and namespaces if
different than the mechanism behind variable bindings.

JavaScript does not do this. Person is a name bound in the environment where we evaluate the code.
So yes, at the topmost level, that code creates a global binding.

But we could also write something like this, taking advantage of privacy with symbols:
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const PrivatePerson = (() => {
const firstName = Symbol('firstName'),
lastName = Symbol('lastName');

return class Person {
constructor (first, last) {
++population;
this.rename(first, last);
}
fullName () {
return this[firstName] + " " + this[firstName];
}
rename (first, last) {
this[firstName] = first;
this[firstName] = last;
return this;
}
};
»O;

What does this do? It creates some symbols, then creates a class (also named person) within the same
environment and uses those symbols to create private properties. It then returns the newly created
class, which we bind to the name PrivatePerson. This hides the symbols firstName and lastName
from other code.

Notice also that we returned the class. This implies (correctly) that the class keyword creates a class
expression, and an expression is a value that can be used everywhere, just like a named function
expression.

Of course, we could have bound the value returned from the IIFE to any name we like, even Person,
but we give it a different name just to show that we have a value, just like any other value, and we
bind it to a name in the environment, just like any other name in the environment. In this case, even
the name Person is encapsulated within the IIFE.

In JavaScript, “classes” and “class expressions” are values just like any other value, and that means
we can do anything with them that we can do with other values, like return them from functions,
pass them to functions, and bind them to different names as we see fit.
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Object Methods

An instance method is a function defined in the constructor’s prototype. Every instance acquires this
behaviour unless otherwise “overridden.” Instance methods usually have some interaction with the
instance, such as references to this or to other methods that interact with the instance. A constructor
method is a function belonging to the constructor itself.

There is a third kind of method, one that any object (obviously including all instances) can have.
An object method is a function defined in the object itself. Like instance methods, object methods
usually have some interaction with the object, such as references to this or to other methods that
interact with the object.

Object methods are really easy to create with Plain Old JavaScript Objects, because they’re the only
kind of method you can use. Recall from This and That:

const BetterQueue = () =>
({

array: [],
head: ©,
tail: -1,
pushTail: function (value) {

return this.array[this.tail += 1] = value
3
pullHead: function () {

if (this.tail >= this.head) {

let value = this.array[this.head];

this.array[this.head] = void 0;
this.head += 1;
return value
}
3
isEmpty: function () {
this.tail < this.head
}
1)

pushTail, pullHead, and isEmpty are object methods. Also, from encapsulation:
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const stack = (() => {
const obj = {
array: [],
index: -1,

push: (value) => obj.array[obj.index += 1] = value,

pop: () = {
const value = obj.array[obj.index];

obj.array[obj.index] = undefined;
if (obj.index >= 0) {
obj.index -= 1

}
return value
H
isEmpty: () => obj.index < 0

};

return obj;

NO;

Although they don’t refer to the object, push, pop, and isEmpty semantically interact with the opaque
data structure represented by the object, so they are object methods too.

object methods within instances

Instances of constructors can have object methods as well. Typically, object methods are added in
the constructor. Here’s a gratuitous example, a widget model that has a read-only ig:

const WidgetModel = function (id, attrs) {
Object.assign(this, attrs || {});
this.id = function () { return id }

Object.assign(WidgetModel.prototype, {
set: function (attr, value) {
this[attr] = value;
return this;
3,
get: function (attr) {
return this[attr]

}
});
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set and get are instance methods, but id is an object method: Each object has its own id closure,
where id is bound to the id of the widget by the argument id in the constructor. The advantage of
this approach is that instances can have different object methods, or object methods with their own
closures as in this case. The disadvantage is that every object has its own methods, which uses up
much more memory than instance methods, which are shared amongst all instances.

Object methods are defined within the object. So if you have several different “instances”
of the same object, there will be an object method for each object. Object methods can be
associated with any object, not just those created with the new keyword. Instance methods
apply to instances, objects created with the new keyword. Instance methods are defined in a
prototype and are shared by all instances.
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Why Not Classes?

Classes are popular, and if classes map neatly to the way we wish to model something, we should
use them.

That being said, there are some caveats to understand.

the c1ass keyword is a minimal notation

By design, the class keyword provides the very minimum set of features needed to implement
“classes.” Everything else must be done in some other way. For example, if you write constructors
or prototypes directly, you can use method decorators (as we saw earlier):

const fluent = (methodBody) =>
function (...args) {
methodBody .apply(this, args);
return this;

const Manager = clazz(Person, {
constructor: function (first, last) {
Person.call(this, first, last);
1,
addReport: fluent(function (report) {
this.reports || (this.reports = new Set());
this.reports.add(report);
1.
removeReport: fluent(function (report) ({
this.reports || (this.reports = new Set());
this.reports.delete(report);
1,
reports: function () {
return this.reports || (this.reports = new Set());
}
1)

But at this time, you cannot use method decorators when you use the class syntax. There are plans
to introduce a new, purpose-built decorator syntax for this purpose, which highlights one of the
issues with the class syntax: By writing what amounts to a new language on top of JavaScript, it
must inevitably reinvent all of the things that are already possible in JavaScript.
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classes encourage the construction of class hierarchies

The easy thing to do with classes is to create class hierarchies'**. These are implemented by chaining
prototypes. And there is a problem with chained prototypes: They couple classes to each other.

AbstractBankAccount
ChequingAccount SavingsAccount
USDollarAccount  VisaDebitAccount HighBalanceAccount

A class hierarchy

When one class extends another, its methods can access any of the properties and methods defined
anywhere on the prototype chain. Given hierarchies designed as trees, a change to a class can break
the behaviour of any of the classes below it or above it on the tree.

When two or more metaobjects all have access to the same base object via open recursion'’,
they become tightly coupled because they can interact via setting and reading all the base object’s
properties. It is impossible to restrict their interaction to a well-defined set of methods.

This coupling exists for all metaobject patterns that include open recursion, such as mixins,
delegation, and delegation through prototypes. In particular, when chains of naive prototypes form
class hierarchies, this coupling leads to the fragile base class problem™’.

programming systems where base classes (superclasses) are considered “fragile” because
seemingly safe modifications to a base class, when inherited by the derived classes, may
cause the derived classes to malfunction. The programmer cannot determine whether a
base class change is safe simply by examining in isolation the methods of the base class.—
Wikipedia**®

0 The fragile base class problem is a fundamental architectural problem of object-oriented

In JavaScript, prototype chains are vulnerable because changes to one prototype’s behaviour may
break another prototype’s behaviour in the same chain.

https://en.wikipedia.org/wiki/Class_hierarchy
3https://en.wikipedia.org/wiki/Open_recursion#Open_recursion
*"https://en.wikipedia.org/wiki/Fragile_base_class
8https://en.wikipedia.org/wiki/Fragile_base_class
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In the next section we will look at a technique for reducing coupling between classes. And we will
look at avoiding deep hierarchies with mixins.
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Summary

p Instances and Classes

+ The new keyword turns any function into a constructor for creating instances.

« All functions have a prototype element.

« Instances behave as if the elements of their constructor’s prototype are their elements.

« The class keyword acts as syntactic sugar for writing constructor functions.

+ Classes created with the class keyword are actually constructor functions with
optionally chained prototypes.

+ Classes should be used in moderation, the syntax deliberately limits the flexibility and
class hierarchies can lead to overly coupled code.
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Recipes with Constructors and
Classes

These recipes are being roasted to perfection.
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Disclaimer

The recipes are written for practicality, and their implementation may introduce JavaScript features
that haven’t been discussed in the text to this point, such as methods and/or prototypes. The
overall use of each recipe will fit within the spirit of the language discussed so far, even if the
implementations may not.
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Bound

Earlier, we saw a recipe for getWith that plays nicely with properties:
const getWith = (attr) => (object) => object[attr]

Simple and useful. But now that we’ve spent some time looking at objects with methods we can see
that get (and pluck) has a failure mode. Specifically, it’s not very useful if we ever want to get a
method, since we’ll lose the context. Consider some hypothetical class:

function InventoryRecord (apples, oranges, eggs) {
this.record = {
apples: apples,
oranges: oranges,
eggs: eggs

InventoryRecord.prototype.apples = function apples () {
return this.record.apples

InventoryRecord.prototype.oranges = function oranges () {

return this.record.oranges

InventoryRecord.prototype.eggs = function eggs () {
return this.record.eggs

const inventories = |
new InventoryRecord( 0, 144, 36 ),
new InventoryRecord( 240, 54, 12 ),
new InventoryRecord( 24, 12, 42 )
1;

Now how do we get all the egg counts?
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mapWith(getWith('eggs'))(inventories)
//=> [ [Function: eggs],
// [Function: eggs],
// [Function: eggs] ]

And if we try applying those functions...

mapWith(getWith('eggs'))(inventories).map(
unboundmethod => unboundmethod()

//=> TypeError: Cannot read property 'eggs' of undefined

It doesn’t work, because these are unbound methods we’re “getting” from each object. The context
has been lost! Here’s a new version of get that plays nicely with methods:

const bound = (messageName, ...args) =>
(args === [])
? instance => instance[messageName].bind(instance)
instance => Function.prototype.bind.apply(
instance[messageName], [instance].concat(args)

);

mapWith(bound('eggs'))(inventories).map(
boundmethod => boundmethod()

J/=> [ 36, 12, 42 ]

bound is the recipe for getting a bound method from an object by name. It has other uses, such as
callbacks. bound('render')(aView) is equivalent to aView.render.bind(aView). There’s an option
to add a variable number of additional arguments, handled by:

instance => Function.prototype.bind.apply(
instance[messageName], [instance].concat(args)

);

The exact behaviour will be covered in Binding Functions to Contexts. You can use it like this to add
arguments to the bound function to be evaluated:
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InventoryRecord.prototype.add = function (item, amount) {
this.record[item] || (this.record[item] = 0);
this.record[item] += amount;

return this;

mapWith(bound('add', 'eggs', 12))(inventories).map(
boundmethod => boundmethod()

//=> [ { record:

// { apples: O,
// oranges: 144,
// eggs: 48 } },
// { record:

// { apples: 240,
// oranges: 54,
/7 eggs: 24 } },
// { record:

// { apples: 24,
// oranges: 12,

// eggs: 54 } } ]
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Send

Previously, we saw that the recipe bound can be used to get a bound method from an instance.
Unfortunately, invoking such methods is a little messy:

mapWith(bound('eggs'))(inventories).map(
boundmethod => boundmethod()

//=> [ 36, 12, 42 ]
As we noted, it’s ugly to write
boundmethod => boundmethod()
So instead, we write a new recipe:

const send = (methodName, ...args) =>
(instance) => instance[methodName].apply(instance, args);

mapWith(send('apples'))(inventories)
//=> [ 0, 240, 24 ]

send( 'apples') works very much like &:apples in the Ruby programming language. You may ask,
why retain bound? Well, sometimes we want the function but don’t want to evaluate it immediately,
such as when creating callbacks. bound does that well.
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Invoke

Send is useful when invoking a function that’s a member of an object (or of an instance’s prototype).
But we sometimes want to invoke a function that is designed to be executed within an object’s
context. This happens most often when we want to “borrow” a method from one “class” and use it
on another object.

It’s not an unprecedented use case. The Ruby programming language has a handy feature called
instance_exec'”. It lets you execute an arbitrary block of code in the context of any object. Does
this sound familiar? JavaScript has this exact feature, we just call it .apply (or .call as the case may
be). We can execute any function in the context of any arbitrary object.

The only trouble with .apply is that being a method, it doesn’t compose nicely with other functions
like combinators. So, we create a function that allows us to use it as a combinator:

const invoke = (fn, ...args) =>

instance => fn.apply(instance, args);

For example, let’s say someone else’s code gives you an array of objects that are in part, but not
entirely like arrays. Something like:

const data = |
{ 0: 'zero',

1
7

1: 'one
2: '"two',
length: 3},
{ ©: "none',
length: 1 },
Y/
1;

If they were arrays, and we wanted to copy them, we would use:
mapWith(send('slice', 0))(data)

Because arrays have a .send method. But our quasi-arrays have no such thing. So... We want to
borrow the .slice method from arrays, but have it work on our data. invoke([].slice, @) does
the trick:

**http://www.ruby-doc.org/core-1.8.7/Object. html#method-i-instance_exec


http://www.ruby-doc.org/core-1.8.7/Object.html#method-i-instance_exec
http://www.ruby-doc.org/core-1.8.7/Object.html#method-i-instance_exec
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mapWith(invoke([].slice, 0))(data)
/=0
"zero","one","two"],
["none"],

/AR

instance eval

invoke is useful when you have the function and are looking for the instance. It can be written “the
other way around,” for when you have the instance and are looking for the function:

const instanceEval = instance =>
(fn, ...args) => fn.apply(instance, args);
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Fluent

Object and instance methods can be bifurcated into two classes: Those that query something, and
those that update something. Most design philosophies arrange things such that update methods
return the value being updated. For example:

class Cake {
setFlavour (flavour) {
return this. flavour = flavour
},
setLayers (layers) {
return this.layers = layers
}
bake () {
// do some baking

const cake = new Cake();
cake.setFlavour('chocolate');
cake.setlLayers(3);
cake.bake();

Having methods like setFlavour return the value being set mimics the behaviour of assignment,
where cake. flavour = 'chocolate' is an expression that in addition to setting a property also
evaluates to the value 'chocolate’.

The fluent'*° style presumes that most of the time when you perform an update, you are more
interested in doing other things with the receiver than the values being passed as argument(s).
Therefore, the rule is to return the receiver unless the method is a query:

class Cake {

setFlavour (flavour) {
this. flavour = flavour;
return this;

},

setLayers (layers) {
this.layers = layers;
return this;

}I
bake () {

“https://en.wikipedia.org/wiki/Fluent_interface
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// do some baking
return this;

The code to work with cakes is now easier to read and less repetitive:

const cake = new Cake().
setFlavour( 'chocolate').
setLayers(3).
bake();

For one-liners like setting a property, this is fine. But some functions are longer, and we want to signal
the intent of the method at the top, not buried at the bottom. Normally this is done in the method’s
name, but fluent interfaces are rarely written to include methods like setLayersAndReturnThis.

When we write our own prototypes, the fluent method decorator solves this problem:

const fluent = (methodBody) =>
function (...args) {
methodBody .apply(this, args);

return this;

Now you can write methods like this:

function Cake () {}

Cake.prototype.setFlavour = fluent( function (flavour) {
this. flavour = flavour;

});

It’s obvious at a glance that this method is “fluent.”

When we use the class keyword, we can decorate functions in a similar manner:
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class Cake {

setFlavour (flavour) {
this.flavour = flavour;

},

setLayers (layers) {
this.layers = layers;

},

bake () {
// do some baking

}
Cake.prototype.setFlavour = fluent(Cake.prototype.setFlavour);

Cake.prototype.setLayers = fluent(Cake.prototype.setlLayers);
Cake.prototype.bake = fluent(Cake.prototype.bake);

Or, we could write ourselves a slight variation:

const fluent = (methodBody) =>
function (...args) {
methodBody .apply(this, args);

return this;

const fluentClass = (clazz, ...methodNames) {
for (let methodName of methodNames) {
clazz.prototype[methodName] = fluent(clazz.prototype[methodName]);

}

return clazgz;

Now we can simply write:

fluentClass(Cake, 'setFlavour', 'setlLayers', 'bake');

379
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We’ve seen that functions are first-class entities. meaning, we can store them in data structures,
pass them to other functions, and return them from functions. An amazing number of very strong
programming techniques arise as a consequence of functions-as-first-class-entities.

We’ve also seen that we can use functions-as-first-class-entities to write decorators like maybe:
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const maybe = (fn) =>
(...args) => {
for (let arg of args) {
if (arg == null) return arg;
}

return fn(...args);

And combinators like compose:

const compose = (a, b) =>

(x) = a(b(x));

compose(x => x + 1, y => y * y)(10)
//=> 101

The power arising from functions-as-first-class-entities is that we have a very flexible way to make
functions out of functions, using functions. We are not “multiplying our entities unnecessarily.” On
the surface, decorators and combinators are made possible by the fact that we can pass functions to
functions, and return functions that invoke our original functions.

But there’s something else: The fact that all functions are called in the exact same way. We write
foo(bar) and know that we will evaluate bar, and pass the resulting value to the function we get
by evaluating foo. This allows us to write decorators and combinators that work with any function.

Or does it?

Imagine, if you will, that functions came in two colours: “blue,” and “yellow.” Now imagine that
when we invoke a function in a variable, we type the name of the function in the proper colour. So
if we write const square = (x) => x * x in blue code, we also have to write square(5) in blue
code, so that square is always blue.

If we write const square = (x) => x * x in blue code, but elsewhere we write square(5) in yellow
code, it won’t work because square is a blue function and square(5) would be a yellow invocation.

blue and yellow functions

If functions worked like that, decorators would be very messy. We'd have to make colour-coded
decorators, like a blue maybe and a yellow maybe. We’d have to carefully track which functions have
which colours, much as in gendered languages like French, you need to know the gender of all
inanimate objects so that you can use the correct gendered grammar when talking about them.

This sounds bad, and for programming tools, it is."** The general principle is: Have fewer kinds of
similar things, but allow the things you do have to combine in flexible ways. You can’t just remove

*1Bad for programming languages, of course. French is a lovely human language.
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things, you have to also make it very easy to combine things. Functions as first-class-entities are a
good example of this, because they allow you to combine functions in flexible ways.

Coloured functions would be an example of how not to do it, because you’d be making it harder to
combine functions by balkanizing them.'*?

Functions don’t have colours in JavaScript. But there are things that have this kind of asymmetry
that make things just as awkward. For example, methods in JavaScript are functions. But, when you
invoke them, you have to get this set up correctly. You have to either:

1. Invoke a method as a property of an object. e.g. foo.bar (baz) or foo[ 'bar'](baz).
2. Bind an object to a method before invoking it, e.g. bar .bind( foo).
3. Invoke the method with with .call or .apply, e.g bar.call(foo, baz).

Thus, we can imagine that calling a function directly (e.g. bar (baz)) is blue, invoking a function and
setting this (e.g. bar.call(foo, baz)) is yellow.

Or in other words, functions are blue, and methods are yellow.

the composability problem

We often write decorators in blue, a/k/a pure functional style. Here’s a decorator that makes a
function throw an exception if its argument is not a finite number:

const requiresFinite = (fn) =>
(n) => {
if (Number.isFinite(n)){
return fn(n);

}
else throw "Bad Wolf";

}

const plusOne = x => x + 1;

plus1(1)
//=> 2

plusi([])
//=> 1 WIF!?

const safePlusOne = requiresFinite(plusOne);

“2See the aforelinked The Symmetry of JavaScript Functions


/2015/03/12/symmetry.html
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safePlusOne(1)
//=> 2

safePlusOne([])
//=> throws "Bad Wolf"

But it won’t work on methods. Here’s a Circle class that has an unsafe .scaleBy method:

class Circle {
constructor (radius) {
this.radius = radius;

}
diameter () {
return Math.PI * 2 * this.radius;

}
scaleBy (factor) {

return new Circle(factor * this.radius);

const two = new Circle(2);

two.scaleBy(3).diameter()
//=> 37.69911184307752

two.scaleBy(null).diameter()
//=> 0 WTF!?

Let’s decorate the scaleBy method to check its argument:

Circle.prototype.scaleBy = requiresFinite(Circle.prototype.scaleBy);

two.scaleBy(null).diameter()
//=> throws "Bad Wolf"

Looks good, let’s put it into production:
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Circle.prototype.scaleBy = requiresFinite(Circle.prototype.scaleBy);

two.scaleBy(3).diameter ()
//=> undefined is not an object (evaluating 'this.radius')

Whoops, we forgot that method invocation is “yellow” code, so our “blue” requiresFinite decorator
will not work on methods. This is the problem of “yellow” and “blue” code colliding.

composing functions with “green” code

Fortunately, we can write higher-order functions like decorators and combinators in a style that
works for both “pure” functions and for methods. We have to use the function keyword so that
this is bound, and then invoke our decorated function using .call so that we can pass this along.

Here’s requiresFinite written in this style, which we will call “green.” It works for decorating both
methods and functions:

const requiresFinite = (fn) =>
function (n) {
if (Number.isFinite(n)){
return fn.call(this, n);

}
else throw "Bad Wolf";
Circle.prototype.scaleBy = requiresFinite(Circle.prototype.scaleBy);

two.scaleBy(3).diameter ()
//=> 37.69911184307752

two.scaleBy("three").diameter()
//=> throws "Bad Wolf"

const safePlusOne = requiresFinite(x => x + 1);

safePlusOne(1)
//=> 2

safePlusOne([])
//=> throws "Bad Wolf"

We can write all of our decorators and combinators in “green” style. For example, instead of writing
maybe in functional (“blue”) style like this:
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const maybe = (fn) =>
(...args) => {
for (let arg of args) {
if (arg == null) return arg;
}

return fn(...args);

}

We can write it in both functional and method style (“green”) style like this:

const maybe = (method) =>
function (...args) {
for (let arg of args) {
if (arg == null) return arg;
}
return method.apply(this, args);

}

And instead of writing our simple compose in functional (“blue”) style like this:

const compose = (a, b) =>

(x) = a(b(x));
We can write it in both functional and method style (“green”) style like this:

const compose = (a, b) =>
function (x) {
return a.call(this, b.call(this, x));

}

What makes JavaScript tolerable is that green handling works for both functional (“blue”) and
method invocation (“yellow”) code. But when writing large code bases, we have to remain aware that
some functions are blue and some are yellow, because if we write a mostly blue program, we could
be lured into complacency with with blue decorators and combinators for years. But everything
would break if a “yellow” method was introduced that didn’t play nicely with our blue combinators

The safe thing to do is to write all our higher-order functions in “green” style, so that they work for
functions or methods. And that’s why we might talk about the simpler, “blue” form when introducing
an idea, but we write out the more complete, “green” form when implementing it as a recipe.

red functions vs. object factories

JavaScript classes (and the equivalent prototype-based patterns) rely on creating objects with the
new keyword. As we saw in the example above:
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class Circle {
constructor (radius) {
this.radius = radius;
}
diameter () {
return Math.PI * 2 * this.radius;
}
scaleBy (factor) {
return new Circle(factor * this.radius);

const round = new Circle(1);

round.diameter()
//=> 6.2831853

That new keyword introduces yet another colour of function, constructors are “red” functions. We
can’t make circles using “blue” function calls:

const round2 = Circle(2);
//=> Cannot call a class as a function

[1, 2, 3, 4, 5].map(Circle)
//=> Cannot call a class as a function

And we certainly can’t use a decorator on them:

const CircleRequiringFiniteRadius = requiresFinite(Circle);

const round3 = new CircleRequiringFiniteRadius(3);

//=> Cannot call a class as a function

Some experienced developers dislike new because of this problem: It introduces one more kind
of function that doesn’t compose neatly with other functions using our existing decorators and
combinators.

We could eliminate “red” functions by using prototypes and Object.create instead of using the
class and new keywords. A “factory function” is a function that makes new objects. So instead of
writing a Circle class, we would write a CirclePrototype and a CircleFactory function:
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const CirclePrototype = {
diameter () {
return Math.PI * 2 * this.radius;
1
scaleBy (factor) {
return CircleFactory(factor * this.radius);
}
¥

const CircleFactory = (radius) =>
Object.create(CirclePrototype, {

radius: { value: radius, enumerable: true }

1))

CircleFactory(2).scaleBy(3).diameter()
//=> 37.69911184307752

Now we have a “blue” CircleFactory function, and we have the benefits of objects and methods,
along with the benefits of decorating and composing factories like any other function. For example:

const requiresFinite = (fn) =>
function (n) {
if (Number.isFinite(n)){
return fn.call(this, n);

}
else throw "Bad Wolf";

const FiniteCircleFactory = requiresFinite(CircleFactory);

FiniteCircleFactory(2).scaleBy(3).diameter()
//=> 37.69911184307752

FiniteCircleFactory(null).scaleBy(3).diameter()
//=> throws "Bad Wolf"

All that being said, programming with factory functions instead of with classes and new is not a cure-
all. Besides losing some of the convenience and familiarity for other developers, we’d also have to
use extreme discipline for fear that accidentally introducing some “red” classes would break our
carefully crafted “blue in green” application.

In the end, there’s no avoiding the need to know which functions are functions, and which are
actually classes. Tooling can help: Some linting applications can enforce a naming convention where
classes start with an upper-case letter and functions start with a lower-case letter.
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charmed functions

Consider:

const likesToDrink = (whom) => {
switch (whom) {
case 'Bob':
return 'Ristretto’;
case 'Carol’':
return 'Cappuccino’;
case 'Ted':
return 'Allongé’;
case 'Alice':

return 'Cappuccino’;

likesToDrink( 'Alice")
//=> '"Cappuccino'

likesToDrink( 'Peter")
//=> undefined,

That’s a pretty straightforward function that implements a mapping from Bob, Carol, Ted, and Alice
to the drinks ‘Ristretto’, ‘Cappuccino’, and ‘Allongé’. The mapping is encoded implicitly in the code’s
switch statement.

We can use it in combination with other functions. For example, we can find out if the first letter of
what someone likes is “c:”

const startsWithC = (something) => !lsomething.match(/"c/i)

startsWithC(likesToDrink('Alice'))
//=> true

const likesSomethingStartingWithC =
compose(startsWithC, likesToDrink);

likesSomethingStartingWithC('Ted")
//=> false

So far, that’s good, clean blue function work. But there’s yet another kind of “function call” If you
are a mathematician, this is a mapping too:
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const personToDrink = {
Bob: 'Ristretto’,
Carol: 'Cappuccino',
Ted: 'Allongé',
Alice: 'Cappuccino'

personToDrink['Alice']
//=> 'Cappuccino'

personToDrink|['Ted']
//=> 'Allongé’

personToDrink also maps the names ‘Bob’, ‘Carol’, “Ted’, and ‘Alice’ to the drinks ‘Ristretto’,
‘Cappuccino’, and ‘Allongé’, just like 1ikesToDrink. But even though it does the same thing as a
function, we can’t use it as a function:

const personMapsToSomethingStartingWithC =
compose(startsWithC, personToDrink);

personMapsToSomethingStartingWithC('Ted')
//=> undefined is not a function (evaluating 'b.call(this, x)')

As you can see, [ and ] are a little like ( and ), because we can pass Alice to personToDrink and
get back Cappuccino. But they are just different enough, that we can’t write personToDrink(. . .).
Objects (as well as ECMAScript 2015 maps and sets) are “charmed functions.”

And you need a different piece of code to go with them. We’d need to write things like this:

const composeblueWithCharm =
(bluefunction, charmedfunction) =>
(arg) =
bluefunction(charmedfunction[arg]);

const composeCharmWithblue =
(charmedfunction, bluefunction) =>

(arg) =>
charmedfunction[bluefunction(arg)]

V2

That would get really old, really fast.
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adapting to handle red and charmed functions

We can work our way around some of these cross-colour and charm issues by writing adaptors,
wrappers that turn red and charmed functions into blue functions. As we saw above, a “factory
function” is a function that is called in the normal way, and returns a freshly created object.

If we wanted to create a CircleFactory, we could use Object.create as we saw above. We could
also wrap new Circle(...) in a function:

class Circle {
constructor (radius) {
this.radius = radius;
}
diameter () {
return Math.PI * 2 * this.radius;
}
scaleBy (factor) {
return new Circle(factor * this.radius);

const CircleFactory = (radius) =>
new Circle(radius);

CircleFactory(2).scaleBy(3).diameter()
//=> 37.69911184307752

With some argument jiggery-pokery, we could abstract Circle from CircleFactory and make a
factory for making factories, a FactoryFactory:

We would write a CircleFactory function:

const FactoryFactory = (clazz) =>
(...args) =>
new clazz(...args);

const CircleFactory = FactoryFactory(Circle);

circleFactory(5).diameter()
//=> 31.4159265

FactoryFactory turns any “red” class into a “blue” function. So we can use it any where we like:
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[1, 2, 8, 4, 5].map(FactoryFactory(Circle))
//=>
[{"radius":1},{"radius":2},{"radius":3},{"radius":4},{"radius":5}]

Sadly, we still have to remember that Circle is a class and be sure to wrap it in FactoryFactory
when we need to use it as a function, but that does work.

We can do a similar thing with our “charmed” maps (and arrays, for that matter). Here’s Dictionary,
a function that turns objects and arrays (our “charmed” functions) into ordinary (“blue”) functions:

const Dictionary = (data) => (key) => datalkey];

const personToDrink = {
Bob: 'Ristretto',
Carol: 'Cappuccino',
Ted: 'Allongé',

Alice: 'Cappuccino'

['Bob', 'Ted', 'Carol', 'Alice'].map(Dictionary(personToDrink))
//=> ["Ristretto”, "Allongé", "Cappuccino”, "Cappuccino"]

Dictionary makes it easier for us to use all of the same tools for combining and manipulating
functions on arrays and objects that we do with functions.

dictionaries as proxies

As David Nolen'** has pointed out, languages like Clojure have maps that can be called as functions
automatically. This is superior to wrapping a map in a plain function, because the underlying map is
still available to be iterated over and otherwise treated as a map. Once we wrap a map in a function,
it becomes opaque, useless for anything except calling as a function.

If we wish, we can create a dictionary function that is a partial proxy for the underlying collection
object. For example, here is an IterableDictionary that turns a collection into a function that is
also iterable if its underlying data object is iterable:

“*http://swannodette.github.io


http://swannodette.github.io/
http://swannodette.github.io/
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const IterableDictionary = (data) => {
const proxy = (key) => datalkey];
proxy[Symbol.iterator] = function* (...args) {
yield * data[Symbol.iterator](...args);
}

return proxy;

const people = IterableDictionary(['Bob', 'Ted', 'Carol', 'Alice']);
const drinks = IterableDictionary(personToDrink);

for (let name of people) {
console.log( ${name} prefers to drink ${drinks(name)}")

//=>
Bob prefers to drink Ristretto
Ted prefers to drink Allongé
Carol prefers to drink Cappuccino
Alice prefers to drink Cappuccino

This technique has limitations. For example, objects in JavaScript are not iterable by default. So we
can’t write:

for (let [name, drink] of personToDrink) ({
console.log( ${name} prefers to drink ${drink}")

//=> undefined is not a function (evaluating 'personToDrink][Symbol.iterator]()")
We could write:

for (let [name, drink] of Object.entries(personToDrink)) {
console.log( ${name} prefers to drink ${drink}")

//=>
Bob prefers to drink Ristretto
Carol prefers to drink Cappuccino
Ted prefers to drink Allongé
Alice prefers to drink Cappuccino

It would be an enormous hack to make Object.entries(IterableDictionary(personToDrink))
work. While we’re at it, how would we make . length work? Functions implement . length as the
number of arguments they accept. Arrays implement it as the number of entries they hold. If we
wrap an array in a dictionary, what is its . length?
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Proxying collections, meaning “creating an object that behaves like the collection,” works for specific
and limited contexts, but it is enormously fragile to attempt to make a universal proxy that also acts
as a function.

summary

JavaScript’s elegance comes from having a simple thing, functions, that can be combined in many
flexible ways. Exceptions to the ways functions combine, like the new keyword, handling this, and
[...], make combining awkward, but we can work around that by writing adaptors to convert these
exceptions to regular function calls.



Con Panna: Composing Class
Behaviour

Espresso Con Panna mixes sweet whipping cream into the strong coffee

Because prototypes are just objects, and because “classes” actually use prototypes under the hood,
we can use all of the techniques we’ve learned about working with objects, when working with
prototypes.
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Extending Classes with Mixins

We've seen that a “class” is simply a constructor function that is associated with a prototype, and
that the class keyword is a declarative way to write our own constructor functions and prototypes.
When we use the new keyword, we are invoking a mechanism that creates a new object that delegates
to a prototype, just like Object .create, and then the constructor function takes over and performs
any initialization we desire.

Because “classes” use the exact same model of delegating behaviour to prototypes, all the things
we learned about prototypes apply to classes. We saw that we can create “subclasses” by chaining
prototypes.

We can also share behaviour between classes in a more flexible way by mixing functionality into
classes. This is the exact same thing as mixing functionality into prototypes, of course.

Recall Person:

class Person {
constructor (first, last) {
this.rename(first, last);
}
fullName () {
return this.firstName + " " + this.lastName;
}
rename (first, last) {
this.firstName = first;
this.lastName = last;

return this;

const misterRogers = new Person('Fred', 'Rogers');
misterRogers. ful lName()
//=> Fred Rogers

We might be building some enterprisey thing and need Manager and Worker:
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class Manager extends Person {

constructor (first, last) {
super(first, last)

}

addReport (report) {
this.reports().add(report);
return this;

}

removeReport (report) {
this.reports().delete(report);
return this;

}

reports () {
return this._reports || (this._reports = new Set());

class Worker extends Person {
constructor (first, last) {
super(first, last);
}
setManager (manager) {
this.removeManager();
this.manager = manager;
manager .addReport(this);
return this;
}
removeManager () {
if (this.manager) {
this.manager .removeReport(this);
this.manager = undefined;

}

return this;

This works for our company, so well that we grow and develop the dreaded “Middle Manager,”
who both manages people and has a manager of their own. We could subclass Manager with
MiddleManager, but how doWorker and MiddleManager share the functionality for having a manager?

With a mixin, of course:
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const HasManager = {
function setManager (manager) ({
this.removeManager();
this.manager = manager;
manager .addReport(this);
return this;
1
function removeManager () {
if (this.manager) {
this.manager.removeReport(this);
this.manager = undefined;
}
return this;
}
b

class Manager extends Person {

constructor (first, last) {
super(first, last)

}

addReport (report) {
this.reports().add(report);
return this;

}

removeReport (report) {
this.reports().delete(report);
return this;

}

reports () {
return this._reports || (this._reports = new Set());

class MiddleManager extends Manager {
constructor (first, last) {
super(first, last);

}
Object.assign(MiddleManager .prototype, HasManager);

class Worker extends Person {
constructor (first, last) {
super(first, last);
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}

Object.assign(Worker .prototype, HasManager);

We can mix functionality into the prototypes of “classes” just as easily as we can mix functionality
directly into objects, because prototypes are objects, and JavaScript builds its “classes” out of
prototypes.

Were classes “something else,” like they are in other languages, we would gain many advantages
that we do not enjoy in JavaScript, but we would also give up the flexibility of being able to use the
same tools and techniques on prototypes that we do on objects.
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Functional Mixins

In Extending Classes with Mixins, we saw that you can emulate “mixins” using Object.assign on
classes. We'll revisit this subject now and spend more time looking at mixing functionality into
classes.

First, a quick recap: In JavaScript, a “class” is implemented as a constructor function and its
prototype, whether you write it directly, or use the class keyword. Instances of the class are
created by calling the constructor with new. They “inherit” shared behaviour from the constructor’s
prototype property.'*

the object mixin pattern

One way to share behaviour scattered across multiple classes, or to untangle behaviour by factoring
it out of an overweight prototype, is to extend a prototype with a mixin.

Here’s a class of todo items:

class Todo {
constructor (name) {

this.name = name || 'Untitled’';
this.done = false;

}

do () {

this.done = true;
return this;

}

undo () {
this.done = false;

return this;

And a “mixin” that is responsible for colour-coding:

#4A much better way to put it is that objects with a prototype delegate behaviour to their prototype (and that may in turn delegate behaviour
to its prototype if it has one, and so on).
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const Coloured = {
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};
return this;
1,
getColourRGB () {
return this.colourCode;
}
1

Mixing colour coding into our Todo prototype is straightforward:

Object.assign(Todo.prototype, Coloured);

new Todo('test')
.setColourRGB({r: 1, g: 2, b: 3})
//=> {"name": "test", "done": false, "colourCode":{"r":1,"g":2, "b":3}}

So far, very easy and very simple. This is a pattern, a recipe for solving a certain problem using a
particular organization of code.

functional mixins

The object mixin we have above works properly, but our little recipe had two distinct steps: Define
the mixin and then extend the class prototype. Angus Croll pointed out that it’s more elegant to
define a mixin as a function rather than an object. He calls this a functional mixin'**. Here’s Coloured
again, recast in functional form:

const Coloured = (target) =>
Object.assign(target, {
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};
return this;
3
getColourRGB () {
return this.colourCode;
}
1)

Coloured(Todo.prototype);

We can make ourselves a factory function that also names the pattern:

“https://javascriptweblog.wordpress.com/2011/05/31/a-fresh-look-at-javascript-mixins/


https://javascriptweblog.wordpress.com/2011/05/31/a-fresh-look-at-javascript-mixins/
https://javascriptweblog.wordpress.com/2011/05/31/a-fresh-look-at-javascript-mixins/
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const FunctionalMixin = (behaviour) =>
target => Object.assign(target, behaviour);

This allows us to define functional mixins neatly:

const Coloured = FunctionalMixin({
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};
return this;
},
getColourRGB () {
return this.colourCode;
}
1)

enumerability

If we look at the way class defines prototypes, we find that the methods defined are not enumerable
by default. This works around a common error where programmers iterate over the keys of an
instance and fail to test for . hasOwnProperty.

Our object mixin pattern does not work this way, the methods defined in a mixin are enumerable
by default, and if we carefully defined them to be non-enumerable, Object.assign wouldn’t mix
them into the target prototype, because Object.assign only assigns enumerable properties.

And thus:

Coloured(Todo.prototype)

const urgent = new Todo("finish blog post");
urgent.setColourRGB({r: 256, g: @, b: 0});

for (let property in urgent) console.log(property);
/)=
name
done
colourCode
setColourRGB
getColourRGB

As we can see, the setColourRGB and getColourRGB methods are enumerated, although the do and
undo methods are not. This can be a problem with naive code: we can’t always rewrite all the other
code to carefully use . hasOwnProperty.

One benefit of functional mixins is that we can solve this problem and transparently make mixins
behave like class:
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const FunctionalMixin = (behaviour) =>
function (target) {

for (let property of Reflect.ownKeys(behaviour))

if (!target[property])

Object.defineProperty(target, property, {

value: behaviour[property],

writable: true

D)

return target;
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Writing this out as a pattern would be tedious and error-prone. Encapsulating the behaviour into a

function is a small win.

mixin responsibilities

Like classes, mixins are metaobjects: They define behaviour for instances. In addition to defining
behaviour in the form of methods, classes are also responsible for initializing instances. But
sometimes, classes and metaobjects handle additional responsibilities.

For example, sometimes a particular concept is associated with some well-known constants. When
using a class, can be handy to namespace such values in the class itself:

class Todo {
constructor (name) {
this.name = name || Todo.DEFAULT_NAME;
this.done = false;

}
do () {

this.done = true;

return this;

}
undo () {
this.done = false;

return this;

Todo.DEFAULT_NAME = 'Untitled';

// If we are sticklers for read-only constants,
// Object.defineProperty(Todo, 'DEFAULT_NAME',

{value:

we could write:

'‘Untitled'});
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We can’t really do the same thing with simple mixins, because all of the properties in a simple mixin
end up being mixed into the prototype of instances we create by default. For example, let’s say we
want to define Coloured.RED, Coloured.GREEN, and Coloured.BLUE. But we don’t want any specific
coloured instance to define RED, GREEN, or BLUE.

Again, we can solve this problem by building a functional mixin. Our FunctionalMixin factory
function will accept an optional dictionary of read-only mixin properties:

function FunctionalMixin (behaviour, sharedBehaviour = {}) {
const instanceKeys = Reflect.ownKeys(behaviour);
const sharedKeys = Reflect.ownKeys(sharedBehaviour);

function mixin (target) {
for (let property of instanceKeys)
if (!target[property])
Object.defineProperty(target, property, {
value: behaviour[property],
writable: true

});

return target;
}
for (let property of sharedKeys)
Object.defineProperty(mixin, property, {
value: sharedBehaviour [property],
enumerable: sharedBehaviour.propertyIsEnumerable(property)

});

return mixin;

And now we can write:

const Coloured = FunctionalMixin({
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};
return this;
3
getColourRGB () {
return this.colourCode;

}

oA
RED: { r: 255, g: O, b: o },
GREEN: { r: 0O, g: 255, b: 0 1},
BLUE: { r: 0, g: o, b: 255 },
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1)
Coloured(Todo.prototype)

const urgent = new Todo("finish blog post");
urgent.setColourRGB(Coloured.RED);

urgent.getColourRGB()
//:> {"T".‘255, ngn..@/ ”b”.‘@}

mixin methods

Such properties need not be values. Sometimes, classes have methods. And likewise, sometimes it
makes sense for a mixin to have its own methods. One example concerns instanceof.

In earlier versions of ECMAScript, instanceof is an operator that checks to see whether the
prototype of an instance matches the prototype of a constructor function. It works just fine with
“classes,” but it does not work “out of the box” with mixins:

urgent instanceof Todo
//=> true

urgent instanceof Coloured
//=> false

To handle this and some other issues where programmers are creating their own notion of
dynamic types, or managing prototypes directly with Object.create and Object.setPrototype0f,
ECMAScript 2015 provides a way to override the built-in instanceof behaviour: An object can
define a method associated with a well-known symbol, Symbol .hasInstance.

We can test this quickly:'*¢

Coloured[Symbol .hasInstance] = (instance) => true
urgent instanceof Coloured

//=> true
{} instanceof Coloured

//=> true

Of course, that is not semantically correct. But using this technique, we can write:

*This may not work with various transpilers and other incomplete ECMAScript 2015 implementations. Check the documentation. For
example, you must enable the “high compliancy” mode in BabelJS. This is off by default to provide the highest possible performance for code
bases that do not need to use features like this.


http://babeljs.io/
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function FunctionalMixin (behaviour, sharedBehaviour = {}) {
const instanceKeys = Reflect.ownKeys(behaviour);
const sharedKeys = Reflect.ownKeys(sharedBehaviour);
const typeTag = Symbol("isA");

function mixin (target) ({
for (let property of instanceKeys)
if (!target[property])
Object.defineProperty(target, property, {
value: behaviour [property],
writable: true
})
target[typeTag] = true;
return target;
}
for (let property of sharedKeys)
Object.defineProperty(mixin, property, {
value: sharedBehaviour [property],
enumerable: sharedBehaviour.propertyIsEnumerable(property)

});

405

Object.defineProperty(mixin, Symbol.hasInstance, { value: (instance) => !!instance\

[typeTag] });
return mixin;

urgent instanceof Coloured
//=> true

{} instanceof Coloured
//=> false

Do you need to implement instanceof? Quite possibly not. “Rolling your own polymorphism”
is usually a last resort. But it can be handy for writing test cases, and a few daring framework

developers might be working on multiple dispatch and pattern-matching for functions.

summary

The charm of the object mixin pattern is its simplicity: It really does not need an abstraction wrapped

around an object literal and Object.assign.

However, behaviour defined with the mixin pattern is slightly different than behaviour defined with
the class keyword. Two examples of these differences are enumerability and mixin properties (such

as constants and mixin methods like [Symbol.hasInstance]).
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Functional mixins provide an opportunity to implement such functionality, at the cost of some
complexity in the FunctionalMixin function that creates functional mixins.

As a general rule, it’s best to have things behave as similarly as possible in the domain code, and
this sometimes does involve some extra complexity in the infrastructure code. But that is more of
a guideline than a hard-and-fast rule, and for this reason there is a place for both the object mixin
pattern and functional mixins in JavaScript.
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Emulating Multiple Inheritance

If you want to mix behaviour into a class, mixins do the job very nicely. But sometimes, people want
more. They want multiple inheritance. Meaning, what they really want is to create a new class that
inherits from both Todo and from Coloured.

If JavaScript had multiple inheritance, we could accomplish this by extending a class with more than
one superclass:

class Todo {
constructor (name) {

this.name = name || 'Untitled';
this.done = false;

}

do () {

this.done = true;

return this;

undo () {
this.done = false;
return this;

}
toHTML () {

return this.name; // highly insecure
}

class Coloured {
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};

return this;

getColourRGB () {
return this.colourCode;

let yellow = {r: 'FF', g: 'FF', b: '00'},
{r: 'FF', g: '@0', b: '00'},

red
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green = {r: 'e0', g: 'FF', b: '00'},
grey {r: '80', g: '80', b: '80'};

let oneDayInMilliseconds = 1000 * 60 * 60 * 24;

class TimeSensitiveTodo extends Todo, Coloured ({
constructor (name, deadline) {
super(name);
this.deadline = deadline;

getColourRGB () {
let slack = this.deadline - Date.now();

if (this.done) {
return grey;

}
else if (slack <= 0) {
return red;

}

else if (slack <= oneDayInMilliseconds)({

return yellow;

}

else return green;
toHTML () {
let rgb = this.getColourRGB();

return “<span style="color: #${rgb.r}${rgb.g}${rgb.b};">${super.toHTML()}</span>\

This hypothetical TimeSensitiveTodo extends both Todo and Coloured, and it overrides toHTML from
Todo as well as overriding getColourRGB from Coloured.

subclass factories

However, JavaScript does not have “true” multiple inheritance, and therefore this code does not
work. But we can simulate multiple inheritance for cases like this. The way it works is to step back
and ask ourselves, “What would we do if we didn’t have mixins or multiple inheritance?”
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The answer is, we’d force a square multiple inheritance peg into a round single inheritance hole,

like this:

class Todo {

/S

class ColouredTodo extends Todo {

e

class TimeSensitiveTodo extends ColouredTodo {

s

By making ColouredTodo extend Todo, TimeSensitiveTodo can extend ColouredTodo and override
methods from both. This is exactly what most programmers do, and we know that it is an anti-
pattern, as it leads to duplicated class behaviour and deep class hierarchies.

But.

What if, instead of manually creating this hierarchy, we use our simple mixins to do the work for
us? We can take advantage of the fact that classes are expressions'”’, like this:

let Coloured = FunctionalMixin({
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};

return this;

}I

getColourRGB () {
return this.colourCode;
}
1)

let ColouredTodo = Coloured(class extends Todo {});

Thus, we have a ColouredTodo that we can extend and override, but we also have our Coloured
behaviour in a mixin we can use anywhere we like without duplicating its functionality in our code.
The full solution looks like this:

“Thttp://raganwald.com/2015/06/04/classes-are-expressions.html
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class Todo {
constructor (name) {

this.name = name || 'Untitled’';
this.done = false;

}

do () {

this.done = true;

return this;

undo () {
this.done = false;
return this;

}
toHTML () {

return this.name; // highly insecure
}

let Coloured = FunctionalMixin({
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};

return this;

},

getColourRGB () {
return this.colourCode;

}
});

let ColouredTodo = Coloured(class extends Todo {});

let yellow = {r: 'FF', g: 'FF', b: '00'},
red = {r: 'FF', g: '00', b: '00'},
green = {r: '00', g: 'FF', b: '00'},
grey = {r: 'se', g: '80', b: '80'};

let oneDayInMilliseconds = 1000 * 60 * 60 * 24;

class TimeSensitiveTodo extends ColouredTodo {
constructor (name, deadline) {
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super(name);
this.deadline = deadline;

getColourRGB () {
let slack = this.deadline - Date.now();

if (this.done) {

return grey;

}
else if (slack <= 0) {

return red;

}

else if (slack <= oneDayInMilliseconds){

return yellow;

}

else return green;
toHTML () {
let rgb = this.getColourRGB();

return “<span style="color: #${rgb.r}${rgb.g}${rgb.b};">${super.toHTML()}</span>\

let task = new TimeSensitiveTodo('Finish JavaScript Allongé', Date.now() + oneDayInM\

illiseconds);

task.toHTML()
//=> <span style="color: #FFFF0OO;">Finish JavaScript Allongé</span>

The key snippet is let ColouredTodo = Coloured(class extends Todo {});, it turns behaviour
into a subclass that can be extended and overridden.

subclass factories

We can turn this pattern into a function:
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const SubclassFactory = (behaviour) => {
let mixBehaviourInto = FunctionalMixin(behaviour);

return (superclazz) => mixBehaviourInto(class extends superclazz {});

Using SubclassFactory, we wrap the class we want to extend, instead of the class we are declaring.
Like this:

const SubclassFactory = (behaviour) => {
let mixBehaviourInto = FunctionalMixin(behaviour);

return (superclazz) => mixBehaviourInto(class extends superclazz {});

const ColouredAsWellAs = SubclassFactory({
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};

return this;

}I

getColourRGB () {
return this.colourCode;
}
1)

class TimeSensitiveTodo extends ColouredAsWellAs(ToDo) {
constructor (name, deadline) {
super(name);
this.deadline = deadline;

getColourRGB () {
let slack = this.deadline - Date.now();

if (this.done) {
return grey;

}
else if (slack <= 0) {

return red;

}

else if (slack <= oneDayInMilliseconds){

return yellow;
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}

else return green;

toHTML () {
let rgb = this.getColourRGB();

return “<span style="color: #${rgb.r}${rgb.g}${rgb.b};">${super.toHTML()}</span>\

The syntax of class TimeSensitiveTodo extends ColouredAsWellAs(ToDo) says exactly what we
mean: We are extending our Coloured behaviour as well as extending ToDo.'**

“Justin Fagnani named this pattern “subclass factory” in his essay “Real” Mixins with JavaScript Classes. It'’s well worth a read, and his
implementation touches on other matters such as optimizing performance on modern JavaScript engines.


http://justinfagnani.com/2015/12/21/real-mixins-with-javascript-classes/
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Preventing Property Conflicts

When mixing behaviour onto classes, (and equally, when chaining prototypes, or extending classes
in a hierarchy), we are engaging in open recursion'*’. The methods in each mixin (or prototype in a
chain) all have the same context, and therefore refer to the same properties.

When chaining prototypes or extending classes, this does not typically result in two functions
accidentally using the same property for two different purposes. For example, if we write:

class Person {
constructor (first, last) {
this.rename(first, last);
}
fullName () {
return this.firstName + " " + this.lastName;
}
rename (first, last) {
this.firstName = first;
this.lastName = last;
return this;
}
¥

class Bibliophile extends Person {
addToCollection (name) {
this.collection().push(name);
return this;
1
collection () {
return this._books || (this._books = []);

And later we wanted to write:

class Author extends Bibliophile {
/o

It is very unlikely that we would attempt to use the same . _books property to refer to both the books
an author writes and the books a bibliophile collects. For some odd reason, our ontology has it that all

“https://en.wikipedia.org/wiki/Open_recursion#Open_recursion
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authors are also bibliophiles, so it’s natural that we would inspect the Bibliophile superclass when
designing Author, and all of our tests for Author would be performed on objects that are instances
of Bibliophile, by definition.

However, this is not the case for mixins. If we wrote:

const IsBibliophile = {
addToCollection (name) {
this.collection().push(name);
return this;
1
collection () {
return this._books || (this._books = []);
}
};

And a colleague wrote:

const IsAuthor = {
addBook (name) {
this.books().push(name);
return this;
3,
books () {
return this._books || (this._books = []);
}
1

This code could easily work for months or years. IsAuthor could be tested independently of
Bibliophile, and both would appear to behave correctly. Until the fateful day someone wrote

something like:

class BookLovingAuthor extends Person {

}

Object.assign(BookLovingAuthor .prototype, IsBibliophile, IsAuthor);

new BooklLovingAuthor('Isaac', 'Asimov')
.addBook('I Robot")
.addToCollection('The Mysterious Affair at Styles')
.collection()
//=> ["I Robot", "The Mysterious Affair at Styles"]

And bam! We have a property conflict: The books Isaac Asimov has written and collects have become
intermingled, because the two mixins refer to the same property.
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decoupling mixins with symbols
The simplest way to avoid these property conflicts is to use symbols for property names:

class Person {
constructor (first, last) {
this.rename(first, last);
}
fullName () {
return this.firstName + " " + this.lastName;
}
rename (first, last) {
this.firstName = first;
this.lastName = last;
return this;
}
1

const IsAuthor = (function () {
const books = Symbol();

return {
addBook (name) {
this.books().push(name);
return this;
1
books () {
return this[books] || (this[books] = []);
}
¥
»O;

const IsBibliophile = (function () {
const books = Symbol();

return {
addToCollection (name) {
this.collection().push(name);
return this;
b
collection () {
return this[books] || (this[books] = []);
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};
NO;

class BooklLovingAuthor extends Person {

}

Object.assign(BookLovingAuthor .prototype, IsBibliophile, IsAuthor);

new BooklLovingAuthor('Isaac', 'Asimov')
.addBook ('I Robot')
.addToCollection('The Mysterious Affair at Styles')
.collection()
//=> ["The Mysterious Affair at Styles"]
.books ().
//=> ["I Robot"]

Using symbols for property keys eliminates property conflicts between mixins.
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Reducing Coupling

When classes are built in a hierarchy, or mixins are distributed across a code base, coupling arises
over time. Typically, as a code base evolves, each iteration of programmer uses whatever methods
or properties have been made available by the accumulated efforts of previous iterations.

As time goes on, the number of methods and properties increases, and each new piece of behaviour
touches more and more methods and properties. When it comes time to refactor the code base, it
can be very difficult to tease behaviour apart, since so many pieces naturally end up depending on
each other.

One way to resist this natural tendency toward coupling is by making sure that each metaobject
exposes only the methods it confers upon its receivers. All other methods and properties should be
kept private.

Note that making properties private is not an ideological issue: It’s not a question of “purity in OO
theory” It’s a practical issue: It’s a question of minimizing the surface area of the metaobject in order
to minimize the ways in which it can become coupled to other objects.

using symbols to reduce coupled properties

We have seen that using symbols as property keys prevents mixins from accidentally sharing
the same property name for different purposes. They can also help prevent programmers from
deliberately using the same property name for different purposes.

Here’s why we care about that. Consider:

class Person {
constructor (first, last) {
this.rename(first, last);
}
fullName () {
return this.firstName + " " + this.lastName;
}
rename (first, last) {
this.firstName = first;
this.lastName = last;

return this;

class Bibliophile extends Person {
constructor (first, last) {
super(first, last);
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this._books = [];

}

addToCollection (name) {
this._books.push(name);
return this;

}

hasInCollection (name) {

return this._books.indexOf(name) >= 0;

const bezos = new Bibliophile('jeff', 'bezos')
.addToCollection("The Everything Store: Jeff Bezos and the Age of Amazon")
.hasInCollection("Matthew and the Wellington Boots")
//=> false

bezos
.hasInCollection("The Everything Store: Jeff Bezos and the Age of Amazon")
//=> true

Note that . _books is an array. Now consider:

class BookGlutten extends Bibliophile {
buyInBulk (...names) {
this.books().push(...names);

return this;

Book gluttons can buy books in bulk, ordinary bibliophiles cannot. So far, so good. But we have a
very naive implementation of book collections: an array is a linear data structure, the performance
of hasInCollection is order n. The moment we have a bibliophile with a really large collection, the
operation becomes excruciatingly slow.

Simplifying greatly, what if we refactor Bibliophile to use a Set?
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class Bibliophile extends Person {

constructor (first, last) {
super(first, last);
this._books = new Set();

}

addToCollection (name) {
this._books.add(name);
return this;

}

hasInCollection (name) {
return this._books.has(name);

Much faster, but we just broke our BookGlutten subclass. This is a very small and contrived example,
but the phenomenon is very real, and the larger the class hierarchy, the more it occurs. The author of
our BookGlutton subclass coupled BookGlutton to an implementation detail of Bibliophile. That’s
a “feature” of open recursion, but it is far wiser to prevent this from happening.

Naturally, we can use the same technique to prevent deliberate coupling of subclasses that we used
to prevent accidental property conflicts: Symbols.

const Bibliophile = (function () {
const books = Symbol("books");

return class Bibliophile extends Person {
constructor (first, last) {
super(first, last);
this[books] = [];
}
addToCollection (name) {
this[books] .push(name);
return this;
}
hasInCollection (name) ({
return this[books].indexOf(name) >= 0;

}
NO;

Now anyone subclassing Bibliophile is strongly discouraged from directly accessing the “books”
property:
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class BookGlutten extends Bibliophile {
buyInBulk (...names) {
for (let name of names) {
this.addToCollection(name);

}

return this;

Problem solved.
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The delight of coffee is that it transports you to another world

(this bonus chapter is a work-in-progress)
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Stateful Method Decorators

As noted in Method Decorators, and again in Symmetry, Colour, and Charm, simple function
decorators work and work well for ordinary functions. But in JavaScript, functions can be invoked
in different ways, and some of those ways are slightly incompatible with each other.

Of great interest to us are methods in JavaScript, functions that are used to define the behaviour of
instances. When a function is invoked as a method, the name this is bound to the instance, and
most methods rely on that binding to work properly.

Consider, for example the simple decorator requireAll, that raises an exception if a function is
invoked without at least as many arguments as declared parameters:

const requireAll = (fn) =>
function (...args) {
if (args.length < fn.length)
throw new Error('missing required arguments');
else
return fn(...args);

requireAll works perfectly with ordinary functions, what we called “blue” invocations. But if we
want to use requireAll with methods, we have to write it in such a way that it preserves this when
it invokes the underlying function:

const requireAll = (fn) =>
function (...args) {
if (args.length < fn.length)
throw new Error('missing required arguments');
else
return fn.apply(this, args);

It now works properly, including ignoring invocations that do not pass all the arguments. But you
have to be very careful when writing higher-order functions to make sure they work as both function
decorators and as method decorators.

We called this style of decorator a “green” decorator, because it handles blue (ordinary function) and
yellow (method) invocations.

the problem with state

Handling this properly is not the only way in which ordinary function decorators differ from
method decorators. Some decorators are stateful, like once. Here’s a version that correctly sets this:
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const once = (fn) => {
let hasRun = false;

return function (...args) {
if (hasRun) return;
hasRun = true;
return fn.apply(this, args);

Imagining for a moment that we wish to only allow a person to have their name set once, we might

write:

const once = (fn) => {
let hasRun = false;

return function (...args) {
if (hasRun) return;
hasRun = true;
return fn.apply(this, args);

class Person {
setName (first, last) {
this.firstName = first;
this.lastName = last;
return this;
}

fullName () {
return this.firstName + " " + this.lastName;

}
};

Object.defineProperty(Person.prototype, 'setName', { value: once(Person.prototype.se\

tName) });

const logician = new Person()
.setName( 'Raymond', 'Smullyan')
.setName( 'Haskell', 'Curry');

logician. fullName()
//=> Raymond Smullyan
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As we expect, only the first call to .setName has any effect, and it works on a method. But there is
a subtle bug that could easily evade naive attempts to write unit tests:

const logician = new Person()
.setName( 'Raymond', 'Smullyan');

const musician = new Person()

.setName('Miles', 'Davis');

logician. ful lIName()
//=> Raymond Smullyan

musician. ful IName()
//=> Raymond Smullyan

121211

What has happened here is that when we write Object.defineProperty(Person.prototype,
'setName', { value: once(Person.prototype.setName) });, we wrapped a function bound to
Person.prototype. That function is shared between all instances of Person. That’s deliberate, it’s
the whole point of prototypical inheritance (and the “class-based inheritance” JavaScript builds with

prototypes).

Since our once decorator returns a decorated function with private state (the hasRun variable), all
the instances share the same private state, and thus the bug.

writing stateful method decorators

If we don’t need to use the same decorator for functions and for methods, we can rewrite our
decorator to use a WeakSet**® to track whether a method has been invoked for an instance:

const once = (fn) => {

let invocations = new WeakSet();

return function (...args) {
if (invocations.has(this)) return;
invocations.add(this);

return fn.apply(this, args);

const logician = new Person()

1*%https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet
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.setName( 'Raymond', 'Smullyan');
logician.setName( 'Haskell', 'Curry');

const musician = new Person()
.setName( 'Miles', 'Davis');

logician. ful IName()
//=> Raymond Smullyan

musician. fullName()
//=> Miles Davis

Now each instance stores whether .setName has been invoked on each instance a WeakSet, so
logician and musician can share the method without sharing its state.

incompatibility
To handle methods, we have introduced “accidental complexity” to handle this and to handle state.

Worse, our implementation of once for methods won’t work properly with ordinary functions in
“strict” mode:

"use strict"
const hello = once(() => 'hello!');

hello()

//=> undefined is not an object!

If you haven’t invoked it as a method, this is bound to undefined in strict mode, and undefined
cannot be added to a WeakSet.

Correcting our decorator to deal with undefined is straightforward:



More Decorators 427

const once = (fn) => {
let invocations = new WeakSet(),
undefinedContext = Symbol('undefined-context');

return function (...args) {
const context = this === undefined
? undefinedContext
this;
if (invocations.has(context)) return;
invocations.add(context);
return fn.apply(this, args);

However, we're adding more accidental complexity to handle the fact that function invocation is

<span style="color: blue;”>blue</span>, and method invocation is <span style="color: #999900;”>khaki</span>."**

In the end, we can either write specialized decorators designed specifically for methods, or tolerate
the additional complexity of trying to handle method invocation and function invocation in the
same decorator.

1See the aforelinked The Symmetry of JavaScript Functions


/2015/03/12/symmetry.html
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Class Decorators beyond ES6/ECMAScript 2015

In Functional Mixins, we discussed mixing functionality into JavaScript classes, changing the class.
We observed that this has pitfalls when applied to a class that might already be in use elsewhere, but
is perfectly cromulant when used as a technique to build a class from scratch. When used strictly
to build a class, mixins help us decompose classes into smaller entities with focused responsibilities
that can be shared between classes as necessary.

Let’s recall our helper for making a functional mixin:

function FunctionalMixin (behaviour, sharedBehaviour = {}) {
const instanceKeys = Reflect.ownKeys(behaviour);
const sharedKeys = Reflect.ownKeys(sharedBehaviour);
const typeTag = Symbol("isA");

function mixin (target) ({
for (let property of instanceKeys)
if (!target[property])
Object.defineProperty(target, property, {
value: behaviour[property],
writable: true
)
target[typeTag] = true;
return target;
}
for (let property of sharedKeys)
Object.defineProperty(mixin, property, {
value: sharedBehaviour [property],
enumerable: sharedBehaviour.propertyIsEnumerable(property)

});

Object.defineProperty(mixin, Symbol.haslInstance, { value: (instance) => !!instance\

[typeTag] });
return mixin;

This creates a function that mixes behaviour into any target, be it a class prototype or a standalone
object. There is a convenience capability of making “static” or “shared” properties of the the function,
and it even adds some simple hasInstance handling so that the instanceof operator will work.

Here we are using it on a class’ prototype:
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const BookCollector = FunctionalMixin({
addToCollection (name) {
this.collection().push(name);
return this;
}
collection () {

return this._collected_books || (this._collected_books = []);

}
});

class Person {

constructor (first, last) {
this.rename(first, last);

}

fullName () {
return this.firstName + " " + this.lastName;

}

rename (first, last) {
this.firstName = first;
this.lastName = last;
return this;

}
b

BookCollector (Person.prototype);

const president = new Person('Barak', 'Obama')

president
.addToCollection("JavaScript Allongé")

.addToCollection("Kestrels, Quirky Birds, and Hopeless Egocentricity");

president.collection()

//=> ["JavaScript Allongé", "Kestrels, Quirky Birds, and Hopeless Egocentricity"]

mixins that target classes

It’s very nice that our mixins support any kind of target, but let’s make them class-specific:

429
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function ClassMixin (behaviour, sharedBehaviour = {}) {
const instanceKeys = Reflect.ownKeys(behaviour);
const sharedKeys = Reflect.ownKeys(sharedBehaviour);

const typeTag = Symbol("isA");

function mixin (clazz) {
for (let property of instanceKeys)
if (!clazz.prototype[property])
Object.defineProperty(clazz.prototype, property, {
value: behaviour [property],
writable: true
1)
clazz.prototype[typeTag] = true;

return clazz;

}
for (let property of sharedKeys)

Object.defineProperty(mixin, property, {
value: sharedBehaviour [property],
enumerable: sharedBehaviour.propertyIsEnumerable(property)

});

Object.defineProperty(mixin, Symbol.hasInstance, { value: (instance) => !!instance\

[typeTag] });
return mixin;

This version’s mixin function mixes instance behaviour into a class’s prototype, so we gain

convenience at the expense of flexibility:

const BookCollector = ClassMixin({
addToCollection (name) {
this.collection().push(name);
return this;
1,
collection () {
return this._collected_books || (this._collected_books = []);
}
1)

class Person {
constructor (first, last) {
this.rename(first, last);

}
fullName () {



More Decorators 431

return this.firstName + " " + this.lastName;
}
rename (first, last) {
this.firstName = first;
this.lastName = last;
return this;
}
};

BookCollector(Person);

const president = new Person('Barak', 'Obama')

president
.addToCollection("JavaScript Allongé")
.addToCollection("Kestrels, Quirky Birds, and Hopeless Egocentricity");

president.collection()
//=> ["JavaScript Allongé", "Kestrels, Quirky Birds, and Hopeless Egocentricity"]

So far, nice, but it feels a bit bolted-on-after-the-fact. Let’s take advantage of the fact that Classes
are Expressions'**:

const BookCollector = ClassMixin({
addToCollection (name) {
this.collection().push(name);
return this;
1,
collection () {
return this._collected_books || (this._collected_books = []);

}
1);

const Person = BookCollector(class {
constructor (first, last) {
this.rename(first, last);
}
fullName () {
return this.firstName + " " + this.lastName;

}

rename (first, last) {

?http://raganwald.com/2015/06/04/classes-are-expressions.html
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this.firstName = first;
this.lastName = last;
return this;
}
1)

This is structurally nicer, it binds the mixing in of behaviour with the class declaration in one
expression, so we're getting away from this idea of mixing things into classes after they’re created.

But (there’s always a but), our pattern has three different elements (the name being bound, the mixin,
and the class being declared). And if we wanted to mix two or more behaviours in, we’d have to
nest the functions like this:

const Author = ClassMixin({
writeBook (name) {
this.books().push(name);
return this;
1
books () {
return this._books_written || (this._books_written = []);
}
1)

const Person = Author(BookCollector(class {
/o
1);

Some people find this “clear as day,” arguing that this is a simple expression taking advantage of
JavaScript’s simplicity. The code behind mixin is simple and easy to read, and if you understand
prototypes, you understand everything in this expression.

But others want a language to give them “magic,” an abstraction that they learn on the outside. At
the moment, JavaScript has no “magic” for mixing functionality into classes. But what if there were?

class decorators

There is a well-regarded proposal'*® to add Python-style class decorators to JavaScript in the future,

nicknamed “ES.later”***

A decorator is a function that operates on a class. Here’s a very simple example from the aforelinked
implementation:

https://github.com/wycats/javascript-decorators

1%*By “ES.later] we mean some future version of ECMAScript that is likely to be approved eventually, but for the moment exists only in
transpilers like Babel. Obviously, using any ES.later feature in production is a complex decision requiring many more considerations than can
be enumerated in a book.


https://github.com/wycats/javascript-decorators
https://github.com/wycats/javascript-decorators
http://babeljs.io/
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function annotation(target) {
// Add a property on target
target.annotated = true;

@annotation
class MyClass ({
/S

MyClass.annotated
//=> true

As you can see, annotation is a class decorator, and it takes a class as an argument. The function
can do anything, including modifying the class or the class’s prototype. If the decorator function
doesn’t return anything, the class’ name is bound to the modified class.*>

A class is “decorated” with the function by preceding the definition with @ and an expression
evaluating to the decorator. in the simple example, we use a variable name.

Hmmm. A function that modifies a class, you say? Let’s try it:

const BookCollector = ClassMixin({
addToCollection (name) {
this.collection().push(name);
return this;
1
collection () {
return this._collected_books || (this._collected_books = []);
}
1)

@BookCollector
class Person {
constructor (first, last) {
this.rename(first, last);
}
fullName () {
return this.firstName + " " + this.lastName;
}
rename (first, last) {
this.firstName = first;

13 Although this example doesn’t show it, if it returns a constructor function, that is what will be assigned to the class’ name. This allows
the creation of purely functional mixins and other interesting techniques that are beyond the scope of this post.
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this.lastName = last;
return this;
}
¥

const president = new Person('Barak', 'Obama')

president
.addToCollection("JavaScript Allongé")
.addToCollection("Kestrels, Quirky Birds, and Hopeless Egocentricity");

president.collection()
//=> ["JavaScript Allongé", "Kestrels, Quirky Birds, and Hopeless Egocentricity"]

You can also mix in multiple behaviours with decorators:

const BookCollector = ClassMixin({
addToCollection (name) {
this.collection().push(name);
return this;
}
collection () {
return this._collected_books || (this._collected_books = []);

}
});

const Author = ClassMixin({
writeBook (name) {
this.books().push(name);
return this;
1
books () {
return this._books_written || (this._books_written = []);
}
1)

@BookCollector @Author
class Person {
constructor (first, last) {
this.rename(first, last);
}
fullName () {
return this.firstName + " " + this.lastName;
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}

rename (first, last) {
this.firstName = first;
this.lastName = last;
return this;
}
¥

Class decorators provide a compact, “magic” syntax that is closely tied to the construction of the
class. They also require understanding one more kind of syntax. But some argue that having different
syntax for different things aids understandability, and that having both @foo for decoration and
bar(...) for function invocation is a win.

Decorators have not been formally approved, however there are various implementations available
for transpiling decorator syntax to ES5 syntax. These examples were evaluated with Babel***.

http://babeljs.io


http://babeljs.io/
http://babeljs.io/
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Method Decorators beyond ES6/ECMAScript 2015

Before ES6/ECMAScript 2015, we decorated a method in a simple and direct way. Given a method
decorator like fluent (a/k/a chain):

const fluent = (method) =>
function (...args) {
method.apply(this, args);
return this;

We would wrap functions in our decorator and bind them to names to create methods, like this:
const Person = function () {};

Person.prototype.setName = fluent(function setName (first, last) {
this.firstName = first;
this.lastName = last;

});

Person.prototype. fullName = function fullName () {
return this.firstName + " " + this.lastName;

b
With the class keyword, we have a more elegant way to do everything in one step:
class Person {
setName (first, last) {
this.firstName = first;

this.lastName = last;

return this;

fullName () {
return this.firstName + " " + this.lastName;

Since the ECMAScript 2015 syntaxes for classes doesn’t give us any way to decorate a method where
we are declaring it, we have to introduce this ugly “post-decoration” after we’ve declared Person:
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Object.defineProperty(Person.prototype, 'setName', { value: fluent(Person.prototype.\
setName) });

This is weak for two reasons. First, it’s fugly and full of accidental complexity. Second, modifying
the prototype after defining the class separates two things that conceptually ought to be together.
The class keyword giveth, but it also taketh away.

es.later method decorators

To solve a problem created by ECMAScript 2015, method decorators'*” have been proposed for a
future version of JavaScript (nicknamed “ES.later”*** The syntax is similar to class decorators, but
where a class decorator takes a class as an argument and returns the same (or a different) class, a
method decorator actually intercedes when a property is defined on the prototype.

An ES.later decorator version of fluent would look like this:

function fluent (target, name, descriptor) {
const method = descriptor.value;

descriptor.value = function (...args) {
method.apply(this, args);
return this;

And we’d use it like this:
class Person {

@fluent
setName (first, last) {
this.firstName = first;

this.lastName = last;

fullName () {
return this.firstName +

" + this.lastName;

};

"https://github.com/wycats/javascript-decorators

%8By “ES.later] we mean some future version of ECMAScript that is likely to be approved eventually, but for the moment exists only in
transpilers like Babel. Obviously, using any ES.later feature in production is a complex decision requiring many more considerations than can
be enumerated in a book.


https://github.com/wycats/javascript-decorators
https://github.com/wycats/javascript-decorators
http://babeljs.io/
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That is much nicer: It lets us use the new class syntax, and it also lets us decompose functionality
with method decorators. Best of all, when we write our classes in a “declarative” way, we also write
our decorators in a declarative way.

Mind you, we are once again creating two kinds of decorators: One for functions, and one for
methods, with different structures. We need a new colour!

But all elegance is not lost. Since decorators are expressions, we can alleviate the pain with an
adaptor:

const wrapWith = (decorator) =»>
function (target, name, descriptor) {
descriptor.value = decorator(descriptor.value);

function fluent (method) {
return function (...args) {
method.apply(this, args);
return this;

class Person {
@wrapWith(fluent)
setName (first, last) {

this.firstName = first;
this.lastName = last;

fullName () {
return this.firstName + " " + this.lastName;

};

Or if we prefer:
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const wrapWith = (decorator) =>
function (target, name, descriptor) {
descriptor.value = decorator(descriptor.value);

const returnsltself = wrapWith(
function fluent (method) {
return function (...args) {
method.apply(this, args);
return this;

}
);

class Person {
@returnsitself
setName (first, last) {

this.firstName = first;
this.lastName = last;

fullName () {
return this.firstName + " " + this.lastName;

};

(Although ES.later has not been approved, there is extensive support for ES.later method decorators
in transpilation tools. The examples in this post were evaluated with Babel***.)

*http://babeljs.io


http://babeljs.io/
http://babeljs.io/
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Lightweight Traits

A trait is a concept used in object-oriented programming: a trait represents a collection
of methods that can be used to extend the functionality of a class. Essentially a trait is
similar to a class made only of concrete methods that is used to extend another class with a
mechanism similar to multiple inheritance, but paying attention to name conflicts, hence
with some support from the language for a name-conflict resolution policy to use when
merging.—Wikipedia'®

A trait is like a mixin, however with a trait, we can not just define new behaviour, but also define
ways to extend or override existing behaviour. Traits are a first-class feature languages like Scala*®’.
Traits are also available as a standard library in other languages, like Racket'*?. Most interestingly,

traits are a feature of the Self'®® programming language, one of the inspirations for JavaScript.

Traits are not a JavaScript feature as this essay is being written, but we can easily make lightweight
traits out of the features JavaScript already has.

Our problem is that we want to be able to override or extend functionality from shared
behaviour, whether that shared behaviour is defined as a class or as functionality to be
mixed in.

our toy problem

Here’s a toy problem we solved elsewhere with a subclass factory that in turn is made out of an
extremely simple mixin.***

To recapitulate from the very beginning, we have a Todo class:

class Todo {

constructor (name) {

this.name = name || 'Untitled’;
this.done = false;

}

do () {

this.done = true;

return this;

1%https://en.wikipedia.org/wiki/Trait_

*Thttp://www.scala-lang.org

*?http://docs.racket-lang.org/reference/trait.html

*https://en.wikipedia.org/wiki/Self_(programming_language)#Traits

**The implementations given here are extremely simple in order to illustrate a larger principle of how the pieces fit together. A production
library based on these principles would handle needs we've seen elsewhere, like defining “class” or “static” properties, making instanceof
work, and appeasing the V8 compiler’s optimizations.


https://en.wikipedia.org/wiki/Trait_
http://www.scala-lang.org/
http://docs.racket-lang.org/reference/trait.html
https://en.wikipedia.org/wiki/Self_(programming_language)#Traits
https://en.wikipedia.org/wiki/Trait_
http://www.scala-lang.org/
http://docs.racket-lang.org/reference/trait.html
https://en.wikipedia.org/wiki/Self_(programming_language)#Traits
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undo () {
this.done = false;
return this;

}
toHTML () {

return this.name; // highly insecure
}

And we have the idea of “things that are coloured:”

let toSixteen = (c) => '0123456789ABCDEF'.index0f(c),
toTwoFiftyFive = (cc) => toSixteen(cc[0]) * 16 + toSixteen(cc[1]);

class Coloured {
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};

return this;

luminosity () {
let {r, g, b}

this.getColourRGB();

return 0.21 * toTwoFiftyFive(r) +
0.72 * toTwoFiftyFive(g) +
0.07 * toTwoFiftyFive(b);

getColourRGB () {
return this.colourCode;

And we want to create a time-sensitive to-do that has colour according to whether it is overdue,
close to its deadline, or has plenty of time left. If we had multiple inheritance, we would write:
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let yellow = {r: 'FF', g: 'FF', b: '00'},
red = {r: 'FF', g: '0Q@', b: '00'},
green = {r: 'e0', g: 'FF', b: '00'},
grey = {r: '80', g: '80', b: '80'};

let oneDayInMilliseconds = 1000 * 60 * 60 * 24;

class TimeSensitiveTodo extends Todo, Coloured ({
constructor (name, deadline) {
super(name);
this.deadline = deadline;

getColourRGB () {
let slack = this.deadline - Date.now();

if (this.done) {

return grey;

}
else if (slack <= 0) {
return red;

}

else if (slack <= oneDayInMilliseconds){
return yellow;

}

else return green;

toHTML () {
let rgb = this.getColourRGB();

return “<span style="color: #${rgb.r}${rgb.g}${rgb.b};">${super.toHTML()}</span>\

But we don’t have multiple inheritance. In languages where mixing in functionality is difficult, we
can fake a solution by having ColouredTodo inherit from Todo:
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class ColouredTodo extends Todo {
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};

return this;

luminosity () {
let {r, g, b} = this.getColourRGB();

return 0.21 * toTwoFiftyFive(r) +
0.72 * toTwoFiftyFive(g) +
0.07 * toTwoFiftyFive(b);

getColourRGB () {
return this.colourCode;

class TimeSensitiveTodo extends ColouredTodo {
constructor (name, deadline) {
super(name);
this.deadline = deadline;

getColourRGB () {
let slack = this.deadline - Date.now();

if (this.done) {

return grey;

}
else if (slack <= 0) {

return red;

}

else if (slack <= oneDayInMilliseconds){

return yellow;

}

else return green;

toHTML () {
let rgb = this.getColourRGB();
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return “<span style="color: #${rgb.r}${rgb.g}${rgb.b};">${super.toHTML()}</span>\

The drawback of this approach is that we can no longer make other kinds of things “coloured”
without making them also todos. For example, if we had coloured meetings in a time management
application, we’d have to write:

class Meeting {

s

class ColouredMeeting extends Meeting {
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};
return this;

luminosity () {
let {r, g, b} = this.getColourRGB();

return 0.21 * toTwoFiftyFive(r) +
0.72 * toTwoFiftyFive(g) +
0.07 * toTwoFiftyFive(b);

getColourRGB () {
return this.colourCode;

This forces us to duplicate “coloured” functionality throughout our code base. But thanks to mixins,
we can have our cake and eat it to: We can make ColouredAsWellAs a kind of mixin that makes a
new subclass and then mixes into the subclass. We call this a “subclass factory:”
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function ClassMixin (behaviour) ({
const instanceKeys = Reflect.ownKeys(behaviour);

return function mixin (clazz) {
for (let property of instanceKeys)
Object.defineProperty(clazz.prototype, property, {
value: behaviour [property],
writable: true

1);

return clazz;

const SubclassFactory = (behaviour) =>
(superclazz) => ClassMixin(behaviour)(class extends superclazz {});

const ColouredAsWellAs = SubclassFactory({
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};
return this;

},

luminosity () {
let {r, g, b} = this.getColourRGB();

return 0.21 * toTwoFiftyFive(r) +
0.72 * toTwoFiftyFive(g) +
0.07 * toTwoFiftyFive(b);
},

getColourRGB () {
return this.colourCode;
}
1)

class TimeSensitiveTodo extends ColouredAsWellAs(Todo) {
constructor (name, deadline) {
super(name);

this.deadline = deadline;

getColourRGB () {
let slack = this.deadline - Date.now();
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if (this.done) {
return grey;

}
else if (slack <= 0) {

return red;

}

else if (slack <= oneDayInMilliseconds){

return yellow;

}

else return green;
}
toHTML () {

let rgb = this.getColourRGB();

return “<span style="color: #${rgb.r}${rgb.g}${rgb.b};">${super.toHTML()}</span>\
}

This allows us to override both our Todo methods and the ColourAswel1As methods. And elsewhere,
we can write:

const ColouredMeeting = ColouredAsWellAs(Meeting);
Or perhaps:
class TimeSensitiveMeeting extends ColouredAsWellAs(Meeting) {

VZARDw

To summarize, our problem is that we want to be able to override or extend functionality from shared
behaviour, whether that shared behaviour is defined as a class or as functionality to be mixed in.
Subclass factories are one way to solve that problem.

Now we’ll solve the same problem with traits.

defining lightweight traits

Let’s start with our ClassMixin. We’'ll modify it slightly to insist that it never attempt to define
a method that already exists, and we’ll use that to create Coloured, a function that defines two
methods:



More Decorators 447

function Define (behaviour) {
const instanceKeys = Reflect.ownKeys(behaviour);

return function define (clazz) {
for (let property of instanceKeys)
if (!clazz.prototype[property]) {
Object.defineProperty(clazz.prototype, property, ({
value: behaviour[property],
writable: true
1)
}

else throw “illegal attempt to override ${property}, which already exists.

const Coloured = Define({
setColourRGB ({r, g, b}) {
this.colourCode = {r, g, b};
return this;

},

luminosity () {
let {r, g, b} = this.getColourRGB();

return 0.21 * toTwoFiftyFive(r) +
0.72 * toTwoFiftyFive(g) +
0.07 * toTwoFiftyFive(b);
}

getColourRGB () {
return this.colourCode;
}
1)

Coloured is now a function that modifies a class, adding two methods provided that they don’t
already exist in the class.

But we need a variation that “overrides” getColourRGB. We can write a variation of Define that
always overrides the target’s methods, and passes in the original method as the first parameter. This
is similar to “around” [method advice][ma-mj]:
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function Override (behaviour) {
const instanceKeys = Reflect.ownKeys(behaviour);

return function overrides (clazz) {
for (let property of instanceKeys)
if (!!clazz.prototype[property]) {
let overriddenMethodFunction = clazz.prototype|[property];

Object.defineProperty(clazz.prototype, property, {
value: function (...args) {
return behaviour[property].call(this, overriddenMethodFunction.bind(this\

), ...args);

}/

writable: true

});
}

else throw “attempt to override non-existant method ${property}";

return clazz;

const DeadlineSensitive = Override({

getColourRGB () {
let slack = this.deadline - Date.now();

if (this.done) {

return grey;

}

else if (slack <= 0) {

return red;

}

else if (slack <= oneDayInMilliseconds)({

return yellow;

}

else return green;

1,

toHTML (original) {
let rgb = this.getColourRGB();

return “<span style="color: #${rgb.r}${rgb.g}${rgb.b};">${original()}</span>";

});
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Define and Override are protocols: They define whether methods may conflict, and if they do, how
that conflict is resolved. Define prohibits conflicts, forcing us to pick another protocol. Override
permits us to write a method that overrides an existing method and (optionally) call the original.

composing protocols

We could now write:

const TimeSensitiveTodo = DeadlineSensitive(
Coloured(
class TimeSensitiveTodo extends Todo {
constructor (name, deadline) {
super(name);
this.deadline = deadline;

Or:

@DeadlineSensitive
@Coloured
class TimeSensitiveTodo extends Todo {
constructor (name, deadline) {
super(name);
this.deadline = deadline;

But if we want to use DeadlineSensitive and Coloured together more than once, we can make a
lightweight trait with the pipeline function:
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const SensitizeTodos = pipeline(Coloured, DeadlineSensitive);

@SensitizeTodos
class TimeSensitiveTodo extends Todo {
constructor (name, deadline) {
super(name);

this.deadline = deadline;

Now SensitizeTodos combines defining methods with overriding existing methods: We’ve built a
lightweight trait by composing protocols.

And that’s all a trait is: The composition of protocols. And we don’t need a bunch of new keywords
or decorators (like @overrides) to do it, we just use the functional composition that is so easy and
natural in JavaScript.

other protocols

We can incorporate other protocols. Two of the most common are prepending behaviour to an
existing method, or appending behaviour to an existing method:

function Prepends (behaviour) {
const instanceKeys = Reflect.ownKeys(behaviour);

return function prepend (clazz) {
for (let property of instanceKeys)
if (!!clazz.prototype[property]) {
let overriddenMethodFunction = clazz.prototype[property];

Object.defineProperty(clazz.prototype, property, {
value: function (...args) {
const prependValue = behaviour[property].apply(this, args);

if (prependValue === undefined || !!prependValue) ({
return overriddenMethodFunction.apply(this, args);;
}
}
writable: true
1)
}
else throw “attempt to override non-existant method ${property}";
return clazz;
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function Append (behaviour) {
const instanceKeys = Reflect.ownKeys(behaviour);

function append (clazz) {
for (let property of instanceKeys)
if (!!clazz.prototype[property]) {
let overriddenMethodFunction = clazz.prototype|[property];

Object.defineProperty(clazz.prototype, property, ({
value: function (...args) {
const returnValue = overriddenMethodFunction.apply(this, args);

behaviour [property].apply(this, args);
return returnValue;
b
writable: true
1)
1

else throw “attempt to override non-existant method ${property}";

return clazz;

We can compose a lightweight trait using any combination of Define, Override, Prepend, and
Append, and the composition is handled by pipeline, a plain old function composition tool.

Lightweight traits are nothing more than protocols, composed in a simple and easy-to-understand
way. And then applied to simple classes, in a direct and obvious manner.
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For the love of coffee: a collection

“The entire history of Mankind’s relationship with coffee is a futile attempt to have the
reality of its taste live up to the promise of its aroma.”
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After Method Advice

Consider the bare bones of this Todo class that we might use as part of a ViewModel in a front-
end application. Many front-end libraries have special features that allow views or other models to
persist changes to one or more actual models and/or data stores.

We’ll just hand-wave by pretending there is a persist method. It could be mixed in or inherited,
we’ll sketch it in for illustration:

class Todo {
constructor (name) {
this.name = name || 'Untitled';
this.done = false

do () { this.done = true; }

undo () { this.done = false; }
setName (name) { this.name = name; }
persist () {

// presist changes to model(s) and/or
// data stores. ..

Naturally, updating a todo should persist changes. So we could write:

class Todo {
constructor (name) {
this.name = name || 'Untitled';
this.done = false

do () {

this.done = true;
this.persist();

undo () {
this.done = false;
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this.persist();

setName (name) ({
this.name = name;
this.persist();

persist () {
// presist changes to model(s) and/or
// data stores. ..

This is very similar to making methods fluent. We’re obscuring the primary responsibility of
the method with cross-cutting concerns. We can and should abstract persistence into an ES.later
decorator:

const persists = function (target, name, descriptor) {

const method = descriptor.value;

descriptor.value = function (...args) {
const value = method.apply(this, args);

this.persist();

return value;

class Todo {
constructor (name) {
this.name = name || 'Untitled';
this.done = false

@persists

do () {

this.done = true;

@persists
undo () {
this.done = false;
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@persists
setName (name) ({
this.name = name;

persist () {
console.log( persisting ${this.name} );

after decorators

Combinators for functions come in an unlimited panoply of purposes and effects. So do method
combinators, but whether from intrinsic utility or custom, certain themes have emerged. One of
them that forms a core part of the original Lisp Flavors'®® system and also the Aspect-Oriented
Programming'*® movement, is decorating a method with some functionality to be performed after
the method’s body is evaluated.

What we see above is this pattern: We want to decorate a method with some functionality. Instead
of writing a decorator from scratch each time, let’s abstract the wrapping into a combinator that
makes an ES.later method decorator:

const after = (...fns) =>
function (target, name, descriptor) {
const method = descriptor.value;

descriptor.value = function (...args) {
const value = method.apply(this, args);

for (let fn of fns) {
fn.apply(this, args);
}

return value;

Now we could write:

%https://en.wikipedia.org/wiki/Flavors_
1%%https://en.wikipedia.org/wiki/Aspect-oriented_programming
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const persists = after(function () { this.persist(); });
Or we could write:

const persists = after(Todo.prototype.persist);

Or we could even write these things inline:

class Todo {
constructor (name) {
this.name = name || 'Untitled’';

this.done = false

}
@after(Todo.prototype.persist)
do () {

this.done = true;
}
@after(Todo.prototype.persist)
undo () {

this.done = false;
}

@after(Todo.prototype.persist)
setName (name) ({

this.name = name;

persist () {
console.log( persisting ${this.name}");

Todo.prototype.persist is a little clunky. We could special-case after to allow us to write
@after('persist') as some libraries do, but the beauty of combinators is that they, well, combine.
Recall send. It’s perfect for this:
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const send = (methodName, ...args) =>
(instance) => instance[methodName] .apply(instance, args);

class Todo {
constructor (name) {
this.name = name || 'Untitled’';
this.done = false

}
@after(send( 'persist'))
do () {
this.done = true;
}
@after(send( 'persist'))
undo () {
this.done = false;
}

@after(send( 'persist'))
setName (name) ({
this.name = name;

persist () {
console.log( persisting ${this.name}");

after is a combinator that makes ES.later method decorators, and it’s handy for separating concerns.
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Before Method Advice

Just as we often wish to decorate a method with after advice, we also often wish to decorate methods
with some behaviour that happens before a method is invoked. The canonical (and greatly overused)
example is logging invocations. But let’s consider another example, a Person:

const firstName = Symbol('firstName'),
lastName = Symbol('lastName');

class Person {
constructor (first, last) {
this[firstName] = first;
this[lastName] = last;

fullName () {
return this[firstName] + " " + this[lastName];

rename (first, last) {
this[firstName] = first;
this[lastName] = last;

return this;

}
};

What if we wish to make rename an undoable action? Let’s add a stack. For reasons known only
to a secret cabal of enterprisey architects, we wish to make the undo stack something that is lazily
initialized, like this:

const firstName = Symbol('firstName'),
lastName = Symbol('lastName'),
undoStack = Symbol('undoStack'),
redoStack = Symbol('redoStack');

class Person {
constructor (first, last) {
this[firstName] = first;
this[lastName] = last;

fullName () {
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return this[firstName] + " " + this[lastName];

rename (first, last) {

this[undoStack] || (this[undoStack] = []);

this[undoStack] .push({
[firstName]: this[firstName],
[lastName]: this[lastName]

1)

this[firstName] = first;

this[lastName] = last;

return this;

undo () {
this[undoStack] || (this[undoStack]
let oldState = this[undoStack].pop();

(1;

if (oldState != null) Object.assign(this, oldState);

return this;

}
3
const b = new Person('barak', 'obama');
b.rename('Barak', 'Obama');

b.fullName()
//=> 'Barak Obama'

b.undo();
b.fullName()
//=> 'barak obama'

We can follow the same pattern as we did with after advice: Extract the common functionality into
a decorator. We'll write the before combinator to help:
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const before = (...fns) =>
function (target, name, descriptor) {
const method = descriptor.value;

descriptor.value = function (...args) {
for (let fn of fns) {
fn.apply(this, args);
}
return method.apply(this, args);

const firstName = Symbol('firstName'),
lastName = Symbol('lastName'),
undoStack = Symbol('undoStack'),
redoStack = Symbol('redoStack');

const usingUndoStack = before(function () {
this[undoStack] || (this[undoStack] = []);

D)

class Person {
constructor (first, last) {

this[firstName] = first;
this[lastName] = last;
}
fullName () {
return this[firstName] + " " + this[lastName];
}
@usingUndoStack

rename (first, last) {

this[undoStack] .push({
[firstName]: this[firstName],
[lastName]: this[lastName]

1

this[firstName] = first;

this[lastName] = last;

return this;

@usingUndoStack
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undo () {
let oldState = this[undoStack] .pop();

if (oldState != null) Object.assign(this, oldState);
return this;

}
¥
const b = new Person('barak', 'obama')
b.rename('Barak', 'Obama')

console.log(b. fullName())
b.undo()
console.log(b. fullName())

We could, of course, also abstract functionality into a method that we invoke with @after (send('usingUndoStack'))
just as we did with our after advice examples.
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Provided and Unless

Neither the before and after ES.later method decorators actually terminate evaluation without
throwing something. Normal execution always results in the base method being evaluated. The
provided and unless recipes are combinators that produce method decorators that apply a precon-
dition to evaluating the base method body.

The provided combinator turns a function into an ES.later method decorator. The function (or
functions) is passed the method arguments before the base method, and it must evaluate to truthy
for the base method to be evaluated. The unless combinator does the same thing, but the logic is
reversed, the decorating function must not evaluate to truthy:

const provided = (...fns) =>
function (target, name, descriptor) ({

const method = descriptor.value;

descriptor.value = function (...args) {
for (let fn of fns) {
const result = fn.apply(this, args);

if (!result) return;

}
return method.apply(this, args);

const unless = (...fns) =>
function (target, name, descriptor) {
const method = descriptor.value;

descriptor.value = function (...args) {
for (let fn of fns) {
const result = fn.apply(this, args);

if (result) return;

}
return method.apply(this, args);

provided can be used to check that non-empty strings are provided for names:**’

1¢"Beware, validating names is a stygian task. Read falsehoods programmers believe about names before proceeding with ideas like this in
production. For example, many people do NOT have both a first and last name.


http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
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const firstName = Symbol('firstName'),
lastName = Symbol('lastName');

const nonEmptyStrings = (...strs) =>
strs.reduce((truth, str) =>
truth
&& (str instanceof String || typeof str === 'string')
&& str I== """,
true);

class Person {
constructor (first, last) {
this[firstName] = first;
this[lastName] = last;

fullName () {
return this[firstName] + " " + this[lastName];

@provided(nonEmptyStrings)

rename (first, last) {
this[firstName] = first;
this[lastName] = last;

return this;

}
1
const b = new Person('barak', 'obama')
b.rename( 'Barak', 'Obama')

console.log(b. fullName())
b.undo()
console.log(b. fullName())

You may wonder why we didn’t decorate the constructor. Alas, we can’t use a method decorator on
a constructor, because it isn’t a method. It just looks like one. It’s still a constructor function, and if
we want to modify it, we have to either write a class decorator, or punt all the work of construction
to a method, like this:
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class Person {
constructor (first, last) {
this.rename(first, last);

fullName () {
return this[firstName] + " " + this[lastName];

@provided(nonEmptyStrings)
rename (first, last) {
this[firstName] = first;
this[lastName] = last;
return this;
}
4

There are many variations on decorators that check preconditions for methods. For example, a
decorator can be made that throws an exception if the preconditions fail rather than silently skipping
the method invocation.

We can use these patterns in many ways. JavaScript is very flexible!
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Method Advice

We’ve previously looked at method decorators like this:

const once = (fn) => {
let invocations = new WeakSet();

return function (...args) {
if (invocations.has(this)) return;
invocations.add(this);
return fn.apply(this, args);

const logician = new Person()
.setName( 'Raymond', 'Smullyan');

logician.setName( 'Haskell', 'Curry');

const musician = new Person()
.setName('Miles', 'Davis');

logician. ful IName()
//=> Raymond Smullyan

musician. ful IName()
//=> Miles Davis

We also saw that if our tooling supports ES.later'** decorators, we can write:

const wrapWith = (decorator) =>
function (target, name, descriptor) {

descriptor.value = decorator(descriptor.value);

function fluent (method) {
return function (...args) {
method.apply(this, args);
return this;

%8By “ES.later;” we mean some future version of ECMAScript that is likely to be approved eventually, but for the moment exists only in
transpilers like Babel. Obviously, using any ES.later feature in production is a complex decision requiring many more considerations than can
be enumerated in a book.


http://babeljs.io/
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class Person {

@wrapWith(fluent)

setName (first, last) {
this.firstName = first;
this.lastName = last;

fullName () {
return this.firstName + " " + this.lastName;

};

The wrapWith function takes an ordinary method decorator and turns it into an ES.later method
decorator.

what question do method decorators answer?

ES.later method decorators put the decorations right next to the method body. This makes it easy to
answer the question “What is the precise behaviour of this method?”

But sometimes, this is not what you want. Consider a responsibility like authentication. Let’s imagine
that we validate permissions in our model classes. We might write something like this:

const wrapWith = (decorator) =>
function (target, name, descriptor) {
descriptor.value = decorator(descriptor.value);

const mustBeMe = (method) =>
function (...args) {
if (currentUser() && currentUser().person().equals(this))
return method.apply(this, args);
else throw new PermissionsException("Must be me!");

class Person {

@wrapWith(mustBeMe)
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setName (first, last) {
this.firstName = first;
this.lastName = last;

fullName () {
return this.firstName + " " + this.lastName;

@wrapWith(mustBeMe)
setAge (age) {
this.age = age;

@wrapWith(mustBeMe)

age () {
return this.age;

};

(Obviously real permissions systems involve roles and all sorts of other important things.)

Now we can look at setName and see that users can only set their own name, likewise if we look at
setAge, we see that users can only set their own age.

In a tiny toy example the next question is easy to answer: What methods can only be invoked by the
person themselves? We see at a glance that the answer is setName, setAge, and age.

But as classes grow, this becomes more difficult to answer. This especially becomes difficult if we
decompose classes using mixins. For example, what if setAge and age come from a class mixin:

const Person = HasAge(class {
@wrapWith(mustBeMe)
setName (first, last) {

this.firstName = first;

this.lastName = last;

fullName () {
return this.firstName + " " + this.lastName;

});
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Are the methods provided by HasAge wrapped with mustBeMe? Quite possibly not, because the mixin
is responsible for defining the behaviour. It’s up to the model class to decide the permissions required.
But how would you know if they were?

Method decorators make it easy to answer the question “what is the behaviour of this method?” But
they don’t make it easy to answer the question “what methods share this behaviour?”

That question matters, because when decomposing responsibilities, we often decide that a cross-
cutting responsibility like permissions should be distinct from an implementation responsibility like
storing a name.

cross-cutting method decorators

There is another way to decorate methods: We can decorate multiple methods in a single declaration.
This is called providing method advice.

In JavaScript, we can implement method advice by decorating the entire class. We already have a
combinator for making class mixins, it’s a function that takes a class as an argument and returns the
same or different class. We can use the same technique to write a class decorator that decorates one
or more methods of the class being passed in. (We'll use ES.later syntax, but it works just as well
with functional syntax):

const aroundAll = (behaviour, ...methodNames) =>
(clazz) => {
for (let methodName of methodNames)
Object.defineProperty(clazz.prototype, property, {
value: behaviour(clazz.prototype[methodName]),
writable: true

});

return clazz;

@HasAge
@aroundAll(mustBeMe, 'setName', 'setAge', 'age')

class Person {

setName (first, last) {
this.firstName = first;
this.lastName = last;

fullName () {

return this.firstName + " " + this.lastName;
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1

Now when you look at setName, you don’t see what permissions apply. However, when we look at
@aroundAll(mustBeMe, 'setName', 'setAge', 'age'),VveSeethaivveﬁe\NrapphlgsetName,setAge
and age with mustBeMe.

This focuses the responsibility for permissions in one place. Of course, we could make things simpler.
For one thing, some actions are only performed before a method, and some only after a method. We
can make class decorators that work just like our before and after method decorators:

const beforeAll = (behaviour, ...methodNames) =>
(clazz) => {
for (let methodName of methodNames) {

const method = clazz.prototype[methodName];

Object.defineProperty(clazz.prototype, property, {
value: function (...args) {
behaviour.apply(this, args);
return method.apply(this, args);

},
writable: true
1)
}
return clazz;
}
const afterAll = (behaviour, ...methodNames) =>

(clazz) => {
for (let methodName of methodNames) {
const method = clazz.prototype[methodName];

Object.defineProperty(clazz.prototype, property, {
value: function (...args) {
const returnValue = method.apply(this, args);

behaviour.apply(this, args);
return returnValue;
},
writable: true
1)
}

return clazz;
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Precondition checks like mustBeMe are good candidates for beforeAll. Here’s mustBeLoggedIn and
mustBeMe set up to use beforeAll. They’re far simpler since beforeAll handles the wrapping:

const mustBeloggedIn = () => {

if (currentUser() == null)
throw new PermissionsException("Must be logged in!");
}
const mustBeMe = () => {
if (currentUser() == null || !currentUser().person().equals(this))
throw new PermissionsException("Must be me!");
}
@HasAge

@beforeAll(mustBeMe, 'setName', 'setAge', 'age')
@beforeAll(mustBelLoggedIn, 'fullName')

class Person {

setName (first, last) {
this.firstName = first;
this.lastName = last;

fullName () {
return this.firstName + " " + this.lastName;

};

This style of moving the responsibility for decorating methods to a single declaration will appear
familiar to Ruby on Rails developers. As you can see, it does not require “deep magic” or complex
libraries, it is a pattern that can be written out in just a few lines of code.

Mind you, there’s always room for polish and gold plate. We could enhance beforeAll, afterAll,
and aroundAll to include conveniences like regular expressions to match method names, or special
declarations like except: oronly: if we so desired.

Although decorating methods in bulk has appeared in other languages and paradigms, it’s not
something special and alien to JavaScript, it’s really the same pattern we see over and over
again: Programming by composing small and single-responsibility entities, and using functions to
transform and combine the entities into their final form.
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a word about es6

If we don’t want to use ES.later decorators, we can use the exact same decorators as ordinary
functions, like this:

const mustBelLoggedIn = () => {
if (currentUser() == null)
throw new PermissionsException("Must be logged in!");

const mustBeMe = () => {
if (currentUser() == null || !currentUser().person().equals(this))
throw new PermissionsException("Must be me!");

const Person =
HasAge(
beforeAll(mustBeMe, 'setName', 'setAge', 'age')(
beforeAll(mustBeLoggedIn, 'fullName')(
class {
setName (first, last) {
this.firstName = first;
this.lastName = last;

}
fullName () {
return this.firstName + " " + this.lastName;
}
}
)
)

Composition could also help:
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const mustBeloggedIn = () => {
if (currentUser() == null)
throw new PermissionsException("Must be logged in!");

const mustBeMe = () => {
if (currentUser() == null || !currentUser().person().equals(this))

throw new PermissionsException("Must be me!");

const Person = compose(
HasAge,
beforeAll(mustBeMe, 'setName', 'setAge', 'age'),
beforeAll(mustBeLoggedIn, 'fullName'),
)(class {
setName (first, last) {
this.firstName = first;
this.lastName = last;

fullName () {
return this.firstName + " " + this.lastName;
}
1)
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We began this book with the most basic of basic ideas in programming: What is a value? What is a
reference to a value? What is a function? What is applying or invoking a function with values?

We then looked at one of the “big ideas” that JavaScript shares with other powerful languages: The
idea that functions are values, and thus that you can invoke a function with another function as an
argument, and you can return a function from a function.

This led directly to exploring the idea of composing functions: Creating new functions by putting
together functions that represent smaller pieces of behaviour. The idea of function decorators
emerges naturally from this approach.

From there we went on to explore objects and methods, but underlying our exploration was the
constant rediscovery that we can program with objects using the same approach: Composing
behaviour out of smaller pieces of behaviour, such as composing object behaviour using delegation.

javascript beyond es6/ecmascript 2015

When this edition was written, ECMAScript 2015 had been standardized, and almost all of its
features were available via polyfills and transpilation tools like Babel. Some post-2015 features, like
method and class decorators, had not yet been scheduled for inclusion in the language, but were
available in transpilers.

Others, such as fully private properties, mixins, and traits, have been discussed and/or proposed. By
the time you are reading this, they might be available experimentally, formally approved, or even
widely available.

You may have noticed that as the book progressed, it delved into implementing programming
language ideas like method decorators, mixins, and traits. Some books might implement a to-do
list, or a content management system, or a MMRPG to provide an opportunity to write example
code. This book chooses to explain JavaScript by implementing ideas that hopefully will become
standard features by the time you read this.

Many other computer science textbooks do the same thing: They explain how to make a “toy”
operating system, or a compiler, or how to make a Lisp in Lisp. And as you have learned, JavaScript
is a language strong enough to implement many of its ideas in itself.

By implementing simple versions of features like decorators, mixins, and traits, we examined how
to program in a lightweight fashion, and we also gained a deeper understanding of the semantics of
functions, methods, classes, delegation, and behaviour.

That is valuable whether we use those features in production or not. And that is valuable whether
those features are added to JavaScript, or not.
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Espresso, Empty

the lightweight way

When creating a new abstraction, (for example, traits), there are two ways to do it: The heavyweight
way, and the lightweight way:.

The lightweight way, as explained throughout this book, attempts to be as “JavaScript-y” as
possible. For example, using functions for protocols and composing them. With the lightweight way,
everything is still just a function, or just an object, or just a class with just a prototype. Lightweight
code interoperates 100% with code from other libraries. Lightweight approaches can be incrementally
added to an existing code base, refactoring a bit here and a bit there.

The heavyweight way would greenspun'®® a special class hierarchy with support for traits baked in.
The heavyweight way would produce “classes” that don’t easily interoperate with other libraries or
code, so you can’t incrementally make changes: You have to “boil the ocean” and commit 100% to the
new approach. Heavyweight approaches often demand new kinds of tooling in the build pipeline.

When we do things the lightweight way, we make very small bets on their benefits. It’s easy to
change our mind and abandon the approach in favour of something else. because we make small
bets along the way, we collect on the small benefits continuously: We don’t have to kick off a massive

*https://en.wikipedia.org/wiki/Greenspun%27s_tenth_rule


https://en.wikipedia.org/wiki/Greenspun's_tenth_rule
https://en.wikipedia.org/wiki/Greenspun's_tenth_rule
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rewrite of our code base to start using lightweight traits, for example. We just start using them as
little or as much as we like, and immediately start benefiting from them.

“A language that doesn’t affect the way you think about programming isn’t worth
learning”—Alan J. Perlis

Every tool affects the way we think about programming. But heavyweight tools force us to think
about the heavyweight tooling. That thinking isn’t always portable to another tool or another code
base.

Whereas lightweight tools are simple things, composed together in simple ways. If we move to a
different code base or tool, we can take our experience with the simple things along. With lightweight
traits, for example, we are not teaching ourselves how to “program with traits,” we're teaching
ourselves how to “decompose behaviour,” how to “compose functions” and how to “write functions
that decorate entities.”

These are all fundamental ideas that apply everywhere, even if we don’t end up applying them to
build a feature like traits. Lightweight thinking is portable and future-proof.

000 000

The End
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How to run the examples

At the time this book was written, ECMAScript 2015 was not yet widely available. All of the
examples in this book were tested using either Google Traceur Compiler'’®, Babel'’?, or both. Traceur
and Babel are both transpilers, they work by parsing ECMAScript 2015 code, then emitting valid
ECMAScript-5 code that produces the same semantics.

For example, this ECMAScript 2015 code:

const before = (decoration) =>
(method) =>
function () {
decoration.apply(this, arguments);
return method.apply(this, arguments)

3
Is translated into this ECMAScript-5 code:

"use strict”

var before = function (decoration) {
return function (method) {
return function () {
decoration.apply(this, arguments);
return method.apply(this, arguments);
}
b
1

e his, args)
EcmaScript-6 Code

The Babel “try it out” page

If we make it even more idiomatic, we could write:

"%https://github.com/google/traceur-compiler
" http://babeljs.io/


https://github.com/google/traceur-compiler
http://babeljs.io/
https://github.com/google/traceur-compiler
http://babeljs.io/
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const before = (decoration) =>
(method) =>
function (...args) {
decoration.apply(this, args);
return method.apply(this, args)

};
And it would be “transpiled” into:

var before = function (decoration) {
return function (method) {
return function () {
for (let _len = arguments.length, args = Array(_len), _key = 0; _key < _len; _\
key++) {
args[_key] = arguments[_key];

decoration.apply(this, args);
return method.apply(this, args);
b
¥
b

Both tools offer an online area where you can type ECMAScript code into a web browser and see the
ECMAScript-5 equivalent, and you can run the code as well. To see the result of your expressions,
you may have to use the console in your web browser.

So instead of just writing:

(() = 2+ 2)0)
And having 4 displayed, you’d need to write:

console. log(

(0= 2+2)0)

And 4 would appear in your browser’s development console.

You can also install the transpilers on your development system and use them with Node'’? on the

command line'”*. The care and feeding of node and npm are beyond the scope of this book, but both
tools offer clear instructions for those who have already installed node.

?http://nodejs.org/
"https://en.wikipedia.org/wiki/REPL


http://nodejs.org/
https://en.wikipedia.org/wiki/REPL
https://en.wikipedia.org/wiki/REPL
http://nodejs.org/
https://en.wikipedia.org/wiki/REPL

The Golden Crema: Appendices and Afterwords 481

Thanks!

Daniel Friedman and Matthias Felleisen

The Little Schemer

iENioultiic h BN it ilionin

The Little Schemer

JavaScript Allongé was inspired by The Little Schemer'’* by Daniel Friedman and Matthias Felleisen.
But where The Little Schemer’s primary focus is recursion, JavaScript Allongé’s primary focus is
functions as first-class values.

7*http://www.amzn.com/0262560992?tag=raganwald001-20


http://www.amzn.com/0262560992?tag=raganwald001-20
http://www.amzn.com/0262560992?tag=raganwald001-20
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Richard Feynman

ON SCIENCE LIBRARY

ED

The Strange Theory of
Light and Matter

Richard P. Feynman |

QED: The Strange Theory of Light and Matter

Richard Feynman’s QED'"* was another inspiration: A book that explains Quantum Electrodynamics
and the “Sum of the Histories” methodology using the simple expedient of explaining how light
reflects off a mirror, and showing how most of the things we think are happening-such as light
travelling on a straight line, the angle of reflection equalling the angle of refraction, or that a beam
of light only interacts with a small portion of the mirror, or that it reflects off a plane—are all wrong.
And everything is explained in simple, concise terms that build upon each other logically.

>http://www.amzn.com/0691125759?tag=raganwald001-20
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Reading JavaScript Allongé on Kindle

JavaScript Allongé has over 400 pages and many photographs. For this reason, the .mobi version of
the book is too big to be sent to your Kindle via email, and that is the feature that LeanPub uses
when you purchase the book.

o] Send to Kindle

sendto kindle

ment
Title: |JavaScriplAIIongé\ the "Six" Edition l

Author:  |Reginald Braithwaite |
ery options
Deliver via: © Wi-Fi (FREE) Whispernet (Charges may apply)

Deliver to:
Clara Braithwaite's Kindle

Reginald's 2nd iPhone
Reginald's 3rd Kindle
Reginald's Kindle

Save to Amazon Cloud Drive

Upload size: 44.99 MB

Your document will be sent in Kindle format.

Need Help? | Manage your Content and Devices Cancel *
Send to Kindle

So, if you wish to read JavaScript Allongé on your Kindle:

« Download it to your Windows or OS X device (a/k/a “PC” or “Macintosh”).

« Use Send to Kindle for PC'7¢ or Send to Kindle for Mac'”’ to send it to the Kindle.

« From time to time while editing, an uncompressed image sneaks into the manuscript. When
this happens, the .mobi may exceed the 50MB limit for the Send to Kindle desktop application.
If this happens, please attach your Kindle to your computer with a USB cable and synchronize
directly.

Thank you!

7Shttp://www.amazon.com/gp/sendtokindle/pc
"http://www.amazon.com/gp/sendtokindle/mac
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Copyright Notice

The original words in this book are (c) 2012-2019, Reginald Braithwaite, and licensed under a
Creative Commons Attribution-ShareAlike 3.0 Unported License'’®. You are free:

« to Share—to copy, distribute and transmit the work
« to Remix—to adapt the work
 to make commercial use of the work

Provided you comply with the license terms'””.

images

« The picture of the author is (c) 2008, Joseph Hurtado'*’, All Rights Reserved.

« Cover image'® (c) 2010, avlxyz. Some rights reserved'**.
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Some rights reserved'®.
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reserved*®®.
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« Sugar Service'” (c) 2008 Tiago Fernandes. Some rights reserved®®.
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« Biscotti on a Rack®"* (c) 2010 Kirsten Loza. Some rights reserved®®.

« Coffee Spoons®* (c) 2010 Jenny Downing. Some rights reserved*.

« Drawing a Doppio®* (c) 2008 Osman Bas. Some rights reserved®*.

« Cupping Coffees®” (c) 2011 Dennis Tang. Some rights reserved®®.

« Three Coffee Roasters®” (c) 2009 Michael Allen Smith. Some rights reserved®*’.

« Blue Diedrich Roaster®'* (c) 2010 Michael Allen Smith. Some rights reserved®*.

« Red Diedrich Roaster®** (c) 2009 Richard Masoner. Some rights reserved®*.

« Roaster with Tree Leaves®" (c) 2007 ting. Some rights reserved?**.

« Half Drunk®" (c) 2010 Nicholas Lundgaard. Some rights reserved?*®.

« Anticipation®"’ (c) 2012 Paul McCoubrie. Some rights reserved*’.

« Ooh!”** (c) 2012 Michael Coghlan. Some rights reserved?®?*.

« Intestines of an Espresso Machine?”* (c) 2011 Angie Chung. Some rights reserved®**.

« Bezzera Espresso Machine®” (c) 2011 Andrew Nash. Some rights reserved®*. *Beans Ripening
on a Branch®”’ (c) 2008 John Pavelka. Some rights reserved?*®.

« Cafe Macchiato on Gazotta Della Sport*”” (c) 2008 Jon Shave. Some rights reserved*’.

« Jars of Coffee Beans**' (c) 2012 Memphis CVB. Some rights reserved”.

« Types of Coffee Drinks*** (c) 2012 Michael Coghlan. Some rights reserved?**.

« Coffee Trees** (c) 2011 Dave Townsend. Some rights reserved?*°.
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« Cafe do Brasil*”’ (c) 2003 Temporalata. Some rights reserved®*.

« Brown Cups®*® (c) 2007 Michael Allen Smith. Some rights reserved®*.

« Mirage*** (c) 2010 Mira Helder. Some rights reserved®**.

« Coffee Van with Bullet Holes*** (c) 2006 Jon Crel. Some rights reserved®*“.

« Disassembled Elektra*** (c) 2009 Nicholas Lundgaard. Some rights reserved?“.

« Nederland Buftalo Bills Coffee Shop®*’ (c) 2009 Charlie Stinchcomb. Some rights reserved*®.
« For the love of coffee®* (c) 2007 Lotzman Katzman. Some rights reserved®”°.

« Saltspring Processing Facility Pictures®* (c) 2011 Kris Krug. Some rights reserved?.
« Coffee and Mathematics*’ (c) 2007 Some rights reserved®**.

« Coffee and a Book?** (c) 2009 Some rights reserved®*.

« Stacked Coffee Cups®” (c) 2010 Sankarshan Sen. Some rights reserved®?*.

« Coffee Cow*”’ (c) 2012 Candy Schwartz**° Some rights reserved®’.

« CERN Coftee*** (c) 2005 Karoly Lorentey?®** Some rights reserved?®®*.

« Coffee Labels** (c) 2011 Kris Kriig Some rights reserved®°.

« banco do café*’ (c) 2008 Fernando Mafra Some rights reserved®®.

« coffee pots*’ (c) 2009 Jonas Forth Some rights reserved?””.

« 5 Barrel Roaster®”* (c) 2013 David Lytle Some rights reserved®’>.
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« Pantone mugs®”® (c) 2011 Joe Wolf Some rights reserved®*.

« Coffee and Chess*”® (c) 2013 Adam Tinworth Some rights reserved®”®.

« Vac Pot Upper Chamber®”’ (c) 2007 Michael Allen Smith Some rights reserved®”®.
« Decaf espresso”” (c) 2009 Aris Vrakas Some rights reserved?®.

« Con Panna*’ (c) 2013 Vee Satayamas Some rights reserved?®*”.

« Tiny’s Coffeehouse®® (c) 2004 Peter Merholz Some rights reserved®®.

« Thinking about programming®*’ (c) 2011 Renaud Camus Some rights reserved®®.
« Biscotti og kaffe*®” (c) 2008 Some rights reserved®®.

« Espresso, Empty®® (c) 2012 Till Westermayer Some rights reserved®”.

« The End** (c) 2013 peddhapati Some rights reserved*.

« The Future of Coffee is Black®”* (¢)2013 mjaysplanet Some rights reserved®**.
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