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CHAPTER L
INTRODUCTION

Thomas M. Cover and B. Gopinath

The papers in this volume are the contributions to a special workshop
on problems in communication and computation conducted in the summers
of 1984 and 1985 in Morristown, New Jersey, and the summer of 1986 in
Palo Alto, California. The structure of this workshop was unique: no
recent results, no surveys. Instead, we asked for outstanding open prob-
lems in the field. There are many famous open problems, including the
question

P =NP?,

the simplex conjecture in communication theory, the capacity region of the
broadcast channel, and the two-helper problem in information theory.

Beyond these well-defined problems are certain grand research goals.
What is the general theory of information flow in stochastic networks?
What is a comprehensive theory of computational complexity? What
about a unification of algorithmic complexity and computational complex-
ity? Is there a notion of energy-free computation? And if so, where do
information theory, communication theory, computer science, and physics
meet at the atomic level? Is there a duality between computation and
communication? Finally, what is the ultimate impact of algorithmic com-
plexity on probability theory? And what is its relationship to information
theory?

The idea was to present problems on the first day, try to solve them
on the second day, and present the solutions on the third day. In actual
fact, only one problem was solved during the meeting -- E1 Gamal’s prob-
lem on noisy communication over a common line. This was solved by
Gallager. Shortly thereafter, however, Hajek solved two of Cover’s prob-
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lems. Also, a number of partial solutions were achieved. Nonetheless,
most of the open problems remain open. The solved problems are
included in this volume in the special section at the end. The reader will
note that some of the contributions actually consist of open and shut prob-
lems. Perhaps that is as it should be. It can’t be helped that some of
these researchers are able to solve their own problems.

The list of authors includes some of the outstanding contributors to
the theory of communication and computation. This list includes many
young researchers as well.

The open problems are presented by topic, roughly divided into com-
munication and computation problems, with appropriate introductory notes
where needed. A section of solutions follows.

Perhaps the most entertaining of all the contributions is Conway’s fas-
cinating article on FRACTRAN, a strange collection of numbers, which
when operated on in a simple way, yield all possible computations. We
begin with his article.

Acknowledgment: The editors wish to thank Lauren Suess for coordi-
nating the submissions of the open problems for this book and for her part
in organizing SPOC’84 and ’85, and Anne Oakley for her help during
1986 and 1987.

Special thanks go to Kathy Adams for putting the manuscript in final
book form, the handling of the final author communications, and her part
in organizing SPOC’86.

We also wish to thank Bell Communications Research and Stanford
University for financial support of the meetings.
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CHAPTER IL
FRACTRAN

FRACTRAN is not really an open problem. Nonetheless, its recrea-
tional spirit typifies the ideas in this collection.



FRACTRAN: A SIMPLE UNIVERSAL PROGRAMMING
LANGUAGE FOR ARITHMETIC

J.H. Conway

Department of Mathematics
Princeton University
Princeton, NJ 08544

Ve
1. Your Free Samples of FRACTRAN.
/f | W

To play the fraction game corresponding to a given list

Jofo o Sy

of fractions and starting integer N , you repeatedly multiply the integer
you have at any stage (initially N ) by the earliest f; in the list for which
the answer is integral. Whenever there is no such f;, the game stops.

(Formally, we define the sequence {N,} by No=N, N, =f;N,,
where i (1 <i<k)is the least i for which f; N, is integral, as long as
such an [ exists.)

Theorem 1: When PRIMEGAME:

17 78 19 23 29 77 95 77 1 11 13 15 1 55

— — — — — — — — — — — — —

91 8 51 38 33 29 23 19 17 13 11 2 7 1

is started at 2, the other powers of 2 that appear, namely,
22 23’ 25, 27 oll 213 717 219 523 229 .

are precisely those whose indices are the prime numbers, in order of mag-
nitude.

-4-



Theorem 2: When PIGAME:

365 29 79 679 3159 83 473 638 434 89 17 79
46 161 575 451 413 407 371 355 335 235 209 122

31 41 517 111 305 23 73 61 37 19 89 41 833 53

— — — — — — — — —

183 115 89 83 79 73 71 67 61 59 57 53 47 43

86 13 23 67 71 83 475 59 41 1 1 1 1 89

— — — — — — — — — — — — — —

41 38 37 31 29 19 17 13 291 7 11 1024 97 1

is started at 2", the next power of 2 to appear is 2™, where for

n=01234567289 10 1112 13 14 15 16 17 18 19 20 ..

mn)=31415926535 89 7 9 3 2 3 8 4 6

For an arbitrary natural number 7, m(n) is the nth digit after the
point in the decimal expansion of the number =.

Theorem 3: Define f(n) = m if POLYGAME:

583 629 437 82 615 371 _1 53 43 23 341
559 551 527 517 329 129 115 86 53 47 46

41 47 29 37 37 299 47 161 527 159 1 1
7 13

43 41 37 31 31 29 23 15 19 7

Z
3

when started at ¢22", stops at 22", and otherwise leave f-(n) undefined.
Then every computable function appears among f, fi, f, ... -

2. The Catalogue.

We remark that the "catalogue numbers" ¢ are easily computed for
some quite interesting functions. Table 1 and its notes give f, for any ¢
whose largest odd divisor is less than 210 = 1024.

-5-



Table 1. The Catalogue

c All defined values of f,
0 none
1 n—n
2 0-1
4 0—-2
8 152 In this Table,
16 253 n denotes an
64 1-3 arbitrary
77 n—0 non-negative
128 0—-3 integer.
133 0—-0
255 n+l->n+1
256 354
847 n—o1
37485 0->0,n+1—>n
2268945 n—-n+1
2k a—>bif2b -29=¢
7112 n—k
1—75-10292H non+k
Cn n — n(n)
We also have
f?."A =f0 >

Forg = For s forge = fopnr

Fore =115 frer =foaz s

fsz =f133 (k—_-O) or fo (k>0);

fzi‘E =f255 (k=0) or fzt k>0);

<&



where

A is any odd number < 1024 not visible below:

B is  1,3,9,13,17,27,39,45,51,81,105,115,117,135,145,153,155,
161,169,185,195,203,205,217,221,235,243,259,287,289,315,
329,345,351,405,435,459,465,483,507,555,585,609,615,651,
663,705,729,777,861,945,975,987,1017, . . .

B’ is 165495, ...

C is 7791,231,273,385,455,539,1015, . . .

C’ is 847,1001,.

D is 133,285, 399, 665, 855, . ..

E s 255,44

Figure 1 gives a ¢ for which fe(n) is the above function m(n)

- 3:4665 101-100! %10121001 779510131001 {-"—101‘100!
2100! 4 5 +2 398 + 241

3;11539 1015100! %1016100! -‘-;7—? 10171000 93810181000 23410191001
+ 2 £D +237 + 2355 47 5

23395 1011°100! -5%101“1001 %101‘2100! 3LioiB00r 2L 101100

+9 D +2 +2183 + 2115

58‘; 1015100 _1§13_1 1016100 3%5 10171000 2310181000 Z2101'°100!
42 +2 +2:7 +273 +27

%101”100! 2? 1012'100! -5‘-;1101”1001 8 101%1000 2L 101241000
39 32 +2 w51 +253

?73 10125100! %;'—101261001 %- 10171000 210121000 221012°100!
#2 EX 42 +238 e

%101”1001 ;; otoor Bior2icer A g01%000 32101%100!
+2 +2 +21 +217 +213

41 . .35 1..:36 1 37 38

Ao3sioor Lio*o0r L1017i000  —L101%*100! »
55 3 35 +2 11 +2 1024 2101 100!

2891011, 5901011 101! — 1
% 5 X 17 X 23

Figure 1. The constant ¢, .
-1



3. Avoid Brand X.

Works that develop the theory of effective computation are often writ-
ten by authors whose interests are more logical than computational, and so
they seldom give elegant treatments of the essentially computational parts
of this theory. Any effective enumeration of the computable functions is
probably complicated enough to spread over a chapter, and we might read
that "of course the explicit computation of the index number for any func-
tion of interest is totally impracticable.” Many of these defects stem from
a bad choice of the underlying computational model.

Here we take the view that it is precisely because the particular com-
putational model has no great logical interest that it should be carefully
chosen. The logical points will be all the more clear when they don’t
have to be disentangled by the reader from a clumsy program written in an
awkward language, and we can then "sell" the theory to a wider audience
by giving simple and striking examples explicitly. (It is for associated
reasons that we use the easily comprehended term "computable function”
as a synonym for the usual "partial recursive function.")

4. Only FRACTRAN Has These Star Qualities.

FRACTRAN is a simple theoretical programming language for arith-
metic that has none of the defects described above.

®  Makes workday really easy!

FRACTRAN needs no complicated programming manual - its entire
syntax can be leammed in 10 seconds, and programs for quite complicated
and interesting functions can be written almost at once.

e  Gets those functions really clean!

The entire configuration of a FRACTRAN machine at any instant is
held as a single integer - there are no messy "tapes” or other foreign con-
cepts to be understood by the fledgling programmer.

-8-



e  Matches any machine on the market!

Your old machines (Turing, etc.) can quite easily be made to simulate
arbitrary FRACTRAN programs, and it is usually even easier to write a
FRACTRAN program to simulate other machines.

®  Astoundingly simple universal program!

By making a FRACTRAN program that simulates an arbitrary other
FRACTRAN program, we have obtained the simple universal FRAC-
TRAN program described in Theorem 3.

5. Your PRIMEGAME Guarantee!

In some ways, it is a pity to remove some of the mystery from our
programs such as PRIMEGAME. However, it is well said [2] that “‘A
mathematician is a conjurer who gives away his secrets,”” so we’ll now

prove Theorem 1.
To help in Figure 2, we have labeled the fractions:

A B € D E F G H I J K L M N
17 78 19 23 20 77 9% 7 1 1 13 15 1 55
91 8 51 38 33 29 23 19 17 13 11 2 7 1

2x3

and we note that AB =
5x7

7 D
, EF ==, DG == .
3 2

We let n and d be numbers with O<d<n and write
n=gqd+r (0<r<d). Figure 2 illustrates the action of PRIME-
GAME on the number 5" 7913, We see that this leads to 5" 74! 13 or
5t gt 13 according as d does or does not divide n . Moreover, the
only case when a power of 2 arises is as the number 2" 74~1 when d = 1.

-9-



579 13
l @AaB?J
24 3d §n—d 11
L (EF? K
24 54 7d 13
L @AB)y?J
22d 3d 5n—2d 11
L(EFRK
22d sn-2d 7d 13
L @ABy?J

L (EFY K
294 57 74 13
!l (AB)Y A
on 3r 7d—r—1 17

r>0/ \=0
C I

on 3?'—1 Td—r—l 19 on 7d—l
L (DG H &t N
371 5174 11 35 57+l 1
LERH 1K L (EF" K
srpelas el K

Figure 2. The action of PRIMEGAME.

It follows that when the game is started at 5% 7% 13, it tests all
numbers from n—1 down to 1 until it first finds a divisor of », and then
continues with n increased by 1. In the process, it passes through a power

of 2" of 2 only when the largest divisor of » that is less than nis d =1,
or in other words, only when » is prime.

1l



6. FRACTRAN - Your Free Introductory Offer.

A FRACTRAN program may have any number of lines, and a typical
line might have the form

2 4
i 13: = , — 14 .
line 13 3—>7 5—)

At this line, the machine replaces the current working integer N by

%N, if this is again an integer, and goes to line 7. If %N is not an

integer, but %N is, we should instead replace N by %N, and go to line

14. If neither -%N nor %N is integral, we should srop at line 13.

More generally, a FRACTRAN program line has the form

5 P1 P2 Pk
line n:— —>n, —->n,...,— 2>n.
q1 92 9k

The action of the machine at this line is to replace N by ﬂN for the
i

least i (1 <i < k) for which this is integral, and then go to line n, ; or,

if no ?'N is integral, to stop at line n. (A line with k = 0 is permitted
i
and serves as an unconditional stop order.)

A FRACTRAN program that has just n lines is called a
FRACTRAN-n program. We introduce the convention that a line that

cannot be jumped to counts as a %-line. (Sensible programs will contain

at most one %-line, the initial line.)

We write
LW R /S
91 D 9y

for the FRACTRAN-1 program

=



Py

line I:ﬂ—>1,£-2-—>1,...,——>1.
Up) 9k

91
We shall see that every FRACTRAN program can be simulated by a

FRACTRAN-1 program which starts at a suitable multiple of the original
starting number. With a FRACT RAN-I% program, we can make this

multiple be 1.
The FRACTRAN-I% program

lmeO:ﬁal,&—)L...,ﬁ—)l

0, 0 0;
lmelzﬁal,&—)l,...,ﬁal

91 92 p

is symbolized by

i e L A N - N
0 O QJ' d1 92 A

Note that the FRACTRAN-I% program

m[f1f2 e fk]

started at N, simulates the FRACTRAN-1 program

[Af - Sl

started at mN .
We shall usually suppose tacitly that our FRACTRAN programs are

only applied to working numbers N whose prime divisors appear among
the factors of the numerators and denominators of the fractions mentioned.

-12-



7. Beginners’ Guide to FRACTRAN Programming.

It's good practice to write FRACTRAN programs as flowcharts, with
a node for each program line and arrows between these nodes marked
with the appropriate fractions. We use the different styles of arrowhead

S f > f B f E; f
for the options with decreasing priorities from a given node, and if several

options with fractions f, g, h at a node have adjacent priorities, we often
amalgamate them into a single arrow:

\Geh
P

The different primes that arise in the numerators and denominators of
the various fractions may be regarded as storage registers, and in a state in
which the current working integer is

N=2030 5cd
we say that
register 2 holds a, or r,=a
register 3 holds b, or r3=5
register 5 holds ¢, or rs=
register 7 holds d, or r,=d

etc.

FRACTRAN program lines are then regarded as instructions to
change the contents of these registers by various small amounts, subject to
the overriding requirement that no register may ever contain a negative
number. Thus the line

g 2 4
1 13 : = , — 4
ine 3 -7 5 -1
either replaces ry by ry+1, rg by rs—1 (if r3>0)
or replaces ry by ry+2, rsg by rg—1  (if rs>0)
or stops (if r3=rs=0).

J3s



In our figures, unmarked arrows are used when the associated frac-
tions are 1. A tiny incoming arrow to a node indicates that that node will
be used as a starting node; a tiny outgoing arrow marks a node that may
be used as a stopping node. A few simple examples should convince the
reader the FRACTRAN really does have universal computing power.
(Readers familiar with Minsky’s register machines will see that FRAC-
TRAN can trivially simulate them.)

The program

2.
3

is a destructive adder: when started with r, =a, ry;=>b, it stops with
rp=a+ b,r3=0. We can make it less destructive by using register 5 as
working space: the program

when started with r;=a, ry=b, rs=0, stops with ry,=a+b,
r3=b, rs=0.

By repeated addition, we can perform multiplication: the program

started with ry=a, r3=b, rs=0, r;=c, stops with r,=a + bc,
r3=b, rs=r;=0. We add an order % ("clear 3") at the
starting/finishing node and formulate the result as an official FRACTRAN

program:

-14-



linel:-!--—)z, %—)1

~J

line 2 : 32 52, -;-—>3

W

Iine3:-§——93, %—n.

When started at line 1 with N = 3% 7¢, it stops at line 1, with N = 2b¢,
The program obtained by preceding this one by a new
21 1

li = , — 1,
ine O > -0 1—)

when started at line 0 with N = 2", stops at line 1 with N = 2

8. How to Use the FRACTRAN-1 Model.

You can use a FRACTRAN-1 machine to simulate arbitrary FRAC-
TRAN programs. You must first clear the given program of loops, in a
way we explain later, and then label its lines (nodes) with prime numbers
P,Q,R,. .. larger than any of the primes appearing in the numerators
and denominators of any of its fractions. The FRACTRAN-1 program
simulates

e
-5, ...

f

. a c
lineP: — - Q, — >R,
b o d
by the fractions

aQ R &S
bP dP fP

in that order. If the FRACTRAN-0 program when started with N in state
P stops with M at line Q , the simulating FRACTRAN-1 program when
started a PN stops at QM .

Manufacturer’s note. Our guarantee is invalid if you use your
FRACTRAN-1 machine in this way to simulate a FRACTRAN program
that has loops at several nodes. Such loops may be eliminated by splitting
nodes into two.

-15-



The third of our examples

becomes

when each of the two nodes with a loop is split in this way, and the new
nodes are labeled with the primes 11, 13, 17, 19, 23. Accordingly, it is
simulated by the FRACTRAN-1 program

13 170 19 13 69 11
77 39 13 17 95 19

~—
—_

If started with N =29327°11, this program stops with
N =28+bc 3b 11 | (The factors of 11 here correspond to the starting and
stopping states of the simulated machine.)

We note that it is permissible to label one of the states with the
number 1, rather than a large prime number. The fractions corresponding
to transitions from this state should be placed (in their proper order) at the
end of the FRACTRAN-1 program. If this is done, loops, provided they

have lower priority than any other transition, are permitted at node 1. Thus
the FRACTRAN-1 program

-16-



(3o 31795197 3

simulates the previous program with a loop order % adjoined at the

starting/stopping node, which has been relabelled 1. This program, started
at 30 7¢ | stops at 2bc |

A given FRACTRAN program can always be cleared of loops and
adjusted so that 1 is its only stopping node. It follows that we can simu-
late it by a FRACTRAN-1 program that starts at PN and stops at M when
the original program started at N and stopped at M . As we remarked in

Section 6, we can simulate this by a FRACTRAN-I% program

Pl -]

which starts at N and stops at M .

9. Your PIGAME Guarantee.

We now prove Theorem 2, which is equivalent to the assertion that
the program
365 29 1 1

[S2 = - = ]

46 161 11 1024

(obtained by ignoring factors of 97 and dropping the final fraction Ei_9 of

PIGAME), when started at 2" - 89, stops at 2™", This FRACTRAN-1
program has been obtained from the FRACTRAN program of Figure 3 by
the method outlined in the last section. The pairs of nodes 13 & 59, 29 &
71, 23 & 73, 31 & 67, and 43 & 53 were originally single nodes with
loops.

We shall only sketch the action of this program, which we separate
into three phases. The first phase ends when the program first reaches
node 37, the second phase when it first reaches node 41, and the third
phase when it finally stops, at node 1.

=17
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67 > 31
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Figure 3. A FRACTRAN program for digits of 7 .

The first phase, started at 89 with register contents
rp=n, r3=rs=r;=ry =0,
reaches 37 with contents
r2=0, ?“3=1, r5=E, r7=2' 10”, r“=0,

where E is a very large even number. To see this, ignore the 5 and 11
registers for a moment, and see that it initially sets r, =2 . Then each
pass around the triangular region multiplies r; by 5 and puts it into 73
and is followed by passes around the square region which double 3 and
put it back into r;. This is done n times, so that at the end of this phase
we have r; = 2 - 10", as desired.

The first pass around the square ends with 4 in rs5, and each subse-
quent pass at least doubles this number, while keeping it even. At the last
stage we pass around this region 10" times and finish with an even
number E > 4 x 219" in rs . It’s easy to check that registers 2, 3, and 11
end with the indicated values.

At the end of the second phase, we shall have

AR



r2=r5=r?=0,

]

ry =2 x 10" X E(E-2)(E-2)E-4)E-4)E-6)---4-4-2-2 2 N,

1 X (E-1)(E-1)(E-3)(E-3)(E-5)E-5)---5-3-3-14D.

]

8!

This is fairly easy to check, the essential point being that each sojourn
in the upper region multiplies r; by rs and puts it into r;; (preserving the
value of rs5 but clearing r;), while in the lower region, we multiply
r3 by rs into r in a similar way, and then (at the left) transfer r,, back
to r3. Register 5 is decreased by 1 as we pass from the upper to the lower
region; but when r5 = 1 we instead clear it and pass to node 41, entering
the third phase.

Now Wallis’ product is

in which the successive fractions are obtained by alternately increasing the
denominator and numerator. If we truncate it so as only to include all fac-
tors whose numerator and denominator are at most K, we obtain an

T s i g T
approximation Ty for m® which is within at most X of . So our

L 10" - g , where 7 is a very good approximation indeed to 7. It is

D
in fact so good that the nth decimal digit of mg is the same as that of m.
This digit can be obtained by reducing the integer part of -g- modulo 10,

and it is easy to check that the third phase of our program does just this,
putting the answer in register 2 and clearing all other registers.

The assertion about the nth decimal digit of 7z is not trivial. For

n =0, our approximation Tz is my = % . For n=1 or 2, we have

and since mw = 3.141 - - -

T s 1
Ty — | < =——— which is 1 tha 3
| mg — x| PR is less than —=
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the nth digits ( n = 1 and 2) after the decimal point in Tz must both be
correct.
For n 2 3, the error in 7z is at most

4 1 _ 10-3 % 10"} —42n
o < 000 10 < 10772

The desired assertion now follows from Mahler’s [4] famous irra-
tionality measure for & : if % (in least terms) is any nonintegral rational

number, then

_p2), L
| q|> =5

10. How to Use Our Universal Program.

In this section, we prove Theorem 3, using an ingenious lemma due to
John Rickard. We shall call a FRACTRAN-1 program [f},/,...,f; ]
monotone if fi<fo<fy<---<fi.

Lemma: Any FRACTRAN-1 program can be simulated by a monotone
one that starts and stops with the same numbers.

Proof. Choose a new prime P that is bigger than the ratio between any
two of the f; and bigger than the inverse of any f;. Then

[%,Pfl,szz, P, ... P, ] simulates [fy.fofsr-..sfc] and is

monotone. The new program behaves exactly like the old one, except that
at each step a power of P is introduced, only to be immediately cleared
away before we copy the next step.

We shall call a FRACTRAN-1-- program

ﬁ,f;,...’f;[flaf?)- . !fk]

monotone if

f;<f'2'<---<j}' and fi<fo< - <fp

-20-



Then our universal program simulates monotone FRACTRAN-]-;-

programs. It codes such a program by three numbers, M" , M , and d,
defined as follows.

We take d to be any common denominator of all the fractions men-

tioned and suppose the given FRACTRAN-I% program is

my m, m my my i
d d d d d d =

We then adjoin dummy numbers m;ﬂ and my,,, which are both mul-
tiples of d and which satisfy

* * * *
m1<m2< <mj<mj+1, m1<?'n2< <mk<mk+1,

and [-12-M*]SM

where
M'=2"42™ 4 ... 427

M=2"M 42" 4 .00 42T

The universal program POLYGAME, started at
2N 3M M 1741 23
will simulate the given FRACTRAN-I% program, started at N . This

universal FRACTRAN-1 program was obtained from the FRACTRAN
program shown in Figure 4, and accordingly, we consider starting the
latter with ry = N, r3 =M, rg = M, ry7 = d-1, at the node 23.

This works roughly as follows. After a new N has been found, the
program computes successive multiples N, 2N, 3N, ..., mN, and simul-
taneously repeatedly halves M toget [ M/2],[M/4],...,[MP2™]. If

[ M/2™ ] is odd, so that m is one of the m; , it sees whether Nm is a
multiple of d, and if so resets M and takes a new N = mN/d , unless

m was my; (ie., [ M/2™ ] = 1), when it arranges to stop at node 1 with
=



register 2 containing N and all other registers empty. For the first pass,

. * .

it uses M in place of M.
111
17,13,3

1 + 53&43

11 =
\ /,_.._;.5
37829 —3>— 23 ——c Y181

17 215
it 11,7

Figure 4. A flowchart for POLYGAME.

[y
—
b |-

5|
Wl

._n
-q

Registers 13, 17, 19 function as a counter, whose count is stored in a
form from which we can see at once if it is a multiple of 4 . If

r3=4gq, rg=r, r17=d—l—r, with OSr<d,

then the count is the number gd + r . If the machine arrives at node 31
("enters the counter") with these values, then when it next arrives at node
23 ("leaves the counter"), we shall have

rl?’zq’ r19=r+1, r17=d—1«-(r+1), if r<d—l,
In other words, the value of the count will have increased by 1.
So if the machine is started at 23, with 75 = r;; = 0 and r, = N, it will
increase the count by N while transferring N from register 2 to register

11, and then go to node 47 (where its first action will be to retransfer N
from register 11 back to register 2).

840 12
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After these remarks, the reader should have little difficulty in verifying the
transitions between particular configurations shown in Table 2.

We suppose that for particular positive numbers d, N, M , and M,
with [%MO ] <M we define for varying values of m the numbers

M by

m? qm’ rm

Mmz[MGQm]
mN=gq,d+r, (O<r,<d.

Then Table 2 shows that unless M,, is odd and r, = 0, the special
type of configuration in the first line of the table leads to a similar one (in
the fifth line) with m increased by 1. In the excepted case, if M, ; # 0,
we obtain another such special configuration (in the seventh line), but with

m (and the count) reset to 0, the new initial value My = M for M,,, and

—"fiN-— as the new N . If instead M, ; was O, we arrive at the last line of

the table, and stop at node 1, with N in register 2 and all other registers
empty. The cases with M,, odd and r,, = O are called resets.

Now suppose we start the machine in the special configuration in the
top line of the table, with m = 0, and the initial value M, of M,, set to the
number

s (S L KRS e
where

m0<m1<"'<mk+1

and my,, is divisible by d. Then before the next reset, we have the
equivalences
M, odd <= m is one of the m;

rm=0 &= mN/d is an integer

My =0 &= m=my.

So the next reset will be at the first of the m; for which m; N/d is

integral, and will either
24-



replace N by m; N/d, and reset m to O and M, to M (f i<k ),

or stop at node 1, with N in register 2 and the rest empty (i = k) .

This completes the required verifications. Initially, we set m = 0 and
My = M", but all subsequent resets will put My = M, in accordance with

the rules for FRACTRAN-]% programs.

A FRACTRAN-1 program is a FRACTRAN—I% program with
M=M". For this we can use the alternate catalogue number
PriT+tal,

11. Applications, Improvements, Acknowledgments.

For the function

1
g\ =172
3N +1 (N odd),

N (N even)

the Collatz problem asks whether for every positive integer N there exists
a k for which g“(N) = 1 . See [3] for a survey of this problem.

We can ask similar questions for more general Collatz functions
where ay and by are rational numbers that only depend on the value of
N modulo some fixed number D . We proved in [1] that there is no
algorithm for solving arbitrary Collatz problems. Indeed, for any comput-
able function f(n), there is a FRACTRAN-1 program [f; f, - - - f; ] with

the property that when we start it at 2" , the first strictly later power of 2
will be 2/, In other words, we can define f by

270 = gk (27,
where k is the smallest positive integer for which g* (2%) is a power of
2, and the function g(N) , which has the above form, is just f; N for the

least i which makes this an integer. This result is an explicit version of

Kleene's Normal Form Theorem.
Sk



We note that g(N)/N is a periodic function with rational values, so
that g(V) is a Collatz function for which by, is always 0. So even for Col-
latz functions of this special type there can be no decision procedure. By
applying the argument to a universal fraction game, we can get a particu-
lar Collatz-type problem with no decision procedure.

(We remark that of course Collatz problems with arbitrary b, are
harder to solve, rather than easier. We might, for instance, define one that
simulates a program written in 10 segments, each segment using only the
numbers ending in a given decimal digit, and in which control is
transferred between the segments only at certain crucial--and recursively
unpredictable--times.)

John Rickard tells me that he has found a seven fraction universal
program of type 2.5 22ﬁ") and a nine fraction one of type
2" - ¢ — 2/ However, it seems that his fractions are much too compli-
cated ever to be written down. I used one of Rickard’s ideas in Section
10. Mike Guy gave valuable help in computing the catalogue numbers in
Section 2. Of course, the responsibility for any errors in these numbers
rests entirely with him.
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CHAPTER IIL
PROBLEMS IN COMMUNICATION

In this chapter on communication we find many information theoretic
problems. Perhaps this is as it should be, since information theory yields
some of the extreme points of the theory of communication. Extreme
cases tend often to be theoretical and therefore to lend themselves to crisp
problem formulation.

Two of the problems have been partially solved. Wyner’s problem on
the spectra of bounded functions has led to the contribution by Boyd and
Hajela in the solution section. Also, Abbas El Gamal’s problem on reli-
able communication of highly distributed information has led to a solution
by Gallager, ‘‘Computing Parity in a Broadcast Network,”’ appearing in
Chapter VI.
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3.1 SOME BASIC MATHEMATICAL PROBLEMS
OF MULTIUSER SHANNON THEORY

I. Csiszar

Mathematical Institute of the
Hungarian Academy of Sciences
Budapest, Hungary

At the present state of development of multiuser Shannon theory, the
main interest is in single-letter characterizations of achievable rate regions
(capacity regions) of various source (channel) networks, such as source
coding with side information, multiple descriptions, and broadcast chan-
nels. The mathematical background of most such problems is very simi-
lar, namely, an entropy or image size characterization in the sense of [1].

1. Entropy Characterization Problem.

For a discrete memoryless multiple source with generic variables
X, Y, ...,Y,), find a single-letter characterization of the closure of
the set of all (k + 1)-dimensional vectors of the form

;11- H(X™ | fiX™), % H(Y!|AX™), ... 71; HY? | fxny) |

Here n=1,2,.. and f is any function defined on the nth Cartesian
power of the range of X .

2. Image Size Characterization Problem.

The n-image size gy(A, n) of a set A ¢ X" over a discrete memory-
less channel (DMC) {W:X — Y} is the minimum cardinality of
B c Y" such that WWB|x)>2mn for each x € A. The problem is to
find, for a distribution P on X and DMCs (W,:X —>Y;},
i=1,...,k, asingle-letter characterization of the limit of the sets of all
(k + 1)-dimensional vectors

D0



1 1
— log|A], log gw, (A, M), . .., — log gy, (A M)

Here A — X" is any set of P-typical sequences, and 0 <mn <1 is fixed
(the result is independent of M ).

Both problems are solved for k=2 (cf. [1]) but not for k=23 . An
interesting (unsolved) special case of Problem 2 for k=3 is the follow-
ing: consider sets A c X" x Y" x Z" consisting of triples of sequences
which are jointly typical with respect to a given distribution on
XXYxZ. Let Aj,A,, and A; be the projections of A on X", Y",
and Z", respectively. Characterize the vectors (for n — oo ) of form

loglAI logIA s logIAzI logIAsl
or at least those without the first component.

3. Divergence-Characterization Problem.

The analogue of the entropy-characterization problem for Kullback-
Leibler divergence is relevant for hypothesis testing problems with com-
munication constraints (cf. [2]). In case k=1, the problem is to charac-
terize, for two double sources with generic variables (X, Y) and (X, Y ),
the closure of the set of all two-dimensional vectors

4. Communication Problems with Unfriendly Participants.

This, up to now, less investigated problem area includes jammer prob-
lems, Wyner’s wiretap channel (cf.[1], p.407), and so on. Entropy and
image size characterization problems underly many problems of this kind,
as well.
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3.2 THE INFORMATION THEORY
OF PERFECT HASHING

Janos Kbmer

Mathematical Institute of the
Hungarian Academy of Sciences
Budapest, Hungary

Fredman and Komlés [1] have used an interesting information-
theoretic technique to derive the hitherto sharpest converse (nonexistence)
bounds for the problem of perfect hashing. It seems to me that this is the
first use of "hard core information theory" in combinatorics.

In a recent paper [2], we have shown that implicit in the Fredman-
Komlés proof technique is the concept of graph entropy [3]. This might
be interesting because a straightforward use of graph entropy reduces their
proof to a few lines. It is convincing to use the example of perfect hash-
ing to discuss possible applications of information theory to combinatorics.
Furthermore, I will show that the bound in [1] is not tight.

During the last decade the information theory of discrete memoryless
models has become increasingly combinatorial in spirit. It was somewhat
disappointing to see that even deep-looking Shannon theory results such as
the exponential error bounds can be derived in short order by elementary
counting arguments. It is therefore good news that a genuinely
information-theoretic technique (not just the subadditivity of entropy)
yields new results in combinatorics.

1. Perfect Hash Functions.

Let X be a set of n elements. We shall say that a function
f:X —> B separates A if f takes l|Al different values on A . The
family { f; } , me IT, of mappings of X into B is a (bk)-family of
perfect hash functions if IBl =5 and every k-element subset A of X is
separated by at least one function f ,m e IT.
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What is the minimum size Y(b, k, n) of a (b,k)-family of perfect
hash functions for X ? Note that logarithms are to the base 2.

Standard random selection of the hash functions yields

b
Y(b, k, n) < —k log n,
s
k—1
where pk A ‘g (b — i) . Fredman and Komlés [1] have proved that
s

b"‘"l_ log n
piel log b —k+2)

It is instructive to study the special case Y(n) Q Y(3, 3, n) . Random
selection, followed by expurgation, yields

Y(b, k, n) 2

The Fredman-Komlos lower bound is
3
Y(n) 2 E logn.

However, I can prove by elementary counting that

Y(n) > ﬂg_;_ ) (1)

Indications are strong that even this bound is poor. A combination of the
two lower bounding techniques should be possible.” None is uniformly
better than the other, but the counting bound can be obtained also by the
graph entropy technique, as pointed out by Kati Marton, who was the first
to derive bound (1) using that technique.

"1t is indeed possible, as shown subsequently by the K&rner and Marton [4].
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2. Proof of the Counting Bound.

Let a (3,3)-family of perfect hash functions be represented by a set C
of ternary sequences of length ¢ . For an arbitrary termary sequence x of
length ¢, let A(x) denote the set of all sequences in { 0, 1,2 }’ that
are at maximum distance ¢ from x . Clearly C has the property

IAX)NCI1<2. 2

Now, let us count the pairs { A(x),y}, xe {0,1,2}, yeC,
y € A(x) . By (2), their number, ICl, satisfies

ICl-2f<2-3%;
hence,
i 5 log ICI
3
log >

which is the desired bound (1).
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3.3 THE CONCEPT OF SINGLE-LETTERIZATION
IN INFORMATION THEORY

Janos Kbmer

Mathematical Institute of
the Hungarian Academy of Sciences
Budapest, Hungary

Inherent in the definition of Shannon theory problems is an asymptotic
characterization of the performance, rates and error probabilities of all pos-
sible code constructions in the given context. Then the results one is
looking for give so-called single-letter characterizations of these perfor-
mance measures. Yet nobody has put forward a mathematically valid
explanation of the key notion of single-letter characterization.

One way of approaching the problem is to speak about computable
characterizations. Roughly speaking, a characterization is computable if it
gives rise to a nice algorithm that computes the underlying quantities to
any defined degree of accuracy. This, however, is less than satisfactory
for intuition. One of the purposes of Shannon theory is to give a sys-
tematic account of all the quantities that can serve as information measures
in various contexts and to clarify their relations by identities and inequali-
ties. Because of these formulas, information theory can put an intuitively
appealing order into the wealth of facts needed in asymptotic counting
arguments often encountered in combinatorial arguments. It is one of the
main interests of multiuser information theory to shed light on these rela-
tions.

It seems that the theory of association schemes as developed by Bose,
Mesner, Delsarte, Schrijver, Babai, and so on or suitable generalizations
thereof might provide a structural description for what I believe to be the
essence of single-letter characterizations. Theorems involving such a char-
acterization in the book by Csiszar and the author seem to suggest that for
the particular problem under consideration, optimal constructions exist in
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any association scheme isomorphic to the given one; this is true in a
somewhat vague asymptotic sense. Then, since the parameters of the
underlying association schemes are given above by single-letter quantities,
depending as they do only on the joint types, that is, the joint letter fre-
quency distributions of finitely many finite sequences, one will obtain the
kind of characterizations one needs.

I would like to see whether there is any hope of converting this into a
logically sound theory.
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3.4 IS THE MAXIMUM ENTROPY PRINCIPLE
OPERATIONALLY JUSTIFIABLE?

I. Csiszar

Mathematical Institute of the
Hungarian Academy of Sciences
Budapest, Hungary

Let X be a random variable originally believed to have distribution Q.
When new information is obtained suggesting that the distribution of X
actually belongs to a set of distributions IT not containing the original
guess Q, this should be updated to conform with the new information.
Intuitively a proper updating should be that element of IT which is closest
to the original guess Q. It remains to specify the measure of distance
between distributions to be used to find this closest element.

The maximum entropy (ME) principle, also called minimum discrimi-

nation information principle, suggests use of the Kullback-Leibler informa-

Px)

tional divergence, defined by D(P || Q) = Z P(x) log 00) in the discrete
x

case and by the corresponding integral in general. Thus ME updating
results in that P*e II (providing it exists and is unique) which minimizes
D(P || Q) subject to P € TI. If Q is the uniform distribution, this P* is
just the element of IT having maximum entropy, hence the name. The ME
principle has been used successfully in various fields ranging from statisti-
cal physics to speech recognition, and it has also been derived axiomati-
cally from some natural postulates. The following result of Csiszar (1984)
leads in an operational (rather than postulational) manner to the ME prin-
ciple and also gives a hint in what situations simple ME updating is
justified.

Theorem: Let X;, X, ,... be ii.d. random variables with common
distribution Q and let IT be a given set of distributions on the common

range of the X;’s (satisfying some regularity conditions omitted here). Let
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A, be the event that the empirical distribution of the sample X, , . . ., X,

belongs to IT. Then for any fixed m, the conditional joint distribution of
X, .,...,X, under condition A, approaches for n — oo the joint distribu-
tion of m i.i.d. random variables with common distribution P* where P*
minimizes D(P || Q) subject to P € II.

Problem: Generalize the above result for not necessarily i.i.d.
X1, X5, ..., and for constraints not necessarily on one-dimensional dis-
tributions only. More exactly, find possibly general conditions under
which the following holds for a stationary ergodic process X; X, ,... and
a given set IT of distributions on the kth Cartesian power of the common
range of the X; ’s. Let A, be the event that the kth order empirical distri-
bution of the sample X;,...,X,,,; belongs to Il, and consider the
conditional joint distribution of m consecutive random variables
X1» X, 415X 4 ms1 under the condition A,. Then if n— o
and [, = oo ,n—1, — e , this conditional joint distribution converges
to the m-dimensional distribution of a stationary ergodic process Yy, Y, ,...
whose divergence rate from the given process Xy, X5 ... is minimum
subject to the constraint that the k-dimensional distribution of the Y pro-
cess belongs to IT.

If the X process is finite state Markov, a proposition of this kind was
proved by Cover, Choi, and Csiszar [1]. It is conceivable that in statistical
physics literature similar results may be available for Gibbs random fields.

REFERENCE
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3.5 EIGHT PROBLEMS IN INFORMATION THEORY

R. Ahlswede

Universitdt Bielefeld
4800 Bielefeld 1
Germany

1. Multiuser Information Theory.

Problem 1: So far, the capacity regions of multiway channels have
been characterized in only a few cases. The main difficulty consists of
finding appropriate methods for single-letterization.

For complex channels this seems to be a hopeless task. We therefore
suggest settling for somewhat less, that is, a description of the capacity
region as the limit of information quantities depending on vector-valued
random variables such that the speed of convergence in terms of the
number of components can be bounded from above. There ought to be a
way to do this.

Problem 2: There are nonprobabilistic channels that have never
been considered in a multiuser situation. We suggest doing this for the
permuting channels, which have been studied in [1].

Problem 3: One of the very challenging problems has been to deter-
mine the capacity region of the broadcast channel (Cover, 1972).

The following simpler problem encounters some of the typical

difficulties. Suppose that V is a finite set, then a family
{Ej:1=si=sI,1<j<J} of subsets of V ise-good if for A;= U Ej;

J
and Bj=LjJEU
(i) IAjﬁEfjl SEIE,U-J forall j and all " #i;
(ii) |Bjr\E,-f| SeIEU«I forall i andall j#j.

Derive bounds on / and J intermsof |V | and € .
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Problem 4: Whereas there is an extensive literature on coding
schemes for multiway channels with feedback, it seems that there is no
theory for multisources in case of feedback. Such a theory should include
various search problems such as group testing.

Problem 5: In [2], we studied several source coding problems
involving decompositions of n X n arrays into as few as possible partial
transversals such that each transversal has distinct symbols as entries. It is
therefore of interest to know the possible lengths of such transversals. In
particular we have the following:

Conjecture: Suppose that in an n X n array no symbol occurs more
than n times as an entry. Then there exists a partial transversal of length

n—1 with distinct symbols. The example ( ZZ ) shows that one cannot

always expect a transversal of length n .

2. Noiseless Coding for Multiple Purposes.

Consider a Bernoulli source X" = (X, . . ., X,) . Suppose that there

are n persons and that person ¢ 1is interested in the outcome of
X,(1<t<n). A multiple purpose encoding (or program) shall be a
sequence f = ( fi(X"), f5(X"),...) of 0-1 valued functions f; .

Person ¢ requests sequentially the values of fi, f5 ..., and stops

as soon as he has identified the value of X,. Let I(f,¢) denote the

expected number of requests of person ¢ for program f. We are

interested in the quantity L(n) = min max I{,f). The choice
f 1<t<n

XM =X; 1<i<n) gives If, )=t for 1<t<n. Since
1 2 n+1
" I, = — - one should do better.

=1

Problem 6: What is the asymptotic growth of L(n) ? There are
obvious generalizations of this problem.
3. Correlation Inequalities.

Correlation inequalities play a role in statistical physics, reliability
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theory, and so on. A systematic study was made in [3]. Instead of the
Boolean operations V, A usually occurring in those inequalities, one can
consider any two operations ¢, y:SX S — §, where S is a finite set.
Further progress depends on the solution of the following.

Problem 7: For two maps ¢g:SXS—S§ and ¢y:TXT—>T,
define the product

O : SXTNXEXT) ST
by

st (515 17), (55, 1)) = (bg(sy, 59), O{21, 1))

forall s,sp€ S,¢t,5,eT.

Also ¢ associates to A,Bc S a new set in the Minkowski sense
®(A,B)A2{d(ab):ac A,be B}. The pair ( ¢, y) is called expan-
sive,if |A| |B| < |¢(A,B)| |y, B)| forall A,BcS.

Conjecture ([3]). If (¢, yg) and (¢, y7) are expansive, then
the pair of products ( Ogp, Ygr ) is also expansive.

4. Random Selection and Equidistribution.

Existence proofs by random selection are very popular in combinator-
ics, information theory, complexity theory and so on. We wonder whether
they can be replaced by deterministic procedures, which have certain
equidistribution properties. Our ideas are not yet precise. We came
across the following number theoretical problem, which does not seem to
fit into the classical theory of equidistribution.

n 5
Problem 8: Consider, for instance, the sets A, A5
i=1
g;€{0,1}}. Do the sets A, m) 2 {ke A,: k=mmod 2"}
satisfy for all 0<m<2"-1 |A,(m)|2"=0() (or at least

| A (m)| 27" =2°"M 9
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3.6 OPTIMUM SIGNAL SET FOR A
POISSON TYPE OPTICAL CHANNEL

A.D. Wyner

AT&T Bell Laboratories
Murray Hill, NJ 07974

A simple model of an optical communication channel is the following.
The channel input is a waveform x(f) which satisfies

0La<sx()Sb<oo, 0=Lt<oo,

and the corresponding channel output is a Poisson jump process or count-
ing process v(¢) with intensity function x(¢). Thus v(¢) is an integer-valued
independent increments random process, and

—\ k
e "

Pr {v(t;)) — v(t,) = k} =_k! ,
k=0, 1,2,..., and OSf-lez(W

where
L

A= [ x(@) dr.

h

Physically, x(¢) represents a photon intensity, and the parameter a
(when a > 0) is the "dark current” which is always present. The jump
process V(?) represents photon arrivals at the receiver.

A signal set with parameters (M, T, S, P,) consists of the following:

(a) A set of M waveforms x,,(f), 0 <t < T, 1 <m <M, which satisfy

gEx. ) =2d
and

1 1
?(j;xm(r)=S.

(Physically, the parameter S represents average signal power).
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(b) A "decoder" mapping D which maps jump processes on [0,7] to
{(1,2,...,M}.

(c) Let vg be the received jump process v(¢), 0 <t<T. Then the
"error probability" is

M
P, _A!AT Yy Pr {D(vg) # m | x,, (¢) is the channel input}.
m=1

Our problem, for given M 22, a<S<b,and T > 0,

is to find the signal set that minimizes P, .

I have a conjectured solution which will be discussed below.

This problem is reminiscent of that of finding optimal signal sets for
the Gaussian channel with additive white noise and no bandwidth con-
straint. In fact, my conjecture is very close to the famous "simplex con-
Jjecture” for that channel but may be more tractable than the Gaussian
problem. Here is my conjectured optimal signal set.

Since a < S < b, we can write § = 0a + (1 — 0)b. Suppose S, M are
such that 6 = k/M, for some integer k. We construct our signal set as fol-
lows:

Let N=( '};‘f ), and let A be an M X N matrix, the columns of which
are the N permutations of an M-vector with exactly k a’s and (M—k) b’s.
Thus, for example, for k=2, M =4 (so that S = a+b ), A is the

4 X 6 matrix

A=

QR
% o
S RN I
8 Ton
S TRNIES TR
SRS SR

Let A = (a,,,). The signal set is
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It is easy to check that [ x,,(f)dr = S.

Let us define P: (M,T.,S) as the minimum P, attainable for a signal set

with parameters M,T.,S. For S = [i a+ [— i] b , as above, it can be

M

M

shown [1] that with M, S held fixed as T — oo

-

—1 * k
= log P, M,T,S) —> [M]

g

k

| p—_. )

M

] [\’3—‘5]225'0. (1)

Thus, as T — o, P, (M,T,S) =exp { —-E,T +o(T) }). A similar result
holds for arbitrary S. Furthermore, the signal sets defined above satisfy

(1).
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3.7 SPECTRA OF BOUNDED FUNCTIONS'

A.D. Wyner

AT&T Bell Laboratories
Murray Hill, NJ 07974

We are concerned here with waveforms x(f), —oo <t < oo, which
satisfy an amplitude-constraint, |x(f)|< A < e, and their spectra. We
pose two open problems. The first is the maximization of the energy of a
filtered version of an amplitude-constrained pulse with finite support. The
second is the question of how close the power spectral density of a sta-
tionary amplitude-constrained random process can be to a flat band-limited
spectrum. These questions appear to be difficult, but answers to them will
shed light on certain aspects of storage in magnetic media (disks, tapes,
etc. which are inherently amplitude limited) and on communication over
microwave radio links.

Problem 1: Consider the set of real-valued waveforms x(t),
—oo < t < oo, such that

[x()]=<1 (1
and
x(H=0, t<0, t>1. )
The Fourier transform of x(-) is
oo 1
Xfl= [ x(e™ 2™ dt = [ x(t)e™ 2™ dt . 3)
—oo 0

Let h(f) be the impulse response of an arbitrary linear filter, and let

H(f) = _[h(t)e"z"f‘ dt be the filter transfer function. Then the energy of

; See the contribution of Boyd and Hajela in Chapter VI for more on this prob-
em.
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the filter output when x(z) is the input is

E= [ |HPP|X(P|df. 4)
Our problem is to maximize E for fixed H(f), T, over all x(¢) satisfying
(1) and (2).

Comments. It is easy to show

(a) that if x(¢) satisfies (1) and (2) that, under very weak assumptions on
h(t), we can attain essentially the same value of E for x(¢) taking only
the values *1 ;

(b)

x(1) x(s) R(t — 5) dtds , (5a)

Oy =t

1
£-]
0

where

R(@) = j h(t — u) h(u) du . (5b)

Thus when R(#) 20, for 0 <t<1 (which happens when h(Y) 20), E
is maximized with x(f) =1, 0<¢<1. For example, when

{1, | fl < W,
H(f) = (6a)
0, |f]l>Ww,
and W< 1/2, then
R(p = (ZWsin@aWy) . o 1<, (6b)

2rWr)

Problem 2: Let x(f) be a real-valued stationary random process with
Ex()=0and | x(t)|= A . Let R(¢) = Ex(t) x(t + 1), and let

SO = | R(t)e 2™ 4y (7)

be the power spectral density of x. We are concerned with how "close"
S(f) can be to the "boxcar"

e



A2, |fls1,
B(f) = (8)
0, |fl>1.

Note that | B(Ndf = A? = ExX’(t) = [ S(f)df. Specifically, the problem is
the maximization of
+1
Q2 [ log(l +5() df , )
-1
over all S(f) realizable as the power spectral density of a random process
x(t) for which | x(t) |= A .

Comments.

(a) From the concavity of the logarithm,

1 2
Q5210g1+%_[3(f)df SZIog{1+AT}. (10)
i

Equality is achieved when S(f) = B(f).

(b) Let y(r) be a Gaussian random process with Ey(f) =0 and with
spectral density %(ZQ so that Ey2(f) = 1. Let x(r) = A sgn(y(f)). Then
Ex(f)=0, and |x () |=A (a.s.). It can be shown that the spectral
density of x(-) is

SQ‘)z%B(ﬂ, oo < f< o0, (11a)
so that

2
Q2210g{1+%}. (11b)

Inequalities (10) and (11b) yield estimates on sup Q. I conjecture that
the upper bound (10) holds strictly and would sorely love to see a bound
tighter than (10).
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3.8 A STOCHASTIC DECISION PROBLEM

H.S. Witsenhausen

AT&T Bell Laboratories
Murray Hill, NJ 07974

1. Team Decision Problems.

In a team decision problem there are n agents. Agent [ observes ran-
dom variable Y; and, as a function of this observation, takes decision y;
from a given set U; of possible decisions. Denoting the decision function
by y; , the problem is to choose (y;, ..., Y,) so as to optimize the expec-
tation of a criterion C(uy, . .., u, Z) , where Z is a random variable and
the joint distribution of Z and the Y; is given [1]. Note that by condition-
ing one can assume that Z is the n-tuple of all observations ¥; . Outside a
few special cases, team problems are of high complexity [2].

If C depends only on the decisions, then trivially an optimum or &-
optimum can be achieved by constant decisions, so that the specification
of the observations is irrelevant. However, if constraints are imposed on
the probability distributions of the u;, then meaningful and interesting
problems result. Such problems come up naturally in diverse applications.
The one discussed here originates from research in graph theory [3].

2. Problem Statement.

Let X;(i=1,...,n) be independent random variables with (not
necessarily identical) nonatomic distributions. Of the n agents, agent i
observes the variables other than X;. Thus Y; is the (n— 1)-tuple
Xpooos Xip Xiy1»-- -, X,). The decisions are binary, with
U; = {0,1} for all i. (Allowing decisions from the interval [0,1] reduces to
the above case.) The constraints are that

E{u)=0o; (G=1,...,n), (1)
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where o are given constants in [0,1]. The objective is to minimize the
expectation of

C(ul, ] un) = z u‘- u),-. (2)
1<i<j<n

This is a problem with "lacunary” information pattern, as in [4]. It is

trivial forn < 3 .

For n = 3, a closed-form solution for general o is already too much
to ask. We have, however, an interesting piece of qualitative information
(5].

Theorem: When n =3, there exists, for each triple (0, oy, 0t3) a
quantization of each of the X; into a three-letter alphabet, such that the

agents can make their optimal decisions by using only the quantized form
of the variables they observe.

Our questions is: Do similar statements hold for n > 3 ?
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3.9 UNSOLVED PROBLEMS RELATED TO
THE COVERING RADIUS OF CODES

N.J.A. Sloane

AT&T Bell Laboratories
Murray Hill, NJ 07974

Some of the principal unsolved problems related to the covering
radius of codes are described. For example, although it is almost 20 years
since it was built, Elwyn Berlekamp’s light-bulb game is still unsolved.

1. Introduction.

Codes with low covering radius have applications in source coding
and data compression (see [6]). Although there has been considerable
activity in recent years in studying these codes ([2]-[4], [6], [7], [9], [10],
[12], [13]), many open questions remain. The following are some of the
most important. Other problems may be found in [2] and [6].

2. What Is the Solution to Berlekamp’s Light-Bulb Game?

In the Mathematics Department commons room at Bell Labs in Mur-
ray Hill there is a light-bulb game built by Elwyn Berlekamp nearly 20
years ago. There are 100 light bulbs, arranged in a 10x10 array. At the
back of the box there are 100 individual switches, one for each bulb. On
the front there are 20 switches, one for each row and column. Throwing
one of the rear switches changes the state of a single bulb, while throwing
one of the front switches changes the state of a whole row or column.

Suppose some subset S of the 100 bulbs are turned on using the rear
switches. Let f(S) be the minimum number of illuminated bulbs that can
now be attained by throwing any sequence of row and column switches.
The problem is to determine

R = mSaxﬂS).
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It is known [1] that 32 < R < 37 .

The preceding problem is in fact equivalent to finding the covering
radius of a certain code. Let C be an [n,k] binary, linear code. The cov-
ering radius R of C is the maximal distance of any vector x € F5 from C,
that is,

R = max min dist(x, c) . (1)
xeF'z’ ce C

Let us define a light-bulb code L, to be the [n =ab, k=a + b - 1]
linear code spanned by the rows and columns of an a X b rectangular
array. Figure 1 shows some typical codewords of L 3 (which might also
be called the tic-tac-toe code). Berlekamp’s game asks for the covering
radius of Lo .o Since there are potentially 2!% choices for x in (1), a
brute force attack will not succeed!

(111 000 000)

oo -
oOo=-
oo~

(100 100 100)

oJoJo
00

(011 100 100)

_h—‘lo
lolo
QO -~

Figure 1. Some codewords in the light-bulb code Ly, .
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More generally, one may ask for the covering radius L,;,. Table 1
gives the known bounds on L,, For large a it is known ([1], [6]) that

2 3/2 2 32

a a 3/2 a a 3/2
—_— - —++o0(a SRE— —-———+0(a ;
2 2 ( ) 2 V21 ( )

See also [5] and [9].

Table 1. Covering Radius of Light-Bulb Code L, , , from [1]
and [6] ( n = length, k = dimension, R = covering
radius, ¢[ n,k ] = world record)

a n k R t[n,k]
1 1 1 0 0

2 4 3 1 1

3 9 5 2 2

4 16 7 4 3or4
5 25 9 7 Sor6
6 36 11 ? 8-10
7/ 49 13 <16 12-15
8 64 15 22-23

9 81 17 <29

10 100 19 32-37

My reason for giving Berlekamp’s game as the first problem is that it
appears that light-bulb codes, and codes closely related to them, such as
those in Equations (46) and (47) of [6], often have unusually low covering
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radii. It would therefore be valuable to have a better understanding of
these codes.

A related question is to determine the exact covering radius of the
codes obtained by the extended direct sum construction given in (79) and
(81) of [6].

3. Is There a Code of Length 15, Dimension 6, and Covering Radius

3?

Two general questions in this subject are: (i) find the smallest possible
covering radius f[n,k] of any [n,k] linear code, and (ii) exhibit explicit
codes that attain or come reasonably close to this bound (see [6]). The
value of #[n,k] is known exactly if k<5, or if n < 14, and a table of
bounds on ¢[n,k] for n < 64 is given in [6]. The first gap occurs when
n=15and k=6. A [15,6] code exists with R = 4, but the best bound
only guarantees that R > 3. Problem: Is ¢[15,6] = 3 or 4?

4. Find an Abnormal Linear Code.

The "amalgamated direct sum" construction for constructing codes
with low covering radius given in [6] works best when applied to normal
codes (the definition is given below). It seems likely that almost all linear
codes are abnormal, although at present (August 1986) not a single exam-
ple of an abnormal linear code is known. Every code that has been stu-
died so far has turned out to be normal! Problem: Find an abnormal
linear code, or prove that all linear codes are normal. Abnormal nonlinear
codes are known to exist (see [7]).

Definition. Let C be an [n,k] code with covering radius R, and let CEP
denote the set of codewords (cy,...,c,) € C with ¢;=a (for
i=1,...,nand a=0or 1). Then C is normal if, for some i,

dist (x, C® ) + dist (x, C{?)) < 2R + 1

holds for all x e F5. Many classes of codes are known to be normal,
including all codes of minimal distance d < 5, or with dimension k£ < 5, or

with covering radius R < 2, or with length n < 14 (see [3],[7], and [13]).
=



5. What Is the Covering Radius of a First-Order Reed-Muller Code?

First-order Reed-Muller codes are among the simplest, most elegant,
and most important of all codes [8, Chap. 14]. These codes have length
n = 2™ dimension k = m + 1 , and minimal distance 2. For even m ,
Rothaus [12] showed that

_n_2n
R = > >
But for odd m , it is only known in general that
n_Afln g n_Jn
2 2 2 2
(see [2] for references), and for odd m = 15 that
n 27 n n n
e i L LN E e
2 "2 k<773

(Patterson and Wiedemann [10]). Problem: Determine R when m is odd.

This problem can be stated another way: Which boolean functions of
m arguments are most difficult to approximate by linear functions?

For even m these codes are known to be normal [6]. Problem: Show
that first-order Reed-Muller codes of length 2™, m odd, are normal. (This
would improve certain asymptotic estimates in [6].)

6. Find the Covering Radius of Cyclic Codes of Length 63.

In searching for codes with low covering radius, it was found that one
of the cyclic codes of length 31, the [31,11] five-error-correcting BCH
code, has an exceptionally low covering radius, namely, R =7 (see the
tables in [4] and [6]). It is likely that some cyclic codes of greater length
will also have low R. Problem: Determine the covering radius of cyclic
codes of lengths 33-63. (Tables of these codes may be found in [11].)

Postscript (November 25, 1986). Peter C. Fishburn and the author have
recently solved Berlekamp’s game and have determined all the values of

R in Table 1.
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3.10 A COMPLEXITY PROBLEM

R. Ahlswede

Universitit Bielefeld
4800 Bielefeld 1
Germany

Combinatorial extremal problems involving more than one operation
are usually very difficult. Complexity problems fall into this category.
We propose here an approach to the construction of monotone Boolean
functions of large formula size (and large combinational complexity) via
the following extremal problem, which involves only one operation.

Denote by M™" the set of (0, 1)-matrices with m rows and n
columns and define for A, B € M™" the matrices AVB, AAB by
(AVB)(i, j) = max (A(i, j), B(, ))) ,

(AAB)(i, j) = min (A(, j), B(, ))), 1<is<m; 1<j<n. (1)

In terms of the matrices X, (1 <k<m) and Y1 <!<n), defined by
X, ) =8, Y(i, ) =§; (Kronecker’s 3), (2)
one can obviously write for A € M™"

A = v X;AY) . 3)
G.J): AG, ) =1

Define now for A € M™"

L(A) = 1 + minimal number of V—operations in a formula for A . 4)

Because of the distributive law, formula (3) is in general not best. We
exclude this effect by two conditions.

Conjecture. If A € M™" gsatisfies the conditions

(a) There is no 2 X 2-minor with 1’s only

&



(b) Every row and column has at least one 0

then L(A) = || A || , the number of 1’sin A .

The conjecture says that for these matrices (3) is best. We conjecture
the same also for combinational complexity restricted to V-operations. A
positive answer (and its extensions to higher dimensional arrays) in con-
junction with constructive results on Zarankiewic’s problem would give
functions f: {0,1} —>{0,1} in NP of high monotone complexity.
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3.11 CODES AS ORBITS

R. Ahlswede

Universitit Bielefeld
4800 Bielefeld 1
Germany

For a finite set y and natural n we call U c " m-orbital, if there
exita VcU, IVI=m, and a subgroup G of the symmetric group
%, such that

VG=U.

1. Do there exist codes achieving capacity for the discrete memoryless
channel whose code word set is 1-orbital?

This is the case for the list codes of exponentially small list size. Also,
the Rate-Distortion function is achievable with 1-orbital codes ([1]). How-
ever, we tend to believe that question 1 has a negative answer and ask the
following:

2. What is the minimal exponential growth of m such that capacity can
be achieved with m-orbital codes?

Whereas the notion of linear codes is limited to very special symmetric
channels, the proposed notion of orbital codes avoids these limitations and
endows Shannon-sense information theory with a very helpful algebraic
structure.

REFERENCE
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3.12 RELIABLE COMMUNICATION
OF HIGHLY DISTRIBUTED INFORMATION'

Abbas El Gamal

Department of Electrical Engineering
Stanford University
Stanford, CA 94305

Shannon’s theory of information [1] and subsequent generalizations to
multiple users (for a survey see [2]) consider the situation of a small
number of users each with an unlimited amount of information. The users
communicate over a noisy channel with the goal of exchanging their infor-
mation reliably. Here, we consider a complementary model. We assume
a very large number of users, each with a small amount of information.
We also assume that the communication takes place over a noisy channel
but assume that the goal of the users is to compute a function reliably.
This highly distributed information model is motivated by problems of
decision making in a network. The users could be either a large number
of processors, human beings, or simply the components of a logic circuit.
In all cases, the noise is an inevitable physical limitation.

We introduce our model via the following example:

Broadcast Network

" See contribution by Gallager in Chapter VI for more on this.
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Consider a broadcast network with (n+ 1) users Sy, S;,...,S,.
User §;, 1<i<n, is given the outcome of a Bemoulli(1/2) random
variable X;, that is X; € {0,1}, P{X;=1}=1/2. The X;s are all
independent. Assume that the network is a binary discrete time broadcast
channel and that only one user can send a “‘0’” or a “‘1”" at any time
instant ¢,

Suppose user S; sends y e {0,/} at time instant ¢ (y naturally
depends on X; and all previously received bits). We consider two noise
models:

1. Transmitter Noise Model: User SJ- , 0<j<n, receives y+2,,
where {Z,,1 <t <o} are independent identically distributed Ber-
noulli(¢) random variables and + is the mod 2 addition operation.

2. Receiver Noise Model: User SJ- , 0<j<n, receives y+ th <
where {Zﬂ ,1 <t<oo,0<j<n} are independent identically distri-

buted Bernoulli(e) random variables.

Let f:{0,1}" — {0,1} ; the goal is to enable S, to compute f reli-
ably with the least number of transmissions. More formally, we define a
transmission sequence, or a protocol P , as a sequence a, ay, ..., aQy,
a;€ {(0,1,...,n}. Before communicating, the users must agree on a
protocol to avoid collisions. A protocol is said to be an e-protocol if at
the end of the communication, the probability that S, can correctly com-
pute f, P,, is greater than (1-¢). The complexity of the set of &-
protocols CJ? is the smallest M such that P.>1 —¢& . The problem is
to find Cfr and the optimal g-protocol.

Naturally, C} will depend on the function f as well as on the noise

model. Therefore, we propose the following questions:

Question 1. For each noise model, find the asymptotic growth rate in »n
of C§ for a random f.

Question 2. Let f=X;+X,+---+X,, that is, f is the parity of
Xy, X5, ..., X,) . Find C§ for both noise models.
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Result. It can easily be shown that the complexity C? for the parity

function under the transmitter noise model is c¢(€g) - n log n .

Conjecture 1. The asymptotic growth rate of C;% for a random function

f under the transmitter noise model is n log n .

Conjecture 2. Gallager [3] proved an upper bound of ¢ - n log log n for
C}‘E of the parity function under the receiver noise model. We conjecture

that this bound is tight.

Related Problems.

1.

(1]

(2]

(3]

(4]

Instead of requiring that S, computes f, assume that S, wishes to
know the ( Xy, ..., X,) sequence.
Instead of the users communicating over a broadcast network, con-

sider communicating over other types of networks, for example, a ring
or tree.

Assume that each user §;, 0<i<n, is given a random integer
A;€ {ONN}, logN=(1+2d)logn. The objective is for all users
to find the user with the largest integer. In the noiseless case, it can
be shown [4] that the number of required transmissions need not
exceed 2n.
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3.13 INSTABILITY IN A COMMUNICATION NETWORK

F.P. Kelly

Statistical Laboratory

Cambridge University

Cambridge CB 2ISB
Great Britain

1. Introduction.

The problems described here are concemed with a stochastic model of
a communication network. The model represents the interactions between
the random demands placed on a network, and the aim is to understand its
stationary behavior. In particular, we are interested in any clues that the
network may exhibit instabilities, with perhaps various distinct modes of
behavior possible.

In Section 2, we describe the model when there is a finite set of chan-
nels; it can then be analyzed completely, and a challenge is to extend this
analysis to various situations involving an infinite set of channels. In Sec-
tion 3, we discuss a one-dimensional network which is partially under-
stood and which is believed to be stable. In Section 4, we describe a tree
network which is unstable -- it may have more than one stationary distri-
bution. Finally, in Section 5, we describe a two-dimensional network for
which there is a conjecture.

The motivation for the problems described here is twofold. First, the
model arises naturally in connection with circuit-switching, concurrency
control, and some forms of dynamic routing ([2], [3]). Second, the
mathematical issues are similar to those that arise in the study of interact-
ing particle systems. There has been enormous progress in this field con-
cerning the relationship between macroscopic phenomena, such as the
existence of a phase transition, and the microscopic dynamical description
of a system ([4], [5]). This topic is related to the notion of stability in a
communication network, and the methods developed may prove useful.
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2. A Finite Network.

There is a finite set of channels, labeled i=1,2,..., 1. Channel i
provides C; circuits. Call attempts on route r € R arise as a Poisson pro-
cess of rate v, , and as r varies, it indexes independent Poisson streams.
A call attempt on route r requires A; circuits from channel i for
i=1,2,...,I. If forany ie {1,2,...,1} the number of free cir-
cuits on channel i is less than A, , then the call is lost. Otherwise, the
call is accepted and occupies simultaneously A;, circuits on channel i, for
i=1,2,...,1I, for the holding period of the call. The call holding
period is randomly distributed with unit mean and is independent of earlier
arrival and holding times. Let n,(¢) be the number of calls in progress at
time ¢ on route r, and let n(r) = (n(t), r € R). Then the stochastic
process {n(#), t 20} has a unique stationary distribution and under this
distribution ©© (n) = P{n(r) = n} is given by

ny

vr
Tt (n)=BII ne S, (D
r ?‘Ir!
where
S={n:Z'A,-,n,SC,-, i=1,2,...,1}
r

and B is a normalizing constant. Note that © does not depend on the dis-
tribution of call holding periods. If call holding periods are exponentially
distributed, the stochastic process {n(f), t > 0} is Markov.

3. A One-Dimensional Network.

Next we introduce some spatial structure. Imagine that users are
arranged along an infinitely long cable and that a call between two points
on the cable s, 5, € IR involves just that section of cable between s; and
s2. Past any point along its length the cable has the capacity to carry
simultaneously up to C calls: a call attempt between S1 S5 € IR, 51 < 55, is
lost if, past any point of the interval [s1, 55], the cable is already carrying
C calls. The statistics of call attempts are most easily defined using a
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space-time diagram (Figure 1). A rectangle { (s, 1) : 5 RS,
t} St <t} represents a call attempt between points s; and s, made at
time ¢ . If accepted, this

Figure 1. The space-time description of call attempts.

call will last until time ¢, . Assume the north-east corners of rectangles
are distributed as a Poisson process of rate A (with respect to Lebesgue
measure on /R%). Assume that heights have unit mean, that widths have a
distribution F with finite mean, and that heights and widths are indepen-
dent of each other and of the positions of north-east corners. Informally,
the probability that at time ¢ a call attempt arises connecting a point s to a
point s + z is A dt ds dF(z). Let X(s,t) be the number of calls in progress
past point s on the cable at time ¢. It is possible to show that from an ini-
tial configuration of calls in progress at time ¢ = 0, the space-time diagram
defines the stochastic process {(X(s,t), s € IR), t > 0} with probability one.

It is believed (but has not yet been rigorously proved) that this process has
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a unique stationary distribution. Some insight into the behavior of the sys-
tem can be given by describing what is thought to be the unique stationary
distribution of (X(s,t), s € IR) for a number of special cases. Suppose, for
example, that the distribution of call distance F is exponential with param-
eter . Then it is believed that (X(s,f), s € IR) has the distribution of a
certain Markov chain, stationary with respect to its parameter s, on the
finite state space {0, 1, ..., C}. The structure of this Markov chain has
been considered in detail by Ziedins [9]: roughly speaking, a Markov
chain with transition rates gn,n+1)=2A, n=20,1,...,
gn,n—-1)=npu, n=1,2,..., is conditioned on its sample path lying
within the set {0, 1,2,..., C} for s € [-L, L], and then L is let tend to
infinity. For a second example, suppose that F is general and that C = 1.
Then it is believed that (X(s,f), s € IR) has the distribution of an alternat-
ing renewal process, with the lengths of successive intervals in state 1
(corresponding to calls in progress) having distribution function

X
Ap~! _[ e P? dF(z), and with the lengths of the intervening intervals in state
0

0 (corresponding to unoccupied stretches of cable) having an exponential
distribution with parameter p; here p is the unique solution to the equation

p=X [P dF ().
0

The acceptance probability for a call of length x is then

&
eP* | 1+A J' z e P* dF(2)
0

The network described in this section can be truncated and discretized
so that it becomes a special case of the network of Section 2. From
expression (1) the stationary distributions described above can be obtained
as limits: further, the limits are not sensitive to the edge conditions
imposed on the truncated network.
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4. A Tree Network.

In this section, we describe an example which shows that with a
countably infinite set of channels, the network of Section 2 may be
unstable. Let V be the infinite tree with m (>2) edges emanating from
each vertex. Regard the vertices as channels and suppose that each vertex
has m circuits. Call attempts centered at vertex i arise as a Poisson pro-
cess of rate v. A call centered at vertex i requires m circuits from vertex
i and one circuit from each of the m adjacent vertices. Let X(i,f) =1 if a
call centered at vertex i is in progress at time ¢, and let X(i,r) = O other-
wise. Then the stochastic process {(X(i,), i € V), t=0} has more than
one stationary distribution ([2], [4], [7]). Even when attention is restricted
to stationary distributions which are invariant under graph isomorphisms,
there may be more than one such distribution. For example, there is cer-
tainly more than one such distribution when

m
1 m—1
V> :
m—1 [m - 2]
Variants can be constructed where the underlying graph is a two-

dimensional lattice rather than a tree, the model then resembling the Ising
model of an antiferromagnet.

5. A Two-Dimensional Network.

Consider now the two-dimensional lattice Z2. Vertex i = (i, i) never
attempts to call vertex j = (j;, j,) unless either i =j; or i =j,. Call
attempts between vertices (iy, i,) and (jj, j,) arise at rates

1 j1—i— ; ; & 5 .
El(l—q)q““l if i, <jpi=J
and

1 jy—ip—1 e .o .
E?\.(I—q)q"zlr if iy =jp, i < Jjp

A connected call between two vertices must use the direct (shortest) route
between them, passing through each vertex on this route. However, a ver-

tex cannot deal with more than one call terminating at or passing through
¥



it, and a call attempt is lost if the associated direct path includes a vertex
already handling a call.

The calling rates correspond to a vertex initiating call attempts at rate
A : a call attempt traverses a distance that is geometrically distributed with
parameter g in either the east-west or north-south direction. The rates are
clearly very special but serve to focus attention on the question of interest.
Using a space-time diagram and a percolation bound, it is possible to
establish the existence of, and provide a construction for, the stochastic
process representing calls in progress at time ¢. For small enough values
of A, the construction shows that the process has a unique stationary dis-
tribution. But what happens for larger values of A?

Conjecture. There exist values of A and ¢ such that the process has
more than one stationary distribution.

For certain values of A and ¢, there may be a translation invariant
stationary distribution under which connected calls lie predominantly in a
north-south direction; by symmetry, there would then also exist a station-
ary distribution favoring east-west calls. The conjecture is related to that
of Kelbert and Suhov ([1], [8]) who consider a packet-switched network
with queueing. The model described here is simpler, possessing a rela-
tively explicit stationary distribution for any finite truncation, and this may
make it easier to study. Marbukh [6] has considered a circuit-switched
network based on a complete graph and has shown that if blocked calls
are redirected along alternative routes, then instabilities may occur. The
intuition behind this result is that alternative routes will be longer, use
more of the facilities of the network, and thus that above a certain thres-
hold, alternative routing may lead to greater and greater congestion. The
intuition for the conjecture here is geometrical: calls fit together more
easily when they are aligned.
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3.14 CONJECTURE:
FEEDBACK DOESN’T HELP MUCH

Thomas M. Cover

Departments of Electrical Engineering
and Statistics
Stanford University
Stanford, CA 94305

Consider the additive Gaussian noise channel with stationary time-
dependent noise
Y(k) = X(k) + Z(k) ,

where { Z(k) } has power spectral density N(f). A (2"%, n) feedback
code for such a channel is given by a collection of functions

x”)(W, Yl’ Y2""’Yk—1)’
ke LD « gy WE [ 12 5 o)
and a decoding function
g?:R*>{1,2,...,2"°},

Throughout we have a power constraint

n
EL S o WYY <P, forall w.
Yy n =1

Yo=x(W, Y1)+ 2Z,,

and let W™ be uniformly distributed over { 1,2,...,2" } . We say
that R is an achievable rate if there exists a sequence of (2"R, n) codes
such that

P{ g™Y™ W™} 50,
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as n — oo . The feedback capacity Crg is defined to be the supremum
of the achievable rates. The nonfeedback capacity Cypg is defined to be
the supremum of achievable rates over all codes xﬁ")(W) not depending
on Y.

Clearly, Cpgg = Cypp , with equality if { Z; } is white noise. In
general, [ hope that a relation like

Crp(P) < Cypp(2P) (D
is true.

In particular, the above inequality would imply

oy S5Crn @
and

Crp S Cypp + 112 3)

The first inequality is interesting at low powers; the last at high powers.
Inequality (2) was stated by Pinsker and proved by Ebert [1], while (3)
has been proved by Pombra and Cover [2]. But is (1) true?

The investigation hinges on maximization of
1 1
= IW;Y) = o= ¥y . Y)=hZy,...,2Z))

with and without feedback.
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3.15 THE CAPACITY OF THE RELAY CHANNEL

Thomas M. Cover

Departments of Electrical Engineering
and Statistics
Stanford University
Stanford, CA 94305

Consider the following seemingly simple discrete memoryless relay

channel:
/ \
X - Y,

Here Y;,Y, are conditionally independent and conditionally identically
distributed given X, that is, p(y;, y1x)=pQ;1x)pO,1x). Also,
the channel from Y; to Y, does not interfere with Y, . A "R n)

code for this channel is a map x:2"™ — X", a relay function
r:Y!— 2"Co , and a decoding function g : 2"Co % Y3 — 2"® | The pro-
bability of error is given by

P® = P( g(r(yy), yo) # W } ,

where W is uniformly distributed over 2"% and
R n n

pw, ¥y, ¥p) = 27" _H1 pOy; | x;(w) l'Il POy, | x;(W)) .
= =

Let C(Cp) be the supremum of the achievable rates R for a given Cj,
that is, the supremum of the rates R for which P{ can be made to tend
to zero.

We note the following facts:
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1. CO)=sup I(X; Yy) .
- R

2 C(o0) = sug I(X; Yy, Y, .
plx
3. C(Cy is a nondecreasing function of Cy .

What is the critical value of C, such that C(Cy) first equals C(e0) ?
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3.16 SIMPLEX CONJECTURE

Thomas M. Cover

Departments of Electrical Engineering
and Statistics
Stanford University
Stanford, CA 94305

It may not be known that the famous simplex conjecture in communi-
cation theory can be reduced to the following geometrical problem.

Prove that the spherical simplex in R” of surface content € that
maximizes the content of intersection with a given spherical cap is indeed
the regular spherical simplex centered at the center of the cap.

Note: A spherical cap is the intersection of a (translated) half-space with
the surface of the (unit) n-sphere. A spherical simplex is the intersection
of n half-spaces with the surface of the unit n-sphere.
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3.17 ESSENTIAL AVERAGE MUTUAL INFORMATION

Yaser S. Abu-Mostafa

California Institute of Technology
Pasadena, CA 91125

Consider two dependent random variables (S, C) and suppose that §
is the optimal estimate of C when only S is known. I(S;C) is a
measure of how much S tells us about C, and I( ¢ ; C) is a measure
of how much our optimal estimate § tells us about C . What can we
say about I( § ; C) if we know that I(S; C) =3 bits, for example? The
optimality of ¢ suggests that I( { ; C) should also be close to 3 bits. This
is what we address in this problem. Let (S, C) be jointly distributed
~p(s,c), where S=(0,...,N-1} and C={0,..., M-11}. Let
£:(0,...,N-1}—>{0,...,M-1} denote an arbitrary function of
the outcomes of S . The problem is to estimate the numbers o(N, M)
defined by

o(N, M) = inf max [ (30 ‘
piS:0) >0 g=Ces) | 1655 ©)

Since I( § ; C) < I(S; C) (data processing inequality), a(N, M) <1. In
fact, a(N, M) <1 for N, M as shown in the following example for
(3..2) .

C\S o) 1 2
p(sc) ol 113 16 O
11 o /6 1/3

Either %20) = 2(1), %) = %), or £(2) = %0) will make
(g ;C) <IGS; C).
M



Generalizations.

We can think of 4 in general as a compression of § . This general-
izes (N, M) to a(N, M, K), where S= (0,...,N-1}, C=
f O v M-1},and%:{0,...,N-1}—>{0,..., k—11}.

To avoid the cases of very weak dependence between S and C, the
minimization domain (/(S; C) > 0) can be restricted to I(S; C) 2 & or
I(S; C) 2 eH(C) .
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3.18 POINTWISE UNIVERSALITY
OF THE NORMAL FORM

Yaser S. Abu-Mostafa

California Institute of Technology
Pasadena, CA 91125

1. Motivation.

The problems posed here arise in the context of combinational com-
plexity of Boolean functions whose truth tables cannot be concisely
specified [2]. This class of functions arises in the study of computation
and decision-making based on natural data, such as the case of pattem
recognition in uncontrolled environments. The main feature of these func-
tions is the lack of a structure that would allow an efficient systematic
implementation. This leaves us with a large number of essentially unre-
lated cases to account for, which puts a lower bound on the complexity of
these functions. However, an exhaustive solution is not necessary either,
since the essential dimensionality of the data is typically far less than the
actual dimensionality.

As an example, consider the problem of recognizing a tree in a visual
scene. The input data is a matrix of binary pixels representing the scene,
and the Boolean function decides the presence or absence of a tree. It is
clear that a visual scene is not a totally random binary matrix; there are
many correlations that reduce the entropy. On the other hand, the pres-
ence or absence of a tree cannot be formalized in a simple way; the visual
object "tree,” apart from being a fuzzy notion [12], is an assembly of a
large number of loosely related observations. To define a tree is to cap-
ture these observations in a model, but the partial randomness due to the
way natural objects are made precludes a concise model.

The formalization of these ideas involves defining and relating several
quantitative measures on Boolean functions. These measures are the cost
C of implementing a function, the entropy H of the data, the randomness
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R of the function, and the complexity K which measures the relative com-
plexity of the function as far as simple decomposition is concemed. The
measures are based on combinational complexity [11] which is the actual
cost of decision-making, Shannon’s entropy [10] which measures the
essential dimensionality of data, Kolmogorov-Chaitin complexity [4,7]
which measures the randomness of strings, and compositional complexity
[1] which is defined in terms of the standard pattern recognition system
that makes a global decision based on local features. These notions are
made precise in the next section.

2. Definitions.

Let N be a positive integer, and consider the set F, of all Boolean
functions f from {0,1}V to {0,1}. The cardinality of Fy is given by
| Fy | =22". The independent Boolean variables will be called
$1, - - ., Sy - All logarithms and exponentials are to the base 2. The four
measures, C, H, R, and K, assign to Boolean functions in Fj values rang-
ing from O to N bits (approximately), with most of the functions assigned
values close to N.

Let n be a non-negative integer. An n-input universal gate is a
switching device with n input lines and 1 output line that can simulate any
Boolean function of n variables, for example, a PROM with n address
lines and 1 data line. The cost of this gate is defined as 2" "cells." A
combinational circuit I" is a loop-free interconnection of universal gates
where the variables sy, . . ., sy are supplied. The cost of T is the sum of
the costs of its gates (wires are free, unlimited fan-out). I' simulates f if
f is the output of one of the gates in I'.

Definition. The (normalized) cost C is a real-valued function defined on
Fy by
C(f) = log min{ cost of I : I simulates f}  bits .

C(f) differs by at most a constant from the cost based on any other com-
plete basis of switching devices such as 2-input NAND gates. It is clear
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that C(f) < N bits, since an N-input PROM with cost 2V cells can simulate
any function in Fy,.

Definition. Let A(f) < 2V~! be the number of 1’s, or the number of 0’s,
in the Karnaugh map of f. The (deterministic) entropy H is a real-valued
function defined on F), by

H(f) = log [1 + h(f)] bits.
Clearly, H(f) <N bits. The entropy of the constant functions is
log(1 + 0) = 0 bits, of the N-input AND function is log(l + 1) = 1 bit,
and of the N-input XOR function is log(2"! + 1) = N bits. This entropy
measure is related to Shannon’s entropy (of the ensemble {0,1}" under
some probability distribution) by considering only the typical blocks in the
Karnaugh map of f.

Let 7(f) be a listing of the truth table of f, that is,
() = T, Ty, - . ., Tv_, Where T, is the value of f when the inputs are
the N-bit binary representation of the number k. Let U be a universal
Turing machine with input alphabet {0,1}, and let p denote the binary pro-
gram supplied to the tape of U. If, given p, U halts and leaves the binary
string w on the tape, we say that w = U(p). |p| denotes the length of P.

Definition. The randomness R is a real-valued function defined on Fy by

R(f) =log min { |p| : U(p) =1() } bits.
A legal program p for U consists of an encoding of a Turing machine fol-
lowed by an input string, hence |p| is positive and the logarithm is valid.
Also, since any string T(f) can be generated by a program whose length is
a constant (the code of a trivial Turing machine) + the length of the string
(namely, 2%, R(f) is at most = N bits. In contrast with the other meas-
ures, R(f) is an uncomputable function.

A normal form is a simple decomposition of the Boolean function

fsy, ..., sy) into f=g(hy, ..., hg), where the h;’s are Boolean func-
tions depending only on variables within subsets S, Sg of
{s;,..., sy} . A normal form is characterized by the (not-necessarily-

By (2 B



distinct) subsets S;, . . ., S and said to admit a function f if f can be
decomposed as above with the k;’s depending on the variables within the
S,’s, respectively. The number of functions in F, admitted by a normal

form is denoted by N(S; - - - Sg). For example, if K =N and Sg = {5},
then N(S; --- Sy) = 22~. In general, N(S; - - - Sg) expresses the power
of the normal form §; - - - Sg.

Tf

L Y

The
Normal
Form

LR Y

Definition. The (normal-form) complexity K is a real-valued function
defined on F), by

K(f) = log log min {N(S; - - - Sg) : §; * - * Sg admits f}  bits.

Since any normal form admits the two constant functions, taking the loga-
rithm twice is valid. Also, since |Fy| = 22", K(f) £ N bits. Having a
large value of K(f) means that f cannot be expressed as a function of few
arguments each of which depends on few variables. A circuit simulation
of the normal form §; - -+ Sg consists of K primary universal gates with
[S;l. . ..., ISkl inputs, followed by a secondary universal gate with K
inputs (see figure). The cost of this circuit is directly related to
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log N(§; - -
simulates 22" functions. Therefore, K(f) can be thought of as the (normal-
ized) cost of normal-form simulation of f .

Sk) [2], since a universal gate of n inputs costs 2" cells and

3. Known Relations.

In this section, we state the known pairwise relations between the four
measures C, H, R, and K . We shall say that "A(f) < B(f) + o(N) for all
f" means: Given € > 0 there is a positive integer N, such that N 2N,
and fe Fy implies that A(f) <B(f) +eN. We shall also say that
"A(f) < B(f) + o(N) for almost all f" means: Given € > O there is a posi-
tive integer N, such that N>0 and O <o <1 implies that the ratio
between |{ fe Fy: A(f) > B(f) + €N and (o —€) N < A() < (o + €) N} |
and |{fe Fy:(0—€)N< A(f) < (o +¢€) N}| is less than €. The fol-
lowing relations are proved [2,3] by simulation, enumeration, and con-

struction.

R1:
R2:
R3:

R4:
R5:
R6:

R7:
R8:
R9:

R10:
R11:
R12:

C(H < H(f) + oN)
C(H) < R(f) + o(N)
C(H) < K(f) + o(N)

H(f) < C(f) + o(N)
H({) < R({) + o(N)
H(f) < K(f) + o(N)

R() < C(f) + o(N)
R() < H) + o(N)
R() < K(f) + o(N)

K@) < C(f) + o(N)
K() < H({) + o(N)
K@ < R + o(N)

for all f.
for almost all f.
for all f.

for almost all, but not all, f.
for almost all, but not all, f.
for almost all, but not all, f.

for all f.
for all f.
for all f.

for almost all f.

for almost all f.
for almost all f.
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4. Problems.

Relations R1-R12 of the previous section raise a number of questions
about how strongly C, H, R, and K are related. The following questions

address stronger versions of relations R2, R10, R11, and R12:

Ql: Is C({) < R({) +o(N) forall f?
Q2: Is K({) < C(f) + o(N) forall f?
Q3: Is K() < H({) + o(N) forall f?
Q4: Is K{) <R({)+o(N) forall f?

The answers to these questions, combined with relations R1-R12,
determine the exact asymptotic relations between C, H, R, and K . For
example, is |C(H) — K()| = o(N) for all f? In other words, is the
difference between the minimum cost of an unrestricted simulation and the
minimum cost of a normal-form simulation of any function f asymptoti-
cally negligible w.rt. N ? Relations R3 and R10 give an affirmative
answer to the question in an "almost always" sense. An affirmative
answer in an "always" sense would mean that the normal form is a point-
wise universal (asymptotically optimal for every function) structure for
simulation of Boolean functions. If the answer is affirmative, more
specific questions about the size of the error term o(N) can be addressed.
For example, it is easy to see that |C(f) — K(f)| = Q (NN) for some simple
functions such as the N-input XOR. Is |C(H) — Ky (N| = ON'™) for all
[, where K, (f) is based on an M-stage normal form instead of a two-
stage normal form?

The answers to Q1-Q4 also yield the answers to other questions of
interest. Is |C(f) — R(P)| = oN) for all £? An affirmative answer to Q3
bounds the cost of normal-form simulation of a function by the essential
dimensionality (entropy) of the function. This would mean that the stan-
dard pattern recognition system is asymptotically optimal for the typical
pattern recognition problem. Other questions related to the size of the
error term o(N) (which is O(log N) for some, and O( YN ) for other, of the
relations R1-R12) are also of theoretical and practical interest.
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3.19 ON CLASSIFICATION WITH PARTIAL STATISTICS
AND UNIVERSAL DATA COMPRESSION

Jacob Ziv

Technion
Haifa, Israel

Classification of finite alphabet sources with partial statistics is stu-
died. Efficient universal discriminant functions are introduced and are
shown to be closely related to universal data compression.

It is demonstrated that if the probability measure of one of the two
sources is not known, it is still possible to find a discriminant function that
performs as well as the optimal (likelihood-ratio) discriminant functions
(which is computable only if the two measures are fully known). When
both measures are not known but training vectors are available from at
least one of the two sources, it is shown that no discriminant function can
perform efficiently, as long as the length of the training sequence does not
grow at least linearly with the length of the classified vector.

Furthermore, a universal discriminant function is introduced and
shown to perform efficiently when the length of the training sequence
grows linearly with the length of the classified vector.
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3.20 ARE BAYES RULES CONSISTENT
IN INFORMATION?

Andrew R. Barron

Department of Statistics
University of Illinois
Champaign, IL 61820

Bayes’ rule provides a method for constructing estimators of probabil-
ity density functions in both parametric and nonparametric cases. Let
X1, X5, ..., X, be a random sample from an unknown probability meas-
ure P with density function pg(x) with respect to a dominating measure
A(dx). Let | be a prior probability measure on the space of all probability
measures P which have densities p(x) = dP/dA. Then the mean of the pos-
terior yields the following estimator of the density function

. p(X))d
ﬁn(X) =p(x; Xl’ XZ! & e Xn) - J‘P(X)(H‘_l p( g)) |28 .
[(TTE) pX)an

To obtain a consistency result, it is natural to require that the prior
assigns positive probability to neighborhoods of the true distribution. In

particular, we suppose
W P:DPo||P)<e}>0, forall e>0. (D
Here D(Py || P) = J' po(x) log (po(x)/p(x)) Mdx) is the informational diver-

gence (also called relative entropy or Kullback-Leibler number).

1. The Problem.
Determine whether the sequence of Bayes estimators p, converges to
the true density p, in the sense that

lim E D(P, || P,) = 0.

n—yeo

Here the expectation is with respect to Py. It is also of interest to know
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whether
lim D(Py || ﬁn) =0, Poalmost surely.
n—eo

Either result would imply that the sequence of random variables
D(Py || Pn) converges to zero in probability.

Remark: An inequality between the information and the L' distance
(D(Po || P,) = (1/2)( [ | po-p, 1 )% see [1]) shows that convergence in
information implies convergence of the density estimator in the L' sense

lim E [ 1 po(x) — pr(x) | Mdx) = 0.

n—eo

2. Evidence for Consistency.

Does E D(Py || ﬁn) tend to zero? We argue that the answer is yes

along a subsequence, yes in the Cesaro sense, and yes if the posterior
mean is replaced by a sample average of posterior means.
Lemma 1: If condition (1) is satisfied then
lim inf E D(Po || P,) =0 ;
n—yeo
also
lim inf D(Po || P,) =0, Po almost surely.

n—yoo
Moreover,

n ~
lim L+ 3 E D@, || B = 0.

ﬂ.—)‘”nhl

Lemma 2: Let p, be an average of posterior means, that is,

- 1 &b .
Pl XM == 3 Pl X5
R =1

where X* = Xy, . .., Xp). If condition (1) is satisfied then
lim E D(P, || P,) = 0.

n—oo

Thus the average p, = (1/n) Z}_; p;, smooths out any humps of large D
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that might lead to inconsistency. It is interesting to note that convergence
still holds if the kth term in the definition of p, is replaced by
Pi(: 5 X™¥) , where X™* is any subset of the n observations of size k.

We note that the posterior mean density is the best possible estimator
from the point of view of the Bayes risk (with loss function given by the
informational divergence). Thus if any estimator exists which is Bayes risk
consistent, then the posterior mean is Bayes risk consistent.

Lemma 3: Among all probability density estimators based on the data
X", the posterior mean density estimator DPn(x; X") minimizes the Bayes

risk
R,=[Ep D(P || P,) dp.
Moreover, the Bayes risk R, is a decreasing sequence. Thus

lim R, exists.
n—oo

It is not known if this limit is zero. Although the average risk is decreas-
ing, the risk Ep D(P || Isn) might increase for some P and some n. If we
could ensure that Ep, D(Py || ﬁn) were decreasing, then by Lemma 1 we
would have lim Ep, D(P, || P,)) = 0.

Doob [2] used martingale arguments to establish Bayes consistency
results. The drawback is that the results only show convergence for distri-
butions in a set of prior measure one, and there is no known method for
determining whether a given distribution is in this set. Nevertheless, the
following result is readily obtained.

Lemma 4:  Except for a set of distributions P which has | measure
zero, if condition (1) is satisfied for P then

lim D(P ||P,)=0, P almost surely.
n—ce

The following result is proved in Barron [3] using the technique of
Schwartz [4]. It was first obtained by Freedman [5] in the discrete case

(under the extra condition of finite entropy H(Py)).
BT



Lemma 5: If condition (1) is satisfied then the posterior distribution
W, (-1 X™) asymptotically concentrates on open neighborhoods of the true

distribution Py, that is,

lim p,({P e N} 1X")=1, Py almost surely.
n

This result assumes that the neighborhoods N are open with respect to the
topology of setwise convergence of probability measures. (For instance, N
could be {P: 3, | Po(A)-P(A)l < €}, where the sum is for A in a countable
partition of the sample space.)

Finally, we mention that for parametric problems, Strasser [6] has
shown under condition (1) and other mild assumptions that if the max-
imum likelihood estimator is consistent, then Bayes rules are also con-
sistent. Although consistency in the information sense is not usually
addressed in the parametric setting, the usual conditions for the con-
sistency of the MLE are sufficiently restrictive that convergence of the
parameter estimators 60 implies D(Pg || Pg) — 0.

3. Evidence Against Consistency.
In Barron [7] it will be shown that there exist priors which satisfy (1),
W{P: D(Py || P) <€} >0 foralle >0,

yet the posterior distribution given X" asymptotically concentrates outside
D neighborhoods of the true Py, that is, for some £ > 0,

lim p,({P: D(Py || P) <€} 1 X") =0, Py almost surely.
n

Proof of Lemma 1 and Lemma 2. Let P” denote the product measure
with joint probability density function p(x") = TT%,; p(x) and let M"
denote the mixture of these distributions obtained using the prior p. This
mixture has joint density function

m(x") = [ p(<™) dp.

We first show that condition (1) implies that the informational divergence
between P¢ and M" has a rate tending to zero; that is,
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lim L DPg | M™) = 0.

H—co
Givene> 0,let N = { P: D(Po || P) <& }. Now the divergence rate is
X X"
Lpegimn =L plog 225 <L gy PEXD
n n J'p(Xn)du n .
| pX™dp
N
1 poX") 1 1
= - E 10 + — 10 :
no n 08 U
[ PX™)du/puVy
N

Here all the expectations are with respect to Pg. By the convexity of the
informational divergence this is

1 1 1
< [ — D! || P d =7
<;‘[1?1 (PS Il P™) dp/p(N) + — log )
_ 1 1
—}iD(PollP)dl.Uu(N) +— log T

By the definition of N this is

S(~:+ilo1

n L)
Letting n— oo then € — 0 shows that indeed

lim + D(PE || M™) = 0.

n—eo H
Now we need to relate this to the convergence of density estimators.
Let p,(x,.;) be our density estimate at the point x,,; based on the
data X" = x". We can write this as
[ PGy, XD mxyyy, X7
| pG"ap m(x")

The last expression is sometimes called the predictive density. It is the

Pn(Xpy1) = = mx, | x").
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conditional density function for X,,; given X". Note that with respect to
M" the data X;, X, ..., X, are no longer independent (but they are
exchangeable).

Now by the chain rule

n Xy)
Lpegumn =13 plog —F.
i N =1 m(XkIX_)

The terms in the sum are just E D(Po || ﬁk). Thus
1 n n 1 n Lo
— DPG | M™) = =3 E D(Po || Pp).
n no

But we have shown that condition (1) implies that this tends to zero.
Thus the E D(Py || ﬁn) tends to zero in the Cesaro sense. Since the terms
are positive this implies that we have convergence to zero along a subse-
quence. This implies convergence in probability along a subsequence and
hence almost sure convergence along a further subsequence. This com-
pletes the proof of Lemma 1.

For Lemma 2, use the convexity of divergence once more to obtain

~ ~ n A
EDPoll P,) =E D(Po | % 2 Pp = % > EDPo || Pp)
k=1

which tends to zero. This completes the proof.
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3.21 ON FINDING MAXIMALLY SEPARATED SIGNALS
FOR DIGITAL COMMUNICATIONS

D.J. Hajela and Michael L. Honig

Bell Communications Research
Morristown, NJ 07960

1. Notation.

The L, norm of a function f: [0,0¢) — R (real numbers) is given by
1l/p

Ifl,=| [ 1A P ar
0

Similarly, the Lp norm over an interval [0,T] is defined as

7 1/p
I fllpr=|]1fD)P ar
0

The cases p = and p = 2 are of primary interest. The L_ norm of a
continuous function f over an interval [0,7] is defined as

7= lim t = su L1,
I f Moo, 7 p_mllﬂ)ﬂp,r o . )

If h and f are functions from [0,) into R such that || ||, 7 and || i lloo, 7
are finite for all T then A*f is given by

t
(h*H))() = J' h(s) f(t — s)ds .
0

2. Problem Statements.

(P1) Given a function h(r) (assume || & ||., < o= ), some time interval
[0,7], and some small constant d >0, find input functions
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u (), ..., up(), where !Iuilll,»SI , i=1,...,N, such that
rfl;jn Il h*uj— h*u; ||p’72 d, with N as large as possible. In general,
p’ # p , however, we will assume that either p’=p =0 or p'=p=2.
Let Np,(T) denote the largest possible N . A related question is how

fast does N, (T) increase with T ; that is, what is
lim [log Nmax(T)fTJ ?
T—ee

The following two problems are alternate versions of (P1). In all
cases the inputs must satisfy || u; Il < 1.

(P2) Given the number of inputs N and a small constant d , find inputs
ui(®, ... uy(ty  which minimize the time T  such that
I?;:jl Il h*uj - h*uy, || pT 2 d. Let T,;,(N) denote the minimum time.

(P3) Given the interval [0,7] and the number of inputs N, find inputs

uy(), . . . ,up(t) which maximize d = 1&1]11 I h*uj — h*u; || pT -

It is apparent that

T, (N) = inf { T | Ny (T) 2 N }

and

Npax(T) = max {N | Trin@) < T} :

3. Motivation.

Consider an information source that must transmit one of N mes-
sages through a channel characterized by the transfer function H(s)
(impulse response Ah(f)). The receiver can sample the channel output an
arbitrary, but finite, number of times and can compare the samples with a
set of threshholds to decide which of the N possible messages were
transmitted. The analog to digital converter at the receiver can measure the
channel output only to within a given finite precision, that is, to within
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+ d . In addition, a maximum amplitude constraint is imposed on the
inputs to the channel. It is assumed that any random disturbance, which
the channel may introduce, is masked by the finite precision with which
the receiver measures the channel output. A solution to (P1)-(P3) for the
case p = p’= o would reveal the maximum number of messages that can
be reliably transmitted in a given time interval [0,77] .

The case p =2 is relevant if the channel is modeled as a linear
transfer function followed by a white Gaussian noise source, and it is
assumed that the receiver computes a maximum likelihood estimate of the
input message given the received signal over the time interval [0,7]. In
this case the inputs u;(¢), . .., uy(r) should be selected to maximize the

minimum distance defined as
dmin = min “ gu;— g uj ”2 T » (1)
i#f ¥

where g is the impulse response of the combined channel and receive
filter. An average power constraint on the inputs corresponds to the case
p’ =2 . The only reference of which the authors are aware that states
problem (P1) precisely for the case p = p” =2 is a paper by Root [1] in
which upper and lower bounds are given for the parameter log Ny,, (1) ,
which is referred to as "€ capacity.” Of course, variations of (P1)-(P3) can
be considered. For example, it may be desirable to impose both a max-
imum amplitude (L,) and average power (L,) constraint on the inputs and
insist that the L, (or L,,) distance between outputs be maximized.

4. Some Results.

Some results pertaining to (P1)-(P3) for the case p=p =o are
given by the following two theorems [2].

Theorem 1: There exists a solution to (P2) such that |u; (1)1 =1 for
t=1,...,N and 0<¢<T, and each u; (r) changes sign a finite
number of times.

n
If, in particular, h(t) = ¥ A; e %', where A; and o;>0 are con-
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stants, then there exists a solution to (P2) such that each ut) switches
between 1 and -1 at most (N — 1)(n — 1) times.

Theorem 2: Suppose that h(t) = Ae™™, where A and o > 0 are constants,
and that the message to be transmitted contains K bits, that is, N = 2K .
There exists a solution to (P2) such that

where b, is either 1 or -1, corresponding to the kth bit of the jth message,
and

1 d
A=-Lm|1-4 ]

The solution to (P1)-(P3) for the case h(f) = Ae™™ therefore consists of
standard "bit by bit" signaling in which *1 is sent corresponding to each
incoming bit for the fixed duration A. It is conjectured that these signals
are also optimal if the impulse response has the form

W)=Y A%t
i=0

where the A; and o; are positive constants.

5. Some Related Problems.

In this section it is shown how problems (P1)-(P3) for the case
p'=p=2 are related to some problems which have been addressed in
the literature (i.e., see [3]-[6]).

Optimum Pulse Shaping.

Suppose that the message to be transmitted is a sequence of bits and

the inputs u; (¢), i=1,..., N, are constrained to be pulse amplitude
modulated (PAM) signals; that is,
ut) =3 a;, p(t—kty), (2)
k

where p(f) is the pulse shape and the iy ’s can assume one of 2L
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values, L being the number of bits transmitted per symbol interval 7. It
is easily shown that for this case the minimum distance, given by (1), can
be written

) 1 LY —iokty | 2
d2,, = inf — Ho) P(@) Y g e 0| % do, 3)
fn=, 0l 5 | 1HO P@ 3 g™
where the set S contains all possible values of the difference of two sym-
bols a;; —a;;’, K is any integer greater than zero, € # 0, and H(w)

and P(w) are the respective Fourier transforms of k() and p(f); that is,
Hw) = | h(H)e i dr .

Here we assume that the message length (N) is arbitrarily large and that
the average transmitted power is constant; that is, || p@®) I =
Il P(w) ll, =1 . According to the previous constraints, (P3) can be restated
as:

(P4) For a given f, and set S, find P(w) that maximizes dp;, -

A discrete version of this problem in which the impulse response p(r)
becomes a vector is considered in [3]-[5]. In [3] it is shown that this
problem is a linear programming (LP) problem; however, the number of
constraints is typically too large for an LP algorithm to be useful by itself.
A solution to (P4) for a discrete impulse response of length 26 is obtained
in [5] by combining an LP algorithm with a tree search algorithm.

Optimum Signaling Rate.

Suppose now that the input signals u,(¢) are constrained to be of the
form (2), where the pulse shape, determined by the product P(w) H(®) ,
is specified and  the set of transmitted levels is
A={+0o,*+30,...,+ Mo}, where M=2F~-1 and o is chosen
to satisfy an average power constraint. In this case, dp;, given by (3)
will be a function of the signaling rate 1/, and the number of levels
2L . The information rate is R = L/t, bits/sec and the average power is
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E = o}(4* - 1)/(3ty) where a2(4L - 1)/3 is the average energy per pulse
assuming that the transmitted symbols are uniformly distributed. Under
these constraints (P3) is roughly equivalent to:

(P5) Given arate R and P(w) H(w) , find the number of levels M that

maximize d, subjectto E=1.

min
Suppose that
1 lol<W
H(w) P(w) = C))
0 lol>WwW
and the set of levels A = {1,-1} in which case from (3) d,;;, can be
written
dnin(®) _ 5
i 1+ Y g 2™k |2 gg 5
4 eke{O:tl]K ZGII E; ¢ | ©)

where 8 = 1yW and 0 < 8 < 1/2. If the rate 1/tg = 2W , then & = 1/2 and
diin/4=1. Also, d%,;(8)/4<1 for 8<1/2 (obtained by setting
€, =0, k>0). The rate 2W is called the Nyquist rate. The behavior of
dmin When the symbol rate 1/¢, is greater than the Nyquist rate (8 < 1/2) is
studied in [5] and [6].

The following question is posed in [5]. Suppose we wish to compare
multilevel signaling at the Nyquist rate, that is, L =L, >1, and
1/ty = 2W, with binary signaling at faster than the Nyquist rate, that is,
L=1, A={1,-1},and Tg;y =1y, where t,< 1/(2W). The informa-
tion rate and average transmitted power for both schemes are assumed to
be the same,

1 W
5 (6a)

R=2WL, = —— =
Tgy
and

L

Y g S 1

2Wa? = ) (6b)
3 Tgin
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Given R, for which scheme is d,;, greater? The gain G of faster binary
signaling (FBS) relative to multilevel Nyquist signaling (MNS) is defined
as the ratio of d2;, for FBS to d2;, for MNS. For MNS, dp;, = 2c.
Using (6), the gain can be written [5]

_ din® | 2 1/(28)
G = [T ? o4 -1,

where d_, (8) is given by (5). It is shown in [7] that d; ,(8)/4 is
lower bounded by a computable expression, which is greater than zero,
and goes to one as & goes to one. This bound improves upon the previous
lower bound in [6], which states only that d,;,(8) is strictly greater than
zero for & > 0. It is also shown in [7] that there exists a 8; < 1/2 such
that & > §, implies that d;,(8)/4 = 1 (which implies that G > 1). This
suggests the following problem.

(P6) Find & which maximizes G.
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3.22 FREQUENCY ASSIGNMENT IN CELLULAR RADIO

Edward C. Posner

Department of Electrical Engineering
and Jet Propulsion Laboratory
Caltech
Pasadena, CA 91125

Cellular radio uses a number of channels or frequencies (e.g.,
7 x 44 = 308) divided into local cells (hexagons here) such that the same
frequency can be reused in cells at graph distance 3 or greater:

Here the whole plane is tiled. If we allow ‘‘call rearrangement,”’ we can
think of assigning channels after we see the list of all call requests. Any
number > 0 of calls can be requested from any cell. The calls are being
made to stationary, not to mobile, phones so one call corresponds to one
channel. Suppose we have a bound on demand of the form ‘‘total number
of calls requested in every 1-sphere is at most M.”’
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Let there be f frequencies, a constraint of the problem. What is M(f) ,
the largest demand bound M that still allows all calls to be serviced by
the f channels, so that no channel is used in two cells closer than graph
distance 3? (f divisible by 7 is probably of most interest.)

Partial Results: Pierre Baldi (now at UCSD) in his 1986 Caltech
thesis showed

LM< 0.

Problem: Improve this. In particular, find M(7) and M(14) .

Note: 7 < M(14) < 10 by Baldi’s result.

Note: M(7) =3 or4. For M(7)=23 by above, Maria Klawe of IBM
Almaden, San Jose, found a configuration at SPOC’86 showing
M(7) <4 . Also at SPOC’86, George Soules of IDA-Princeton, using
linear programming and Klawe’s configuration, showed

M(f)sl'%f]—l for f=1(@3).
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CHAPTER 1V.
PROBLEMS IN COMPUTATION

Computational and algorithmic complexity are wide open areas. What
is the quickest computation and what is the shortest program for a compu-
tation? Computational and algorithmic complexity clearly trade off.
Nonetheless, these two fields don’t seem to feed on each other. The con-
tributions in this section fall in both areas.

The chapter on communication and this chapter on computation
should have a very close relationship in the future. Clearly, communica-
tion is computation limited and computation is communication limited. At
the bottom, both computation and communication must call on physical
processes to achieve their goals. When we get down to using tweezers on
atoms, who is to say whether we will think as communication theorists,

computer scientists, physicists, or mathematicians?
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4.1 IN SEARCH OF A ONE-WAY FUNCTION

Jacob Ziv

Technion
Haifa, Israel

Consider straight-line (SL) algorithms over a finite field with g ele-
ments.

The e-SL complexity C.(¢) of a function ¢ is defined as the length of
the shortest SL algorithm which computes a function f, such that
fix) = (x) is satisfied for at least (1 — €)g elements of F . The function
f 1is called an " g-approximation of ¢."

A function ¢ is SL-"one way" of range 8, 0<d<1,if ¢ satisfies
the following three properties:

1. There exists an infinite set S of finite fields such the ¢ is defined in

every F € Sand € is one-to-one (i.e., ¢!

exists) inevery F e § .
2. For every € such that 0<eg<3J, Ce(q)_l) tends to infinity as the
cardinality ¢ of F approaches infinity.
3. Foreveryesuchthat 0<e<3,
- .. log Ce(0™) — log C ()
= lim inf A lim inf >1;
A = Saa log C &(9)

M is called the work-factor.

Example: ¢(x) = x> is one-way in the range & > 1/3 — 1/q , where
q is the cardinality of the field.

Ce(9) =2

Ce(9) = o( log q)
Hence,

n = o( log q)
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It has been shown [1] that a lower bound of n> on the complexity of a
function f over GF(2") is also a lower bound on the product of run-
time and program size Turing machines.

Open Problem: Is there a one-way function with work factor
M > (log ¢)* (thus making it a one-way function in terms of Turing
complexity)?
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4.2 AVERAGE CASE COMPLETE PROBLEMS’

Leonid A. Levin

CS/CLA
Boston University
and MIT
Boston, MA 02215

Many interesting combinatorial problems were found to be NP-
complete. Since there is little hope to solve them fast in the worst case,
researchers look for algorithms which are fast just "on average." This
matter is sensitive to the choice of a particular NP-complete problem and a
probability distribution of its instances. Some of these tasks are easy and
some not. But one needs a way to distinguish the "difficult on average"
problems. Such negative results could not only save "positive" efforts but
may also be used in areas (like cryptography) where hardness of some
problems is a frequent assumption. It is shown in [1] that the Tiling prob-
lem with uniform distribution of instances has no polynominal "on aver-
age" algorithm, unless every NP-problem with every simple probability
distribution has it.

It is interesting to try to prove similar statements for other NP-
problems which have resisted "average case" attacks.
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" Supported by NSF Grants # MCS-8104211,8304498.
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4.3 DOES A SINGLE BIT ACCUMULATE THE HARDNESS
OF THE INVERTING PROBLEM?

Leonid A. Levin

Computer Science Department
Boston University
Boston, MA 02215

It is demonstrated by Yao [1] what a crucial role information theory
can play in the theory of computation. These matters deserve more con-
sideration.

Let x| be the length of xe S={0,1)}" and x 0y be the con-
catenation of x,y. Let (x - y) be the inner product of x, y € Z) and f(x)
be an easily computable function over S preserving | x | . Assume that on
a constant fraction of instances of each length any fast algorithm fails to
invert fix). Prove then that even a single bit B(x, y) = (x - y) will be
computed incorrectly, on a constant fraction of instances, by any fast algo-
rithm A (x, {y)) . This would be true for B’(i, y) , equal to the ith bit of
the Justesen code of y. Another conjecture is that the correlation
between B(x,y) (or its modification) and A(x, f(y)) divided by A ’s
running time is at most a constant power of the average of the reciprocal
running time needed to invert f on strings of a given length.
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4.4 COMPUTING THE BUSY BEAVER FUNCTION

Gregory J. Chaitin

IBM Research Division
Yorktown Heights, NY 10598

Efforts to calculate values of the noncomputable Busy Beaver function
are discussed in the light of algorithmic information theory.

I would like to talk about some impossible problems that arise when
one combines information theory with recursive function or computability
theory. That is, I would like to look at some unsolvable problems which
arise when one examines computation unlimited by any practical bound on
running time, from the point of view of information theory. The result is
what I like to call "algorithmic information theory" [1].

In the Computer Recreations department of Scientific American [2],
A.K. Dewdney discusses efforts to calculate the Busy Beaver function X .
This is a very interesting endeavor for a number of reasons.

First of all, the Busy Beaver function is of interest to information
theorists, because it measures the capability of computer programs as a
function of their size, that is, as a function of the amount of information
which they contain. Z(n) is defined to be the largest number that can be
computed by an n-state Turing machine; to information theorists it is clear
that the correct measure is bits, not states. Thus it is more correct to
define Z(n) as the largest natural number whose program-size complexity
or algorithmic information content is less than or equal to n. Of course,
the use of states has made it easier and a definite and fun problem to cal-
culate values of T (number of states); to deal with T (number of bits)
one would need a model of a binary computer as simple and compelling
as the Turing machine model, and no obvious natural choice is at hand.

Perhaps the most fascinating aspect of Dewdney’s discussion is that it
describes  successful attempts to calculate the initial values
1), 22, D), . . of ah uncomputable function X. Not only is T
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uncomputable, but it grows faster than any computable function can. In
fact, it is not difficult to see that £(n) is greater than the computable func-
tion f(n) as soon as n is greater than (the program-size complexity or algo-
rithmic information content of f) + O(1) . Indeed, to compute f{n) + 1,
it is sufficient to know (a minimum-size program for f) and the value of
the integer (n — the program-size complexity of f). Thus the program-
size complexity of f(n) + 1 is < (the program-size complexity of f) +
O(log | n — the program-size complexity of £ |), which is < n if n is
greater than O(1) + the program-size complexity of f. Hence, fin) + 1 is
included in X(n), that is, £(n) = f(n) + 1, if n is greater than O(1) + the
program-size complexity of f.

Yet another reason for interest in the Busy Beaver function is that,
when properly defined in terms of bits, it immediately provides an
information-theoretic proof of an extremely fundamental fact of recursive
function theory, namely, Turing’s theorem that the halting problem is
unsolvable [3]. Turing’s original proof involves the notion of a comput-
able real number and the observation that it cannot be decided whether or
not the nth computer program ever outputs an nth digit, because otherwise
one could carry out Cantor’s diagonal construction and calculate a para-
doxical real number whose nth digit is chosen to differ from the nth digit
output by the nth program, and which therefore cannot actually be a com-
putable real number after all. To use the noncomputability of T to demon-
strate the unsolvability of the halting problem, it suffices to note that, in
principle, if one were very patient, one could calculate £(n) by checking
each program of size less than or equal to »n to determine whether or not it
halts, and then running each program that halts to determine what its out-
put is, and then taking the largest output. Contrariwise, if £ were comput-
able, it would then provide a solution to the halting problem, for an n-bit
program either halts in time less than Z(n + O(1)), or else it never halts.

The Busy Beaver function is also of considerable metamathematical
interest; in principle, it would be extremely useful to know larger values
of X(n). For example, this would enable one to settle the Goldbach con-

Jecture and the Riemann hypothesis, and in fact any conjecture such as
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Fermat’s which can be refuted by a numerical counterexample. Let P be a
computable predicate of a natural number, so that for any specific natural
number n it is possible to compute in a mechanical fashion whether or not
P(n), P of n, is true or false, that is, to determine whether or not the
natural number n has property P. How could one use the Busy Beaver
function to decide if the conjecture that P is true for all natural numbers is
correct? An experimental approach is to use a fast computer to check
whether or not P is true, say for the first billion natural numbers. To con-
vert this empirical approach into a proof, it would suffice to have a bound
on how far it is necessary to test P before settling the conjecture in the
affirmative if no counterexample has been found, and of course rejecting it
if one was discovered. X provides this bound, for if P has program-size
complexity or algorithmic information content k, then it suffices to exam-
ine the first X (k¢ + O(1)) natural numbers to decide whether or not P is
always true. Note that the program-size complexity or algorithmic infor-
mation content of a famous conjecture P is usually quite small; it is hard
to get excited about a conjecture that takes a hundred pages to state.

For all these reasons, it is really quite fascinating to contemplate the
successful efforts which have been made to calculate some of the initial
values of Z(n). In a sense these efforts simultaneously penetrate to
"mathematical bedrock" and are "storming the heavens," to use images of
E. T. Bell. They amount to a systematic effort to settle all finitely refut-
able mathematical conjectures, that is, to determine all constructive
mathematical truth. And these efforts fly in the face of fundamental
information-theoretic limitations on the axiomatic method [3-5], which
amount to an information-theoretic version of G8del’s famous incomplete-
ness theorem [6].

Here is the Busy Beaver version of Gbdel’s incompleteness theorem:
n bits of axioms and rules of inference cannot enable one to prove what is
the value of Z(k) for any k greater than n + O(1). The proof of this fact is
along the lines of the Berry paradox. Contrariwise, there is an n-bit axiom
which does enable one to demonstrate what is the value of £(k) for any k

less than n — O(1). To get such an axiom, one either asks God for the
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number of programs less than » bits in size which halt, or one asks God
for a specific n-bit program which halts and has the maximum possible
running time or the maximum possible output before halting.
Equivalently, the divine revelation is a conjecture ') k P(k) (with P of
program-size complexity or algorithmic information content < n) which
is false and for which (the smallest counterexample i with — P(i) ) is as
large as possible. Such an axiom would pack quite a wallop, but only in
principle, because it would take about X(n) steps to deduce from it
whether or not a specific program halts and whether or not a specific
mathematical conjecture is true for all natural numbers. .

These considerations involving the Busy Beaver function are closely
related to another fascinating noncomputable object, the halting probability
of a universal Turing machine on random input, which I like to call Q,
and which is the subject of an essay by my colleague Charles Bennett that
was published in the Mathematical Games department of Scientific Ameri-
can some years ago [7].

REFERENCES

[1] G.J. Chaitin, ““Algorithmic Information Theory,”” in Encyclopedia of
Statistical Sciences, Vol. 1, Wiley, New York, 1982, pp. 38-41.

[2] A.K. Dewdney, ‘‘A Computer Trap for the Busy Beaver, the
Hardest-Working Turing Machine,”” Computer Recreations Dept., Sci.
Am., 251, No. 2, pp. 19-23 (Aug. 1984).

[3] M. Davis, “What Is a Computation?’’ in Mathematics Today: Twelve
Informal Essays, L. A. Steen (ed.), Springer-Verlag, New York, 1978,
pp. 241-267.

[4] G.J. Chaitin, ‘‘Randomness and Mathematical Proof,’’ Sci. Am., 232,
No. 5, pp. 47-52 (May 1975).

[5] G.J. Chaitin, ‘“Gbddel’s Theorem and Information,’’ Int. J. Theor.
Phys., 22, pp. 941-954 (1982).

-111-



[6] D.R. Hofstadter, Gbdel, Escher, Bach: An Eternal Golden Braid,
Basic Books, New York, 1979.

[71 M. Gardner, ‘“The Random Number Q Bids Fair to Hold the Mys-
teries of the Universe,”” Mathematical Games Dept., Sci. Am., 241,
No. 5, pp. 20-34 (Nov. 1979).

-112-



4.5 THE COMPLEXITY OF
COMPUTING DISCRETE LOGARITHMS
AND FACTORING INTEGERS

A. M. Odlyzko

AT&T Bell Laboratories
Murray Hill, NJ 07974

Practically all knapsack public key cryptosystems have been broken in
the last few years, and so essentially the only public key cryptosystems
that still have some credibility and are widely known are those whose
security depends on the difficulty of factoring integers (the RSA scheme
and its variants) and those whose security depends on the difficulty of
computing discrete logarithms in finite fields. Therefore, the computa-
tional complexity of these two problems is of great interest.

At the time of the workshop, one aspect of the then-current state of
knowledge on these two fundamental problems seemed to be highly unsa-
tisfactory. This was the fact that all the fast algorithms for discrete loga-
rithms and all but one of the fast algorithms for factoring integers had
running-time  estimates that depended on the efficiency with which
matrices could be inverted. These algorithms require the solution of a sys-
tem of linear equations of the form

Ax=1y, (1)

where A is a matrix of size mXn, x and y are column vectors of
lengths m and n, respectively, and m is close to n. The interesting ranges
of values for n are between 10° and 10. Ordinary Gaussian elimination
requires about n> steps for the solution of (1). Strassen’s algorithm, which
might be practical for large n, takes about n'°%’ - n>307... steps. The
best general-purpose algorithm that is known, due to Coppersmith and
Winograd [1], takes about n2-495-- steps, but is almost certainly impracti-
cal. No algorithm can solve the system (1) in fewer than about n2 steps
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(there are that many entries in the matrix, after all!).

Depending on how fast the system (1) can be solved, various algo-
rithms have different asymptotic running-time estimates. If we let
L = L(p) denote any quantity that satisfies

L=exp{[1+0(1)][(log, p)log, log,p)1¥2} as p > e, (2)

and suppose that the system (1) can be solved in time about n” for various
values of r, then Table 1 summarizes the state of knowledge at the time of
the workshop about the efficiency of the best factoring algorithms for fac-
toring integers around p in size. A similar table can be prepared for the
running times of various discrete logarithm algorithms.

The question that was raised at the workshop was whether the esti-
mates for the running times of these algorithms that are obtained by
assuming r > 2 are really appropriate. Even if we cannot solve general
systems of the form (1) in time O(n%**€) for every € >0, we can take
advantage of the fact that the systems that arise in factorization and
discrete logarithm algorithms are very sparse. Some methods to take
advantage of that sparseness were presented, and their effectiveness was
supported both by results of large-scale simulations and heuristic argu-
ments. (See [2] for a brief description.) The conclusion was drawn that, at
least in the foreseeable future, these methods are likely to make the system
(1) easy to solve. Still, a question remained about the asymptotic perfor-
mance.

As a result of that presentation, several methods were developed that
can solve sparse systems of the form (1) in not much more than n? steps.
The first such methods were developed by D. Coppersmith and the author,
following a suggestion of N. Karmarkar. These methods consist of adap-
tations of the conjugate gradient [3] and the Lanczos [4] algorithms to
solve linear equations over finite fields. They have been tested success-
fully on quite large systems. Brief accounts of these adaptions are given
in [2] and [5].

Soon afterwards, D. Wiedemann [6] found a more elegant and prob-

ably even faster method, based on the use of the Berkelamp-Massey
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algorithm and the Cayley-Hamilton theorem. A brief account of it can
also be found in [2].

Now that the main question, whether systems of the form (1) that
arise in factorization and discrete logarithm algorithms can be solved in
about time 72, has been answered in the affirmative, we are faced with a
more important and basic question.

Table 1. Asymptotic Running Times for Factoring Integers

Algorithm r=3 r=2807. | r=2495... [ r=2
Schnorr-Lenstra [7] L L L L
Continued fraction [8] | L!13- | 112 L1k L1k
Schroeppel linear

sieve [8] L122.. | p18. Flble 7
Pomerance

quadratic sieve [8] LhS. [ plo&, L1102 L

Coppersmith, Odlyzko,
and Schroeppel [5] L1316 | rL13. [,1:081... e

There are now several algorithms known that can factor an integer
around p in time L(p) (see Table 1 and [9], which presents a new algo-
rithm based on elliptic curves), as well as several algorithms that can com-
pute discrete logarithms in fields GF(p) for p a prime in time L(p). (For
fields GF(2"), discrete logarithms can be computed much faster [10], and
the new sparse matrix methods are also useful in speeding this algorithm
[2].) Does this mean that L(p) is the natural lower bound for the computa-
tional complexity of factoring and finding discrete logarithms? It is the
author’s guess that this is not the case and that we are missing some
insight that will let us break below the L(p) barrier.
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4.6 KNAPSACK USED IN FACTORING

Don Coppersmith

IBM Research
Yorktown Heights, NY 10598

Suppose we are given ! integers x;, X, , ..., x;, in the range from
~ '3 to + 115, These integers may be thought of as being random and
uniformly distributed in their range.

Consider the event that three of the integers add to zero:

If the x;’s are truly random, we will have about cl'3 ordered triples (i, j, k)
of indices satisfying (1), for some constant c.

The problem is to discover these triples as quickly as possible.
Specifically, in time [1-5*€ can you write down [1°7¢ triples satisfying (1)?

One can do so in time /% sort the x;’s then for each fixed x; run for-
ward through the X and backward through the x, , trying to keep X + X
near —x;, to discover all pairs (j, k) such that (i, j, k) satisfies (1).

Another approach is to use a fast Fourier transform; by setting up a
vector of length 2/'3 | with 1 denoting the position of each x; , then tak-
ing a convolution of this vector with itself, we can compute the number of
triples involving each index i in time /'>*€, However, we do not compute
the triples themselves, so this does not solve the problem.

Motivation. The problem was originally motivated by an algorithm
for factoring integers near perfect cubes. Suppose we are trying to factor
N = M3 + O(M). We can first find integers y; near M which are smooth,
that is, the product of small primes. With an appropriate choice of /, and
an appropriate definition of "small" primes, there will be / such y; with
| y; =M | <I'>. Now set x; = y; — M. Whenever (1) is satisfied, we will

have
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ViV —N=0+M) (x;+M) (x, + M) - N
= (xixjxk)+M(x,-xj+x;»xk+xjxk)+M2 (xi+xj+xk)+M3 -N

= OMDP)

Thus y; y; y; — N, being relatively small, will itself have a reasonable
chance of being "smooth." If it is, we have related some small primes
multiplicatively mod N. This gives us one of the / equations needed by
the Morrison-Brillhart method of factorization. This technique could be
viewed as an attempt to speed up the equation-gathering phase of the
Morrison-Brillhart algorithms [1].

This application is supplanted, however, by the Reyneri cubic sieve
[2,3]. In that algorithm, the y; are replaced by the set of all integers y/
in the range [M —I,M +1]. Then one ends up recovering equations
relating the y; with the small primes. One has to gather more equations
then (as many equations as both the small primes and the y,”) but they are
somewhat easier to find (the residues y;” y;" y," — N turn out to be smaller,
O(MI? ) rather than OM[> ), and thus more likely to be smooth), and in
addition the knapsack problem disappears.

The knapsack problem remains as an intellectual challenge, however,
even after its motivation is removed.
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4.7 RELIABLE COMPUTATION
WITH ASYNCHRONOUS CELLULAR ARRAYS

Peter Gacs

Deptartment of Computer Science
Boston University
Boston, MA 02215

The homogeneous construction and local connectivity of cellular
arrays makes them the natural domain for the formulation of certain
general questions concerning reliable computation. We have
addressed the problem of reliable computation in discrete time in two
works. Gacs [1] constructs a (fairly complex) one-dimensional array
while Gacs and Reif [2], based on Toom’s work, construct a very
simple three-dimensional array. Even if built of unreliable com-
ponents, these arrays can simulate any one-dimensional cellular array
reliably.

Continuous-time (asynchronous) models are in many respects more
natural to consider than the discrete ones, especially as physical sys-
tems. Very simple methods are known to convert a discrete-time sys-
tem into one that will work correctly even if the state transition of
each component happens at arbitrary times, provided whenever it hap-
pens its result is predictable.

The one-dimensional model of Gacs [1] can probably be extended to
also deal with asynchrony. But encouraged by the simplicity of the
Gacs-Reif model [2] and the simplicity of the model mentioned in 2
above, we expect a simple solution, at least in three (or four?) dimen-
sions also for the case when both asynchrony and errors are present.
The simplest ideas were already discarded experimentally by Charles
Bennett using the Cellular Automata Machine simulator.

However, he is currently investigating a three-dimensional scheme
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(1]

(2]

based on the recognition that synchronization faults in three dimen-
sions form rings of vortices.

Three-dimensional cellular arrays are not physically realizable. Our
newest results, obtained at Bellcore in the summer of 1985, show that
a real complexity-tradeoff is possible in a two-dimensional reliable
array. In this scheme, "information" errors are corrected by a
hierarchical coding and repetition scheme, while "structure" errors are
corrected using Toom’s rule (instead of the complex procedures used
in [1]). The bottom level of the new scheme is fairly simple but it is
still a challenging problem to simplify it down to physical plausibility.
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4.8 FINITE MEMORY CLOCKS

Thomas M. Cover

Departments of Electrical Engineering
and Statistics
Stanford University
Stanford, CA 94305

How does one tell time when the number of states in the clock is
insufficient to count the elapsed time? For that matter, how good are
humans at estimating the passage of time?

Let P, be the probability that a given m-state Markov chain first
enters its clock state at time n. We can design a clock such that
P, = (m— 1)/ne , for n>»> m . Can one do better?

START

-p STOP
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4.9 DISTRIBUTED SHORTEST PATH ALGORITHMS

R.G. Gallager

Department of Electrical Engineering
and Computer Science
M.LT.
Cambridge, MA 02139

Consider a graph G(V,E) with a distinguished node called the root
and with some positive weight associated with each direction on each
edge. The length of a path in the graph is the sum of the weights in the
direction of the path over the edges of the path. The shortest path prob-
lem is to find a minimum weight path from each node to the root. In the
special case where each edge has unit weight, we call the shortest path
problem the minimum hop problem.

A distributed shortest path algorithm is an algorithm for a communica-
tion network to solve the shortest path problem for the graph correspond-
ing to the network. Each node of the network has a processor and the
facility to send messages over the edges adjacent to the node. Each node
is initially unaware of the topology and knows only the weights of the
adjacent edges and whether or not it is the root. Each node has a copy of
the algorithm, which is a set of rules for reading messages, processing,
and sending other messages over the outgoing edges. The communication
is asynchronous but error free and messages travel in first come first serve
order over any given edge in any given direction. A message consists of a
small (i.e., bounded) number of parameters such as path weights or node
identities.

The communication complexity of a distributed shortest path algo-
rithm, as a function of INl and IE| , is the worst case total number of mes-
sages, over all edges, required to solve the shortest path problem. We
view the problem as solved when each node knows the first edge on a
shortest path from itself to the root. The worst case is taken over all
graphs and weights of given INI and IEl and over all delays for individual
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messages. The time complexity is the worst case time to solve the problem
under the assumption that processing time is negligible and each commun-
ication takes at most one unit of time (but this time unit is unknown to the
algorithm).

The problem is to find distributed algorithms that minimize communi-
cation complexity or time complexity or some tradeoff between the two.
As an important special case, find such algorithms for the minimum hop
problem. It is easy to see that the communication complexity must be at
least IEl and the time complexity must be at least INI. It is also easy to
see that simply flooding all the topology information through the network
solves the problem with communication complexity IEI? . Some progress
has been made on the problem for the minimum hop case. Frederickson
[1] has developed an algorithm with a communication complexity and time
complexity of O( INI VIEI ). Also, Awerbuch and Gallager [2,3] have
developed algorithms, one of which has a communication complexity of
O(INI® + |E1 ) and time complexity O( INI'6 ) and the other of which
has a communicaiton complexity of O( IEI'*¢ ) and a time complexity of
O(IN"*€ ) , where & approaches 0 as /2 log, log, INI/ log, INI .
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4.10 THE SCOPE PROBLEM

H.S. Witsenhausen

AT&T Bell Laboratories
Murray Hill, NJ 07974

1. Definitions.

By a system we will mean a finite sequence S;,...,S, of finite
sets of positive integers. Denote by (a, i) the occurrence of integer a
in set S;. The scope of (a,i) is the union of the sets S, with
JSoa<k,where 1<j<i<k<m and j is as low and k is as high
as possible subject to the condition that for all B satisfying j<pB <k,
one has a € SB . This means that the scope consists of the sets in the run
of a’s to which (a, i) belongs, extended at each end of the run by one
additional set, unless that end of the run is one end of the system.

A system is valid if it satisfies the scope condition: for any occurrence
(a, i) of any integer a , the scope of (a,i) contains {1,2,...,a}.
Let (k) be the largest integer that can occur in a valid system with sets
of maximum cardinality &, and let w,;(k) be the largest integer that can
occur in set S; , or equivalently S, , under the same assumption.

2. Conjectures.

From the constructions for the equivalent "saturation problem" in [1],
it follows that (k) 24k — 1 and that (k) 2 4k —2 . This motivates

the following conjectures:

Conjecture 1: (k) = 4k -1 .
Conjecture 2: (k) =4k - 2.

Conjecture 1 implies Conjecture 2 because the system that gives
(k) > 4k — 2 and its mirror image can be put together, with an obvious

adjustment, to yield a valid system contradicting Conjecture 1.
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Some Examples. Systems that achieve y(k) = 4k — 1 are the following.

For k=2:
{1},{2,3},{4,5},(1,7},{3,7},{2,7},{1,6},{2,6},(3.,6},{1,6},{4,5},{2,3},{1}.

For k=3:
{1},{2,3,4},{5,6,7},{1,8,9},{2,8,9},{3.8,9},{1,4,10},{2,3,10},{4,5,10},
{1,6,10},{2,6,10},{3,7,11},{1,7,11},{4,5,11},{2,3,11},{1,4,11},
{3,8,9},{2,8,9},(1,8,9},{5,6,7},{2,3,4},{1}.

In general, valid systems achieving the conjectured values can be con-
structed recursively. What remains to be settled is whether this can be
improved upon or not.
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4.11 A CONJECTURED GENERALIZED PERMANENT
INEQUALITY AND A MULTIACCESS PROBLEM'

Bruce Hajek

Department of Electrical Engineering
University of Illinois
Urbana, IL 61801

1. The Conjecture.

Let k and n be positive integers, and let / denote the set of k-tuples,
I={(1,2,...,n}* Forl <j<k, let SJ- denote the collection of subsets L
of I such that L has cardinality n and no two elements of L have the same

Jth coordinate. Let $=uU Sj. Finally, let F,, be the multinomial in
J
variables x = ( x; : i € /) defined by
Fo= % Im x;.
Le S iE L

Conjecture 1. Under the constraints

x20 and Y x=1, (1)

F, attains its maximum at x if and only if x; = n* forall i.

2. Permanent Inequality as Special Case.

We consider the case k=2 in this section. Then x =
(xij: 1 <i,j<n)can be viewed as an n X n matrix. Now

" Editorial note added in proof: The two equivalent conjectures 1 and 1’ have
been shown to be false in the recent preprint, J. Kbmer and K. Marton, ‘‘Ran-
dom Access Communication and Graph Entropy,”’ IEEE Trans. Inf. Theory,
under review. The problem of finding the optimizing partitions
Ay, Ay, ..., A in Conjecture 1’ remains open, however. It is intimately con-
nected to the perfect hashing problem, also treated in this volume (J. Kbrner,
*“The Information Theory of Perfect Hashing,’’ this volume.)
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Fo= % HOx+ 3 IOIx- 3 RIGE
Les, iel Les, i€l Le S ns, i€l
The last sum on the right-hand side is by definition the permanent of the
matrix X , and the other sums can be rewritten to yield

F(x):l;[(Zx‘-j)+l;l(2xij)—penn(x).
J i

If Conjecture 1 is true, then it is still true under the additional con-
straint

ng=2xﬁ=i for all i . (2)
3 . n

J J

Under (2) we get F(x) = ( 2/n" ) — perm(x) . Thus, the conjecture implies
the fact that the permanent of x is minimized subject to the constraints
(1) and (2) if and only if Xy = 1/n? for all i,j . This fact was conjec-
tured in 1926 by B. L. van der Waerden and was proved in 1980 by G. P.
Egorychev (see [1]).

3. Application to Random Access Strategies [2].

Let UL, ..., U" be independent random variables, each uniformly
distributed over the unit interval [0, 1]. We say that a partition A of the
interval into » disjoint sets (called the atoms of A) separates (the points
Ul,...,U") if each one of the atoms contains exactly one of the U'.
We call A an equipartition if each of its n atoms has Lebesgue measure
1/n .

Now, let Ay, ..., A, each partition the interval [0, 1] into n atoms.
Upon setting

x‘-l,-z...,-k=meas(Ail‘mA;2r\--- ﬁA;}), (3)

we see that Conjecture 1 is equivalent to the following conjecture.
Conjecture 1’. Partitions A, ..., A, maximize the probability

P [at least one of the A, separates]

if and only if the partitions are equipartitions and are independent of each
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other, that is, if and only if the right-hand side of (3) is n* for each

11, ‘oo w g Ik .
Could the conjecture be established, a number of corollaries would
follow. For example, suppose A;, A,,... is an infinite sequence of

independent equipartitions and that B is the random partition defined by
B = Ag , where K is the random variable defined by

K =min { k: A, separates U', ..., U" } .

Then B is a random partition. Conjecture 1” and Fuch’s inequality [3]
can be used to show that B has minimum entropy over all random parti-
tions which separate U .

Acknowledgement: I am grateful to Eli Gafni and Pierre Humblet for
discussions on this problem.
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4.12 ROTATION DISTANCE

Daniel D. Sleator
Carnegie-Mellon University
Pittsburgh, PA 15213
Robert E. Tarjan

Computer Science Department
Princeton University
Princeton, NJ 08544

William P. Thurston

Mathematics Department
Princeton University
Princeton, NJ 08544

In this note we summarize our recent results on rotation distance, a
distance measure on binary trees with computer science applications. Our
main result is that the maximum rotation distance between any two n-node
binary trees is at most 2n — 6 for n = 11, and this bound is tight for
infinitely many n .

Rotation Distance.

A rotation is a local transformation on a binary tree that changes the
depths of certain nodes but preserves the symmetric order of the nodes
(see Figure 1). A rotation takes O(1) time on any standard representa-
tion of a binary tree. Rotations are the operations used to rebalance binary
search trees [1,2]; thus they play a fundamental role in data structures.

Rotations also impose a mathematical structure on the set of all n-
node binary trees. Let R, , the rotation graph, be the undirected graph
whose vertices are the n-node binary trees such that two trees are adjacent
if and only if one can be obtained from the other by a single rotation. Let
d(Ty, T, ) , the rotation distance between trees T; and T, , be the dis-
tance between T, and T, in R, , that is, the minimum number of rotations
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needed to transform 7, into T, or vice versa. This note summarizes our
recent work on rotation distance. Further details and proofs will appear in
[3].

We formulate two fundamental questions about rotation distance:

Problem 1. Let d, be the diameter of R, , that is, the minimum number
of rotations that suffice to transform any n-node binary tree into any other.
What is d, ?

Problem 2. Devise a polynomial-time algorithm that, given any two n-
node binary trees 7; and T, , computes d(T}, T,) .

Our results provide an almost-complete solution to Problem 1 and an
approximate solution to Problem 2. Concerning Problem 1, we prove:

Theorem 1. d,<2n-6 forall n2>11.

Theorem 2. d, =2n — 6 for infinitely many » .

We conjecture, but cannot yet prove, that d = 2n — 6 for all n > 11 .
However, we believe that an extension of our methods will establish this.
We have computed the exact value of d, for n <16 (see Figure 2).
These results show that d, =2n -6 for 11<n<16.

Concerning Problem 2, we exhibit a linear-time algorithm that will
estimate d(T'}, T,) to within a factor of 2. Coming closer than a factor of
2 in general seems hard; however, our methods allow the exact computa-
tion of d(Ty, T,) in various special cases.

There has been very little previous work on rotation distance. To our
knowledge the only published work is by Culik and Wood [4], who
defined the concept and showed that d, <2n—2 for all n. Leighton
(private communication) showed that d, > 7n/4 — O(1) for infinitely many
n.

The original definition of rotation distance is not so easy to study.
Thus it is advantageous to transform it into something more amenable.
The binary trees are counted by the Catalan numbers [5] as are many other
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mathematical objects, including the triangulations of a polygon. It is these
with which we shall work. The n-vertex binary trees are in one-to-one
correspondence with the triangulations of an (n + 2)-gon if rotationally
equivalent triangulations are regarded as distinct. Furthermore, rotation on
binary trees corresponds to the diagonal flip operation on triangulations, in
which we remove a diagonal (causing two triangles to merge into a qua-
drilateral) and replace it with the other diagonal of the quadrilateral (see
Figure 3). Rotation distance on binary trees corresponds to flip distance
on triangulations; the flip distance f (T, T,) between two triangulations T
and T, (or vice versa). In the triangulation setting, Problems 1 and 2
become:

Problem 1. Determine f, = max { f (T}, T,) | T; and T, are triangula-
tions of an n-gon}.

Problem 2’. Devise a polynomial-time algorithm to compute f (T;, T,)
for any triangulations T} and T, .

We summarize our results on triangulations.

Theorem 1. f, <2n-10 forall n>13.

Proof. Any triangulation of an n-gon has n — 3 diagonals. Given any
vertex x of initial degree d(x) < n — 3, we can increase d(x) by a suitable
diagonal flip. Thus in n — 3 — d(x) flips, we can produce the triangula-
tion all of whose diagonals have one end at x . It follows that, given any
two triangulations 7; and 7,, we can convert T; into T, in
2n — 6 — d(x) — dy(x) flips, where x is any vertex of degree di(x) in T,
and degree d,(x) in T, . A little algebra shows that if n > 13, there is a
vertex x such that d,(x) + dy(x) 2 4 . The theorem follows. [J

Theorem 2’. f, =2n — 10 for infinitely many n .

The proof of Theorem 2’ is our most interesting and complicated
result. It uses a second transformation of the problem, to triangulating a
polyhedron (dissecting it into tetrahedra), and relies on volumetric argu-
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ments in hyperbolic space.

Lemmal. If T, and T, are any two triangulations having a common
diagonal e , then any minimum-length sequence of flips from 7, to T,
leaves e alone; indeed any flip sequence from T, to 7T, that flips e
uses at least two more flips than the minimum number.

Lemma 2. If 7, and T, are any two triangulations with no common
diagonals but some diagonal e of T, can be converted into a diagonal
¢’ of T, in one flip, then there is a shortest flip sequence from T, to
T, that first flips e to e’ .

A further result along the lines of Lemmas 1 and 2 concerning diago-
nals fixable in two flips can be proved. However, such results seem to be
of no help in solving Problem 2’, because there are pairs of triangulations

T, and T, such that fixing even a single diagonal requires () flips.
On the other hand, Lemma 1 allows us to estimate AT;, T,) to within a
constant factor:

Theorem 3. Let g(T,, T,) be the number of diagonals in 7T, that are
not in Tz . Then g(Tl’ T2) S-f(Tl’ Tz)

We close by mentioning another problem, having to do with rotations,
that arises in the study of self-adjusting search trees [6,7]. A turn is a pair
of rotations as illustrated in Figure 4.

Problem 3. Starting from an arbitrary n-node binary tree T , what is the
maximum number of right turns that can be made before no more are pos-
sible?

We conjecture that the maximum number of right turns is O(n) , but
can only prove O(n log n) . Note that, starting from an arbitrary tree, the

maximum number of right rotations that can be made is exactly [g ]
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Figure 1. A rotation in a binary tree. Triangles denote subtrees.
The tree shown could be part of a larger tree.
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Figure 3. A diagonal flip in a triangulation.

Figure 4. A turn on a binary tree.
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4.13 EFFICIENT DIGITAL SIGNATURE SCHEMES BASED
ON MULTIVARIATE POLYNOMIAL EQUATIONS

Adi Shamir

Applied Mathematics
The Weizmann Institute
Rehovot, Israel

In 1983, Ong Schnorr and Shamir proposed a new type of digital sig-
nature scheme, based on multivariate polynomial equations modulo com-
posite numbers. The scheme had some unique features (such as a constant
arithmetic complexity and a universal modulus capability), which made it
an attractive alternative to the RSA signature scheme. Unfortunately, the
first two incarnations of this scheme (based on binary quadratic equations
and ternary cubic equations) were shown to be breakable by J. M. Pollard.
The major open problem concerning this scheme is whether there exists a
safe incarnation which is still attractive from a practical point of view.
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4.14 SOME RESULTS FOR THE PROBLEM
"WAITING FOR GODOT"

Michael L. Honig

Bell Communications Research
Morristown, NJ 07960

Problem Statement: Consider an M/D/1 queueing system (Poisson
arrival process, deterministic service times) and a test customer. The test
customer is waiting for a friend whose arrival time is an exponentially dis-
tributed random variable. The test customer can either join the queue, if
one exists, or wait outside the queue. Once the test customer joins the
queue, he must stay in the queue until he reaches the server. If the test
customer reaches the server after his friend arrives, he is served. Other-
wise, he can either join the back of the queue, or wait outside the queue.
What policy should the test customer follow to minimize the mean delay
until service?

Let A be the arrival rate of customers to the queue, let p, the service
rate, be normalized to one, and let o be the rate at which the test
customer’s friend arrives. At any given time ¢, let v denote the total
service time (virtual work) of customers in front of the test customer, j
denote the number of customers in back of the test customer, and k be a
variable indicating whether or not the test customer’s friend has arrived.
Define the "move-along" policy as the policy whereby the test customer
always stays in the queue. Under the move-along policy, the test customer
immediately moves to the back of the queue if he reaches the server
before his friend arrives. To prove that the move-along policy is optimal
for given A and a, a new class of policies is defined by insisting that the
test customer always joins the queue, but he is allowed to move to the
back of the queue at any time. Any policy allowed in the problem state-
ment can be duplicated by a policy in this new class. If the move-along
policy is the optimal policy in this new class of policies, then it must be
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the optimal policy in the original set of policies.

Define the state space for the problem as

SE{(v,j,k)Ive RYje P ke {0,1}},

where R* and I' are the set of non-negative reals and integers, respec-
tively. Where unspecified, k is assumed to indicate that the test
customer’s friend has not arrived. The state trajectory from time ¢ = 0 to
t =T is defined as the continuum of states visited from time ¢ = 0 to time
t =T, and is denoted as s[0, 7] . A general policy A is defined, which
maps state trajectories to actions. For any policy A, the only actions
allowed are either to stay in the current position or jump to the back of the
queue (i.e., move from state (v, j) to state (v + j, 0) ). Suppose the state
trajectory from time t=0 to ¢t=T is known to be s[0, T] . The mean
delay until the test customer is served starting at time T under policy A
is defined as dé[O.TJ . The mean delay until the test customer is served

assuming the move-along policy is adhered to is denoted as d,;, where

v ?
(v, j) is the current state. For the move-along policy the state trajectory
‘previous to time T is irrelevant.

Theorem 1: Let s[0, 7] be any state trajectory which reaches state
(v,)) attime T.Then d,;=inf dgyr if and only if d,; <d,,;, , for
A "’ b

all v and j.

This theorem holds for all A in the new class of policies defined above.

The move-along mean delay, d, ;, satisfies the recursion

vJ

- Moy 52 )t
dVJ =v+ e_( A0V Z T dj+k,0
k=0 '

with boundary condition

o A
il e A1y

dy o

The solution can be written
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oo k-1
dyj=v+e™ P doo+ 3 [x“(h Ave™ ) exp [—ka = % %~ Vi ] ] .
z :

i=0
where
Xi+1 =K(1 —e_x*)+a, XO=0,
and
X, = lim x, .
k—oo

This expression can be used to prove the next two theorems.

Theorem 2: If A<a/(1-¢*), then d,;<d,,;, for all positive v
and j.

Theorems 1 and 2 therefore imply that the move-along policy is
optimal if A < o / (1 — ™).
Theorem 3: Given any o, there exists a Ag such that if A >, , the
move-along policy is not optimal.

Theorem 3 applies to the original problem statement, as well as to the
modified problem in which the test customer may leave the queue at any
time.

Acknowledgment: The author thanks T.J. Ott for completing the
proof of Theorem 2.

-141-



4.15 PROBLEMS ON TILING, INDEPENDENT SETS,
AND TRIGONOMETRIC POLYNOMIALS

D. Hajela

Bell Communications Research
Morristown, NJ 07960

Problem 1: Given Sc Z",xe Z", a translate of S by x is S+ x=
{s+xlse S}.
Question: Given Sc Z” with 1Sl=m :

(a) Do disjoint translates of S cover all of Z" ?
(b) If so, how quickly can you decide this? Is there an algorithm polyno-
mial in m to do this?

The answer is yes for S being a periodic tile. This means there exist
Pis---,Pp € Z" such that

].. U S+k1p1+k2p2+"'+knpu=zn.
k"EZ
l1<isn

2. (S+kypy+ - +kp,)NES+jip1+ - +j,p,)=9
i (kg s kg )% Gyre ey )

Problem 2: Ac Z is called independent if Y, € a;=0 with
1<izn

a;eA. &=121,0 implies g =0 forall 1<i<n.

Question: (Pisier, 1981) For every finite BC A, say with |Bl=n,
assume there is a Cc B,1C12n/2 and C is independent. Prove or
Disprove: A is a finite union of independent sets.

Problem 3: Note that forany n;,...,n € Z,
Ve Yk < max Isinn; &+ -+ +sinn, 01<k,
0 e [0,2n]
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since

2r
[Isinn®+ -+ +sinn 0F=mnk.
0
Easy: There are ny , ..., n, € Z/ {0} such that
max |sinn®+ --- +sinnk9I£c\E
0 e [0,2)

for ¢ a fixed constant (e.g., Rudin-Shapiro polynomials).

Question: (H. Bohr, early 1950s, 1952?) Are there

<+ <m with n;e Z forall i, such that
max Isinn 0+ - - +sinn, 61<cVk
0e [0, 2rn]

for some constant ¢ ?

Known: There are 0 <n; - -+ <n, such that
max |sinn®@+ --- +sinndl<ck??,
0 € [0,2x]

-143-

0(!’!1



4.16 COMMUNICATION COMPLEXITY OF SHIFTS

Thomas M. Cover

Departments of Electrical Engineering
and Statistics
Stanford University
Stanford, CA 94305

Let X=X;,X, ...,X,), where X;~ Bemoulli (1/2) . Let Y=
X741, X140, - - - Xp), where T is uniformly distributed over
{0,1,2,...,n-1}.Thus y is a cyclic T-shift of x. Here T + k is
modulo n .

How many bits must y communicate to X in order that x can
determine the shift 7 ? We claim that log (n + 1) bits are sufficient.
n 2
Simply cycle y until ¥ y;, 2" is largest, then transmit k. This works
i=1
whenever x,y determine k.
The problem is much harder if y' =y @ e, where e ~ Bernoulli (p).
The noise in y’ ruins the above approach. Now how many bits are
required?
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4.17 A CODING PROBLEM CONCERNING
SIMULTANEOUS THRESHOLD DETECTION

Michael L. Fredman

Department of Electrical Engineering
and Computer Science
University of California at San Diego
La Jolla, CA 92093

We define a threshold detection system (TDS) of order N to be a
collection of N binary codewords, Vi V,,...,Vy, and N binary
decision trees, I, T, ..., Ty, such that the tree 7; on input Vj
reports "no" if j < i, and "yes" otherwise.

(A binary decision tree T 1is a binary tree each of whose internal
nodes is labeled with a positive integer, and whose leaves are labelled
"yes" or "no". When provided with a binary vector V as input, V
defines a path through 7T by invoking the rule that upon reaching a node
labeled j, branch left if the jth bit of V is 0, otherwise branch right.
The "yes/no" label of the leaf reached is the output generated by 7 on
input V)

We define the read complexity of a TDS to be the maximum height of
any of its N trees (the worst case decision time) and we define its write
complexity to be the maximum Hamming weight of any of its N binary
vectors (a measure perhaps of the power required to store one of these
vectors - worst case). Our interest centers on the inherent trade-offs of the
read/write complexities associated with a TDS. For example, if the read
complexity of a TDS is 1, then its write complexity must be at least
(N — 1)/2 , which is optimal; and if the write complexity of a TDS is 1,
then its read complexity must be at least (N — 1)/2, which is optimal.
Our first problem is to estimate or evaluate the intermediate range of pos-
sible trade-offs. (The solution to this problem has implications regarding
the complexity of certain data structure algorithms [1].)
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If we try to minimize simultaneously both the read and write com-
plexities, we can easily obtain an upper bound of 1 g(N) (the binary log-
arithm of N ) by using the N binary vectors of dimension 1 g(N) for
the V;’s, and simply having each T; read these 1 g(N) bits. However,
we can do better, obtaining an upper bound of roughly 1 g(N)/2.54 [1].
We can demonstrate [1] a lower bound of c¢ Ig(N)/Iglg(N) (where c¢ is a
positive constant), but we suspect that the truth is asymptotic to ¢ Ig(N) .

Another variant of this problem is obtained by redefining the write
complexity of a TDS to be the diameter of the set { V;, ..., Vy }.
REFERENCE

[1] M.L. Fredman, ‘‘The Complexity of Maintaining an Array and Com-

puting its Partial Sums,”” J. Assoc. Comput. Mach., pp. 250-260
(1982).
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4.18 COOLING SCHEDULES FOR OPTIMAL ANNEALING

Bruce Hajek

Department of Electrical Engineering
University of Illinois
Urbana, IL 61801

We study a technique inspired by statistical mechanics, called simu-
lated annealing [2] or stochastic relaxation [1], when applied to the max-
imum matching problem. The technique appears useful [2] for solving
large, difficult (e.g., NP-hard) problems. Our motivation for studying the
relatively simple maximum matching problem is to obtain sharp results
concerning sufficient convergence rates. Numerous extensions can be
readily conjectured.

Let G be an undirected graph. A matching is a set of edges, no two
of which have a common vertex. Let M denote the set of all matchings
for G. Let M" denote the set of matchings M with maximum cardinality.
The maximum matching problem is to find a matching in M*. We will
discuss a probabilistic method for doing this.

Definition. Given p > 0,IIP is the probability distribution on M
defined by

nPM) = pMliz where z= y  pIMI
MeM

and |A| denotes the cardinality of a set A. Note that if we set IT™ to be
the limit of TP as p tends to infinity, then

1 if M e M*
I~ @) = 0 otherwise.

Thus, if we could sample a random variable with distribution I1P for large
p then it would be a maximum cardinality matching with high probability.
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A possible method of constructing a random variable with distribution
ITP for some large p is to simulate a Markov process whose steady-state
distribution is IP. In practice, such simulations could be performed in
discrete time. For theoretical purposes, we study a continuous-time Mar-
kov process with stationary distribution I1P. The process can readily be
simulated in discrete time, however.

Consider a Markov chain with state space M and transition rate matrix
QM M defined by

AifM =MuU {e},e g M
O P M, M)={ 1 ifM =Mle,ec M
0 for other M, M’ with M # M’.

In words, links disappear at rate g and a link appears at a given site at rate
A, as long as the site is eligible. It is easy to show that the chain has
equilibrium measure ITP , where p = Ap . In fact, a stronger condition is
easily checked:

P (M) QM * (M, M’) = TIP (M) Q(M’, M) all M, M.

We now replace A and p by deterministic functions of time, (A, and
(1p. We call (A, n,) a schedule since it determines the transition rates as
a function of time, and we set p, = A,/ M, . More formally, we consider
the time-inhomogeneous Markov chain with transition rate matrix Q)
defined by Q, = Ql" ¥ . For convenience, we let A, =1 for all ¢ so that
P, = 1/n,. We let o, denote the probability distribution of the chain at
time ¢ . It satisfies the Kolmogorov forward equation

o,=0,0,.

If (u,) is "slowly varying," then we should have o, = 1” for large t.
If, in addition, p, tends to zero (so p, tends to infinity) as ¢ tends to
infinity, then IT™ converges to I1°. Thus, if p, converges to zero slowly
enough, it should be true that o, converges to I1”. This implies that the
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Markov chain converges in probability to the set of maximal matchings, if
W, varies slowly enough. (In fact, a little more is expected; o, converges

to a uniform distribution on M"* )

A proof of convergence based on this reasoning was given in [1] for a
different optimization problem. Our goal is to obtain sharp estimates on
how fast we can let p tend to zero.

In the following two theorems we implicitly make these assumptions
on p:

Mo < + o, W, is nonincreasing ,
and

lim p,=0

f—> oo

Theorem 1: Fix a graph G.

(i) If all maximal matchings of G have maximum cardinality, then

lim > oM=1. 1
P> oo pre M*

(ii) Otherwise, (1) is true if and only if

[ wde=+ oo )
0

Theorem 2: The following conditions are equivalent:
lim o, =IT" for all graphs G,

t— oo

[ W dr=+ o, A3)
0

Remarks.

1. For the sake of analogy with statistical mechanics, we note that ITP
can be reexpressed as

1P (M) = exp (-V(M)T)/Z ,
where T = 1/In(p) and V(M) = — |M|. We call V(M) the potential
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energy of a state M and T the temperature of the system. As T tends
to zero, TP converges to the uniform distribution on the set M" of
minimum potential-energy states.

2. If for large t, u, has the form p, = Ve equivalently if T,=c/Int,
then by Theorem 1, the chain converges in probability to the set of
maximal matchings if and only if ¢ 2 1, and it converges to a uniform
dist? on such matchings if and only if ¢ > 2.

The fact that condition (2) is strictly weaker than the condition (3)
implies that a proof of Theorem 1 based purely on the motivating discus-
sion we gave cannot be given.

REFERENCES

[1] S. Geman and D. Geman, ‘‘Stochastic Relaxation, Gibbs Distribu-

tions, and the Bayesian Restoration of Images,”” preprint, September
1983.

[2] S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi, ‘‘Optimization by
Simulated Annealing,”” Science, 220, pp. 671-680 (1983).
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CHAPTER V.

PROBLEMS IN THE CRACKS

Here we see the authors indulging themselves in a wider range of
inquiry. Two of the problems, Ergodic Process Selection by T. Cover and

Gambler’s Ruin:

A Random Walk on the Simplex by T. Cover, have

been partially solved by Hajek (see Chapter VI).
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5.1. PICK THE LARGEST NUMBER

Thomas M. Cover

Departments of Electrical Engineering
and Statistics
Stanford University
Stanford, CA 94305

Player 1 writes down any two distinct numbers on separate slips of
paper. Player 2 randomly chooses one of these slips of paper and looks at
the number. Player 2 must decide whether the number in his hand is the
larger of the two numbers. He can be right with probability one-half. It
seems absurd that he can do better.

We argue that Player 2 has a strategy by which he can correctly state
whether or not the other number is larger or smaller than the number in
his hand with probability strictly greater than one-half.

Solution: The idea is to pick a random splitting number T according to a
density f(t), fit)>0, for t € (- oo, ) . If the number in hand is less
than T, decide that it is the smaller; if greater than T , decide that it is
the larger.

Problem: Does this result generalize? Does it apply to the secretary prob-
lem?
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5.2. ERGODIC PROCESS SELECTION'

Thomas M. Cover

Departments of Electrical Engineering
and Statistics
Stanford University
Stanford, CA 94305

Let { (X;Y) }Z; be a jointly ergodic stationary stochastic process.
Define a selection function J, : X1 yn-1 {0, 1:} ;. =002 ¢ ous

We wish to maximize

. |
llm s (5‘(}(1, s s sy X‘-_l, Yl’ Yz, . s ey Y.l—l) Xi‘
n—o N i=1
+ (l - SI(XI’ ..oy X‘_ls YI) e oey Y;-.l)) Y;)

over all selection functions. Thus §; chooses either X; or Y; to add to
the running average.

It is intuitively clear that

1, E{X;|Past } > E{Y;|Past }

o
I

o
A

will maximize the above limit of the average return. The proof may be
tricky.

" See Hajek’s solution to this problem under moment constraints in Chapter VL.
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5.3 FINDING THE OLDEST PERSON '

Pravin Varaiya

Department of Electrical Engineering
University of California
Berkeley, CA 94720

There are N people. Each person’s age is independently and uni-
formly distributed over [0, 1]. You want to find who the oldest person
is (not the person’s age) with the minimum expected number of questions
when the questions are structured as follows.

You pick a number x(1) and ask, "Who is older than x(1)?"
Depending on the response, you pick x(2) and ask, "Who is older than
x(2) 7" Suppose at the end of K questions you determine who the oldest
person is. Let K :=min E K , where the minimum is over all policies
x(1), x(2) , and so on. The value of K" can readily be determined via
Dynamic Programming. (See, K. J. Arrow, L. Pesotchinsky, and M.
Sobel, "On Partitioning of a Sample with Binary-Type Questions in Lieu
of Collection Observations," Stanford University, September 1978.)

Suppose now we allow more general questions. You pick a subset
A(1) of [0, 1] and ask "Whose age belongs to A(1) ?" Then you select
A(2) and ask "Whose age belongs to A(2) ?" Suppose you determine the
oldest person after K questions. Let K# : min E K .

Conjecture: Kt =K".

T See Chapter VI, Section 6.5 for solution.
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5.4 GAMBLER’S RUIN:
A RANDOM WALK ON THE SIMPLEX'

Thomas M. Cover

Departments of Electrical Engineering
and Statistics
Stanford University
Stanford, CA 94305

It is known that if two gamblers with capitals p and 1 — p , respec-
tively, engage in a fair game (we can model it by Brownian motion on the
unit interval starting at p ) until one of the gamblers goes broke, then the
gambler with initial capital p will win the game with probability p .
Now suppose that there are m gamblers with capitals corresponding to a
point p in the simplex p; =20, ¥ p,=1. A random walk in the sim-
plex occurs, and the gamblers go broke one by one. Once a gambler goes
broke, he stays broke. What is the induced probability distribution on the
order in which the gamblers go broke?

" Hajek has exhibited a solution to this problem for m =3 gamblers. See
Chapter VL
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5.5 LINEAR SEPARABILITY

Thomas M. Cover

Departments of Electrical Engineering
and Statistics
Stanford University
Stanford, CA 94305

Let (X;,8), i=1,2,...,n,be iid. random pairs, where { 6; }
is Bernoulli with parameter 1/2, and X;~f3(X), x;€ RY. We say
{ X, 6) }?=1 is linearly separable if there exits a vector w € R? and a

real nurnber T such that

wx; 2T, 6;,=1

<T, 6;,=0, for i=1,2,...,n.

i

Let P(n, d, fy, f;) be the associated probability that { (X;, ;) }%,
is linearly separable.

The following results are known.
Theorem 1: Identical distributions [1,2].
Pn d,f.f) =2 3 ["—1]
n, ) - Z i ]
i=0
for any density f(x) .

Theorem 2: Distributions differing by translation [3].

Let f(x)=fi(x+tv). Then P(n,d, f,f,) is monotonically
increasing in t=>0. When ¢t=0, P(n,d, f,f,)=Pndf,f), and
Pn,d,fi.5)—= 1,88 t—>ee,
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Theorem 3:. Distributions differing by scale (Krueger, unpublished).
Let f,(x) = % fi(ax), a>0. Then P(n,d,f; f,) is monotonically

nondecreasing in a, for a>1.
All this seems to suggest that different densities lead to an increase in
the probability of separability. Hence the following:

Conjecture.
1 st & (=1
P("w d9f]9f2)2(3' ) Z i ’
i=0
for all densities f;(x), f>(x) .
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5.6 THE GENERIC RANK OF A’

John N. Tsitsiklis

Laboratory for
Information and Decision Systems
M.LT.

Cambridge, MA 02139

We define a structured matrix A to be the set of all matrices (of a
given dimension n X n) in which certain entries are constrained to be zero.
We then define the generic rank of A to be the maximum of the ranks of
any A € A. It turns out that the generic rank of A may be computed
easily. Form a bipartite graph G = (V, E) , where the set of vertices is
Vv={1,2,...,n;1,...,n"}. Forany (i, j) € {1,...,n}2,theedge
(i, // ) belongs to E if and only if the ijth entry of matrices in A is not
constrained to be zero. Then, the generic rank of A equals the maximum
number of edges in any bipartite matching of that graph.

Suppose that we are given two structured matrices A, B of dimensions
m X n, n X m, respectively. We define the generic rank of A B as the
maximum of the ranks of AB over all A € A, B € B. This problem is
related to the problem of finding the "structurally" fixed modes of a con-
trolled linear system and has been studied under various guises [1-7]. It
was shown in [2] that this problem is equivalent to a simple network flow
problem and can therefore be solved in polynomial time, as follows. Con-
struct a graph for each one of the two structured matrices A, B, as in the
previous paragraph, and join the two graphs by identifying the nodes
corresponding to columns of A with the nodes corresponding to rows of B
(see Figure 1). Let each node in this graph have unit capacity. Then, the
generic rank of A B is equal to the maximum flow that may be transferred
through this graph.

Suppose now that m = n and that A = B, so that the A and B matrices
have to obey the same constraints. (Still, this does not require that
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A = B .) If we impose the additional requirement that A = B, does the gen-
eric rank change? More formally, is it true that
max rank (AB) = max rank A% ?

Ae A Ae A
BeB

x x 0
0 0 0
0O »* %
’_
o
=

Figure 1. Example of the redirection to a network flow problem.
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(1]
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(3]

(4]

[5]

(6]

(7]
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5.7 THE STABILITY OF THE PRODUCTS
OF A FINITE SET OF MATRICES

John N. Tsitsiklis

Laboratory for
Information and Decision Systems
ML.LT.

Cambridge, MA 02139

Let F={A, ..., Ay} be a set of n X n matrices. Given a sequence

.S'={A%}ﬁI , with Al-h_e F, we consider products of the form

M
By s= I1 A; . We are interested in questions of the following type:
k=1 Ok

1.

Is the set {Bys:M=1, 2, ...} bounded for all sequences S? (We
will then say that F is stable.) Does B, ¢ converge to zero, as M — oo
for all S?

What happens if we impose some restrictions on the set of allowed
sequences S?

What are some simple classes of matrices for which the answers to 1
and 2 become simpler?

Motivation. Such problems arise in at least two different contexts:

(a) Lyapunov stability of time-varying linear systems [1,2]. Given a sys-

tem of the form x(z + 1) = A(f) x(t), suppose that it is known that
A(r) € F, for each ¢, but that the exact value of A(¢) is not a priori
known, because of exogenous conditions or changes in the operating
point of a nonlinear system. Questions 1-3 refer to the stability of
such a system.

(b) Asynchronous computation. A serial iterative algorithm may be visu-

alized as a process whereby a fixed sequence of operations is applied
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to the initial data. Accordingly, in an "asynchronous" algorithm, a
sequence of operations is again applied to the input data, except that
the exact order at which different operations are applied is unknown
and possibly chaotic. This leads naturally to the question whether the
end result is asymptotically independent of the actual order. In this
context, questions 1-3 are relevant to convergence conditions for asyn-
chronous (and typically distributed) algorithms for the solution of
linear equations or certain classes of optimization problems [3-5].

The main available result states that F is stable if and only if there
exists a convex neighborhood V of the origin such that
AveV, Ya, e F,2.

We now pose some more specific questions.

1. We restrict to sequences S such that each matrix A, € F appears
infinitely many times in that sequence. Are there any simple neces-
sary and sufficient conditions (referring to the existence of convex
neighborhoods with certain properties) for B, s to converge to zero
as M — oo, for all such §?

2. We may also pose the above question under a more stringent require-
ment on the sequences S. Namely, we require that, for a given integer
K, each matrix A, € F appears at least once every K times in the
sequence.

3. Assuming that some simple conditions have been found for problems
1 and 2 above, are there any effective algorithmic tests for them?

4. A class of algorithms has been suggested in [1,2] to test whether there
exists a convex neighborhood V such that A, VcV, v A € F.
However, these algorithms do not necessarily terminate in a finite
number of steps (although they almost always do). Is there a finite
algorithm for this problem?

5. Suppose that we alter slightly the original problem to the following:
Does there exist a rectangular V such that A, V< Vv, VY A,e F? If
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the orientation of the rectangle V is also fixed, this problem reduces to a
simple linear programming problem. Is there a simple solution if the

orientation of V is left free?

(1]

(2]

(3]

(4]

(5]
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5.8 ELECTRICAL TOMOGRAPHY

E.N. Gilbert and L.A. Shepp

AT&T Bell Laboratories
Murray Hill, NJ 07974

1. Introduction.

Tomography deduces a physical function o(P) (say a density), at
points P inside a living organ, from measurements made on the outside.
With suitable interpretation, 6(P) may reveal tumors or other abnormali-
ties. In X-ray tomography, o(P) is an attenuation coefficient, external
measurements supply integrals

a(l) = J' o(P) ds (1D
L
along straight line rays L through the organ, and the integral equation (1)
is solved for o(P) (see [1]). In another kind of tomography, using nuclear
magnetic resonance measurements, ¢(P) is deduced from integrals over
planes instead of lines (see [2]).

Here we give a very preliminary feasibility study of electrical tomog-
raphy. Each measurement will pass a small current through the organ
between two external electrodes; the voltage between another pair of elec-
trodes is then recorded. The function to be determined is the electrical
conductivity o(P). If o(P) could be deduced easily from these measure-
ments, electrical tomography would have the advantages of simple measur-
ing equipment offering no health hazards. Unfortunately, there is still no
simple solution to the problem of obtaining o(P) from the measurements.
The difficulty in finding o(P) seems to be related to the fact that each
measurement involves the whole organ, not just points on a line or plane.
Without actually solving for o(P) in general, one can still produce exam-
ples showing that certain large changes in ¢(P) have only small effects on
external measurements. Then, to give meaningful results, electrical tomog-
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raphy seems to require high-accuracy measurements.
2. Measurements.

The current density vector J (in amperes per square meter) is deriv-

able from a potential function u (in volts) by J = — ¢ grad u, where u
satisfies a partial differential equation
divicVu)=0. 2)

If only one could measure u internally, (2) might be solved as a first-order
partial differential equation for the unknown ¢ = 6(P). The characteristics
of this equation are precisely the current lines (having everywhere the
direction of grad u). Along a current line, one finds
d Au
= log 6 =— W,

but even this only determines o(P) within a constant of integration that
can differ for different lines. Potentials for several different flow patterns
will be needed before o(P) becomes well-determined. Of course the real
problem, with u available only externally, may require many more flows.

A finite number of measurements, each using two current probes and
two voltage probes, can use only a finite number n of probe locations.
Viewed externally, the organ is an unknown electrical network with n
accessible terminals. One may imagine these terminals interconnected by
a discrete network N of unknown resistors. It is unreasonable to expect
external measurements to determine the configuration, or graph, of N. For
example, with n = 3, external measurements cannot distinguish between Y
and A configurations (see [3]). Instead, one must assume N to have some
convenient graph, say a lattice, and try to determine the resistance values.

Simple examples of problems of this type are instructive. Suppose
first that N contains resistors ry, ..., r, connected in a ring, with r;
between terminals i and i+ 1. Suppose there are n measurements, the
ith using terminals / and i+ 1 for both the current probes and voltage
probes. Each measurement then determines the resistance p; seen across
the terminals of r;, and one requires ry, ..., r, satisfying
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(3)
where
R=ri+...%+r,. 4)

One can solve (3) for r;, treating R as an unknown parameter to be
determined from (4). Although each equation (3) has two roots, only
solutions with real positive r; are admissible. It turns out that only one
of the 2" choices of roots produces a solution (see [4]). C. L. Mallows

has also shown that [ g ] resistances rij » arranged in a complete graph, are

uniquely determined from the resistances p;; that can be measured exter-
nally. Of course, simple resistance measurements with point probes are
not apt to be reliable in tomography because the measured resistances will
depend on the probe pressure used.

Care is needed to choose a graph such that external measurements
determine unique resistances. For example, in Figure 1, N has 8 resis-

tors and n = 4 terminals. Since voltage probe pairs can have [g] =6

locations, and the current probes likewise, 36 measurements might seem
ample to determine the resistances. However, the three sets of resistance
values in Table 1 give like results in all 36 measurements. With n termi-
nals, there are only n — 1 independent ways of injecting current and only
n — 1 independent voltage measurements. Further dependencies, that fol-
low from the reciprocity theorem, reduce the number of independent meas-

urements to g . Figure 1 should be replaced by a network with only 6
resistors. |

The graph should also be chosen so that its resistances (or conduc-
tances) provide a discrete approximation of o(P) in continuous tissue. The
complete graph, for example, is inappropriate. Instead, resistors might be
arranged in a cubic lattice. If the array fills a large cube, b resistors on
each edge, there are n=6b*+2 accessible terminals and only

3b(b + 1)? < [g] resistors. Since there are more possible independent
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external measurements than resistors, there will be problems of either
avoiding redundant measurements or using them deliberately to counteract
measurement errors.

3. Accuracy.

It seems that electrical tomography will require extremely accurate
measurements. This can be shown by a pair of examples having poten-
tials, u, u’, differing only slightly externally, but which are solutions of (1)
with radically different conductances o(P), 6’(P). In one such pair, the
organ is taken as the unit sphere and current / is injected between north
and south poles. For the first solution, 6(P) is taken to be a constant o,
For the second solution, 6’(P) is the same constant G outside a smaller
concentric sphere of radius a and ¢’(P) = o;, another constant, inside the
smaller sphere. Since equation (1) reduces to Laplace’s equation in
regions of constant 6(P), the potentials u, ¥’ can be found using spherical
harmonics. On the unit sphere, the two potentials are found to differ by
an amount given by a series, in which the most important contribution is a

dipole term

2noo® —u) __ 9(1 - 8) a® cos O + 0@

I 1+28+2(1-8)d°

Here & = 6,/ o, 6 is the colatitude angle measured away from the north

pole, and potentials have been made equal on the equator. In any meas-
urement, the two voltage readings can then differ by at most

9/ (1-38)a°

+ 0(a).
noy (1 + 28 + 2(1 - §) a3

If a is not large, this difference is uniformly small or order O(a’) whether
the inner sphere represents a hole (8 =0) or a lump of metal (8 = o).
Injecting current between electrodes not diametrically opposite produces
even smaller differences in voltage readings.

By contrast, in X-ray tomography, changing ¢(P) within a sphere of
radius a has a bigger effect O(a) on some of the line integrals (L) in (1).
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(2]

(3]

(4]
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Table 1. Resistance Values for Three Networks (Figure 1),
Indistinguishable by External Measurement

Network
Resistance | 1 2 3
a 54 oo 00
b 54 54 45
c 54 45 45
d 54 54 oo
e 54 18 6
f 54 18 30
g 54 90 150
h 54 90 30
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Figure 1. A four-terminal network.
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5.9 FIGURE-GROUND PROBLEM FOR SOUND

Thomas M. Cover

Departments of Electrical Engineering
and Statistics
Stanford University
Stanford, CA 94305

The impossible tuning fork is a good example of a figure-ground opti-
cal illusion. Tracing the body of the tuning fork leads to the background.
What is figure and what is ground?

Another famous example is the face-vase illusion. Two mirror image
blue faces lie against a red background. If one stares at the picture for
awhile, one sees a red vase against a blue background. Attention flickers
from one foreground - background pair to its complement.

Can we create the same sort of illusion for sound? Consider a rich
tone against a background of silence. This tone goes off and on in such a
manner that it is perceived by the ear-brain as a rhythm, dah di da da, dah,
dah . ... Is it possible that the silence that lies between these bursts of
sound also qualifies as a rhythm? Not the same rhythm, but one of
equally compelling artistic merit? If so, we wish to give this background
silence equal status by providing another rich tone for the silence. The
whole waveform then is of roughly constant power. The ‘‘blue’’ tone
predominates until, for some arbitrary reason, the ear-brain focuses on the
“‘red’’ tone. One of two interesting rhythms is perceived against a ‘‘con-
stant’” background. This would constitute an aural figure-ground illusion.

It remains to discover a rhythm the complement of which is also a
rhythm and to choose the sounds appropriately.
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5.10 THE ENTROPY POWER INEQUALITY
AND THE BRUNN-MINKOWSKI INEQUALITY

Thomas M. Cover

Departments of Electrical Engineering
and Statistics
Stanford University
Stanford, CA 94305

The Brunn-Minkowski inequality states that the nth root of the
volume of the set sum of two sets in Euclidean n-space is greater than or
equal to the sum of the nth roots of the volumes of the individual sets.
The entropy power inequality states that the effective variance of the sum
of two independent random variables with densities in n-space is greater
than or equal to the sums of their effective variances. Formally, the ine-
qualities can be seen to be similar. We are interested in determining
whether this occurs by chance or whether there is a fundamental idea
underlying both inequalities.

Brunn-Minkowski: Let V(A) be the volume of A. If A, Bc R",
then V(A +B)2=V(A +B’), where A’, B’ are n-spheres such that
V(A") = V(A) and V(B) = V(B).

Entropy Power: Let H(X) = —[ f(x) In fix)dx , where f is the probabil-
ity density of X . If X and Y are independent n -vectors with proba-
bility densities, then HX +Y) > HXX'+Y’), where X’ and Y are
independent spherical normal with H(X") = H(X) and H(Y") = H{Y) .

REFERENCE
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5.11 THE WEIRD AND WONDERFUL CHEMISTRY
OF AUDIOACTIVE DECAY

J. H. Conway

Department of Mathematics
Princeton University
Princeton, NJ 08544

1. Introduction

Suppose we start with a string of numbers (i.e., positive integers), say
55555,

We might describe this in words in the usual way as "five fives," and
write down the derived string

s i B
This we describe as "two fives," so it yields the next derived string
25
which is "one two, one five," giving
1215

namely, "one one, one two, one one, one five," or
11121115

and so on. What happens when an arbitrary string of positive integers is
repeatedly derived like this?

I note that more usually one is given a sequence such as
55555 ;55;25;1215; 11121115 ;

and asked to guess the generating rule or the next term.

The numbers in our strings are usually single-digit ones, so we’ll call
them digits and usually cram them together as we have just done. But
occasionally we want to indicate the way the number in the string was
obtained, and we can do this neatly by inserting commas recalling the
commas and quotes in our verbal descriptions, thus:
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5 5555
5,
25,
L1 3,
4 L1 ZL L1

The insertions of these commas into a string or portion thereof is called
parsing.

We’ll often denote repetitions by indices in the usual way, so that the
derivation rule is

AP YB - - aaPbycdd - -

When we do this, it is always to be understood that the repetitions are
collected maximally, so that we must have

a#b, b#c,c#d,... .

Since what we write down is often only a chunk of the entire string
(i.e., a consecutive subsequence of its terms), we often use the square
brackets "[" or "]" to indicate that the apparent left or right end really is
the end. We also introduce the formal digits

0, as an index, to give an alternative way of indicating the ends (see
below)

X for an arbitrary nonzero digit, and

# n for any digit (maybe O ) other than n .

Thus X0 a® bP Y means the same as [ a® bP ¢¥

a® B oY X0 means the same as a® bP ¢Y]

a® bP ¥ x*0 means a® bP ¢¥ followed by at least another digit,
and a® bP Y#2)®  means that this digit is not a 2.

I’'m afraid that this heap of conventions makes it quite hard to check
the proofs, since they cover many more cases than one naively expects.
To separate these cases would make this article very long and tedious, and
the reader who really wants to check all the details is advised first to
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spend some time practicing the derivation process. Note that when we
write L - L — L” — --- we mean just that every string of type L
derives to one of type L’ , every string of type L’ derives to one of type
L” , and so on. So when in our proof of the Ending Theorem we have
(n#2)
n"l o " -]

the fact that the left arrow is asserted only when n # 2 does not excuse
us from checking the right arrow for n=2. (But, since n>1 is
enforced at that stage in the proof, we needn’t check either of them for
n=1.)

By applying the derivation process n times to a string L , we obtain
what we call its nth descendant, L, . The string itself is counted among
its descendants, as the Oth.

Sometimes a string factors as the product LR of two strings L and
R whose descendants never interfere with each other, in the sense that
(LR), = L,R, for all n . In this case, we say the LR splits as L.R (dots
in strings will always have this meaning). It is plain that this happens just
when (L or R is empty or) the last digit of L, always differs from the
first one of R,. Can you find a simple criterion for this to happen?
(When you give up, you’ll find the answer in our Splitting Theorem.)

Obviously, we call a string with no nontrival splittings an atom, or
element. Then every string is the split product, or compound, of a certain
number of elements, which we call the elements it involves. There are
infinitely many distinct elements, but most of them only arise from spe-
cially chosen starting strings. However, there are some very interesting
elements that are involved in the descendants of every string except the
boring ones [ ] and [22]. Can you guess how many of these common ele-
ments there are? (Hint: we have given them the names Hydrogen, Helium,
Lithium , . . . , Uranium.)

It’s also true (but ASTONISHINGLY hard to prove) that every string

eventually decays into a compound of these elements, together with

perhaps a few others (namely, isotopes of Plutonium and Neptunium, as
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defined below). Moreover, all strings except the two boring ones increase
in length exponentially at the same constant rate. (This rate is roughly
1.30357726903: it can be precisely defined as the largest root of a certain
algebraic equation of degree 71.) Also, the relative abundances of the ele-
ments settle down to fixed numbers (zero for Neptunium and Plutonium).
Thus, of every million atoms about 91790 on average will be of Hydro-
gen, the commonest element, while about 27 will be of Arsenic, the rarest
one.

You should get to know the common elements, as enumerated in our
Periodic Table. The abundance (in atoms per million) is given first, fol-
lowed by the atomic number and symbol as in ordinary chemistry. The
actual digit-string defining the element is the numerical part of the
remainder of the entry, which, when read in full, gives the derivate of the
element of next highest atomic number, split into atoms. Thus, for exam-
ple, the last line of the Periodic Table tells us that Hydrogen (H) is our
name for the digit-string 22, and that the next higher element, Helium
(He), derives to the compound

Hf Pa.H.Ca.Li
which we might call

"Hafnium-Protactinium-Hydrogen-Calcium-Lithide"!
Not everything is in the Periodic Table! For instance, the single digit
string "1" isn’t. But watch:

1

11

21

1211

111221

312211

13112221

11132.13211 = Hf.Sn

after a few moves it has become Hafnium Stannide! This is an instance of
our Cosmological Theorem, which asserts that the exotic elements (such as
"1") all disappear soon after the Big Bang.
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The Periodic Table (Uranium to Silver)

abundance n E, E, inside the derivate of E,
102.56285249 92 U 3

9883.5986392 91 Pa 13

7581.9047125 90 Th 1113

6926.9352045 89 Ac 3113

5313.7894999 88 Ra 132113

4076.3134078 87 Fr 1113122113

3127.0209328 86 Rn 311311222113

2398.7998311 85 At Ho.1322113

1840.1669683 84 Po 1113222113

1411.6286100 83 Bi 3113322113

1082.8883285 82 Pb Pm.123222113

830.70513293 81 T1 111213322113

637.25039755 80 Hg 31121123222113

488.84742982 79 Au 132112211213322113
375.00456738 78 Pt 111312212221121123222113
287.67344775 77 Ir 3113112211322112211213322113
220.68001229 76 Os 1321132122211322212221121123222113
169.28801808 75 Re 111312211312113221133211322112211213322113
315.56655252 74 A% Ge.Ca.312211322212221121123222113
242.07736666 73 Ta 13112221133211322112211213322113
2669.0970363 72 Hf 11132.Pa.H.Ca. W

2047.5173200 71 Lu 311312

1570.6911808 70 Yb 1321131112

1204.9083841 69 Tm 11131221133112

1098.5955997 68 Er 311311222.Ca.Co

47987.529438 67 Ho 1321132.Pm

36812.186418 66 Dy 111312211312

28239.358949 65 Tb 3113112221131112

21662.972821 64 Gd Ho.13221133112

20085.668709 63 Eu 1113222.Ca.Co.

15408.115182 62 Sm 311332

29820.456167 61 Pm 132.Ca.Zn

22875.863883 60 Nd 111312

17548.529287 59 Pr 31131112

13461.825166 58 Ce 1321133112

10326.833312 57 La 11131.H.Ca.Co

7921.9188284 56 Ba 311311

6077.0611889 3D Cs 13211321

4661.8342720 54 Xe 11131221131211

3576.1856107 53 I 311311222113111221
2743.3629718 52 Te Ho.1322113312211

2104.4881933 51 Sb Eu.Ca.3112221

1614.3946687 50 Sn Pm.13211

1238.4341972 49 In 11131221

950.02745646 48 Cd 3113112211

728.78492056 47 Ag 132113212221
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The Periodic Table (Palladium to Hydrogen)

abundance n E, E, inside the derivate of E,
559.06537946 46 Pd 111312211312113211
428.87015041 45 Rh 311311222113111221131221
328.99480576 44 Ru Ho.132211331222113112211
386.07704943 43 Tc Eu.Ca.311322113212221
296.16736852 42 Mo 13211322211312113211
227.19586752 41 Nb 1113122113322113111221131221
174.28645997 40 Zr Er.12322211331222113112211
133.69860315 39 Y 1112133.H.Ca.Tc

102.56285249 38 Sr 3112112.U

78.678000089 37 Rb 1321122112

60.355455682 36 Kr 11131221222112

46.299868152 35 Br 3113112211322112
35.517547944 34 Se 13211321222113222112
27.246216076 33 As 11131221131211322113322112
1887.4372276 32 Ge 31131122211311122113222.Na
1447.8905642 31 Ga Ho.13221133122211332
23571.391336 30 Zn Eu.Ca.Ac.H.Ca.312
18082.082203 29 Cu 131112

13871.124200 28 Ni 11133112

45645.877256 27 Co Zn.32112

35015.858546 26 Fe 13122112

26861.360180 25 Mn 111311222112

20605.882611 24 Cr 31132.8i

15807.181592 23 v 13211312

12126.002783 22 Ti 11131221131112

9302.0974443 21 Sc 3113112221133112
56072.543129 20 Ca Ho.Pa.H.12.Co

43014.360913 19 K 1112

32997.170122 18 Ar 3112

25312.784218 17 Cl 132112

19417.939250 16 S 1113122112

14895.886658 15 P 311311222112

32032.812960 14 Si Ho.1322112

24573.006696 13 Al 1113222112

18850.441228 12 Mg 3113322112

14481.448773 11 Na Pm.123222112

11109.006821 10 Ne 111213322112

8521.9396539 9 F 31121123222112

6537.3490750 8 (o) 132112211213322112
5014.9302464 7 N 111312212221121123222112
3847.0525419 6 C 3113112211322112211213322112
2951.1503716 5 B 1321132122211322212221121123222112
2263.8860325 4 Be 111312211312113221133211322112211213322112
4220.0665982 3 Li Ge.Ca.312211322212221121123222112
3237.2968588 2 He 13112221133211322112211213322112
91790.383216 1 H Hf.Pa.22.Ca.Li
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2. The Theory

We start with some easy theorems that restrict the possible strings
after the first few moves. Any chunk of a string that has lasted at least n
moves will be called an n-day-old string.

The One-Day Theorem. Chunks of types
ax, bx, x4 ormore .4 J‘:3 y3

don’t happen in day-old strings. (Note that the first one has a given pars-
ing.)
Proof. The first possibility comes from ¥, which, however, should

have been written x%*?, in the previous day’s string. The other two,
whichever way they are parsed, imply cases of the first.

The Two-Day Theorem. No digit 4 or more can be born on or after the
second day. Also, a chunk 3 x 3 (in particular 33 ) can’t appear in any
2-day-old list.

Proof. The first possibility comes from a chunk x* or more, while the
second, which we now know must parse ,3x,3y, can only come from a
chunk x%y?, of the previous day’s string.

When tracking particular strings later, we’ll use these facts without
explicit mention.

The Starting Theorem. Let R be any chunk of a 2-day-old string, con-
sidered as a string in its own right. Then the starts of its descendants ulti-
mately cycle in one of the ways

[ 1, or [1'x! > [13 > 3'x*3
U |

or @ or [221'x1 = [2213 - [2231x*3
A )

If R is not already in such a cycle, at least three distinct digits
appear as initial digits of its descendants.
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Proof. If R is nonempty and doesn’t start with 22, then it either starts
with a 1 and is of one of the types
[11X0 orl or [11(22 or3 or 32) or [12xl or#l . [13

or starts with a 2 and is of one of the types [21XZ °F *2 or [23
or starts with a 3 and is of one of the types [3'X3 o #3 or [32x3 or #3
or starts with some n >3 and has form [n! .

It is therefore visible in
[1123 323 ny B3 [ [23

31— [1'32[12X 5 [2'X2 (11225 12 5 2! X*25[1'X!5[13531x*3
S

which establishes the desired results for it.
This proves the theorem except for strings of type [2°R’ all of whose
descendants start with 22. This happens only if no descendant of R’ starts

with a 2, and so we can complete the proof by applying the results we’ve
just found to R’.

The Splitting Theorem. A 2-day-old string LR splits as L.R just if one
of L and R is empty or L and R are of the types shown in one of

L R

n] [m
21 | (1'X" or (1% or [3'X*3 or [n!
22] | [221'X" or [2213 or [223'X*3 or (220D

n=24, m<3)

Proof. This follows immediately from the Starting Theorem applied to
R and the obvious fact that the last digit of L is constant.
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Now we investigate the evolution of the end of the string!

The Ending Theorem. The end of a string ultimately cycles in one of
the ways:

231 132211\13212221]—92. 13211 32221i3 12113211]
2.12322211331222113112211]«-2.1113122113322113111221131221]
2.312211322212221 12i1232221 1n]

(n>1)
2.1311222113321132211221121332211n]

(Note: our splitting theorem shows that these strings actually do split at
the dots, although we don’t use this.)

Proof. A string with last digit 1 must end in one of the ways visible in
12 ]» @)X 11 |- @2)¥ 1215 2211 |
2%%2 1215221115 2212 1 23 11 ]

and its subsequent evolution is followed on the right-hand side of Fig-
ure 1.

A string with last digit » > 1 must end n"] or "] and so evolves
via
(n=2)

m (n#2)
n" - "] > nl] > 1n] > 11n] » (#D11n] - 211n] — 2211n]

and the last string here is the first or second on the left of Figure 1.
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(#2)2211n] (n>1) (#2)2221)

(#2)22211n] 3211]
32211n] 31221]
322211n] 3112211]

(#3)332211n] 3212221]
2322211n] 312113211]
21332211n] 3111221131221]
2112322211n] (#3)331222113112211]
221121332211n] 2.311322113212221] (period 4)
22112112322211n] 2.13211322211312113211] <
2211221121332211n] 2.1113122113322113111221131221]
221222112112322211n] 2.311311222.12322211331222113112211]

21132211221121332211n]
221132221222112112322211n]

22113321132211221121332211n]

2.1112133.22.12.311322113212221]

22.12.31221132221222112112322211n]
2.1311222113321132211221121332211n] (period 2)
2.11132.13.22.12.31221132221222112112322211n]

Figure 1. The evolution of endings other than 22 1.

This figure proves the theorem except for the trivial case 22]. (When
any of these strings contains a dot, its subsequent development is only fol-
lowed from the digit just prior to the rightmost dot.)

We are now ready for our first major result.

The Chemical Theorem.

(a) The descendants of any of the 92 elements in our Periodic Table are

compounds of those elements.

(b) All sufficiently late descendants of any of these elements other than
Hydrogen involve all 92 elements simultaneously.

(c) The descendants of any string other than [ ] or [22] also ultimately

involve all 92 elements simultaneously.

(d) These 92 elements are precisely the common elements as defined in

the introduction.
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Proof.

(a) follows instantly from the form in which we have presented the

Periodic Table.

(b) It also follows that if the element E, of atomic number n appears at

(©

(d)

some time ¢, then for any m < n , all elements on the E,, line of the
table will appear at the later time ¢+ n — m . In particular,

E, at t—>Hf&Li at t+n-1 (f n22),

n

Hf & i at t > Hf & Li at ++2 and ¢+ 71,

Hf at t+t—> Sr& U at r+72- 38,

Ua t—>E, at t+92—-n.

From these we successively deduce that if any of these 92 ele-
ments other than Hydrogen is involved at some time #;,, Hafnium and
Lithium will simultaneously be involved at some strictly later time
<ty+ 100, and then both will exist at all times 2 ¢,+ 200,
Uranium at all times 2 f;+ 300, and every other one of these 92
elements at all times 2 ¢, + 400 .

In other words, once you can fool some of the elements into

appearing some of the time, then soon you’ll fool some of them all of
the time, and ultimately you’ll be fooling all of the elements all of the
time!
If L is not of form L22 ], this now follows from the observation that
Calcium (digit-string 12) is a descendant of L , since it appears in
both the bottom lines of Figure 1. Otherwise we can replace L by
L’, which does not end in a 2.

follows from (a), (b), (c) and the definition of the common elements.

Now we’ll call an arbitrary string common just if it is a compound of

common atoms.
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The Arithmetical Theorem.

(a) The lengths of all common strings other than boring old [ ] and [22]
increase exponentially at the same rate A > 1 .

(b) The relative abundances of the elements in such strings tend to certain
fixed values, all strictly positive.

Notes. Since each common element has at least 1 and at most 42 digits
we can afford to measure the lengths by either digits or atoms: we prefer
to use atoms. The numerical value of A is 1.30357726903; the abun-
dances are tabulated in the Periodic Table.

Proof. Let v be the 92-component vector whose (i)-entry is the number
of atoms of atomic number i in some such string. Then at each deriva-
tion step, v is multiplied by the matrix M whose (i, j)-entry is the number
of times E; is involved in the derivate of E;. Now our Chemical
Theorem shows that some power of M has strictly positive (i, j)-entries for
all i# 1 (the (1, j)-entry willbe O for j# 1, 1 for j=1, since every
descendant of a single atom of Hydrogen is another such).

Let A be an eigenvalue of M with the largest possible modulus, and
Vo a corresponding eigenvector. Then the nonzero entries of vy, M”" are
proportional to A", while the entries in the successive images of all other
vectors grow at most this rate. Since the 92 coordinate vectors (which
we’ll call H,He, ..., U in the obvious way) span the space, at least
one of them must increase at rate A

On the other hand, our Chemical Theorem shows that the descendants
of each of He, Li, ..., U increase as fast as any of them, and that this
is at some rate > 1, while H is a fixed vector (rate 1). These remarks
establish our Theorem.

(We have essentially proved the Frobenius-Perron Theorem, that the
dominant eigenvalue of a matrix with positive entries is positive and
occurs just once, but I didn’t want to frighten you with those long names.)
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The Transuranic Elements.
For each number n = 4 , we define two particular atoms:
an isotope of Plutonium (Pu) : 31221132221222112112322211n
an isotope of Neptunium (Np): 1311222113321132211221121332211n

For n=12, these would be Lithium (Li) and Helium (He); for
n =3, they would be Tungsten (W) and Tantalum (Ta), while for n = 4
they are called the transuranic elements. We won’t bother to specify the
number n in our notation.

We can enlarge our 92-dimensional vector space by adding any
number of new pairs of coordinate vectors Pu, Np corresponding to pairs
of transuranic elements.

Our proof of the Ending Theorem shows that every digit 4 or more
ultimately lands up as the last digit in one of the appropriate pair of tran-
suranic elements, and (see the bottom left of Figure 1) that we have the
decomposition

Pu — Np — Hf.Pa.H.Ca.Pu.

Now Pu * Np is an eigenvector of eigenvalue 1 modulo the sub-
space corresponding to the common elements, since Pu —« Np modulo
that space. Because these eigenvalues are strictly less than A in modulus,
the relative abundances of the transuranic elements tend to 0.

So far, I can proudly say that this magnificent theory is essentially all
my own work. However, the next theorem, the finest achievement so far
in Audioactive Chemistry, is the result of the combined labors of three
brilliant investigators.

The Cosmological Theorem.

Any string decays into a compound of common and transuranic ele-
ments after a bounded number of derivation steps. As a consequence,
every string other than the two boring ones increases at the magic rate A,
and the relative abundances of the atoms in its descendants approach the
values we have already described.
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Proof of the Cosmological Theorem would fill the rest of this book!
Richard Parker and I found a proof over a period of about a month of
very intensive work (or, rather, play!). We first produced a very subtle
and complicated argument, which (almost) reduced the problem to tracking
a few hundred cases, and then handled these on dozens of sheets of paper
(now lost). Mike Guy found a simpler proof that used tracking and back-
tracking in roughly equal proportions. Guy’s proof still filled lots of pages
(almost all lost) but had the advantage that it found the longest-lived of
the exotic elements, namely, the isotopes of Methuselum (2233322211n ;

see Figure 2). Can you find a proof in only a few pages? Please!

223332221ln (n>1)
223332211n

223322211n

222332211n

322322211n

13221332211n
111322112322211n
31132221121332211n
132113322112112322211n
La.H.12322211221121332211n
1112133221222112112322211n
Sr.3221132211221121332211n
132221132221222112112322211n
1113322113321132211221121332211n
3123222.Ca.(Li or W or Pu)
1311121332

11133112112.Zn

Zn.321122112

131221222112
1113112211322112
311321222113222112
1321131211322113322112
11131221131112211322.Na
3113112221133122211332
Ho.Pa.H.Ca.Ac.H.Ca.Zn

Figure 2. The descendants of Methuselum.

-186-



The Degree of A .

Plainly, A is an algebraic number of degree at most 92. We first
reduce this bound to 71 by exhibiting a 21-dimensional invariant subspace
on which the eigenvalues of M are O or 1.

vi=H,vy;=He-Ta,v;=Li-W,...,v,;=Ca-Pa,

or, in atomic number notation,

Vi=E; vy =E;) - Eg;, v3=E3-Eqg, ..., vyo=Ey-Eg,
and also define

v31={Sc+Sm-H-Ni-Er-3U}/2,
then observe that
Vo = Vg —=> Vig = " V4 = V3 >V, V; 5 V.
An alternate base for this space consists of the eigenvectors
vy and v3 v,
of M with the respective eigenvalues
1 and #+1,
together with the following Jordan block of size 18 for the eigenvalue 0
Vo1 = Vig = Vp9 — Vig = V5 — V3 = V4 — V5, — 0.

(This shows that M is one of those "infinitely rare” matrices that cannot
be diagonalized. Don’t expect to follow these remarks unless you’ve

understood more of linear algebra than I fear most of your colleagues
have!)

Richard Parker and I have recently proved that the residual 71st
degree equation for A is irreducible, even when it is read modulo 5. We
use the fact that the numbers in a finite field of order ¢ all satisfy x7 = x
(since the nonzero ones form a group of order ¢ — 1, and so satisfy
2 = 1)

Working always modulo 5, we used a computer to evaluate the

sequence of matrices.
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- — M3, — M3 — M3
M0=M,MI—M8,M2—M1 M3—M,...,M73—M72,

and to verify that the nullity (modulo 5) of M, ,, —M, was 21 for
1<n<70, but 92 for n=71. Note that the 21 vectors of the above
"alternate base" are eigenvectors of M, whose eigenvalues (modulo 5 ) lie
in the field of order 5.

If the 71st degree equation were reducible modulo 5, then M, would
have an eigenvector linearly independent of these with eigenvalue lying in
some extension field of order ¢ = 5" (1 < n < 70). But then the eigen-
values ¢ of these 22 eigenvectors would all satify ¢7=¢ , and the 22
eigenvectors would be nullvectors for

M7 =My =M,y - My,
contradicting our computer calculations.

It is rather nice that we were able to do this without being able to
write down the polynomial. However, Professor Oliver Atkin of Chicago
has since kindly calculated the polynomial explicitly and has also
evaluated its largest root A as

1.3035772690342963912570991121525498

approximately. The polynomial is

/1 _ 469 _ 2x68 — x67 4 2466 2x65 + x0% _ 03 _ 62 _ xﬁl

= x%0 = 9 1+ 258 4 5657 + 3556 — 2655 — 1065 - 3553 — 252 4 6251

+ 6570 + X + 9x*8 — 3547 — 756 — 845 — 8™ + 10x*3 + 6x*2 + 8x*!

= 5x40 — 123 + 7x38 — 737 4 7036 — 535 — 334 4 10433 + 32 - 631

— 200 — 1002 - 3x28 + 227 + 9626 — 3x25 + 14524 — 83 — 722!

+ 9220 4+ 3x19 — 4x18 — 10x17 — 7516 + 12615 + 7x14 4 213 — 12412 — 4411

— 20450 + X - T+ T -4t 123 - 62 +3x -6
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CHAPTER VL
SOLUTIONS TO SIX OF THE PROBLEMS

Here we have some results. The idea at the conference was to present
problems the first day, solve them the second day, and present the solu-
tions on the third day. Good luck! Although the authors did not have
their egos tied up in giving hard problems, it is still clear that open prob-
lems take more than a half a day or so to solve. Only one problem was
actually solved at the conference. That was El Gamal’s- problem solved
by Gallager -- an interesting new problem and a very nice solution.

Boyd and Hajela have contributed to Wyner’s problem. The
Gambler’s Ruin on the Simplex by T. Cover was solved by Bruce Hajek
for three dimensions. The solution does not seem to generalize but we are
very happy with the techniques anyway. Finally, the ergodic process
selection problem of T. Cover was successfully handled by Bruce Hajek
under moment constraints. Cover still believes that the conjecture is gen-
erally true, but at this time we do not know whether the moment con-
straints can be removed.

So here we have it. Some of the problems of this book can actually
be solved. It is conceivable that some people might use the problems in
this book as a source of research inquiries. For that reason, the editors
will act as a clearing house on papers published on the subject of this
book, so potential researchers can inquire about the status of these prob-
lems.
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6.1 ON THE SPECTRAL DENSITY
OF SOME STOCHASTIC PROCESSES

S. Boyd

Department of Electrical Engineering
Stanford University
Stanford, CA 94305

D.J. Hajela

Bell Communications Research
Morristown, NJ 07960

1. Introduction.

We prove the following theorem, which was motivated by a question
that Wyner raised in [1].
Theorem: Given any € > 0 and A > 0, there is a complex stationary sto-
chastic process x(¢z, w) which satisfies:
A |x(t,w)|<A as.
@G |l Sx(f) - B, I <€,

where S,(f) = J e 2™ E x(t) x(t + 1) dt is the spectral density of x

and

AZ2  |f)1<1
B, =
0 | fl>1

is the boxcar spectral density with bandwidth 1 and total power AZ.
In fact, we have (ii) from the following stronger set of conclusions:

(iii) S,() 20and S, is even.
oo 1

(V) [S{Hdf<eand | [ SN -A%|<e.
1 -1

(v) | max S()-A%2|<e.

Ifl=<1
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Thus x is a process with nearly boxcar spectrum which is not only power
limited to A2 but is amplitude limited to A (a stricter constraint). More-
over, the process we construct is ergodic. Aaron Wyner has pointed out
to us that there are quite simple constructions of processes satisfying (i)
and (ii) above, but they are not ergodic. The construction of our process
is more delicate and thus the verification of the properties of the process is
at least as interesting as the properties themselves.

We also have the following corollary whose proof is immediate:

Corollary: The process x above satisfies:
1 A2
[ log (1 +S, (H) df 22 log(1 + 5 €
1

1
= _[ log (1+ Bo(N) df — € .
k|

2. Proof of the Theorem.

We now prove the theorem.

Proof. In [2], p. 321, J.P. Kahane demonstrates that there are polynomi-
als,

n
P2)=Y a,,2% |a;l=1,
m=1

and €, — 0 such that
I Pye®) ll.< (1 +g,) Vn.

In fact, he even proves a stronger result, but we shall not need this. Let

A
V2N+1

B i i
un([) % e 2n i N P2N+l (e i IJ’N) )

u, isa N periodic signal with power A? and peak

Nu, lo =1 +€,)A.
Let
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Up(t, ®) = up(t + 6(w)) ,
where 6(w) is uniformly distributed on [0, N]. Uy is a complex sta-
tionary stochastic process such that

lUylle <1 +€y) A as.

and with spectral measure

A? n
» &Kf= x)-

S -
uw D=8+ 1 inlen

These spectral measures approximate the boxcar spectrum in distribution
but we want a stronger approximation of the densities.

To do this, we modulate the process Uy as follows: Let Zy , be ran-
dom telegraph process with rate o/2mN , independent of Uy , where
o > 1. Then,

| Zyo =1 as.

and
~1
oamn N
Sz () = ————.
ZN,cr. az + (Nf)z
Let
- ZN.aUN
XN, = 1 48y
N
Then
| Xy |<Aas
and

6 -1 N A% o
XNa (l+EN)2 2N+1 2xm |n|<N (12+(Nf+n)2 -

The theorem now follows at once from the lemmas below by choosing N
and o large enough. (See Lemma F in particular.) OJ

Lemma A: For fixed a>1 ,
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A2
Tim ||Sy. - B <4 lim  max S B
N—oo S alh N—e fe [-1,1] ‘l X | 2

Proof. Note that Sy  (f) is an even function. We show first that

[ Sx, Hdf—>0.
1

Now

by Cesaro convergence. Therefore,

[ Sx, (Hdf > 0.
1

Similarly, since SXN.a(f) is even,

-1
J SXN.a(f)df — 0.
Also, by a similar calculation,

j Sy ) dF = — L 42,

(1 + gy)?
Now

1
| an,u =Byl = J
-1

and so

Az oo —
Skna = 5 |+ { Sxy, DAf + | Sy, (Ndf

. 1 A2
lim || Sy, = By Il; < Tim j Sxyo ~ £y }df.
; 4 .

Now
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1
Az 3 A2 A2
]38 ~% ’ ¥= ] Sn PG s
[Sxyo 2 571N [11) Sty S 510 -11)
A2 AZ A2
J'A2 Sxna = o H< ‘ I Sxy, Nl = T’ A [fl |fl<1, 8, 2 T]
naZ
A2
£2 ||SXN‘a|1m—'2— ’
where || Sy, Il =fen?gf.l] |SXN_‘,| . Moreover,
A? 2 . A?
AJ 7 = SXN'a df= A“ — MJ-I SXN,:; df+ J 4 SXN.u = T df
[SXN_“S-Z—] N [-1,1] Sxy o> AT
e 1o A2
Therefore, lim || Sy, — By ll; <4 lim | || Sxyq lleo = - O
Lemma B: Let fi) = ¥ ————— . Then max fiv) =
<N O+ (x—n) x e [-N.\N]
max f(x).
xe [-1,1])

Proof. Since f(x) is even, it suffices to show max flx) = max Ax).

xe [O,N] x e [0,1]
Fix ye [0,1] and let s, =f(y+k) for k=0,1,...,N—-1. We
show 5925 25)2 -+ 25y ;. This clearly suffices to finish the
proof. Now
k+N o k+14N o

Sy = 2, e Y me——
N O+ O+ )P i o+ (y + )P

- o — b >0. O

o2+ +k-N?2 o2+@+k+1+N)>
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Lemma C: Let Cy be a square with vertices at (N""lf)(l +1i),

N + %)(—1 +i), (N+ —;-)(—1 —i),and N+ %)(1 —i). Let g(2) be

a function with poles at z=p,, ..., p; (and assume N is large enough
so the Cy contains all these poles within its interior). Suppose that

|g(2)|=0

#] on Cy . Then

% gln) = [—f‘, Residue (1 cot mzg(z) at pj )| + O(-}%—)
n=—N J=1

This is a standard fact from the theory of residues.
Lemma D: For a, b,c,d € R witha #0 we have,

g: d __nd
neN (an+b? + %  2ipa

> (cot w — cot w)

where w =m( —-Ai — ) and A = 2, p= £ Lemma D follows at once
a a

from Lemma C after calculating residues and elementary algebra.

Lemma E:
max |S
fe [—1.i1| X |
) 2
_ 1 2N A” max sec n:zx coth 1:;1 i O(l) .
(1 +eN)2 2N+1 2 xe [01] 1 + coth® mow tan” Ttx N

Proof.
1

S = max |S
ISy Il = max ISy,

= max SXM (since SXM is even and positive)
fe [-11] : :

1 ON A2 o

= b max
(1+gy? 2N+ 1 2n fe (0N |REN a? + (Nf — n)?
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2
= 1 2N _ AT max f(x),

B (1+gy)? 2N+1 21 xe [ON)

o
where flx) = —————— . By lLemma B, max flx)=
2 |,,|z‘éN o? + (x — n)? x e [ON]

max flx). Setting d=o, a=1, c=a, and b=-x in Lemma D
x e [0,1]

gives that
flx) = 21 (cot T (x — icx) — cot T (x + i) + 0(%)
1

2

sec” 1tx coth o )

1 + coth? & o tan? mx

The result now clearly follows. O

LemmaF: 1im 1Iim || S
O—ro0 NLywll XNa

Proof. For fixed a > 1,

oo A2 ,
S - B <4 lim max |S - —
I Sxyy = Baly <4 Tim | max |8, -5
by Lemma A. By Lemma E,
— A2 2 sec? mx coth mo
lim [ max |Sy, |-—|=-—=—| max > =
N—es | fe [-1,1] “Ne 2 2 "xe [01] 1+ coth® o tan® mx

Since sec? x = 1 + tan? tx and lim coth ma = 1 , we have

o—reo
—_— sec? mx coth moL
lim max 2 5 -1|=0
a—ee [ xe [0,1] 1 + coth® o tan” 7tx

which completes the proof. O
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6.2 ERGODIC PROCESS SELECTION

Bruce Hajek

Department of Electrical Engineering
University of Illinois
Urbana, IL 61801

The purpose of this note is to give a partial solution to the following
problem posed by Thomas M. Cover [1]. Let (X, Y)=(X;, Y, i€ Z) be a
jointly ergodic stationary stochastic process. A random process
8 =(3,i € Z) is called a selection strategy if §; € {0,1} with probability
one for each i, and a selection strategy & is called sequential if for each
i =21, §; is measurable with respect to

Xy Y Xig Yigo oo, X, ¥y),

which represents the finite past.
Cover’s problem is to prove the conjecture that the limit
1 n
n—o N i=1
is maximized over all sequential selection strategies & by any sequential
selection strategy 8" which satisfies
1 ’ E[XI_YJX_I, Yf—]""’Xl’ Yl] >0
§=10, <0 (1)
arb., =0
with probability one for each i. We will prove this conjecture under the
assumption that

E( X? + Y? ) < + oo for each i.

We begin by saying that a selection strategy 8 is weakly sequential if,
for each i, §; is measurable with respect to the infinite past
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o) (Xf_1! Y"_ly « s ey XD, Yo, . e ).

In the remainder of this note, we use & to denote an arbitrary sequen-
tial selection strategy, and we use Z; to represent the corresponding reward
at state i:Z;=9;X;+ (1-8) Y;. Similarly, we let & be an arbitrary
weakly admissible selection strategy and we let (Z: ) denote the
corresponding reward sequence.

We also suppose that 8" is any sequential strategy satisfying the con-
jectured optimality conditions (1), and we let 8" be any weakly sequential
strategy satisfying the analogous conditions

1, EX-Y|Xit Y. . X Yg...1>0
8 =10, <0
arb., =0.

Finally, we let (Z:) and (Z:*) denote the reward sequences corresponding
to the strategies 8" and 8", respectively.

Lemma 1:
n
lim inf =~ 3 Z' —~ Z,2 0 as.

n —» oo n£~=I

n ’
lim inf — 3 Z* — Z,2 0 as.

n—e H i=1

Proof. We have Z; — Z; = D, + A; , where

Ay=ElZ] =2 | Xpyy Yy ouny Xy, ¥y 1 a0d D=2} ~Z,— Ay

3 1

The random variables D; are pairwise orthogonal and ED? is bounded

independently of i, so by the strong law of large numbers for orthogonal
random variables [Doob’s 1953 book, p. 158]

n
lim — 3 D;=0 as.
noyee Mo

We also have A; > 0 a.s. for each i so that
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lim inf - 3 A, >0 as.

n—co N i=1

Combining these facts proves the first assertion of the lemma. The second
assertion can be proved in the same way. [
Let 85 denote a sequential selection strategy such that for i with i > K

5 {1  ELX; =Y | X, Yoo X o Y g1 20

0, <0
and let 8 denote the weakly admissible rule defined by

{1, ELX; =Y | Xy Yigo o X Y ...1 20

o7 = 0, <0.

]

We let (Zy,) denote the reward sequence when rule 8% is used for
1 < K <. Since, ignoring a finite interval in the case that K is finite,
each 8% is a stationary rule, the ergodic convergence theorem implies that

1 2 .
— 3 Zx; — JginL! and as. senses,
n

i=1 Ao
where
Jk=E{EXy | X, Y_y....X s Y g1V
E[Yy|X_,Y 4 .... X oY gI} for 1SK<eoo
and
Jo=E{EXy | X_,Y_,...] VE[ Yy |X_ Y ...1}

where a v b denotes the maximum of @ and . By the martingale conver-
gence theorem for uniformly integrable martingales, the conditional expec-
tations in the above expression for Jg converge in L! to the corresponding
conditional expectations in the above expression for J_ . Therefore,
lim Je=J_.
K — o X

Since each 8 is a sequential selection strategy, we conclude from the

first assertion of Lemma 1 that "

-201-



n
llim inf + zz’;‘} - T3 O as.

n— eo nf=1

On the other hand, taking 8 in Lemma 1 equal to 8 and 8" in Lemma 1
equal to 8, the second assertion of Lemma 1 implies that

n
Jw+[liminf—-l— Zz:.‘]an.s.

Combining these two inequalities, we get that with probability one,

n n
Jg<liminfL ¥ Z' <limsup + 3 ZF < J..

n —» eco nl;'—‘l n — eco =1

Since Jx converges to J,, as K tends to infinity, this yields that

Z; = J_, with probability one.

‘Ma

. 1
lim —
n—e N

i=1

Once again applying the second part of Lemma 1, we can deduce the
following theorem.

Theorem:

; 1 & . ’ .
limsup— ¥ Z;<J_ = lim — ¥ Z; as.

n—e« n i=1 n—e N i=1
for any sequence (Z:-) arising from a weakly sequential (in particular a
sequential) selection strategy.

Remark. By using sharper convergence results and a truncation argu-
ment, we believe that our proof extends to cover the case that

E[ |X;]| log |X;| + |Y;| log |Y;| 1 < + oo.

We hesitate to conjecture exactly what happens under the sole assumption

that E[ |X;| + |Y;] ] <+ e, although we can prove the result if it can be
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shown that

n
lim < 3 E[X, | Xy ... Xy ]

n—e N i=1

exists and is finite with probability one for any ergodic random process X
with E|X;| finite.
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6.3 GAMBLER’S RUIN:
A RANDOM WALK ON THE SIMPLEX

Bruce Hajek

Department of Electrical Engineering
University of Illinois
Urbana, IL 61801

The purpose of this note is to give a solution to a problem of Thomas
M. Cover (see Chapter V, Section 5.4). Suppose there are three gamblers
with respective capital p,, p,, and p., where p, + p, +p.=1. The
players engage in a symmetric three-way game modeled by Brownian
motion in the two-dimensional simplex p; =0, p, + p, + p. = 1. When
one of the players goes broke, play continues between the remaining two
players, where the play is now modeled by a Brownian motion in one
dimension, until a second player loses, and the remaining player is
declared a winner. Doob’s optional sampling theorem implies that player :
will be a winner with probability p; . Cover’s problem is to find the pro-
bability that the players lose in a specific order. For example, we would
like to find the probability that player 3 loses first and then player 2 loses.
We provide a "messy" solution.

It is convenient to represent the simplex by the region bounded by an
equilateral triangle. For convenience, we choose the triangle to be a sub-
set of the complex plane as shown in Figure 1. A is a positive constant
determined below and o = exp (2mi/3) is a cube root of unity. A point ®
within the triangle at respective distances 3p, A/2, 3p, A/2, and 3p, A/2
from sides bc, ac , and ab of the triangle represents a point ( p,, pp, P )
in the game simplex.

The key to solving the problem is to find the hitting distribution on
the boundary of the triangle for Brownian motion started at a given point
inside the triangle. To solve this problem we conformally map the triangle
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to a disk. Since the map is conformal, it maps Brownian motion into
Brownian motion modulo a random time change, and it thus preserves the
hitting distribution. In turn, the hitting distribution for a disk is given
explicitly by the classical Poisson kernel.

The mapping ® = F(z), where

F4

dt ¢ dt
F = =
O - Dewe-a L P

conformally maps the interior of the unit disk shown in Figure 2 onto the
open region bounded by the triangle in Figure 1, with the provisions that a
branch of x*/3 is chosen so that (—~1)%3 = 1 and that we set

A =F(1).
This mapping is a variant of the Schwarz-Christoffel formula [1]. To see
that it has the desired property, note that at the singular points 1, o, and @,

the mapping reduces angles by one-third since it locally looks like z!/3.
Then direct calculations show that

-/2, 2m/3<0 <4n/3

i0)
Arg [—-—dF (e
6, 4n/3<0<2rm,

Sm6, 0<6<2m3
de ]"

which shows that arcs a’d’, b’c’, and ¢’a’ of the unit circle are mapped to
the respective sides of the equilateral triangle.

The distribution of where a Brownian motion hits the boundary of the
unit disk when the starting point is a point z in the disk is

K@©,2)do2r 0<6<2r,

where K is the Poisson kernel [2],

_ 2
K(g,z) — 1_|i|_

Ieie_z|2‘

Given that the process starting inside the triangle reaches the boundary
at a point « in side ab, the conditional probability that the process will be
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absorbed at point a is

o — u/A
a-1

since this probability is proportional to the distance between u and a.
We thus have that

P[ c loses first, then b loses |start at [

is equal to

2n/3 ;
1 a — F(e®)yA i
== g 7 K©,F" (ap) d6

We do not know if this expression can be simplified, nor do we know
how to proceed if there are more than three players.

REFERENCES
[1] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.

[2] J.L. Doob, Classical Potential Theory and its Probabilistic Counter-
part, Springer-Verlag, New York, 1984.
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Figure 2. A disk in the complex plane. The dashed lines encircle rays
which are not to be integrated over in the definition of F(z).
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6.4 FINDING PARITY IN A BROADCAST NETWORK

R.G. Gallager

Department of Electrical Engineering
and Computer Science
M.LT.
Cambridge, MA 02139

Consider a broadcast network of N nodes in which each binary digit
transmitted by each node is received by each other node via a binary sym-
metric channel whose crossover probability € is independent over
transmitters, receivers, and time. Each note has a binary state and the
problem is to construct a distributed algorithm to find the parity of the set
of states with some given reliability. This problem was first formulated by
A. El Gamal (see Chapter III, Section 3.10) and is of interest because it is
one of the simplest distributed algorithm problems involving noise.

The straightforward approach is for each node to send its own state j
times for some integer j. A receiving node will make an error in detect-
ing a given node’s state with probability €; closely upper bounded by al,

where o = [ 4e(1 — ¢) ]V

The probability that a receiving node will
make an error in calculating the parity of the states is then proportional to

Ng; (for Ne; small). This means that j must grow as log N.

A more sophisticated approach is to partition the nodes into subsets of
k nodes each for some k. Each node again sends its own state j times
but then estimates parity of its own set of k£ nodes and sends this parity.
A receiving node will then receive k different estimates for the parity of
each subset. A given estimate is incorrect if an odd number of errors
occur, first, in the sending node’s transmission and, second, in the sending
node’s estimates of the other states in the subset; the probability of this is
B=[1-(1-2¢)""(1-2e)]/2. Finally, a receiving node will esti-
mate this parity incorrectly if more than half of the k received parity esti-
mates are incorrect, which is upper bounded by [ 4B(1 — B)
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The optimum subset size k for a given g; can now be calculated as
approximately 1/( 4¢;). The overall parity of the N states can be calcu-
lated by a receiving node from the subset parities. With the above value
for k and with a constraint P on the overall error probability, it is easy to
see that the required number of binary digits required to be transmitted
from each node (i.e., j+ 1) is (In In (N/P))/IIn o | plus a constant

which is independent of N and P.

The above constant can be improved slightly by allowing nodes to
transmit a limited number of parities of other subsets, but no way is
known of improving the log log dependence on N and P.

Essentially the same strategy can be used if each node must reliably
determine all the states. We simply generate a larger set of subsets in
such a way that each subset contains k nodes, each node is contained in k
subsets, and no pair of subsets contains more than one node in common.
Each node, as before, sends its own state j times and then sends its esti-
mate of one of the subset parities; remember each subset parity is thus
sent once. A receiving node then estimates the state of each node from
the j receptions and generates an internal estimate of the parity of each
subset. For each subset, the internal parity estimate is compared with the
received parity. The node changes the state of a given node from its ori-
ginal estimate if more than half the above comparisons disagree on the
subsets containing the given node.

The number of transmissions per node, for this scheme, is again ( In
In (W/P))/'In o | plus a constant that is slightly larger than in the case
where only parity is calculated.

-209-



6.5 AN OPTIMAL STRATEGY FOR A
CONFLICT RESOLUTION PROBLEM

V. Anantharam and P. Varaiya

Department of Electrical Engineering
University of California
Berkeley, CA 94720

Relevant to the design of multiple access protocols is the problem of
finding the largest of N iid. number X;,...,Xy uniformly distri-
buted over [0,1] using the minimum number of questions of the following
type. We pick a set A(1) < [0,1] and ask which X; € A(1) . Depending
on the response, we pick another subset A(2) and ask which X; e A(Q2),
and so on, until we identify the largest X;. It is shown that the optimum
sequence of question must be of the type A(k) = (a(k), 1] : the best
sequence { a(k) } can then be determined by dynamic programming fol-
lowing the work of Arrow, Pesotchinsky, and Sobel. Thus [3] is resolved.

1. Introduction.

In their paper [1], Arrow, Pesotchinsky, and Sobel, considered prob-
lem P:

P: Let X;,...,Xy be iid. random variables uniformly distri-
buted in [0,1]. The aim is to decide which X; is the largest with
the minimum expected number of binary questions, namely, ques-
tions to which the response is a simple yes or no. We ask a
question, and each X; responds. Based on the responses we ask
the next question, and so on, until the largest X; is determined.

This problem is relevant to the design of multiple access protocols.
Here there are N contenders each of which has a message that it desires
to transmit over a single channel. A fair scheme to ensure this is for each
contender to be assigned a random priority, for example, according a ran-
dom number uniformly distributed on [0,1], and give the channel to the
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leader, that is, the contender with the highest priority. Each contender
only knows the number assigned to it. To begin, based on its number,
each contender sends a bit to a decision maker. If these bits are not
enough to determine the leader, the decision maker requests a second bit,
and so on. At any stage the only information available to the decision
maker is the set of past responses. To determine the leader as quickly as
possible we would like to minimize the expected number of stages the
decision maker has to go through. It is clear that any good solution to the
problem P in [1] translates directly into a good solution to this multiple
access problem. For further discussion of multiple access problems, see
[2].

In [1], the optimal strategy (and the minimum expected number of
questions) is found within the class of strategies of the following form:
Given N, pick a number a(l) € [0,1] and ask "Whose number is bigger
than a(1) ?". Depending on the responses, pick a number a(2) and ask
"Whose number is bigger than a(2) ?", and so on. Call such questions
right-handed. A question is right-handed if it is of the type: "Whose
number belongs to the set A ?", where A is of the form (a,1] , for some
a € [0,1) . It is straightforward to set up a dynamic programming recur-
sion to determine the optimal right-handed strategy and this is done in [1].

It is natural to ask whether we can decrease the expected number of
questions required when arbitrary binary questions are allowed. For such
questions, one picks an arbitrary (measurable) set A — [0,1] and asks
"Does your number belong to the set A ?". Thus the most general stra-
tegy is one that picks a subset A(1) of [0,1] and asks: "Does your number
belong to A(1)?". Then, based on the responses it picks a subset A(2) and
asks "Does your number belong to the set A(2)?", and so on, until the
leader is found. Can we do any better with such general strategies as
compared to the strategies considered in [1]? The fundamental difficulty
in answering this question is that there is no obvious way to set up a
dynamic programming recursion. Our main result is that the added gen-
erality cannot help to reduce the minimum expected number of questions.

-211-



2. Theorem.

The best right-handed strategy is also optimal in the class of all stra-
tegies.

Proof of the Theorem.

The proof proceeds in two steps. We use the result of [1] that the
expected number of questions required to determine the leader using the
best right-handed strategy is strictly less than 2.5. We will show first, by
induction on the number of contenders, that any strategy entails at least 2
questions on average to determine the leader. Using this, a "bootstrap-
ping" argument shows that any strategy whose first question is not right-
handed requires on average more than 2.5 questions to resolve conflict.
This suffices to establish the theorem.

Before proceeding, we make a preliminary remark. Since every ques-
tion is equivalent to its complement, we can assume without loss of gen-
erality that a question (more precisely, the corresponding set) contains 1.
This will be implicit in the following.

Step 1: We first show that for any strategy K, E K >2, where E K
denotes the expected number of questions required to resolve conflict
under strategy K .

1. Consider the case of two contenders, N =2 . Suppose

infEK=A<2.
K

If the first question of K is not right handed, the leader cannot be
determined immediately, so K requires at least 2 questions on every
sample path, in particular E K >2 . (Note: We do not distinguish
between sets that differ by zero measure; in particular, A is right-
handed if it differs by zero measure from a set of the form (1-a, 1].)
We may therefore assume that K has a right-handed first question,
(1-a, 1]. If the number of contenders answering yes to this first ques-
tion is O or 2, we are left with a problem identical to the one we

started with, and we need at least A more questions on average to
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resolve conflict. If only one of the contenders answers yes to the first
question, we are immediately through. Thus

EK2>=2a(l —a)+ (1 +A)(1-2a)(1 -a).

Observe that for any a € [0,1] we have 2a(1 —a) < 1/2, so

A
Kz21+—.
E 2

SinccthisholdsforanyK,AZ1+%,or A=2.

Consider now the case of general N . Assume as induction
hypothesis that, for any m < N , the expected number of questions to
resolve conflict for any strategy is at least 2. We will show that for
any strategy K with N contenders, the same holds. Suppose, to the
contrary that

inffEK=A<2.
K

Reasoning as before, we may assume that the first question of K
is right-handed and of the form (1-a,1]. Three types of responses
are possible to this first question.

(a) Each contender, or none of them, responds yes to the question.
In this case, we are left with a problem identical to the one we
started with and require at least A more questions to resolve
conflict.

(b) Exactly one contender responds yes to the question. Then we are
immediately through. This event has probability N(1 — a)¥! a .

(c) Anywhere from 2 to N -1 contenders respond yes to the
question. By the induction hypothesis, we then require at least
2 more questions to resolve conflict.

Thus we have

EK>2N1-aMla+(1+A)Q-NA-a'a),
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where for the event (¢) we used A<2. Since for ae€ [0,1],
N1 - &)™ a<1/2, this gives

A

EK2>21+—.

2
This holds for any K, and so A21+% s A2 2.
Step 2: The final step is to use the result above to show that E K > 2.5
for any strategy K for which the first question, A < [0,1], is not right

handed. We directly consider the case of general N . Let A° denote the
complement of A .

1. Consider the event where either every contender or no contender
responds yes to the first question; that is, every X; is in A or in A°.
Then we are left with a problem identical to the one we started with
restricted to the set A or A°, and by Step 1 above, we need at least 2
more questions on average to resolve conflict. Thus, on this event, we
need on average at least 3 questions to resolve conflict.

2. Consider the complementary event where the number of contenders
reponding yes to the first question is between 1 and N — 1. We pos-
tulate the following genie:

e The genie tells us which of the sets A and A° contains the leader.

e If A contains the leader, the genie tells us the value of the leader
among the contenders whose values are in A°, and the identities
of the contenders whose values are in A and which exceed the
leading contender in A°.

e Similarly, if A° contains the leader, the genie tells us the value of
the leader among the contenders in A, and the identities of the
contenders whose values are in A° and which exceed the leading
contender in A.

By postulating a genie, we mean that we permit ourselves to use
different strategies on events for which the genie gives us different
answers. Clearly, we can do no better without the genie than we can with
it.

-214-



If A contains the leader, the genie leaves us with the problem of deter-
mining the leader among the contenders in A that exceed the leading con-
tender in A°, and these contenders are independently and uniformly distri-
buted on the portion of A which exceeds the leader in A°. Similar remarks
apply when the leader is in A°.

Thus, except on the event where the leader is in A and the second best
contender is in A° or vice versa, which event we denote I', we require, by
Step 1 above, at least two more questions on average to determine the
leader. On the other hand, if the genie is absent, then we require at least
two questions on every sample in I. Thus, if we can prove that the meas-
ure of I' is at most 1/2, we will have proved the Theorem. Note: We do
not distinguish between sets which differ by zero measure; in particular, a
question A is right-handed if A differs by zero measure from a set of the
form (a,1].

Let p(X) denote the measure of X , for X < [0,1]. Define two
functions F and F ° on [0,1] by

FG)=pAn 1),

Fo(x) =pnA°nNn(x1]).
Notice that F(x) + F°(x) =1 —x. Next, define functions § and D

(mnemonics for same and different, respectively) by

Sx) = F)1(x € A) + F°(x)1(x € A°),

D(x) = F(x)1(x € A°) + F°(x)1(x € A) .

Then S(x) + D(x) =1 — x. Now

1
WMD) = X [P{X,<x for k#i,j,X;€ AN [x,x+dn),X;e An(x1])
i#j0
1

+ X [P(Xy<x for k#i,j,X;€ AN [x,x+dx), X; € A° N (x,1] },
i#zj0

so that
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1
u() = [ NIN-1) V2 D(x)dx.
0
One can now easily check that
1
1- (@) = [ NN - 1) N2 S(x)dx .
0

If we define

1
P(x) = [ (SO) ~ DO))dy ,

X

we can easily prove that P(x) = 0, for x € [0,1] , and since

1 1 1
N2 (S0 -D@) ldx=—[ ML pwdax= [ P L M220,
xio J—o dx xio dx

we have shown that p(I') < 1/2 and the proof is complete.
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6.6 COORDINATION COMPLEXITY
AND THE RANK OF BOOLEAN FUNCTIONS

B. Gopinath and V.K. Wei

Bell Communications Research
Morristown, NJ 07960

The MEX machine is a model for describing the coordination between
concurrent processes in a distributive protocol. (See Figure 1.) The
discrete recursion operates as follows: Every second is divided into two
equal periods. There is a bus connecting all processes, and all information
needed for the coordination of the processes is transmitted over the bus.
During the first period, a state of the bus is selected. In the second period,
each process "resolves" its task by changing its state according the
selected bus state. Once the bus state is given, the state transitions at the
processes are independent.

The MEX machine is a useful model in protocol specification and
validation. The complexity of the MEX machine is the number of bus
lines required for the coordination of the processes. It is the logarithm of
the number of bus states. Here, we derive the coordination complexity of
the MEX machines corresponding to many well-known Boolean functions,
including AND, OR, NAND, k-Threshold, and Adder.

Each process is assumed to have only two states. The operation of
the MEX machine can be described by a directed graph consisting of 2"
nodes and a number of edges. The nodes correspond to all possible binary
n-tuples. There is an edge from node i to node j if and only if "cause" i
produces the "effect” j in the MEX machine. For example, for the AND
function, there is an edge from node i to node j if and only if the most
significant bit of j is equal to the AND of all bits in the binary expansion
of i. For the Adder, there is an edge from node i to node j if and only if
the numerical value of the first n/2 bits is equal to the sum of the numer-
ical values of the first n/2 bits of / and the last n/2 bits of i .
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Some nodes in the directed graph may have out-degree zero; this
corresponds to some unacceptable "causes.” Some nodes may have out-
degree greater than one; this corresponds to don’t-care "effects” -- given
some particular "causes," one of several possible "effects" is produced
with equal consequences.

The graph representation of the composite MEX machine which con-
sists of two smaller MEX machines placed side by side is the tensor pro-
duct of the two graphs representing the component machines. The new
graph has 2™ nodes, if the two component graphs have 27 and 2"
nodes, respectively. There is an edge from the composite node (i, ) to
(J,J ) if and only if there are edges from i to j and from i’ to j/ in
the component graphs.

The sum of two graphs with 2" nodes is a graph with 2" nodes
whose edges are the union of the edges of the summand graphs. The
smallest possible graph consists of only two nodes. There are 16 such
graphs; they are called atoms.

The rank of a Boolean function is the logarithm of the minimum
number of products of atoms which sum up to its representing graph. It is
a measure of the coordination complexity of the MEX machine. It is
equal to the minimum number of bus lines required to coordinate the
processes. In the first period of a discrete recursion, one of the atom pro-
ducts is selected, and in the second period, each process changes state
independently as an atom.

The ranks of several well-known Boolean functions are shown in
Table 1. For convenience, the graphs for the Comparator and the Adder
are assumed to have 22" nodes. The ranks of the sum, the product, the
tandem, and the overlap of two Boolean functions are also studied.

These results answer several open problems posed by Gopinath in the
1984 SPOC Conference. The proofs of our results are contained in a
longer version of the paper.
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Table 1. Ranks of Well-Known Boolean Functions

Function Rank
AND log (n+1)
OR log (n+1)
NAND log (n+1)
NOR log (n+1)
INVERT 0
Counter log(n)
Parity log(2")
Sequence Reverser log(2™)  (n even)
Cyclic Shifter log(2™)
k-Threshold log [nl'l]
n/2 bi-input AND log (3"?)
Maximum possible rank log(4™ 1

Comparator

Adder

log (2"*! — 2) (2n inputs)
log(3™)
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One-way functions 104-105
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Optical communication channels 43-45
Optimum pulse shaping 95-96
Optimum sequence of questions 154, 210-216
Optimum signaling rate 96-98
Optional sampling theorem 204
Orbital codes 59

Packet-switched network 68

Partial statistics 84

Pattern recognition 77-82

Perfect cubes 117

Perfect hashing 32-34, 127n.
Permanent inequality 127-129

Phase transition 63

Pomerance quadratic sieve 115

Poisson kernel 205

Poisson process 43

Predictive density 89-90

Probability density functions 85-91
Probability distribution 155
Program-size complexity 108-111
Pulse amplitude modulated (PAM) signals  95-96
Queueing 68, 139-141

Random access strategies 127-129
Random pairs 156

Random selection 41

Random walks 155, 204-207
Rate-Distortion function 59
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Read/write complexities 145-146
Receiver noise model 61

Reed-Muller codes 55

Relative entropy -- see Kullback-Leibler divergence
Relay channel capacity 72-73

Reliable communication 60-62, 208-209
Reliable computation 120-121

Resistors 165-167

Reyneri cubic sieve 118

Rhythm 171

Riemann hypothesis 109-110

Ring networks 62

Rotation distance 130-137

RSA signature scheme 113, 138
Rudin-Shapiro polynomials 143

Sample partitioning 154, 210-216
Saturation 125

Schnorr-Lenstra algorithm 115
Schroeppel linear sieve 115
Schwartz-Christoffel formula 205
Scope 125-126

Secretary problem 152

Selection functions 153

Selection strategies 199-203
Self-adjusting search trees 133
Shannon’s entropy 78, 79

Shannon’s information theory 29-30, 60
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Shifts 144

Shortest path problem 123-124
Signal sets 43-45

Simplex conjecture 74, 155, 204-207
Simulated annealing 147-150
Single-letterization 29, 35-36, 39
Small primes 117-118

Smooth integers 117-118

Sound 171

Sparse systems 114

Spectral density 46-48, 191-198
Splitting numbers 152

State trajectories 140

Stationary distributions 63-68
Stationary random process 46, 47
Statistical mechanics 149-150
Stochastic decision problems 49-50
Stochastic processes 191-198
Stochastic relaxation 147-150
Straight-line (SL) algorithms 104-105
Strassen’s algorithm 113

Strings, derivation, generation, and parsing 173-188
Structurally fixed modes 158-160
Structured matrices 158-160

Team decision problem 49-50
Threshold detection system 145-146
Tiling 106, 142-143
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Time complexity 124

Time-varying linear systems 161
Tomography 164-168

Toom’s rule 121

Transmitter noise model 61-62
Transversals 40

Trapdoor functions 107

Tree network 62, 67

Triangulation 132-136
Trigonometric polynomials 142-143
Turing machines 79, 104-105, 108-111
Two-dimensional network 67-68
Universal data compression 84
Universal discriminant function 84
Universal gates 78, 80-81

Wallis’ product 19

Waveforms 46-47

White Gaussian noise 71, 94

Work factor 104-105

Write complexities -- see Read/write complexities
Wyner’s wiretap channel 30

X-ray tomography -- see Tomography
Zarankiewic’s problem 58
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