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CHAPTER I. 

INTRODUCTION 

Thomas M. Cover and B. Gopinatb 

The papers in this volume are the contributions to a special workshop 
on problems in communication and computation conducted in the summers 

of 1984 and 1985 in Morristown, New Jersey, and the summer of 1986 in 
Palo Alto. California. The structure of this workshop was unique: no 

recent results. no surveys. Instead. we asked for outstanding open prob~ 
lems in the field. There are many famous open problems, including the 
question 

P = NP?, 

the simplex conjecture in communication theory, the capacity region of the 
broadcast channel. and the two·helper problem in information theory. 

Beyond these well-defined problems are certain grand research goals. 
What is the general theory of information flow in stochastic networks? 

What is a comprehensive theory of computational complexity? What 
abou t a unification of algorithmic complexity and computational complex­
ity? Is there a notion of energy-free computation? And if so, where do 
information theory, communication theory, computer science, and physics 
meet at the atomic level? Is there a duality between computation and 

communication? Finally. what is the ultimate impact of algorithmic com­
plexity on probability theory? And what is its relationship to information 
theory? 

The idea was to present problems on the firs t day. try to solve them 
on the second day, and present the solutions on the third day. In actual 
fact, only one problem was solved during the meeting -- El Gamal's prob· 
lem on noisy communication over a common line. This was solved by 
Gal1ager. Shortly thereafter. however. Hajek solved two of Cover's prob-
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lems. Also, a number of partial solutions were achieved. Nonetheless. 

most of the open problems remain open. The solved problems are 
included in this volume in the special section at the end. The reader will 
note that some of the contributions actually consist of open and shut prob­
lems. Perhaps that is as it should be. It can't be helped that some of 

these researchers are able to solve their own problems. 

The list of authors includes some of the outstanding contributors to 
the theory of communication and computation. This list includes many 
young researchers as well. 

The open problems are presented by topic, roughly divided into com­
munication and computation problems. with appropriate introductory notes 

where needed. A section of solutions follows. 

Perhaps the most entertaining of all the contributions is Conway's fas­
cinating article on FRACTRAN, a strange collection of numbers, which 
when operated on in a simple way. yield all possible computations. We 

begin with his article. 

Acknowledgment: The editors wish to thank Lauren Suess for coordi­
nating the submissions of the open problems for this book and for her part 

in organizing SPOC'84 and '85, and Anne Oakley for her help during 

1986 and 1987. 

Special thanks go to Kathy Adams for putting the manuscript in final 
book form, the handling of the final author communications. and her part 

in organizing SPOC'S6. 

We also wish to thank Bell Communications Research and Stanford 
University for financial support of the meetings. 
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CHAPTER II. 

FRACTRAN 

FRACTRA N is not really an open problem. Nonetheless, its recrea­
tional spirit typifies the ideas in this collection. 

·3· 



FRACTRAN: A SIMPLE UNIVERSAL PROGRAMMING 
LANGUAGE FOR ARITHMETIC 

,I 1// 

1.H. Conway 

Department of Mathematics 
Princeton Un iversity 
Princeton, NJ 08544 

1. Your Free Samples or FRACTRAN. 
/ 11 I' 

To play the f raction game corresponding to a given list 

of fractions and starting integer N. you repeatedly multiply the integer 

you have at any stage (init ially N) by the earliest /; in the list for which 

the answer is integral. Whenever there is no such fi t the game stops. 

(Formally, we define the sequence {Nn } by No = N, NII ... 1 = Ii Nil ' 

where i (1 :S; i ~ k) is the least i for which /; Nil is integral. as long as 

such an j exists.) 

T heorem 1: When PRIMEGAME: 

17 78 19 23 29 77 95 77 I II 13 15 I 55 --------------9 1 85 51 38 33 29 23 19 17 13 II 2 7 1 

is started at 2, the oilier powers of 2 that appear, namely. 

are precisely those whose indices aTe the prime numbers, in order of mag­
nitude. 

-4-



Theorem 2: When PIGAME: 

365 .12....lJ.... 679 3159 ~ 473 638 434 J!2... ...!2... .lJ.... 
46 161 575 451 413 407 371 355 335 235 209 122 

31 41 517 111 305 23 73 61 37 19 89 41 833 53 ------------------- --
183 115 89 83 79 73 71 67 61 59 57 53 47 43 

86 13 23 67 7 1 83 475 59 41 1 89 
41 38 37 31 29 19 17 13 291 7 11 1024 97 

is started at 2n. the next power of 2 to appear is 21t(n). where for 

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

,,(n) = 3 1 4 59265358979323846 

For an arbitrary natural number n, 1t{n) is the nth digit after the 
point in the decimal expansion of the number 1t. 

Theorem 3: Define l e{n) = m if POL YGAME: 

583 629 437 82 615 37 1 1 53 43 23 341 
559 55 1 527 517 329 129 115 86 53 47 46 

41 47 29 37 37 299 47 161 527 159 ----------------
43 41 37 31 31 29 23 15 19 7 17 13 3 

when started at c22~. stops at 22"', and otherwise leave l e(n) undefined. 

Then every computable function appears among 10' II' 12, .. . 

2. The Catalogue. 

We remark that the "catalogue numbers" c are easily computed for 

some qu ite interesting functions. Table I and its notes give Ie for any c 

whose largest odd div isor is less than 2 10 = 1024. 
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Table 1. The Catalogue 

e All defined values of Ie 

0 none 
I n->n 
2 0->1 
4 0->2 
8 I -> 2 In this Table, 
16 2->3 n denotes an 
64 I -> 3 arbitrary 
77 n->O non-negative 
128 0->3 integer. 
133 0->0 
255 n+ l -4n+l 
256 3->4 
847 n->I 

37485 0-40,n+1-4n 
2268945 n-4n+l 

2' a-4bif2b -2°=k 
7. 112.1: n ->k 

15 . 102~'" 
7 

n-4n+k 

ex n -41t(n) 

We also have 

f2'A=fo; 

f 2'D =fl3J (k = 0) or fo (k > 0); 

f 2'E = fm (k = 0) or f 2, (k > 0) ; 
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where 

A 

B 

B' 
C 
C' 
D 
E 

is 

is 

is 

is 

is 

is 

IS 

any odd number < 1024 not visible below: 
1,3,9,13,17,27,39,45,51,81,105,115,117,135,145,153,155, 

161,169,185,195,203,205,217,221,235,243,259 ,287 ,289,315, 

329,345,351,405,435,459,465,483,507,555,585,609,615,65 1, 

663,705,729,777,861,945,975,987,1017, ... 

165,495, ... 

77,91,231,273,385,455,539,1015, ... 

847, 1001, ... 

133, 285, 399, 665, 855, ... 

255, .... 

Figure 1 gives a c for which fc(n) is the above function 1t(n) 

.517 1011s100! ill 101 16100! 30.5 10117100! 11101"100! 1110119100! 
+289 +283 +279 +273 +271 

~10130100! 1!. 101 31 100! !.!lOln lOO! 475 101 33 100! 12.10134100! 
+ 2 31 + 229 + 2 19 + 2 17 + 213 

Figure 1. The constant cn: . 
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3. A void Brand X. 

Works that develop the theory of effective computation are often writ­

ten by authors whose interests are more logical than computational, and so 

they seldom give elegant treatments of the essentially computational parts 

of this theory. Any effective enumeration of the computable functions is 

probably complicated enough to spread over a chapter, and we might read 

that "of course Ihe explicit computation of Ihe index number for any func­

tion of interest is totally impracticable." Many of Ihese defects stem from 

a bad choice of the underlying computational model. 

Here we take the view that it is precisely because the particular com­

putational model has no great logical interest that it should be carefu lly 

chosen. The logical points will be all Ihe more clear when Ihey don't 

have to be disentangled by the reader from a clumsy program written in an 
awkward language, and we can then "sell" the theory to a wider audience 

by giving simple and striking examples explicitly. (It is for associated 

reasons that we use the easily comprehended tenn "computable function" 
as a synonym for the usual "partial recursive function.") 

4. Only FRACTRAN Has These Star Qualities. 

FRACTRAN is a simple theoretical programming language for arith­

metic that has none of the defects described above. 

• Makes workday really easy! 

FRACTRAN needs no complicated programming manual - its entire 

syntax can be learned in 10 seconds, and programs for quite complicated 
and interesting functions can be written almost at once. 

• Gets those functions really clean! 

The entire configuration of a FRACTRAN machine at any instant is 

held as a single integer - there are no messy "tapes" or olher foreign con­
cepts to be understood by the fledgling programmer. 
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A 

17 
91 

• Matches any machine on the markel! 

Your old machines (Turing, etc.) can quite easily be made to simulate 
arbitrary FRACfRAN programs, and it is usually even easier to write a 

FRACfRAN program to simulate other machines. 

• Astoundingly simple universal program! 

By making a FRACfRAN program that simulates an arbitrary other 

FRACTRAN program, we have obtained the simple universal FRAC­
TRAN program described in Theorem 3. 

5. Your PRIMEGAME Guarantee! 

In some ways, it is a pity to remove some of the mystery from our 
programs such as PRIMEGAME. However, it is well said [2] that " A 
mathematician is a conjurer who gives away his secrets," so we' ll now 
prove Theorem 1. 

To help in Figure 2, we have labe led the fractions: 

B C D E F G H I J K L M N 

78 19 23 29 77 95 77 1 11 13 15 1 55 
85 51 38 33 29 23 19 17 13 11 2 7 

and we note that AB = 2x3 7 5 EF= - DG = -
5 x 7 ' 3 • 2 . 

We let n and d be numbers with 0 < d < n and write 
n = qd + r (0 ~ r < d) . Figure 2 illustrates the action of PR[ME­

GAME on the number 5" 7d13. We see that this leads to 5" 7d-
1 13 or 

5"+1 7" 13 according as d does or does not divide n. Moreover, the 
only case when a power of 2 arises is as the number 2" 7d- 1 when d = 1. 
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sit 7d 13 

~ (AB)d J 

2d 3d 5"" 11 

~ (EF)d K 

2d 5 .... 7d 13 

~ (AB)d J 

22d 3d 5n-U 11 

~ (EF)d K 

22d 5n-2d 7d 13 

~ (AB), J 

~ (EF)d K 

2qd S' 7d 13 

~ (AB), A 
21t 3' 7d-r-l 17 

r>% 'x=O 
2lt 3,-17d-r-1 19 

~ (DG)" H 
3r-1 511 7d-, 11 

~ (EF)~I K 

511 7d-l 13 

21t 7d-l 

~L"Md-IN 

3lt Sn+lll 

~ (EF)" K 

Sn+l 7" 13 

Figure 2. The action of PRIMEGAME. 

It follows that when the game is started at Sit 711
-

1 13, it tests all 

numbers from n- l down to 1 until it first finds a divisor of n, and then 
continues with n increased by 1. In the process, it passes through a power 

of 21t of 2 only when the largest divisor of n that is less than n is d = 1 , 
or in other words, only when n is prime. 

-10-



6. FRACTRAN - Your Free Introductory Offer. 

A FRACTRAN program may have any number of lines, and a typical 
line might have the fonn 

line 13: ~ ~ 7, ; ~ 14 . 

At this line, the machine replaces the current working integer N by 

~ N, if this is again an integer, and goes to line 7. If ~ N is not an 

. t b 4 N · h ld to eger, ut 5" IS, we s au instead replace N by ; N, and go to line 

14. If neither ~ N nor ; N is integral, we should stop at line 13. 

More generally, a FRACfRAN program line has the fonn 

line 
P2 Pk 
- ~ n2' ... , - -7 nk . 
q2 qk 

The action of the machine at this line is to replace N by Pi N for the 
q, 

least i (1:5 i :5 k) for which this is integral, and then go to line n1 ; or, 

if no PiN is integral, to stop at line n. 
q, 

and serves as an unconditional stop order.) 

(A line with k = 0 is pennitted 

A FRACTRAN program that has just n lines is called a 
FRACTRAN-n program. We introduce the convention that a line that 

cannot be jumped to counts as a ~ -line. (Sensible programs will contain 

at most one ~ -line, the initial line.) 

We write 

[ !:..'.. P2 Pk J 
q1 q2 qk 

for the FRACfRAN-l program 

-11-



line 1 
P2 Pk 

1, - ~l, ... , - --> 
q2 qk 

We shall see that every FRACTRAN program can be simulated by a 

FRACTRAN-l program which starts at a suitable multiple of the original 
I starting number. With a FRACTRAN-l- program, we can make this 
2 

multiple be 1. 

The FRACfRAN-l ~ program 

line 

line I 

is symbolized by 

P, 
- ~l, ... 
Q, 

Note that the FRACTRAN-l ~ program 

mlfll, ... It 1 

p . 
- ' --> 1 , Q

j 

started at N. simulates the FRACTRAN-l program 

If, I, ... Itl 
started at mN . 

We shall usually suppose tacitly that our FRACTRAN programs are 

only applied to working numbers N whose prime divisors appear among 

the factors of the numerators and denominators of the fractions mentioned. 

-12-



7. Beginners' Guide to FR ACTRAN Programming. 

It's good practice to write FRACfRAN programs as flowcharts, with 
a node for each program line and arrows between these nodes marked 

with the appropriate fractions. We use the different styles of arrowhead 

>f » f t> f 

for the options with decreasing priorities from a given node, and if several 
options with fractions f, g, h at a node have adjacent priorities, we often 

amalgamate them into a single arrow: 

The different primes that arise in the numerators and denominators of 
the various fractions may be regarded as storage registers, and in a state in 
which the current working integer is 

N = 2a 3b 5c 7d ... , 
we say that 

register 2 holds a, Of r2 = a 
register 3 holds b, Of r3 = b 
register 5 holds C, Of rs = c 
register 7 holds d, Of r7 = d 

etc. 

FRACfRAN program lines are then regarded as instructions to 
change the contents of these registers by various small amounts , subject to 

the overriding requirement that no register may ever contain a negative 
number. Thus the line 

line 

either replaces '2 by 

Of replaces '2 by 

or SlOpS 

2 13'---+7 . 3 ' 

r2 + 1 , " 
r2 + 2 , " 

-13-
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5 

by r3 - I 

by rs - I 

( if r3 > 0) 

( if " > 0 ) 
( if r3 = rs = 0 ). 



In our figures, urunarked arrows are used when the associated frac· 
tions are 1. A tiny incoming arrow to a node indicates that that node will 
be used as a starting node; a tiny outgoing arrow marks a node that may 
be used as a stopping node. A few simple examples should convince the 
reader the FRACTRAN really does have universal computing power. 

(Readers familiar with Minsky 's register machines will see that FRAC­

TRAN can trivially simulate them.) 

The program 

is a destructive adder: when started with T2 = a, T3 = b, it stops with 

T2 = a + b, T3 = O . We can make it less destructive by using register 5 as 

working space: the program 

when started with T2 = a, "3 = b, T5 = O. stops with T2 = a + b . 

T3 = b, TS = O. 

By repeated addition, we can perfonn muJtiplication: the program 

3 
S 

started with T2 = a . "3 = b. TS = O. T7 = C , stops with T2 = a + be , 

T3 = b , TS = T7 = O. We add an order ~ ("clear 3") at the 

starting/finishing node and Connulate the result as an official FRACfRAN 
program: 

-14-



line 1 
I 

· - -+ 2 · 7 • 

line 2' 10 -+ 2 . 3 • 

I 
- .... 1 
3 

I - .... 3 
I 

line 3 . 1. -+ 3 1. -+ 1 · 5 'I . 

When started at line 1 with N = 3b 7c, it stops at line I, with N = 2bc. 

The program obtained by preceding this one by a new 

line 0 . 2.!. -+ 0 .1 -+ 1 . 2 • I ' 
, 

when started at line 0 with N = 2n, stops at line 1 with N = 2n • 

8. How to Use the FRACTRAN-l Model. 

You can use a FRACTRAN-l machine to simulate arbitrary FRAC­
TRAN programs. You must first clear the given program of loops, in a 
way we explain later, and then label its lines (nodes) with prime numbers 
P, Q, R, . . . larger than any of the primes appearing in the numerators 
and denominators of any of its fractions. The FRACfRAN-l program 

simulates 

by the fractions 

line P . .!!. -+ Q . b • 
c 
- .... R d • 

!!Q cR eS 
bP dP fP 

e f .... S •... 

in that order. If the FRACTRAN-O program when started with N in state 
P stops with M at line Q , the simulating FRACfRAN-I program when 
started a PN stops at QM . 

Manu!aclUrer's note. Our guarantee is invalid If you use your 

FRACTRAN·} machine in this way to simulate a FRACTRAN program 

that has loops at several nodes. Such loops may be eliminated by splitting 

nodes into two. 

-15-



The third of our examples 

7 

becomes 17 

10 3 
"3 ""5 

3 
T 

when each of the two nodes with a loop is split in this way, and the new 

nodes are labeled with the primes 11, 13, 17, 19, 23. Accordingly, it is 

simulated by the FRACTRAN-l program 

[11 170 ..!2. 1l 69 .!!. J. 
77 39 13 17 95 19 

If started with N = 2a 3b 7c 11, this program stops with 
N = 2a+bc 3b 11. (The factors of 11 here correspond to the starting and 

stopping states of the simulated machine.) 

We note that it is permissible to label one of the states with the 

number 1, rather than a large prime number. The fractions corresponding 
to transitions from this state should be placed (in their proper order) at the 

end of the FRACTRAN-l program. If this is done. loops, provided they 

have lower priority than any other transition, are pennitted at node 1. Thus 
the FRACfRAN-l program 

-16-



[ 170 ..!2. 11 ~ ...!.. 11.!. J 
39 13 17 95 19 7 3 

simulates the previous program with a loop order ! adjoined at the 

starting/stopping node. which has been relabelled 1. This program, started 

at 3b 7c , stops at 2bc. 

A given FRACI'RAN program can always be cleared of loops and 

adjusted so that 1 is its only stopping node. ]t follows that we can simu­

late it by a FRACTRAN-l program that starts at PN and stops at M when 

the original program started at N and stopped at M. As we remarked in 

Section 6, we can simulate this by a FRACfRAN- l ~ program 

P[ ... J 

which starts at N and stops at M . 

9. Your PIGAME Guarantee. 

We now prove Theorem 2, which 

the program 

[365 29 
46 161 

is equivalent to the assertion that 

(obtained by ignoring factors of 97 and dropping the final fraction ~9 of 

PIGAME). when started at 2" . 89, stops at 21t(n). This FRACTRAN-l 

program has been obtained from the FRACTRAN program of Figure 3 by 
the method outlined in the last section. The pairs of nodes 13 & 59, 29 & 

71. 23 & 73, 31 & 67, and 43 & 53 were originally single nodes with 

loops. 

We shall only sketch the action of this program, which we separate 
into three phases. The first phase ends when the program first reaches 

node 37. the second phase when it first reaches node 41 , and the third 
phase when it finally stops, at node 1. 
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47 ---»~) -17 
49 

Figure 3. A FRAcrRAN program for digits of 1t • 

The first phase. started at 89 with register contents 

reaches 37 with contents 

where E is a very large even number. To see this, ignore the 5 and 11 

registers for a moment, and see that it initially sets r7 == 2. Then each 

pass around the triangular region multiplies r7 by 5 and puts it into r 3 

and is followed by passes around the square region which double r 3 and 

put it back into r7' This is done n times. so that at the end of this phase 

we have r7 = 2 . 10", as desired. 

The first pass around the square ends with 4 in rs. and each subse­

quent pass at least doubles this number, while keeping it even. At the last 

stage we pass around this region 10" times and finish with an even 

number E 2: 4 X 210" in rs' It's easy to check that registers 2, 3, and 11 

end with the indicated values. 

At the end of the second phase. we shall have 
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r3 = 2 x 10" x £(£-2)(£-2)(£-4)(£-4)(£-6) ... 4 . 4 . 2 . 2 ~ N • 

rll = 1 x (£-1)(£-1)(£-3)(£-3)(£-5)(£-5) ... 5 . 3 . 3 . 1 ~ D . 

This is fairly easy to check, the essential point being that each sojourn 

in the upper region multiplies'7 by TS and puts it into Til (preserving the 

value of rs but clearing '7)' while in the lower region, we multiply 

'3 by '5 into '7 in a similar way. and then (at the left) transfer Til back 

to '3" Register 5 is decreased by 1 as we pass from the upper to the lower 

region; but when rs = 1 we instead clear it and pass to node 41, entering 

the third phase. 

Now Wallis' product is 

1t 224 466 8 8 10 10 -=---------_ .. . 
213355779911 

in which the successive fr:actions are obtained by alternately increasing the 

denominator and numerator. If we truncate it so as only to include all fac­
tors whose numerator and denominator are at most K . we obtain an 

approximation 7tK for 1t which is within at most ; of 1t. So our 

~ = IOn. 1t£ ' where 7tE is a very good approximation indeed to 1t. It is 

in fact so good that the nth decimal digit of 1C£ is the same as that of 1C. 

This digit can be obtained by reducing the integer part of ~ modulo 10, 

and it is easy to check that the third phase of our program does just this, 

putting the answer in register 2 and clearing all other registers. 

The assertion about the nth decimal digit of 1t£ is not trivial. For 

n = 0, our approximation 1C£ is 1t4 = 3
9
2. For n = 1 or 2, we have 

1t 1 
11C£ - 1C 1 < to which is less than I()()()' and since 1C = 3.141 

4x2 
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the nth digits ( n = 1 and 2) after the decimal point in 1t£ must both be 

correct. 

For n ~ 3, the error in 1t£ is at most 

The desired assertion now follows from Mahler's [4] famous irra· 

tionality measure for 1t: if l!.. (in least tenns) is any nonintegral rational 
q 

number, then 

10. How to Use Our Universal Program. 

In this section, we prove Theorem 3, using an ingenious lenuna due to 

John Rickard. We shall call a FRACTRAN·l program [fl,h, ... ,ft] 

monotone if f1 <h <13 < ... <ftc . 
Lemma: Any FRACTRAN-l program can be simulated by a monotone 

one that starts and stops with the same numbers. 

Proof. Choose a new prime P that is bigger than the ratio between any 

two of the Ii and bigger than the inverse of any Ii. Then 

I 2 3 pk [p' Pf,. Ph. P'!,. .. .. 'I, J simulates [ft.!,.!,.· .. ,f, J and is 

monotone. The new program behaves exactly like the old one, except that 

at each step a power of P is introduced, only to be immediately cleared 
away before we copy the next step. 

We shall call a FRACTRAN-l ~ program 

17.h.·· .. ~ [ft ,!,.· .. ./, J 
monotone if 

17 <h < ... <~ and f, <!, < ... <f.. 
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Then our universal program simulates monotone FRACTRAN-l ~ 
programs. It codes such a program by three numbers, M" , M, and d, 

defined as follows. 

We take d to be any common denominator of all the fractions men­

tioned and suppose the given FRACTRAN-l ~ program is 

•• • 
ml mz mj ml mz mk -- ... -[-- ... _] 
d d d d d d 

We then adjoin dummy numbers mj+l and m.k+I' which are both mul­

tiples of d and which satisfy 

and 

where 

The universal program POL YGAME, started at 

2N 3M SM" 17d- 1 23 

will simulate the given FRACTRAN-l ~ program, started at N . This 

universal FRACTRAN-l program was obtained from the FRACTRAN 

program shown in Figure 4, and accordingly, we consider starting the 

latter with rz ::: N, r3 = M, rs = M", r17 = d-l ,at the node 23. 

This works roughly as follows. After a new N has been found. the 

program computes successive multiples N, 2N, 3N • .. . • mN, and simul­

taneously repeatedly halves M to get [M/2]. [M14 ], ... , [ Ml2m ]. If 

[ M12m] is odd, so that m is one of the mj • it sees whether Nm is a 

multiple of d, and if so resets M and takes a new N = mNld , unless 

m was mk+l (i.e., [ MI2m ] = I), when it arranges to stop at node I with 
-21-



register 2 containing N and all other registers empty. For the first pass, 

it uses M* in place of M. 

:; (y,.id 0 :;,H 

l~-~~;iE-f2-~ -;: "17 
37&29 » 23 - eo -- 47&41 

0" 13 f- ..... « -- 02 IS 
19 li.T 

Figure 4. A flowchart for POL YGAME. 

Registers 13, 17, 19 function as a counter. whose count is stored in a 

fonn from which we can see at once if it is a multiple of d. If 

r13 = q. r l9 = r, rl7 = d - 1 - r. with 0 S r < d • 

then the count is the number qd + r. If the machine arrives at node 31 
("enters the counter") with these values, then when it next arrives at node 

23 ("leaves the counter"), we shall have 

rn = q, r19 = r + 1. rl7 = d - 1 - (r + I), if r < d - 1 

r13 = q + 1. rl9 = O. rl7 = d - I, if r = d - I . 

In other words. the value of the count will have increased by 1. 

So if the machine is started at 23, with TS = Til = 0 and T2 = N. it will 

increase the count by N while transferring N from register 2 to register 

11, and then go to node 47 (where its first action will be to retransfer N 

from register II back to register 2). 

-22-



T
ab

le
 2

. 
T

he
 A

ct
io

n 
o

f 
PO

L
Y

G
A

M
E

 

C
on

te
nt

s 
of

 r
eg

is
te

rs
: 

no
de

 
2 

3 
5 

7 
11

 
13

 
17

 
19

 
ac

tio
n 

23
 

N
 

M
 

M
m

 
0 

0 
qm

 
d

-I
-,

 
'm

 
~
 

M
m

 
ev

en
 

m
 

M
m

 
od

d 
I 

N
 

M
-M

m
+

l 
0 

M
m

+t
 

0 
qm

 
d

-I
-,

 
'm

 

t>r
 

m
 

'm
;t

 0
 

23
 

N
 

M
-M

m
+l

 
0 

M
m

+t
 

0 
qm

 
d-

I-
, 

'm
 

m
 

. i:l
 • 

r 
=

 0
 

m
 

47
 &

 4
1 

0 
M

-M
m

+1
 

0 
M

m+
1 

N
 

qm
+l

 
d

-l
-r

 m
+

l 
'm

+1
 

23
 

N
 

M
 

M
m

+1
 

0 
0 

qm
+l

 
d-

l-
r m

+
1 

'm
+1

 

47
 &

 4
1 

0 
0 

0 
M

 
m

N
 

0 
d

-I
 

0 
M

m
+

;:
 

- d 
M

m
+

l 
=

 0 
23

 
m

N
 

d 
M

 
M

 
0 

0 
0 

d
-I

 
0 

1 
N

 
0 

0 
0 

0 
0 

0 
0 

m
N

 =
 qm

 .
 d

 +
 'm

 (0
 "

 '
m

 «
I)

 
M

 m
 =

 [ M
o 

I 
2m

 I
 



After these remarks, the reader should have little difficulty in verifying the 

transitions between particular configurations shown in Table 2. 

We suppose that for particular positive numbers d, N, M ,and Mo 

with [ ~ Ma] ~ M we define for varying values of m the numbers 

Mm> qm' rm by 

Then Table 2 shows that unless M m is odd and r m = 0, the special 

type of configuration in the first line of the table leads to a similar one (in 

the fifth line) with m increased by 1. In the excepted case, if Mm+l '# ° , 
we obtain another such special configuration (in the seventh line), but with 

m (and the count) reset to 0, the new initial value Mo = M for M m' and 

m; as the new N. [f instead Mm+l was 0, we arrive at the last line of 

the table, and SLOp at node 1, with N in register 2 and all other registers 

empty. The cases with Mm odd and r m = ° are called resets. 

Now suppose we start the machine in the special configuration in the 

top line of the table, with m = 0, and the initial value Mo of Mm set to the 

number 

where 

ma < ml < ... < mk+l 

and mk+l is divisible by d. Then before the next reset, we have the 

equivalences 

Mm odd ¢:::::::::) m is one of the mj 
r m = 0 ¢:::::::::) mNld is an integer 

Mm+1 = 0 ¢:::::::::) m = mk . 

So the next reset will be at the first of the mi for which mj Nld is 

integral, and will either 
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replace N by mi Nld, and reset m to 0 and M m to M (if i < k ), 

or stop at node I . with N in register 2 and the rest empty (i = k) . 

This completes the required verifications. Initially, we set m = 0 and 

Mo = M*, but all subsequent resets will put Mo = M. in accordance with 

the rules for FRACfRAN-I ~ programs. 

A FRACfRAN-l program is a FRACfRAN-I ~ program with 

M = M*. For this we can use the alternate catalogue number 
7M I7d- 1 41. 

11. Applications, Improvements, Acknowledgments. 

For the function 

g(N) ~ { t N (N even) 

3N + 1 (N odd), 

the Collatz problem asks whether for every positive integer N there exists 

a k for which l(N) = I . See [3] for a survey of this problem. 

We can ask similar questions for more general Collatz junctions 

where aN and bN are rational numbers that only depend on the value of 

N modulo some fixed number D. We proved in [I] that there is no 

algorithm for solving arbitrary Collatz problems. Indeed. for any comput­

able function fin), there is a FRACTRAN-l program [fl h ... Ik] with 

the property that when we start it at 2n • the first strictly later power of 2 
will be 2j{n). In other words, we can define f by 

2 j{,) ~ l (2'), 

where k is the smallest positive integer for which gk (2!1) is a power of 

2, and !he function g(N), which has the above form, is just fi N for the 

least j which makes this an integer. This result is an explicit version of 
Kleene's Normal Form Theorem. 

-25-



We note that g(N)IN is a periodic function with rational values. so 

that g(N) is a Collatz function for which bN is always O. So even for Col­

latz functions of this special type there can be no decision procedure. By 

applying the argument to a universal fraction game, we can get a particu­

lar Collatz-type problem with no decision procedure. 

(We remark that of course Collatz problems with arbitrary bN are 

harder to solve, rather than easier. We might, for instance, define one that 
simulates a program written in 10 segments, each segment using only the 
numbers ending in a given decimal digit. and in which control is 
transferred between the segments only at certain crucial--and recursively 
unpredictable--times.) 

John Rickard tells me that he has found a seven fraction universal 
2~ 2 .11: .. ) program of type 2 . c ~ 2 and a nine fraction one of type 

2 n . c ~ 2f{n). However, it seems that his fractions are much too compli­

cated ever to be written down. I used one of Rickard's ideas in Section 
10. Mike Guy gave valuable help in computing the catalogue numbers in 
Section 2. Of course, the responsibility for any errors in these numbers 
rests entirely with him. 
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CHAPTER III. 

PROBLEMS IN COMMUNICATION 

In this chapter on communication we find many infonnation theoretic 

problems. Perhaps this is as it should be, since information theory yields 

some of the extreme points of the theory of communication. Extreme 

cases tcnd often to be theoretical and therefore to lend themselves to crisp 

problem fonnulation. 

Two of the problems have been partially solved. Wyner's problem on 

the spectra of bounded functions has led to the contribution by Boyd and 

Hajela in the solution section. Also, Abbas EI Gamat's problem on reli­

able communication of highly distributed information has led to a solution 

by Gallager, • 'Computing Parity in a Broadcast Network," appearing in 
Chapter VI. 
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3.1 SOME BASIC MATHEMATICAL PROBLEMS 
OF MULTIUSER SHANNON THEORY 

I. Csiszar 

Mathematical Institute of the 
Hungarian Academy of Sciences 

Budapest, Hungary 

At the present state of development of multiuser Shannon theory, the 

main interest is in single-letter characterizations of achievable rate regions 

(capacity regions) of various source (channel) networks, such as source 
coding with side infonnation. multiple descriptions. and broadcast chan­

nels. The mathematical background of most such problems is very simi­

lar, namely. an entropy or image size characterization in the sense of [IJ. 

1. Entropy Characterization Problem. 

For a discrete memoryiess multiple source with generic variables 

(X, Yl > ••• , YA:: ) • find a single-letter characterization of the closure of 

the set of all (k + I)-dimensional vectors of the fonn 

[ .!. H( X" I fiX")). .!. H ( Y7 I j(X"» . ... , .!. H(YZ I fiX" )) ]. 
n n n 

Here n = 1. 2.... and f is any function defined on the nth Cartesian 

power of the range of X . 

2. Image Size Characterization Problem. 

The T}-image size gW<A. T}) of a set A c Xn over a discrete memory­

less channel (DMC) {W: X ~ Y] is the minimum cardinality of 

8 c yn such that Wn(B I x) ~ T} for each x E A. The problem is to 

find. for a distribution P on X and DMCs {Wj: X ~ Yj } • 

i = I, ... , k • a single-letter characterization of the limit of the sets of all 

(k + 1 )-dimensional vectors 
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[ 
I I I ] - log I A I . - log 8w (A. 11) ..... - log 8w (A. 11) . 
n n I n 1 

Here A c Xn is any set of P-typical sequences, and 0 <" < 1 is fixed 

(the result is independent of 11 ). 

Both problems are solved for k = 2 (cf. [1]) but not for k ~ 3. An 

interesting (unsolved) special case of Problem 2 for k::: 3 is the follow­

ing: consider sets A c Xn x yn X Zn consisting of triples of sequences 

which are jointly typical with respect to a given distribution on 

X x Y x Z. Let AI' A2 ' and A3 be the projections of A on X", yn , 

and zn, respectively. Characterize the vectors (fOT n ~ 00 ) of fonn 

[
I I I I ] - log I A I. - log I All. - log I A,I . - log I A31 
n n n n 

or at least those without the first component. 

3. Divergence.Characterization Problem. 

The analogue of the entropy-characterization problem for Kullback­
Leibler divergence is relevant for hypothesis testing problems with com­

munication constraints (ef. [2]). In case k = 1 , the problem is to charac­

terize, for two double sources with generic variables (X, Y) and (X, Y) , 
the closure of the set of all two-dimensional vectors 

[ ~ H(f( Xn». ~ D(Pf{X") y" II Pf{X") Y' ) ] . 

4. Communication Problems with Unfriendly Participants. 

This. up to now, less investigated problem area includes jammer prob­

lems. Wyner's wiretap channel (cf.[ll, pA07), and so on. Entropy and 

image size characterization problems underly many problems of this kind, 
as weU. 
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3.2 THE INFORMATION THEORY 
OF PERFECT HASHING 

Janos Kfimer 

Mathematical Institute of the 
Hungarian Academy of Sciences 

Budapest. Hungary 

Fredman and KomI6s [I] have used an interesting information­

theoretic technique to derive the hitherto sharpest converse (nonexistence) 

bounds for the problem of perfect hashing. It seems to me that this is the 

first use of "hard core information theory" in combinatorics. 

In a recent paper [2] , we have shown that implicit in the Fredman­

Koml6s proof technique is the concept of graph entropy [3]. This might 

be interesting because a straightforward use of graph entropy reduces their 
proof to a few lines. It is convincing to use the example of perfect hash­
ing to discuss possible applications of information theory to combinatorics. 

Furthermore, I will show that the bound in [1] is not tight. 

During the last decade the infonnation theory of discrete memory less 

models has become increasingly combinatorial in spirit. It was somewhat 

disappointing to see that even deep-looking Shannon theory results such as 

the exponential error bounds can be derived in short order by elementary 

counting arguments. It is therefore good news that a genuinely 

information-theoretic technique (not just the subadditivity of entropy) 

yields new results in combinatorics. 

1. Perfect Hash Functions. 

Let X be a set of n elements. We shall say that a function 

f: X ~ B separates A if I takes tAl different values on A. The 

family {Ix} , 1t En, of mappings of X into B is a (b.k)-family of 

perfect hash functions if lBI = b and every k-element subset A of X is 

separated by at least one function If( , 7t En. 
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What is the minimum size Y(b, k, n) of a (b,k)-fami ly of perfect 

hash functions for X ? Note that logaritluns are to the base 2. 

Standard random selection of the hash functions yields 

II' 
Y(b. k. n) S J}< k log n • 

'-1 
where IJI. ~ n (b - i ) . Fredman and Koml6s [I ] have proved that 

1=0 

. '-1 I u - _--,:,-o"go..:,n,---::,-Y(b. k. n) ~ J}<-I' " log (b - k + 2) 

It is instructive to study the special case Yen) ~ Y(3 , 3, n). Random 

selection, followed by e~purgation , yields 

Y(n ) S 
2 log n 

9 log -
7 

The Fredman-Koml6s lower bound is 

3 
Y(n) " 2 log n . 

However, I can prove by elementary counting that 

log n 

3 
log 2 

Y(n) " ( I ) 

Indications are strong that even this bound is poor. A combination of the 

two lower bounding techniques should be poss ible. t None is unifonnly 

better than the other, but the counting bound can be obtained also by the 

graph entropy technique, as pointed out by Kati Marton, who was the first 
to derive bound (l) using that technique. 

t Ir is indeed possible, as shown subsequently by the KOmer and Marton [4J. 
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2. Proof of the Counting Bound. 

Let a (3,3)-family of perfect hash functions be represented by a set C 
of ternary sequences of length t. For an arbitrary ternary sequence x of 
length t, let A(x) denote the set of all sequences in (O, 1,2}1 lhat 

are at maximum distance t from x. Clearly C has the property 

I A (x) (") C I ,; 2 . (2) 

Now, let us count the pairs {A(x), y }, x e ( O. 1, 2 }I, Y E C , 

Y E A(x). By (2), their number, lei. satisfies 

hence, 
ICI·21~2·3t; 

I ;;, 
log ICI 

3 log-
2 

which is the desired bound (1). 
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3.3 THE CONCEPT OF SINGLE-LETTERIZATION 
IN INFORMATION THEORY 

Janos K~mer 

Mathematical Institute of 
the Hungarian Academy of Sciences 

Budapest, Hungary 

Inherent in the definition of Shannon theory problems is an asymptotic 

characterization of the performance, rates and error probabilities of all pos­

sible code constructions in the given context. Then the results one is 
looking for give so-called single-letter characterizations of these perfor­
mance measures. Yet nobody has put forward a mathematically valid 

explanation of the key notion of single-letter characlerizmion. 

One way of approaching the problem is to speak about computable 

characterizations. Roughly speaking, a characterization is computable if it 
gives rise to a nice algorithm that computes the underlying quantities to 

any defined degree of accuracy. This. however, is less than satisfactory 

for intuition. One of the purposes of Shannon theory is to give a sys­

tematic account of aU the quantities that can serve as infonnation measures 

in various contexts and to clarify their relations by identities and inequali­

ties. Because of these fonnulas, infonnation theory can put an intuitive ly 

appealing order into the wealth of facts needed in asymptotic counting 

arguments often encountered in combinatorial arguments. It is one of the 

main interests of multiuser infonnation theory to shed light on these rela­

tions. 

It seems that the theory of association schemes as developed by Bose. 

Mesner. Delsarte, Schrijver, Babai, and so on or suitable generali zations 

thereof might provide a structural deSCription for what I believe to be the 

essence of single-letter characterizations. Theorems involving such a char­

acterization in the book by Csiszar and the author seem to suggest that for 

the particular problem under consideration. optimal constructions exist in 
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any association scheme isomorphic to the given one; this is true in a 
somewhat vague asymptotic sense. Then. since the parameters of the 

underlying association schemes are given above by single-letter quantities. 
depending as they do only on the joint types. that is. the joint letter fre­
quency distributions of finitely many finite sequences. one will obtain the 

kind of characterizations one needs. 

I would like to see whether there is any hope of converting this into a 
logically sound theory. 
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3.4 IS THE MAXIMUM ENTROPY PRINCIPLE 
OPERATIONALLY JUSTIFIABLE? 

I. Csiszar 

Mathematical Institute of the 
Hungarian Academy of Sciences 

Budapest, Hungary 

Let X be a random variable originally believed to have distribution Q. 
When new information is obtai~ed suggesting that the distribution of X 

actually belongs to a set of distributions n not containing the original 

guess Q. this should be updated to conform with the new information. 

Intuitively a proper updating should be that element of n which is closest 

to the original guess Q. It remains to specify the measure of distance 

between distributions to be used to find this closest element. 

The maximum entropy (ME) principle, also called minimum discrimi­

nation infonnation principle, suggests use of the KuUback-Leibler informa-

tional divergence. defined by D(P II Q) = 1: P(x) log ~ in the discrete 
Q(x) 

case and by the corresponding integral in general. Thus ME updating 

results in that P·e n (providing it exists and is unique) which minimizes 

D(P II Q) subject to Pen. If Q is the uniform distribution, this p. is 

just the element of n having maximum entropy, hence the name. The ME 

principle has been used successfully in various fields ranging from statisti­

cal physics to speech recognition, and it has also been derived axiomati­

cally from some natural postulates. The following result of Csiszar (1984) 

leads in an operational (rather than postulational) manner to the ME prin­

ciple and also gives a hint in what situations simple ME updating is 

justified. 

Theorem: Let Xl' X2 ' ... be i.i.d. random variables with common 

distribution Q and let n be a given set of distributions on the common 

range of the X/s (satisfying some regularity conditions omitted here). Let 
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An be the event that the empirical distribution of the sample XI • . ..• Xn 

belongs to n. Then for any fixed m. the conditiona l joint distribution of 

Xl ' .... Xm under condition An approaches for n ~ 00 the joint distribu­

tion of m i.i.d. random variables with common distribution p. where p. 

minimizes D(P II Q) subject to PEn. 

Problem: Generalize the above result for not necessarily LLd. 

X I- X2 ....• and for constraints not necessarily on one-dimensional dis­

tributions only. More exactly, find possibly general conditions under 

which the following holds for a stationary ergodic process XI, X2 ,... and 

a given set n of distributions on the kth Cartesian power of the common 

range of the Xj 's. Let An be the event that the kth order empirical distri­

bution of the sample Xl •...• Xn + k- J belongs to n, and consider the 

conditional joint distribution of m consecutive random variables 

Xl~' XJ~ + I ' ... ,Xl~ + m-SI under the condition An' Then if n ~ 00 

and In ~ 00 • n - In ~ 00 ,this conditional joint distribution converges 

to the m-dimensional distribution of a stationary ergodic process Y t , Y2 , ... 

whose divergence rate from the given process X I' X2 ,... is minimum 

subject to the constraint that the k-dimensional distribution of the Y pro­
cess belongs to n. 

If the X process is finite state Markov, a proposition of this kind was 
proved by Cover, Choi. and Csiszar [1]. It is conceivable that in statistical 

physics literature similar results may be available for Gibbs random fields. 

REFERENCE 
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under Markov Conditioning," to appear IEEE Trans. In! Theory. 
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3.5 EIGHT PROBLEMS IN INFORMATION THEORY 

R. Ahlswede 

Universitllt Bielefeld 
4800 Bielefeld 1 

Gennany 

1. Multiuser Information Theory. 

Problem 1: So far, the capacity regions of multiway channels have 
been characterized in only a few cases. The main difficulty consists of 

finding appropriate methods for single-Ieuerizalion. 

For complex channels this seems to be a hopeless task. We therefore 

suggest settling for somewhat less, that is, a description of the capacity 

region as the limit of information quantities depending on vector-valued 
random variables such that the speed of convergence in terms of the 

number of components can be bounded from above. There ought to be a 

way to do this. 

Problem 2: There are nonprobabilistic channels that have never 

been considered in a multiuser situation. We suggest doing this for the 
permuting channels, which have been studied in [1]. 

Problem 3: One of the very challenging problems has been to deter­

mine the capacity region of the broadcast channel (Cover, 1972). 

The following simpler 

difficulties. Suppose that 

{ Ejj : 1 :5 i :5 I , 1 :5 j :5 J } 

problem encounters some of the typical 

V IS a finite set, then a family 

of subsets of V is E-good if for Aj =: I..! Ejj 
J 

( i) I Aj (l Ej'j I :5EIEj'jl for all j and all i' * i ; 

(ii) 1 Bjn Ej/ 1 :5E 1 Eij' 1 for all , and all / #j. 

Derive bounds on I and J in terms of I VI and £ . 
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Problem 4: Whereas there is an extensive literature on coding 

schemes for multi way channels with feedback, it seems that there is no 

theory for multisources in case of feedback. Such a theory should include 

various search problems such as group testing. 

Problem 5: In [2], we studied several source coding problems 

involving decompositions of n x n arrays into as few as possible partial 

transversals such that each transversal has distinct symbols as entries. It is 

therefore of interest to know the possible lengths of such transversals. In 

particular we have the following: 

Conjecture: Suppose that in an n X n array no symbol occurs more 

than n times as an entry. Then there exists a partial transversal of length 

n-l with distinct symbols. The example (%~) shows that one cannot 

always expect a transversal of length n. 

2. Noiseless Coding for Multiple Purposes. 

Consider a Bernoulli source Xn = (XI' ... , X n). Suppose that there 

are n persons and that person t is interested in the outcome of 

Xt ( 1 ~ t ~ n ). A multiple purpose encoding (or program) shall be a 

sequence I = (II (Xn), h(Xn), ... ) of 0-1 valued functions Ii . 

Person t requests sequentially the values of II' h, ... , and stops 

as soon as he has identified the value of X t . Let lif, t) denote the 

We are expected number of requests of person t for program f. 
interested in the quantity L(n) = min max lif, t) . The choice 

f I~t~n 

fi (Xn) = Xi (1 ~ i ~ n ) gives lif, t) = t for 
1 n n+l - L lif, t) = -2 one should do better. 
n t=1 

l$;t~n. Since 

Problem 6: What is the asymptotic growth of L(n) ? There are 
obvious generalizations of this problem. 

3. Correlation Inequalities. 

Correlation inequalities play a role 10 statistical physics, reliability 
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theory. and so on. A systematic study was made in [3J. Instead of the 

Boolean operations V. A usually occurring in those inequalities, one can 

consider any two operations $. 'V : S x S ..-? S, where S is a finite set. 

Further progress depends on the solution of the following. 

Problem 7: For two maps 4ls : S x S ..-? Sand $T: TxT..-? T , 

define the product 

$ST : (S x 7) x (S x 7) -> S x T 
by 

Also $ associates to A, B c: S a new set in the Minkowski sense 

$ (A, 8) ~ { $ (a, b) : a E A, b E 8 }. The pair ($, "') is called expan· 

sive, if I A I 18 I " I $(A, 8) I I ",(A, 8) I for all A, 8 c S . 

Conjecture ([3]). If ($s, 'Vs) and ($1" 'liT) are expansive, then 

the pair of products (41ST' 'VST) is also expansive. 

4. Random Selection and Equidistribution. 

Existence proofs by random selection are very popular in combinator­

ics, infonnation theory, complexity theory and so on. We wonder whether 

they can be replaced by detenninistic procedures, which have certain 

equidistribution properties. Our ideas are not yet precise. We came 

across the following number theoretical problem, which does not seem to 

fit into the classical theory of equidistribution. 

Problem 8: '" n . Consider. for instance, the sets An = {L £j 51 : 

EjE{O,I}}. Do the sets 

satisfy for all 0 ~ m :5 211-1 

I An(m) I Tn = 20(n) ) ? 

i= l 

An(m) ~ {k E All ; k == m mod 211 } 

I AII(m) ! 2-n = 0(1) (or at least 

-41-



REFERENCES 

[I} R. Ahlswede and A. Kaspi. "Optimal Coding Strategies for Certain 
Permuting Channels," submitted to IEE£ Trans. Inf Theory. 

[2} R. Ahlswede. "Coloring Hypergraphs: A New Approach to Multiuser 

Source Coding," Part It J. Combinalorics. In! Syst. Sci. 4, No. I , pp. 
76-115 (1979); Part n, ibid. 5, No.3, pp. 220-268 (1980). 

[3] R. Ahlswede and D.E. Daykin. "Inequalities for a Pair of Maps 

S x S ~ S with S a Finite Set," Ma/h. Z. 165, pp. 267-289 (1979). 

-42-



3.6 OPTIMUM SIGNAL SET FOR A 
POISSON TYPE OPTICAL CHANNEL 

A.D. Wyner 

AT&T Bell Laboratories 
MUrTay Hill. NJ 07974 

A simple model of an optical communication channel is the following. 

The channel input is a waveform x(t) which satisfies 

o S a S ;c(I) s: b < 00, 0 S t < 00 , 

and the corresponding channel output is a Poisson j ump process or count­

ing process v(l) with intensity function x(t) . Thus v(l) is an intege r-valued 

independent increments random process, and 

k=O, l .2, ... , and 0 :5: /1 SI2 <-
where 

" 
1.. = f X(I) dl. 

" 
Physically, x(t) represents a photon intensity, and the parameter a 

(when a > 0) is the "dark current" which is always present. The j ump 

process V(/) represents photon arrivals at the receiver. 

A signal set with parameters (M, T, S. Pe) consists of the following: 

(a) A set of M waveforms xrn(t ), 0 s: t s: T. 1 :s; m s: M , which satisfy 

and 

I 1 
T f Xm (I) = S. 

o 
(Physically, the parameter S represents average s ignal power). 
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(b) A "decoder" mapping 0 which maps jump processes on [O,n to 

([,2, ... , M). 

(c) Let vb be the received jump process Vel), 0 s: 1ST. Then the 

"error probability" is 

[ M 
Pe = - L Pr (D(Vb) -.e m I Xm (1) is the chaIUlel input) . 

M =1 

Our problem, for given M ~ 2, a s: S s: b, and T > 0, 

is to find the signal set that minimizes P e . 

I have a conjectured solution which will be discussed below. 

This problem is reminiscent of that of finding optimal signal sets for 
the Gaussian channel with additive white noise and no bandwidth con­
straint. In fact, my conjecture is very close to the famous "simplex con­
jecture" for that channel but may be more tractable than the Gauss ian 
problem. Here is my conjectured optimal signal set. 

Since a s: S s: b, we can write S = 9a + (I - 9)b. Suppose S, M are 
such that 9 = kiM, for some integer k. We construct our signal set as fol­
lows: 

Let N = ( ~ ), and let A be an M x N matrix, the columns of which 

are the N pennutations of an M-vector with exactly k a's and (M-k) b's. 

Thus, fo r example. for k = 2, M = 4 (so that S = a; b), A is the 

4 x 6 matrix 

A- baabba 
[

bbbaaa j 
- ababab . 

abbabb 
Let A = (amn). The signal set is 

-44-



(n - l)T < nT 
N _t< N' 

1 S n S N, 1 S m SM. 

It is easy to check that J xm(l)dt = S. 

Let us define P; (M.T,s) as the minimum Pe attainable for a signal set 

with paramete" M ,T.s. For S = [~ ] a + [- ~] b , as above, it can be 

shown [1] that with M, S held fixed as T ~ 00 

Thus, as T ---+ 00, P; (M,T,5) = exp (-EoT + 0(1) ). A similar result 

holds for arbitrary S. Furthermore, the signal sets defined above satisfy 
(I ). 

REFERENCE 
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3.7 SPECTRA OF BOUNDED FUNCTIONSt 

A.D. Wyner 

AT&T Bell Laboratories 
Murray Hill. NJ 07974 

We are concerned here with waveforms X{ l ). _00 < I < 00 • which 

satisfy an amplitude-constraint, I x(t) 1 ::; A < 00 • and their spectra. We 

pose two open problems. The fi rst is the maximization of the energy of a 

filtered version of an amplitude-constrained pulse with finite support. The 

second is the question of how close the power spectral density of a sta­
tionary amplitude-constrained random process can be to a flat band-limited 

spectrum. These questions appear to be diffi cult, but answers to them will 

shed light on certain aspects of storage in magnetic media (disks, tapes, 

etc. which are inherently amplitude limited) and on communication over 

microwave radio links. 

Problem 1: Consider the set of real-valued waveforms x(t), 

-00 < I < 00 • such that 

I x(r) I ,; \ 
and 

X(l) = 0, I < 0, I > \ 

The Fourier transform of x(·) is 
_ 1 

XI! I = J x(l)e-12,g'dl = J x(r)e-12,g, dl . 
o 

( \ ) 

(2) 

(3) 

Let h(t) be the impulse response of an arbitrary linear filter, and let -
H(j) = J h(t)d"2Jf/t dt be the filter transfer function. Then the energy of -
t See the contribution of Boyd and Hajela in Chapler VI for more on this prob­
lem. 
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the filter output when x(r) is the input is 

E = f I H(f) f I X(f) I df· (4) 

-
Our problem is to maximize E for fixed H(j), T. over all x(r) satisfying 
(I) and (2). 

Comments. It is easy to show 

(a) that if x(r) satisfies (l) and (2) that, under very weak assumptions on 
her), we can attain essentially the same value of E for x(r) taking only 
the values ±1 ; 

(b) 
I I 

E = !! x«) xes) R« - s) d<ds , (Sa) 

where 

-
R(I) = f h(1 - u) h(u) du . (5b) 

-
Thus when R(r);?: 0 • for 0 S t S 1 (which happens when h(£) ~ 0). E 

is maximized with x(t) = 1 . 0 S t S 1 . For example, when 

and W S 112 • then 

R(I) = 

{
I, 

H(f) = 
0, 

(2W)sin(21tWI) 
(21tWI) 

Ifl<W, 

Ifl> w, 

;?:O. - 1 S r S 1 . 

(6a) 

(6b) 

Problem 2: Let x(t) be a real-valued stationary random process with 

EX(I) = 0 and I X(I) I " A . lei R(I) = Ex(t) X(I + <), and let 

-
(7) -

be the power spectral density of x. We are concerned with how "close" 
S(j) can be to the "boxcar" 
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{

A2/2, 
BIj) = 

o , 

- -

If I $ I , 

If I > I . 
(8) 

Note that f Blj)df = A 2 = EXl(t) = f Slj)dj. Specifically, the problem is 

the maximization of 

+I 

Q ~ f log(\ + SIj) df, 
-I 

(9) 

over all S(j) realizable as the power spectral density of a random process 

x(t) for which I x(t) I = A . 

Comments. 

(a) From the concavity of the logarithm, 

Q$210g [1 + ~ 11 Slj)df ] $210g { \ + ~}. (10) 

Equality is achieved when S(j) == B(/). 

(b) Let yet) be a Gaussian random process with Ey(t) = 0 and with 

spectral density !!!If so that ET(t) = I. Let xCt) = A sgn(yU)). Then 
A 

£XU) = 0 , and I x (t) I = A (a.s.). It can be shown that the spectral 

density of x(·) is 

so that 

2 S(j) 2: - 8(j), -00 < f < c>o , 
1t 

(l1a) 

(lIb) 

Inequalities (10) and (lIb) yield estimates on sup Q. I conjecture that 

the upper bound (10) holds strictly and would sorely love to see a bound 
tighter than (10). 
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3.8 A STOCHASTIC DECISION PROBLEM 

H.S. Witsenhausen 

AT&T Bell Laboratories 
Murray Hill, NJ 07974 

1. Team Decision Problems. 

In a team decision problem there are n agents. Agent i observes ran­

dom variable Y j and, as a function of this observation, takes decision uj 

from a given set U j of possible decisions. Denoting the decision function 

by Yj • the problem is to choose (YI' ...• Yn) so as to optimize the expec­

tation of a criterion C(ul"'" un. Z) , where Z is a random variable and 

the joint distribution of Z and the Yi is given [I]. Note that by condition­

ing one can assume that Z is the n-tuple of all observations Yj • Outside a 

few special cases, team problems are of high complexity [2]. 

If C depends only on the decisions, then trivially an optimum or E­

optimum can be achieved by constant decisions, so that the specification 

of the observations is irrelevant. However, if constraints are imposed on 

the probability distributions of the ui ' then meaningful and interesting 

problems result. Such problems come up naturally in diverse applications. 

The one discussed here originates from research in graph theory [3]. 

2. Problem Statement. 

Let Xi (i:::: I, ... ,n) be independent random variables with (not 

necessarily identical) nonatomic distributions. Of the n agents, agent i 

observes the variables other than Xj • Thus Yj is the (n - I)-tuple 

The decisions are binary. with 

U i :::: {O,I) for all i. (Allowing decisions from the interval [0,1] reduces to 

the above case.) The constraints are that 

E fUjI ::::ai (i= I, . .. ,n), (I) 
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where a j are given constants in [0,1]. The objective is to minimize the 

expectation of 

C(UI ' ... • un) ;: L Uj uj­
t S i< jSn 

(2) 

This is a problem with "lacunary" infonnation pattern. as m [41. It is 

trivial for n < 3 . 

For n ;: 3 • a c1osed-fonn solution for general a j is already too much 

to ask. We have. however, an interesting piece of qualitative infonnation 

[5J. 

Theorem: When n;: 3 , there exists. for each triple (Cl t , a:z. a3) a 

quantization of each of the Xi into a three-lette r alphabet, such that the 

agents can make their optimal decisions by using only the quantized fonn 
of the variables they observe. 

Our questions is: Do similar statements hold for n > 3 ? 
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3.9 UNSOLVED PROBLEMS RELATED TO 
THE COVERING RADIUS OF CODES 

N.J .A. Sloane 

AT&T Bell Laboralories 
Murray Hill, NJ 07974 

Some of the principal unsolved problems related to the covering 

radius of codes are described. For example, although it is almost 20 years 

since it was built, Elwyn Berlekamp's light-bulb game is still unsolved. 

L Introduction. 

Codes with low covering radius have applications in source coding 

and data compression (see [6]). Although there has been considerable 

activity in recent years in studying these codes ([2)-[4], [6], [71 . [9], [10], 

[12], [13]), many open questions remain. The following are some of the 

most important. Other problems may be found in (2) and [6]. 

2. What Is the Solution to Berlekamp's Light-Bulb Game? 

In the Mathematics Department commons room at Bell Labs in Mur­

ray Hill there is a light-bulb game built by Elwyn Be riekamp nearly 20 

years ago. There are 100 light bulbs. arranged in a IOxlO array. At the 

back of the box there are 100 individual switches. one for each bulb. On 

the front there are 20 switches. one for each row and column. Throwing 

one of the rear switches changes the state of a single bulb. while throwing 

one of the front switches changes the state of a who le row or column. 

Suppose some subset S of the 100 bulbs are turned on using the rear 

switches. Let f{S) be the minimum number of illuminated bulbs that can 

now be attained by throwing any sequence of row and column switches. 

The problem is to detennine 

R = maxj(S). 
S 
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It is known [IJ that 32 S R S 37 . 

The preceding problem is in fact equivalent to finding the covering 

radius of a certain code. Let C be an [n,k] binary. linear code. The cov­

ering radius R of C is the maximal distance of any vector x E F~ from C, 

that is, 

R = max min dist(x. c) . 
xeFlceC 

(1) 

Let us define a light-bulb code Lab to be the [n = abo k = a + b - 1] 

linear code spanned by the rows and columns of an a x b rectangular 
array . Figure 1 shows some typical codewords of L 3•3 (which might also 

be called the tic-tac-toe code). Berlekamp's game asks for the covering 
radius of LtD,lO' Since there are potentially 2100 choices for x in (1), a 

brute force attack will not succeed! 

1 1 1 
000 
000 

1 00 
1 00 
1 00 

o 1 1 
100 
100 

• 

• 

• 

( 111 000 000) 

• (100 100 100) 

(011 100 100) 

Figure 1. Some codewords in the light-bulb code L 3,3 ' 
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More generally. one may ask for the covering radius Lap. Table 1 

gives the known bounds on La,a' For large a it is known ([1], [6]) that 

a 2 a 312 a2 a 312 3/2 
- - -- +0(a3J2 )';; R ';; - -r,o- +o(a ). 
2 2 2 ,21< 

See also [5] and [9]. 

Table 1. Covering Radius of Light-Bulb Code Laa. from [1] 
and [6] ( n = length , k = dimension. R '= covering 
radius, l[ n ,k 1 = world record) 

a n k R c[n,k] 

1 0 0 

2 4 3 1 I 

3 9 5 2 2 

4 16 7 4 3 or 4 

5 25 9 7 5 or 6 

6 36 II ? 8-10 

7 49 13 '; 16 12-15 

8 64 15 22-23 

9 81 17 ,; 29 

10 100 19 32-37 

My reason for giving Berlekamp's game as the first problem is that it 

appears that light-bulb codes. and codes closely related to them, such as 
those in Equations (46) and (47) of (6], often have unusually low covering 
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radii. It would therefore be valuable to have a better understanding of 

these codes. 

A related question is to detennine the exact covering radius of the 

codes obtained by the extended direct sum construction given in (79) and 

(8\) of [6J. 

3. Is There a Code of Length 15, Dimension 6, and Covering Radius 

3? 

Two general questions in this subject are: (i) find the smallest possible 

covering radius r[n,k] of any [n,k] linear code, and (ii) exhibit explicit 

codes that attain or come reasonably close to this bound (see [6]). The 

value of r(n,k] is known exactly if k S 5. or if n s: 14, and a table of 

bounds on r[n,k] for n s: 64 is given in [6]. The first gap occurs when 

n = 15 and k = 6. A [15,6J code exists with R = 4, but the best bound 

only guarantees that R ~ 3. Problem: Is 1[15,6] = 3 or 4? 

4. Find an Abnormal Linear Code. 

The "amalgamated direct sum" construction for constructing codes 

with low covering radius given in [6] works best when applied to normal 

codes (the definition is given below). It seems likely that almost all linear 

codes are abnonnal. although at present (August 1986) not a single exam­

ple of an abnonnal linear code is known. Every code that has been stu­

died so far has turned out to be normal! Problem: Find an abnormal 

linear code, or prove that all linear codes are normal. Abnonnal nonlinear 

codes are known to exist (see [7]). 

Definition. 

denote the 

Let C be an [n,kJ code with covering radius R, 

set of codewords (c I •... • c
lI

) E C with 

and let 0 ') a 

Cj = a (for 

i = 1, ... , n and a = 0 or 1). Then C is normal if. for some i, 

diS! ( x, clP ) + dist (x, q<1) ~ 2R + \ 

holds for all x E Fq. Many classes of codes are known to be nonnal , 

including all codes of minimal distance d s: 5, or with dimension k s: 5, or 

with covering radius R s: 2, or with length n s: 14 (see [3),(7) , and [13]). 
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5. What Is the Covering Radius of a First·Order Reed·Muller Code? 

First~order Reed-Muller codes are among the simplest, most elegant, 
and most important of all codes [8, Chap. 14]. These codes have length 
n = 2m• dimension k = m + 1 , and minimal distance 2m-t. For even m, 

Rothaus [12] showed that 

R =.!!.. _ Vn 
2 2' 

But for odd m, it is only known in general that 

~-{fSR< ~-~ 
(see [2] for references), and for odd m ~ 15 that 

.!!. _ 27 ..r,; < R < .!!. _ ..r,; 
2 32 -fi - 2 2 

(Patterson and Wiedemann [10]). Problem: Detennine R when m is odd. 

This problem can be stated another way: Which boolean functions of 
m arguments are most difficult to approximate by linear functions? 

For even m these codes are known to be normal [6]. Problem: Show 
that first-order Reed-Muller codes of length 2m, m odd, are normal. (This 
would improve certain asymptotic estimates in [6].) 

6. Find the Covering Radius of Cyclic Codes of Length 63. 

In searching for codes with low covering radius, it was found that one 

of the cyclic codes of length 31, the [31,11] five-error-correcting BCH 
code. has an exceptionally low covering radius, namely, R = 7 (see the 
tables in [4] and [6]). It is likely that some cyclic codes of greater length 
will also have low R. Problem: Detennine the covering radius of cyclic 
codes of lengths 33-63. (Tables of these codes may be found in [11].) 

Postscript (November 25, 1986). Peter C. Fishburn and the author have 

recently solved Berlekamp's game and have detennined all the values of 

R in Table 1. 
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3.10 A COMPLEXITY PROBLEM 

R. Ahlswede 

Unive~itllt Bielefeld 
4800 Bielefeld 1 

Gennany 

Combinatorial extremal problems involving more than one operation 

are usually very difficult. Complexity problems fall into this category. 

We propose here an approach to the construction of monotone Boolean 
functions of large fannula size (and large combinational complexity) via 

the following extremal problem, which involves only one operation. 

Denote by M m
,l1 the set of (0, I )·matrices with m rows and n 

columns and define for A. B E Mm
,11 the matrices A v B. A A B by 

(A V B)(i, j) = max (AU, J), BU, J)) , 

(A A B)(i, j) = min (AU, J), B(i, J)), I ~ i ~ m; I ~ j ~ n. (I) 

In terms of the matrices Xi (1 :5 k :5 m) and Y t< I :5 / ::; n) , defined by 

XkU. J1 = 0ki. y t<J, J) = Olj (Kronecker's 0), 

one can obviously write for A E Mm,n 

A = V (XiflY). 
(i,)): A(i, j}:= I 

Define now for A E Mm ,n 

(2) 

(3) 

L(A) = 1 + minimal number of v-operations in a formula for A . (4) 

Because of the distributive law, formula (3) is in general not best. We 
exclude this effect by two conditions. 

Conjecture. If A E Mm,n satisfies the conditions 

(a) There is no 2 x 2-minor with 1 's only 
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(b) Every row and column has at least one 0 

then L(A) = II A II , the number of l's in A . 

The conjecture says that for these matrices (3) is best We conjecture 
the same also for combinational complexity restricted to v -operations. A 
positive answer (and its extensions to higher dimensional arrays) in con­
junction with constructive results on Zarankiewic's problem would give 
functions f: { 0, 1 }t ~ { 0, 1 } in NP of high monotone complexity. 
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3.11 CODES AS ORBITS 

R. Ahlswede 

Universitllt Bielefeld 
4800 Bielefeld I 

Gennany 

For a finite set X and natural n we call U c Xn m-orbital. if there 

exist a V cU. I V I = m , and a subgroup G of the symmetric group 

Ln such that 

VG= U. 

1. Do there exist codes achieving capacity for the discrete memory less 

channel whose code word set is I-orbital? 

This is the case for the list codes of exponentially small list size. Also. 

the Rate-Distortion function is achievable with I-orbital codes ([ 1 D. How­

ever, we tend to believe that question 1 has a negative answer and ask the 

following: 

2. What is the minimal exponential growth of m such that capacity can 

be achieved with m-orbital codes? 

Whereas the notion of linear codes is limited to very special symmetric 

channels, the proposed notion of orbital codes avoids these limitations and 

endows Shannon-sense information theory with a very helpful algebraic 

structure. 
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3.12 RELIABLE COMMUNICATION 
OF HIGHLY DISTRIBUTED INFORMATIONt 

Abbas El Gamal 

Department of Electrical Engineering 
Stanford University 
Stanford, CA 94305 

Sharmon's theory of information [1] and subsequent generalizations to 

multiple users (for a survey see (2]) consider the situation of a small 
number of users each with an unlimited amount of information. The users 

communicate over a noisy channel with the goal of exchanging their infor­

mation reliably. Here, we consider a complementary model. We assume 
a very large number of users, each with a small amount of information. 

We also assume that the communication takes place over a noisy channel 
but assume that the goal of the users is to compute a function reliably. 
This highly distributed information model is motivated by problems of 

deci sion making in a network. The users could be either a large number 

of processors, human beings, or simply the components of a logic circuit. 

In all cases, the noise is an inevitable physical limitation. 

We introduce our model via the following example: 

2J 
s, 

x, x. 

Broadcast Network 

t See conrribution by Gallager in Chapter VI for more on this. 
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Consider a broadcast network with (n + I ) users So' SI ' ... ! Sn . 

User Sj' 1 :0::;: i :0::;: n • is given the outcome of a Bemoulli(1 /2) random 

variable XI" that is Xj E {O,l J, PIXj = I} = 1/2. The X/s are all 

independent. Assume that the network is a binary discrete time broadcast 

channel and that only one user can send a "0" or a "1" at any time 

instant I. 

Suppose user Sj sends y E {O.l} at time instant t (y naturally 

depends on Xi and all previously received bits). We consider two noise 

models: 

I . Transmitter Noise Model: User Sj' 0 S j S n • receives y + 21 ' 

where {Zt' 1 :0::;: I < oo} are independent identically distributed Ber­

noulli(E) random variables and + is the mod 2 addition operation. 

2. Receiver Noise Model: User Sj, 0 S) :0::;: n, receives y + Zjt ' 

where {Zjt. 1 :0::::: t < 00, 0:0:::::):0::::: n} are independent identically distri­

buted Bemoulli(E) random variables. 

Let f: {O,l}n -4 {O,l} ; the goal is to enable So to compute f reli­

ably with the least number of transmissions. More fonnally, we define a 

transmission sequence, or a protocol P, as a sequence ai' 01' ... , aM ' 

aj E to, 1. .... n}. Before communicating, the users must agree on a 

protocol to avoid collisions. A protocol is said to be an E-protocol if at 

the end of the communication, the probability that So can correctly com­

pute f. Pc' is greater than (I-E). The complexity of the set of E­

protocols Cj is the smallest M such that Pc > 1 - E. The problem is 

to find Cj and the optimal E-protocol. 

Naturally, Cj will depend on the function f as well as on the noise 

model. Therefore, we propose the following questions: 

Question 1. For each noise model, find the asymptotic growth rate in n 

of Cj for a random f. 
Question 2. Let /= Xl + Xl + ... + Xn ' that is, f is the parity of 

eX I' Xl' ... ,X n) . Find Cj for both noise models. 
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Result. It can easily be shown that the complexity Ci for the parity 

function under the transmitter noise model is c(e)· n log n . 

Conjecture 1. The asymptotic growth rate of Ci for a random function 

f under the transmitter noise model is n log n . 

Conjecture 2. Gallager [3] proved an upper bound of c· n log log n for 

Cf of the parity function under the receiver noise model. We conjecture 

that this bound is tight. 

Related Problems. 

l. Instead of requiring that So computes f, assume that So wishes to 

know the (Xl' ... ,X
fI

) sequence. 

2. Instead of the users communicating over a broadcast network, con­

sider communicating over other types of networks, for example, a ring 

or tree. 

3. Assume that each user Sj. O:S; i :s; n • is given a random integer 

Aj E {O,N} , log N = (l + 0) log n. The objective is for all users 

to find the user with the largest integer. In the noiseless case, it can 

be shown [4J that the number of required transmissions need not 
exceed 2n. 
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3.13 INSTABILITY IN A COMMUNICATION NETWORK 

L Introduction. 

F.P. Kelly 

Statistical Laboratory 
Cambridge Unive~ity 
Cambridge CB 21SB 

Great Britain 

The problems described here are concerned with a stochastic model of 
a communication network. The model represents the interactions between 

the random demands placed on a network, and the aim is to understand its 

s tationary behavior. In particular, we are interested in any clues that the 

network may exhibit instabilities. with perhaps various distinct modes of 

behavior possible. 

In Section 2, we describe the model when there is a finite set of chan­

nels; it can then be analyzed completely, and a challenge is to extend this 

analysis to various situations involving an infinite set of channels. In Sec­

tion 3, we discuss a one-dimensional network which is partially under­

stood and which is believed to be stable. In Section 4, we describe a tree 

network which is unstable -- it may have more than one stationary distri­

bution. Finally, in Section 5 , we describe a two-dimensional network for 

which t1lere is a conjecture. 

The motivation for the problems described here is twofold. First, the 

model arises naturally in connection with circuit-switching, concurrency 

control, and some fonns of dynamic routing «21, [3D. Second, the 

mathematical issues are similar to those that arise in the study of interact­

ing particle systems. There has been enormous progress in this fie ld con­

cerning the relationship between macroscopic phenomena, such as the 

existence of a phase transition, and the microscopic dynamical description 

of a system ([4] , [51). This topic is related to the notion of stability in a 

communication network, and the methods developed may prove useful. 
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2. A Finite Network. 

There is a finite set of channels, labeled i = 1.2, ... , I . Channel i 

provides C j circuits. Call attempts on route r E R arise as a Poisson pro­

cess of rate v r ' and as r varies, it indexes independent Poisson streams. 

A call attempt on route r requires Air circuits from channel j for 

i = I, 2, ... , I . [f for any j E {I, 2, ... ,I} the number of free cir­

cuits on channel i is less than Air' then the call is lost. OtheIVIise, the 

call is accepted and occupies simultaneously Air circuits on channel i , for 

i = I, 2, ... , I , for the holding period of the call. The call holding 
period is randomly di stributed with unit mean and is independent of earlier 
arrival and holding times. Let n,,(t) be the number of calls in progress at 

time I on route r , and let n(t) = (nr(t), r E R) . Then the stochastic 

process {n(t), t ~ 0] has a unique stationary distribution and under this 
distribution 7t (n) = P{n(t} = n} is given by 

where 

1t (n) = B n , 
vO' , 

n E S , 

S = {n: L ·Air nr SCi' i = I, 2, ... ,I} , 

(1) 

and B is a nonnalizing constant. Note that 1t does not depend on the dis­
tribution of call holding periods. If call holding periods are exponentially 
distributed, the stochastic process {n(t). t ~ 0) is Markov. 

3. A One-Dimensional Network. 

Next we introduce some spatial structure. Imagine that users are 

arranged along an infinitely long cable and that a call between two points 
on the cable $ 1' $2 E IR involves just that section of cable between $1 and 

$2. Past any point along its length the cable has the capacity to carry 

Simultaneously up to C calls: a call auempt between SI' s2 E IR, sl < $2' is 

lost if, past any point of the interval [sl' $21, the cable is already carrying 

C calls. The statistics of call attempts are most easily defined using a 

-64-



space-time diagram (Figure I). A rectangle (S, 1) : SI ~ S S S2 ' 

I 1 ~ I ~ 12 } represents a call attempt between points s 1 and $2 made at 

lime 11 ' If accepted, this 

... ... : ..... .. , 
~ .-

t 

Figure 1. The space-lime description of caU attempts. 

call will last until time 12. Assume the north-east corners of rectangles 

are distributed as a Poisson process of rate A (with respect to Lebesgue 

measure on IR2). Assume that heights have unit mean, that widths have a 

distribution F with finite mean, and that heights and widths are indepen­

dent of each other and of the positions of north-east comers. Infonnally. 

the probability that at time t a call attempt arises connecting a point s to a 

point s + z is A dl ds dF(z) . Let X(s,/) be the number of calls in progress 
past point s on the cable at time I. It is possible to show that from an ini­

tial configuration of calls in progress at time I = 0, the space-time diagram 

defines the stochastic process {(X(S,/), S E IR), t ~ OJ with probability one. 
It is believed (but has not yet been rigorously proved) that this process has 
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a unique stationary distribution. Some insight into the behavior of the sys­
tem can be given by describing what is thought to be the unique stationary 

di stribution of (X(s,t), S E IR) for a number of special cases. Suppose, for 
example, that the distribution of ca ll distance F is exponential with param­
eter 11. Then it is believed that (X(s,t), S E IR) has the distribution of a 

certain Markov chain, stationary with respect to its parameter s, on the 
finite state space {O, 1 •. .. , C}. The structure of this Markov chain has 
been considered in detail by Ziedins [9]: roughly speaking, a Markov 
chain with transition rates q(n, n + I) = A , n = 0, 1, ... , 
q(n, n - 1) = nil, n = 1,2 • ...• is conditioned on its sample path lying 
within the set {O, I, 2 •...• C) for S E [- L. L] , and then L is let tend to 
infinity. For a second example, suppose that F is general and that C = 1. 
Then it is believed that (X(S,/), S E IR) has the distribution of an alternat­
ing renewal process, with the lengths of successive intervals in state I 
(corresponding to calls in progress) having distribution function 

x 
Ap-I J e-Pz dF(z). and with the lengths of the intervening intervals in state 

o 
o (corresponding to unoccupied stretches of cable) having an exponential 

distribution with parameter p; here p is the unique solution to the equation 

-
p = A. f e-O' dF(z). 

o 
The acceptance probability for a call of length x is then 

e-o
X 

[ I + A. I z e-O' dF(z) r 
The network described in this section can be truncated and discretized 

so that it becomes a special case of the network of Section 2. From 

expression (1) the stationary distributions described above can be obtained 
as limits: further, the limits are not sensitive to the edge conditions 
imposed on the truncated network. 
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4. A Tree Network. 

In this section , we describe an example which shows that with a 

countably infinite set of channels, the network of Section 2 may be 

unstable. Let V be the infinite tree with m (>2) edges emanating from 

each venex. Regard the vertices as channels and :suppose that each vertex 

has m circuits. Call attempts centered at vertex i arise as a Poisson pro­

cess of rate v. A call centered at vertex i requires m circuits from vertex 

i and one circuit from each of the m adjacent vertices. Let X(i,c) = 1 if a 

caU centered at vertex i is in progress at time I, and let X(i,/) = 0 other­

wise. Then the stochastic process ((X(i,r), i e V), r 2: 0) has more than 

one stationary distribution ([2], [4], 17]). Even when attention is restricted 

to stationary distributions which are invariant under graph isomorphisms, 

there may be more than one such distribution. For example, there is cer­

tainly more than one such distribution when 

v> --'-.,­
m - 1 [m_l]m, 

m-2 
Variants can be constructed where the underlying graph is a two­

dimensional lattice rather than a tree, the model then resembling the Ising 

model of an antiferromagnet. 

S. A Two-Dimensional Network. 

Consider now the two-dimensional lattice Z2. Vertex i = (i i ' i2) never 

attempts to call vertex j = VI' h) unless either i l = jl or ;2 = h· Call 

attempts between vertices (iI ' i2) and VI,h) arise at rates 

and 

A connected call between two vertices must use the direct (shortest) route 

between them, passing through each vertex on this route. However, a ver­

tex cannot deal with more than one call tenninating at or passing th rough 
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it, and a call attempt is lost if the associated direct path includes a vertex 

already handling a call. 

The calling rates correspond to a vertex initiating call attempts at rate 

A : a call attempt traverses a distance that is geometrically distributed with 

parameter q in either the east-west or north-south direction. The rates are 

clearly very special but serve to focus attention on the question of interest. 

Using a space-time diagram and a percolation bound, it is possible to 

establish the existence of, and provide a construction for, the stochastic 

process representing calls in progress at time I. For small enough values 
of A, the construction shows that the process has a unique stationary dis­

tribution. But what happens for larger values of A? 

Conjecture. There exist values of A. and q such that the process has 

more than one stationary distribution. 

For certain values of A and q , there may be a translation invariant 

stationary distribution under which connected calls lie predominantly in a 

north-south direction; by symmetry, there would then also exist a station­
ary distribution favoring east-west calls. The conjecture is related to that 

of Kelbert and Suhov ([1], (8]) who consider a packet-switched network 

with queueing. The model described here is simpler, possessing a rela­

tively explicit stationary distribution for any finite truncation, and this may 

make it easier to study. Marbukh (6] has considered a circuit-switched 

network based on a complete graph and has shown that if blocked calls 

are redirected along alternative routes, then instabilities may occur. The 
intuition behind this result is that alternative routes will be longer, use 

more of the facilities of the network, and thus that above a certain thres­

hold, alternative routing may lead to greater and greater congestion. The 

intuition for the conjecture here is geometrical: calls fit together more 

easily when they are aligned. 
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3.14 CONJECTURE: 
FEEDBACK DOESN'T HELP MUCH 

Thomas M. Cover 

Depanments of Electrical Engineering 
and Statistics 

Stanford University 
Stanford. CA 94305 

Consider the additive Gaussian noise channel with stationary time­

dependent noise 

Y(k) ~ X(k) + Z(k) • 

where (Z(k)} has power spectral density N(j). A (2nR, n) feedback 

code for such a channel is given by a collection of functions 

xin)(W, YI , Y2 • .. . , Y'-I) , 

k ~ 1,2, .... n, WE [ 1,2, ... , 2nR } 

and a decoding function 

g(n) : Rn --'> [ I, 2 .... , 2nR } . 

Throughout we have a power constraint 

Let 

E.!. ±. (xin) (W,y'-1))2 ~ P, for all W. 
y n k=1 

Y, ~ x,(W, y'-I ) + Z, ' 

and let W<n) be unifonnly distributed over {I. 2, .... 2nR }. We say 

that R is an achievable rale if there exists a sequence of (2nR , n) codes 

such that 

-70-



as n ~ 00. The feedback capacity CFB is defined to be the supremum 

of the achievable rates. The non feedback capacity CNFB is defined to be 

the supremum of achievable rates over all codes x~n)(W) not depending 

on Y. 

Clearly, CFB ~ CNFB , with equality if {Zk} is white noise. In 

general, I hope that a relation like 

is true. 

and 

In particular, the above inequality would imply 

CFB ::; 2CNFB 

(1) 

(2) 

(3) 

The first inequality is interesting at low powers; the last at high powers. 
Inequality (2) was stated by Pinsker and proved by Ebert (1], while (3) 

has been proved by Pombra and Cover [2] . But is (1) true? 

The investigation hinges on maximization of 

1 1 
- / (W;Y) = - (h(Y1, ... , Y,) - h(ZI' ... ,Z,)) 
n n 

with and without feedback. 
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3.15 THE CAPACITY OF THE RELAY CHANNEL 

Thomas M. Cover 

Depanments of Electrical Engineering 
and Statistics 

Stanford University 
Stanford, CA 94305 

Consider the following seemingly simple discrete memory less relay 

channel: 

Here Y I • Y2 are conditionally independent and conditionally identically 

distributed given X. that is, p(y\. Y2 I x) = P(Yt I x) P(Y2 I x). Also. 

the channel from Y\ to Y2 does not interfere with Y2. A (2nR, n) 

code for this channe l is a map x: 2nR ~ X n , a relay function 

r : Y1 -) 2nCo 
, and a decoding function g: 2

nCo x y~ ---+ ZnR. The pro­

bability of error is given by 

p~n) ~ P{ g(r(y , ). Y2)" W ) 

where W is unifonnly distributed over 2nR and 

n n 
p(w. Yi- Y2) ~ 2-nR n pry" I x;(w» n Pry2; I x;(w» . 

FI 1=1 

Let C(Co) be the supremum of the achievable rates R fo r a given Co. 

that is, the supremum of the rates R for which p~n) can be made to tend 

to zero. 

We note the following facts: 
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I. 

2. 

3. 

C(O) = sup I(X; Y2) . 
p(x) 

C(~) = sup I(X; Y
" 

Y2) . 
p(x) 

C(Co) is a nondecreasing function of Co· 

What is the critical value of Co such that C(CO> first equals C(oo)? 
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3.16 SIMPLEX CONJECTURE 

Thomas M. Cover 

Departments of Electrical Engineering 
and Statistics 

Stanford University 
Stanford. CA 94305 

It may not be known that the famous simplex conjecture in communi­

cation theory can be reduced to the following geometrical problem. 

Prove that the spherical simplex in Rn of surface content n that 
maximizes the cooten[ of intersection with a given spherical cap is indeed 

the regular spherical simplex centered at the center of the cap. 

Note: A spherical cap is the intersection of a (translated) half-space with 
the surface of the (unit) n-sphere. A spherical simplex is the intersection 
of n half-spaces with the surface of the unit n-sphere. 
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3.17 ESSENTIAL AVERAGE MUTUAL INFORMATION 

Yaser S. Abu-Mostafa 

California Institute of Technology 
Pasadena, CA 91125 

Consider two dependent random variables (St C) and suppose that X 
is the optimal estimate of C when only S is known. I(S; C) is a 

measure of how much S tells us about C, and I( i ; C) is a measure 
of how much our optimal estimate X tells us about C. What can we 
say about I( X ; C) if we know that I(S; C) = 3 bits. for example? The 
optimality of X suggests that I( X ; C) should also be close to 3 bits. This 

is what we address in this problem. Let (St C) be jointly distributed 
-p(s,c). where S = { 0, ... ,N-J} and C = { 0, . .. ,M- J } . Let 
X: ( 0, ... . N-l ) -+ { O . . .. . M- I} denote an arbitrary function of 

the outcomes of S. The problem is to estimate the numbers a(N, M) 

defined by 

a(N, M) = inf max [/( 7. ; C) 1 
p,'(S,0 > 0 l=t(S) I(S; C) 

Since I ( 7. ; C) ,; I(S; C) (data processing inequality), a(N, M) ,; I In 
fact. a(N. M) < 1 for N. M as shown in the following example for 

a(3, 2) . 

p (S,C) 

Eilher 7.(0) = 7.(1) , 
I ( 7. ; C) < I (S; C) . 

c S 0 
o 1/3 

1 0 

1 

1/6 

1/6 

2 

o 
1/3 

7.(1) = 7.(2), or 2(2) = 7.(0) will make 
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Generalizations. 

1. We can think of i in general as a compression of S. This general­
izes a(N. M) to a(N. M. K). where S ~ [0 •.... N - I }. C ~ 

( O •...• M - I } • and ~ : [ O •...• N - I } --> [ O •...• k - I } . 

2. To avoid the cases of very weak dependence between S and C. the 
minimization domain (/(S; C) > 0) can be restricted to I(S; C) ;?: () or 
I(S; C) ;;, fR(C) . 
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3.18 POINTWISE UNIVERSALITY 
OF THE NORMAL FORM 

1. Motivation. 

Yaser S. AbUMMostafa 

California Institute of Technology 
Pasadena, CA 91125 

The problems posed here arise in the context of combinational com­

plexity of Boolean functions whose truth tables cannot be concisely 
specified [2]. This class of functions arises in the study of computation 

and decision-making based on natural data, such as the case of pattern 
recognition in uncontrolled environments. The main feature of these func­
tions is the lack of a structure that would allow an efficient systematic 

implementation. This leaves us with a large number of essentially unre­

lated cases to account for, which puts a lower bound on the complexity of 
these functions. However, an exhaustive solution is not necessary either, 

since the essential dimensionality of the data is typically far less than the 
actual dimens ionality. 

As an example, consider the problem of recognizing a tree in a visual 
scene. The input data is a matrix of binary pixels representing the scene , 
and the Boolean function decides the presence or absence of a tree. It is 
clear that a visual scene is not a totally random binary matrix; there are 
many correlations that reduce the entropy. On the other hand, the pres­
ence or absence of a tree cannot be fonnalized in a simple way; the visual 

object "tree," apart from being a fuzzy notion [121, is an assembly of a 
large number of loosely re lated observations. To define a tree is to cap­
ture these observations in a model. but the partial randomness due to the 

way natu ral objects are made precludes a concise model. 

The fonnalization of these ideas involves defining and relating several 
quantitative measures on Boolean functions. These measures are the cost 
C of implementing a function, the entropy H of the data. the randomness 
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R of the function, and the complexity K which measures the relative com­

plexity of the function as far as simple decomposition is concerned. The 

measures are based on combinational complexity [II J which is the actual 

cost of decision-making. Shannon's entropy [10] which measures the 

essential dimensionality of data, Kolmogorov-Chaitin complexity (4,7] 

which measures the randomness of strings, and compositional complexi£)' 

[1] which is defined in terms of the standard pattern recognition system 

that makes a global decision based on local features. These notions are 
made precise in the next section. 

2. Definitions. 

Let N be a positive integer, and consider the set F N of all Boolean 

functions f from {O,I}N to {O,l}. The cardinality of FN is given by 

I F N I = 2'1!'. The independent Boolean variables will be called 

sl' ••.• SN' All logarithms and exponentials are to the base 2. The four 

measures, C, H , R, and K , assign to Boolean functions in FN values rang­

ing from 0 to N bits (approximately), with most of the functions assigned 
values close to N. 

Let n be a non-negative integer. An n-input universal gate is a 

switching device with n input lines and 1 output line that can simulate any 

Boolean function of n variables, for example, a PROM with n address 

lines and 1 data line. The cost of this gate is defined as 2" "cells." A 

combinational circuit r is a loop-free interconnection of universal gates 

where the variables Sl' ...• SN are supplied. The cost of r is the sum of 

the costs of its gates (wires are free, unlimited fan-out). r simulates f if 
f is the output of one of the gates in r. 

Definition. The (normalized) cost C is a real-valued function defined on 

FN by 

Clf) = log mint cost of r : r simulates f} bits. 

elf) differs by at most a constant from the cost based on any other com­

plete basis of switching devices such as 2-input NAND gates. It is clear 
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that C(j) ~ N bits, since an N· input PROM with cost 2N cells can simulate 

any function in F N' 

Definition. Let hif) s: 2N- 1 be the number of I '5. or the number of O·s. 

in the Kamaugh map of f . The (deterministic) entropy H is a real·valued 

function defined on F N by 

HifJ = log [1 + hifJ J bilS. 

Clearly. H(j) s: N bits. The entropy of the constant functions is 
10g(1 + 0) = 0 bits, of the N·input AND function is 10g(l + 1) = 1 bit, 

and of the N·input XOR function is log(2N- 1 + I) ;::: N bits. This entropy 
measure is related to Shannon' s entropy (of the ensemble {O,I}N under 
some probability distribution) by considering only the typical blocks in the 
Kamaugh map off 

Let '[if) be a listing of the truth table of f, that is, 
'[(j) = 'to, '[I' ... , '[~_ I where tk is the value of f when the inputs are 

the N·bit binary representation of the number ". Let U be a universal 
Turing machine with input alphabet {O.T}, and let p denote the binary pro· 
gram supplied to the tape of U. If. given p, U halts and leaves the binary 
string w on the tape, we say that w = U(p). Ip I denotes the length of P. 

Definition. The randomness R is a real·valued function defined on F N by 

RifJ = log min [ Ipi : U(p) = ~ifJ} bilS. 

A legal program p for U consists of an encoding of a Turing machine fo1· 
lowed by an input string, hence Ipi is positive and the logarithm is valid. 
Also, since any string '[if) can be generated by a program whose length is 

a constant (the code of a trivial Turing machine) + the length of the string 

(namely, 2N
). R(j) is at most ;::: N bits. In contrast with the other meas· 

ures. R(j) is an uncomputable function. 

A nonnal fonn is a simple decomposition of the Boolean function 

j(s! •... , sN) into /= g(h 1, . ..• hK), where the hk's are Boolean func· 

tions depending only on variables within subsets Sl •... . SK of 

{sl ' ... , sN }' A nonnal form is characterized by the (not-necessarily· 
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distinct) subsets SI' ... ,SK and said to admit a function f if f can be 

decomposed as above with the hk's depending on the variables within the 

Sk's, respectively. The number of functions in F N admitted by a normal 

form is denoted by N(SI ... SK)' For example, if K = Nand SK = {skI, 

then N(SI ... SN) = 22N. In general, N(SI ... SK) expresses the power 

of the normal form SI ... SK' 

'-.----' 

S, 

.... 

The 
Normal 
Form 

Definition. The (normal-form) complexity K is a real-valued function 

defined on F N by 

KlfJ = log log min {N(S, ... SK) : S, ... SK admitsJ1 bits. 

Since any normal form admits the two constant functions, taking the loga­

rithm twice is valid. Also, since IFNI = 2'1!', Kif)::;; N bits. Having a 

large value of Kif) means that f cannot be expressed as a function of few 

arguments each of which depends on few variables. A circuit simulation 

of the normal fonn SI .. . SK consists of K primary universal gates with 

ISI/' ... , ISKI inputs, followed by a secondary universal gate with K 

inputs (see figure). The cost of this circuit is directly related to 
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log N(SI ... SK) [2], since a universal gate of n inputs costs 2" cells and 

simulates 2r functions. Therefore, K(j) can be thought of as the (normal­

ized) cost of normal-form simulation of I. 

3. Known Relations. 

In this section, we state the known pairwise relations between the four 

measures C, H, R, and K. We shall say that "A(f) S 8(j) + o(N) for all 

I" means: Given E > 0 there is a positive integer No such that N 2: No 

and Ie FN implies that A(j) S 8(j) + EN. We shall also say that 

"A(j) S 8(j) + o(N) for a/most all I" means: Given E > 0 there is a posi­

tive integer No such that Nc::O and 0 < a S I implies that the ratio 

between I (f e F N : A(j) > 8(j) + eN and (a - e) N '" A(j) < (a + e) N) I 
and I [J e F N : (a - E) N S A(j) S (a + E) N) I is less than E. The fol­

lowing relations are proved [2,3) by simulation, enumeration, and con­

struction. 

RI: C(j)S H(j) +o(N) forallf 

R2: C(j) S R(j) + 0(N) for aimosl all f 
R3: C(j) S K(j) + 0(N) for all f 

R4: H(f) S Clf) + o(N) for almost all, but not all,! 

R5: H(f) S R(j) + o(N) for almost all, but not all,! 

R6: f/ (f) S Klf) + o(N) for almost all, but not all,! 

R7: R(j) S C(j) + 0(N) for allf 
R8: R(j) S H(j) + 0(N) for all f 
R9: R(j) S K(j) + 0(N) for all f 

RIO: K(j) '" C(j) + 0(N) for oimosl allf 
R II: K(j) '" H(j) + 0(N) for aimosl all f 
R 12: K(j) '" R(j) + 0(N) for oimosl all f 
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4. Problems. 

Relations RI-R12 of the previous section raise a number of questions 

about how strongly C, H, R, and K are related. The following questions 

address stronger versions of relations R2, RIO, Rll, and R12: 

QI: Is C(f) ~ R(f) + o(1V) for all f? 

Q2: Is K(f) ~ C(f) + o(1V) for all f? 

Q3: Is K(f) ~ H(f) + o(1V) for all f? 

Q4: Is K(f) ~ R(f) + o(1V) for all / ? 

The answers to these questions, combined with relations RI-RI2, 

detennine the exact asymptotic relations between C, H, R, and K. For 

example, is IC(j) - K(j) 1 = o(N) for aU /? In other words, is the 

difference between the minimum cost of an unrestricted simulation and the 

minimum cost of a nonnal-fonn simulation of any function f asymptoti­

cally negligible w.r.t. N? Relations R3 and RI O give an affirmative 
answer to the question in an "almost always" sense. An affirmative 

answer in an "always" sense would mean that the normal form is a point­

wise universal (asymptotically optimal for every function) structure for 

simulation of Boolean functions. H the answer is affinnative, more 

specific questions about the size of the error tenn o(N) can be addressed. 

For example, it is easy to see that IC(j) - K(j) I = n (..IN) for some simple 

func tions such as the N-input XOR. Is IC(f) - KM(f) I = O(NIIM) for all 

/, where K M(j) is based on an M -stage nonnal fonn instead of a twa­

stage nonnal fOm1? 

The answers to Q I-Q4 also yield the answers to other questions of 

interest. Is IC(j) - R(j) I = o(N) for all f? An affinnative answer to Q3 

bounds the cost of nonnal-form simulation of a function by the essential 

dimensionality (entropy) of the function. This would mean that the stan­

dard pattern recognition system is asymptotically optimal for the typical 

pattern recognition problem. Other questions related to the size of the 

error tenn o(N) (which is O(log N) for some, and O( ...fN) for other, of the 

relations R I-R 12) are also of theoretical and practical interest. 
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3.19 ON CLASSIFICATION WITH PARTIAL STATISTICS 
AND UNIVERSAL DATA COMPRESSION 

Jacob Ziv 

Technion 
Haifa, Israel 

Classification of finite alphabet sources with partial statistics is stu­

died. Efficient universal discriminant functions are introduced and are 

shown to be closely related to universal data compression. 

It is demonstrated that if the probability measure of one of the two 
sources is not known, it is still possible to find a discriminant function that 

performs as well as the optimal (likelihood-ratio) discriminant functions 

(which is computable only if the two measures are fully known). When 

both measures are not known but training vectors are available from at 

least one of the two sources, it is shown that no discriminant function can 

perform efficiently, as long as the length of the training sequence does not 
grow at least linearly with the length of the classified vector. 

Furthennore. a universal discriminant function is introduced and 
shown to perfonn efficiently when the length of the training sequence 
grows linearly with the length of the classified vector. 
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3.20 ARE BAYES RULES CONSISTENT 

IN INFORMATION? 

Andrew R. Barron 

Department of Statistics 
University of Illinois 

Champaign, IL 61820 

Bayes' rule provides a method for constructing estimators of probabil­

ity density functions in both parametric and nonparametric cases. Let 

XI' X2 • ... ,Xn be a random sample from an unknown probability meas­

ure Po with density function Po(x) with respect to a dominating measure 

A(dx). Let}..l be a prior probability measure on the space of all probability 
measures P which have dens ities p(x) = dPldA. Then the mean of the pos­

terior yields the following estimator of the density function 

To obtain a consistency result, it is natural to require that the prior 

ass igns positive probability to neighborhoods of the true distribution. In 

particular, we suppose 

~{ P : D(po II P) < E } > 0, for all E> 0 . (I) 

Here D(Po II P) = J Po{x) log (Po(x)/p(x» 'J...{dx) is the informational diver­

gence (also called relative entropy or Kullback-Leibler number). 

1. The Problem. 

Detennine whether the sequence of Bayes estimators Pn converges to 

the true density Po in the sense that 

lim E D(Po II p") = o. 
H_ 

Here the expectation is with respect to Po. It is also of interest to know 
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whether 

lim D(Po II Pn) = 0, Po almost surely . . -
Either result would imply that the sequence of random variables 

D(Po II Pn) converges to zero in probability. 

Remark: An inequality between the information and the L' distance 

(D(Po II Pn) ~ (1 /2)( J I Po-fin I )2; see [IJ) shows that convergence in 

information implies convergence of the density estimator in the L' sense 

lim E f I po(x) - pix) I A(dx) = O . . -
2. Evidence for Consistency. 

Does E D(Po II P n) tend to zero? We argue that the answer is yes 

along a subsequence, yes in the Cesaro sense, and yes if the posterior 

mean is replaced by a sample average of posterior means. 

Lemma 1: If condition (1) is satisfied then 

lim inf E D(Po II p.) = 0 ; ..... -
also 

lim inf D(Po II Pn) = 0, Po almost surely . ..... -
Moreover, 

I • . 
lim - LED(PoIIPk) = O. 
n--+- n .1:=1 

Lemma 2: Let fin be an average of posterior means, that is, 

P.(x; X') = 1.. ± Pk(x; Xk) 
n k=1 

where X" = (Xl' ... ,X,J If condition (1) is satisfied then 

lim E D(Po II ft.) = o . . -
Thus the average fin = (lIn) ~~I Pic smooths out any humps of large D 
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that might lead to inconsistency. It is interesting to note that convergence 
still holds if the kth tenn in the definition of fin is replaced by 

he· ; xn,,,} , where xn.k is any subset of the n observations of size k. 

We note that the posterior mean density is the best possible estimator 
from the point of view of the Bayes risk (with loss function given by the 
infonnational divergence). Thus if any estimator exists which is Bayes risk 
consistent, then the posterior mean is Bayes risk consistent. 

Lemma 3: Among all probability density estimators based on the data 

Xn, the posterior mean density estimator Pn(x; xn) minimizes the Bayes 

risk 

Rn = f Ep D(P II ?n) dl!. 

Moreover. the Bayes risk Rn is a decreasing sequence. Thus 

lim Rn exists. n_ 

It is not known if this limit is zero. Although the average risk is decreas­
ing, the risk Ep D(P II Pn) might increase for some P and some n . If we 

could ensure that EPa D(Po II P n) were decreasing, then by Lemma 1 we 

would have lim Epo D(Po II Pn) = O. 

Doob [2] used martingale arguments to establish Bayes consistency 
results. The drawback is that the results only show convergence for distri­
butions in a set of prior measure one, and there is no known method for 

detennining whether a given distribution is in this set. Nevertheless, the 
following result is readily obtained. 

Lemma 4: Except for a set of distributions P which has ~ measure 

zero, if condition (/ ) is satisfied for P then 

lim D(P II Pn) = o. P almost surely. n_ 
The following result is proved in Barron [3] using the technique of 

Schwartz [4]. It was first obtained by Freedman [5] in the discrete case 
(under the extra condition of finite entropy H(Po»). 
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Lemma 5: If condition (I) is satisfied then the posterior distribution 

~n('1 Xn) asymptotically concentrates on open neighborhoods of the true 

distribution Po, that is. 

lim Iln({P E N} I Xn ) = 1, Po almost surely. 

" 
This result assumes that the neighborhoods N are open with respect to the 

topology of setwise convergence of probability measures. (For instance, N 

could be {P: LA I Po(A)- P(A)1 < e}, where the sum is for A in a countable 

partition of the sample space.) 

Finally, we mention that for parametric problems, Strasser [6] has 

shown under condition (1) and other mild assumptions that if the max­

imum likelihood estimator is consistent, then Bayes rules are also con­

sistent. Although consistency in the information sense is not usually 

addressed in the parametric setting, the usual conditions for the con­

sistency of the MLE are sufficiently restrictive that convergence of the 

parameter estimators a ~ 9 implies D(P a II P 9) ~ 0. 

3_ Evidence Against Consistency. 

In Barron [7] it will be shown that there exist priors which satisfy (1). 

~{P: D(Po II P) < eJ > 0 for all e > 0, 

yet the posterior distribution given Xn asymptotically concentrates outside 
D neighborhoods of the true Po, that is, for some E > 0, 

lim ~"({P: D(Po II P) < eJ I X") ~ 0, Po almost surely. 

" 
Proof of Lemma 1 and Lemma 2. Let pn denote the product measure 

with joint probability density function p(x") = II?=I p(Xj) and let M n 

denote the mixture of these distributions obtained using the prior Il. This 
mixture has joint density function 

m(x") ~ f p(x") d~. 

We first show that condition (1 ) implies that the informational divergence 

between P8 and Mn has a rate tending to zero; that is, 
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lim 1. D(P8 II Mn) = o. 
n_ n 

Given E > O. le t N == ( P : D(Po II P) < E}. Now the divergence rate is 

1. D(P8 II Mn) = 1. E log Po(X
n
) I Po(Xn

) 
~ - E log --'='--'-­

n n n f p(Xn)d).t 

I Po(Xn) I 
= - E log ----"='-"-- + -

n n 
f p(xn)dW~(N) 
N 

f p(xn)d~ 
N 

I 
log --. 

~(N) 

Here all the expectations are with respect to P8. By the convexity of the 
infonnational divergence this is 

~ f 1. D(P8 II pn) dW~(N) + 1. log _I_ 
N" " ~(N) 

= f D(P 0 II P) dW~(N) 
N 

By the definition of N this is 

I I + -iog --. 
" ~(N) 

~ E + 
I 

" log ~(N). 

Letting n--') 00 then E ---7 0 shows that indeed 

lim 1. D(P8 II M n) = o. 
n_ " 

Now we need to relate this to the convergence of density estimators. 

Let ftixn+') be OUf density estimate at the point xn+ 1 based on the 

data Xn = x:'1. We can write thi s as 

A J p(Xn+!. x")dJ.l m(xn+l' x") 
p (x , ) = = -'-"''''---'- = m(xn+, I x"). 

n n+ f p(x")d~ m(x") 

The lasl expression i s sometimes called the predictive density. It is the 
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conditional density function for Xn+l given Xn. Note that with respect to 

M n the data Xl' X2 • • ..• Xn are no longer independent (but they are 

exchangeable). 

Now by the chain rule 

1. D(P8 II M") = 1.!; E log ----:,::P,-,o(X,"",,;):-;:­
n not-I m(XlIXll)' 

The tenns in the sum are just E D(Po II Pk). Thus 

1. D(P8 II M") = 1.!;E D(Po II ft,). 
n n 1:=1 

But we have shown that condition (1) implies that this tends to zero. 

Thus the E D(Po II P n) tends to zero in the Cesaro sense. Since the tenns 

are posi tive this implies that we have convergence to zero along a subse­
quence. This implies convergence in probability along a subsequence and 
hence almost sure convergence along a funher subsequence. This com­

pletes the proof of Lemma 1. 

For Lemma 2, use the convexity of divergence once more to obtain 

_ 1 A 1 n A 

E D(Po II p") = E D(Po II - L P ,) ,; - L E D(Po II P ,) 
n n k=l 

which tends to zero. This completes the proof. 
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3.21 ON FINDING MAXIMALLY SEPARATED SIGNALS 
FOR DIGITAL COMMUNICATIONS 

1. Notation. 

DJ. HajeJa and Michael L. Honig 

Bell Communications Research 
Morristown, NJ 07960 

The Lp nonn of a function f: [0,00) ~ R (real numbers) is given by 

IIlIIp = [ I 1/(/) 'I' d/ r 
Similarly. the Lp nonn over an interval [0.71 is defined as 

The cases p = 00 and p = 2 are of primary interest. The L"", norm of a 

continuous function f over an interval [0,7] is defined as 

IIIII_T= lim 1I/(/)lIpT~ sup 1/(/)1. 
. p-+- • O::;;tST 

If h and! are functions from [0,(0) into R such that II hiLT and IIfll.,."T 

are finite for all T then h*f is given by 

(h*fj(t) = f h(s) /(/ - s)ds . 
o 

2. Problem Statements. 

(PI) Given a function h(t) (assume II h 1100 < 00 ), some time interval 

[0.7], and some small constant d> O. find input functions 
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"1(0, ... . u,lt) . where II uj lip' ~ I, i = 1, .... N, such that 

n:.i!111 h*uj - h*u j IIp ,T ~ d. with N as large as possible. In general, 

" p' '* p • however, we will assume that either p' = p = GO or p' = p = 2 . 

Let Nma.in denote the largest possible N. A related question is how 

fast does Nmax(7) increase with T; that is. what is 

i!:! [log NmaiT)lT) ? 

The following two problems are alternate vers ions of (PI ). In all 

cases the inputs must satisfy II U j lip' ~ I. 

(P2) Given the number of inputs N and a small constant d. find inputs 

ul (t) • ... ,utlt} which minimize the time T such that 

n:ti~ II h*uj - h*uj II p,T;;::: d . Let T min(N) denote the minimum time . .. , 
(P3) Given the interval [0.11 and the number of inputs N, find inputs 

ul (t), ... • utf....t) which maximize d = n:t~ II h*uj - h*uj II p,T . 

'" 
Il is apparent that 

T m;n(N) = inf { T I Nmu(TJ "N } 

and 

3. Motivation. 

Consider an infonnation source that must transmit one of N mes­

sages through a channel characterized by the transfer function H(s) 

(impulse response h(J). The receiver can sample the channel output an 

arbitrary. but finite , number of times and can compare the samples with a 

set of threshholds to decide which of the N possible messages were 

transmitted. The analog to digital converter at the receiver can measure the 

channel output only to within a given finite precision, that is, to within 
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± d. In addition. a maximum amplitude constraint is imposed on the 
inputs to the channel. It is assumed that any random disturbance. which 

the channel may introduce. is masked by the finite precision with which 
the receiver measures the channel output. A solution to (PI).(P3) for the 

case p = p'= 00 would reveal the maximum number of messages that can 
be reliably transmitted in a given time interval [0.1]. 

The case p = 2 is relevant if the channel is modeled as a linear 
transfer function followed by a white Gaussian noise source, and it is 
assumed that the receiver computes a maximum likelihood estimate of the 
input message given the received signal over the time interval lO.n. In 

this case the inputs uI(t) ....• uN(t) should be selected to maximize the 

minimum distance defined as 

dmin = ~ .... ~ II g*Uj - g*Uj Ib,T • .. , (I) 

where g is the impulse response of the combined channel and receive 
filter. An average power constraint on the inputs corresponds to the case 
p' = 2. The only reference of which the authors are aware that states 

problem (PI) precisely for the case p = p' = 2 is a paper by Root [1] in 
which upper and lower bounds are given for the parameter log Nmax (7) , 

which is referred to as "£ capacity." Of course, variations of (Pl)-(P3) can 

be considered. For example. it may be desirable to impose both a max­
imum amplitude (L_) and average power (~) constraint on the inputs and 

insist that the L2 (or L.,J distance between outputs be maximized. 

4. Some Results. 

Some results pertaining to (Pl)-(P3) for the case p = p' = 00 are 
given by the following two theorems (2). 

Theorem 1: There exists a solution to (P2) such that I Uj (I) I = 1 for 

i = 1, ... ,N and 0 ~ I ~ T. and each Uj (I) changes sign a finite 

number of times. 

n -(:(. t 
If, in particular, h(t) = L Ai e' where Aj and <x, > 0 are con-
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stants, then there exists a solution to (P2) such that each u,{t) switches 

between 1 and -1 at most (N - 1)(n - 1) times. 

Theorem 2: Suppose that her) = Ae--(Xl, where A and a> 0 are constants, 

and that the message to be transmitted contains K bits, that is, N = 2K . 
There exists a solution to (P2) such that 

where bjk is either 1 or -1, corresponding to the .lcth bit of the jth message, 

and 

The solution to (PI)-(P3) for the case h(r) = Ae--(Xl therefore consists of 
standard "bit by bit" signaling in which ±1 is sent corresponding to each 

incoming bit for the fixed duration ~. It is conjectured that these signals 

are also optimal if the impulse response has the fonn 

n --(1 . t 
h(t) = L A; e ' , 

"'" 
where the Aj and a j are positive constants. 

S. Some Related Problems. 

In this section it is shown how problems (Pl)-(P3) for the case 

pI = P = 2 are related to some problems which have been addressed in 

the litetature (i.e., see [3J-[6]). 

Optimum Pulse Shaping. 

Suppose that the message to be transmitted is a sequence of bits and 

the inputs Uj (I), i = I, ... , N , are constrained to be pulse amplitude 

modulated (PAM) signals; that is, 

U,{t) = La;., p( t - kto ) , , (2) 

where p(l) is me pulse shape and the aj,k 's can assume one of 2L 
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values, L being the number of bits transmitted per symbol interval 10. It 

is easily shown that for this case the minimum distance, given by (I), can 

be written 

- K jrokt 2 
2n f I H(ro) P(ro) L Ek e- 0 I dro, _ "'" (3) 

where the set S contains aU possible values of the difference of two sym­

bols ajJc. - ajJc.', K is any integer greater than zero, E( 1: 0 ,and H(ro) 

and P(w) are the respective Fourier transforms of h(/) and p(/); that is. 

-
H(ro) = f h(t)e-UM dt . 

Here we assume that the message length (N) is arbitrarily large and that 
the average transmitted power is constant; that is, II p(t) Ib. = 

II P(w) Ib = 1 . According to the previous constraints, (P3) can be restated 

as: 

(P4) For a given to and set S, find P(oo} that maximizes dmin . 

A discrete version of this problem in which the impulse response p(t) 

becomes a vector is considered in [3]-[5]. In [3] it is shown that thi s 
problem is a linear programming (LP) problem; however, the number of 

constraints is typically too large for an LP algorithm to be useful by itself. 
A solution to (P4) for a discrete impulse response of length 26 is obtained 
in [5] by combining an LP algorithm with a tree search algorithm. 

Optimum Signaling Rale. 

Suppose now that the input signals u,<t) are constrained to be of the 

form (2). where the pulse shape, determined by the product P(oo) H(oo) , 

is specified and the set of transmitted levels is 

A = { ± ex, ± 3u, ... , ± Mex } • where M = 2L - I and ex is chosen 
to satisfy an average power constraint. In this case, dmin given by (3) 

will be a function of the signaling rate I l ia and the number of levels 

2L. The information rate is R := lito bits/sec and the ave rage power is 

-96-



E ;;;; a2(4L - 1)/(310) where a2(4L - 1)/3 is the ave rage energy per pulse 

assuming that the transmitted symbols are unifonnly distributed. Under 

these constraints (P3) is roughly equivalent to : 

(PS) Given a rate R and p ew) H(oo) , find the number of levels M that 

maximize dmin subject to E = I . 

Suppose that 

H(ro) P(ro) = t Irol ~ W 
(4) 

1001 > W 

and the set of levels A = {I , - 1 } in which case from (3) dmin can be 

written 

= inf 
£t e {a. ±I I. K 

1 8 

20 f I 
-8 

(5) 

where 3 = toW and ° < 3 S 112. If the rate l Ito = 2W , then 0 = 112 and 

d~in 14 == 1. Also, d~in(o)/4 S I for 0 < 112 (obtained by setting 

Ek = 0, k > 0 ). The rate 2W is called the Nyquist rate. The behavior of 

dmin when the symbol rate lito is greater than the Nyquist rate (3 < 1/2) is 

studied in [5] and (6). 

The following question is posed in [5] . Suppose we wish to compare 

multilevel signaling at the Nyquist rate, that is, L == LI > I , and 

l Ito = 2W, with binary signaling at faster than the Nyquist rate , that is. 

L = I , A = {I , -1 }, and TBIN ;;;;: to ,where to S 1/(2W). The informa­

tion rate and average transmitted power for both schemes are assumed to 

be the same, 

and 

1 W 
R " 2WL, = -- = -

TBIN 0 

2Wa2 = 
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Given R, for which scheme is dmin greater? The gain G of faster binary 

signaling (FBS) relative to multilevel Nyquist signaling (MNS) is defined 

as the ratio of d~in for FBS to d~in for MNS. For MNS, dmin = 2ex. 

Using (6), the gain can be written (5J 

G = [d~~(O) 1 ~ 0(4 11(28) - I) , 

where dmin(o) is given by (5). It is shown in [7) that dmin(l»)l4 is 

lower bounded by a computable expression, which is greater than zero, 

and goes to one as 0 goes to one. This bound improves upon the previous 

lower bound in [6], which states only that dmin(o) is strictly greater than 

zero for 0 > O. It is also shown in [7] that there exists a 00 < 112 such 

that l) > l)o implies that dmin(l»/4 = 1 (which implies that G > 1). This 

suggests the following problem. 

(P6) Find l) which maximizes G. 
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3.22 FREQUENCY ASSIGNMENT IN CELLULAR RADIO 

Edward C. Posner 

Department of Electrical Engineering 
and Je t Propulsion Laboratory 

Callech 
Pasadena, CA 91 125 

Cellular radio uses a number of channels or frequencies (e.g .• 

7 x 44 = 308) divided into local cells (hexagons here) such that the same 

frequency can be reused in cells at graph distance 3 or greater: 

Here the whole plane is tiled. If we allow "call rearrangement," we can 

think of assigning channels after we see the list of all call requests. Any 

number :2: 0 of calls can be requested from any cell. The calls are being 

made to stationary, not to mobile, phones so one call corresponds to one 

channel. Suppose we have a bound on demand of the fonn "total number 

of calls requested in every I-sphere is at most M," 
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Let there be f frequencies, a constraint of the problem. What is Mif), 

the largest demand bound M that still allows all calls to be serviced by 

the f channels, so that no channel is used in two cells closer than graph 

distance 3? (f divisible by 7 is probably of most interest.) 

Partial Results: Pierre Baldi (now at UCSD) in his 1986 Caltech 

thesis showed 

Problem: Improve this. In particular, find M(7) and M(14). 

Note: 7:5 M(14) :5 10 by Baldi's result. 

Note: M(7) = 3 or 4. For M(7) ~ 3 by above, Maria Klawe of ruM 
Almaden, San Jose, found a configuration at SPOC'86 showing 

M(7) :5 4. Also at SPOC'86. George Soules of IDA-Princeton, us 109 

linear programming and Klawe's configuration, showed 

M(f) < r 1i. 1 - 1 for f~ 1(3) . - 3 
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CHAPTER IV. 

PROBLEMS IN COMPUTATION 

Computational and algorithmic complexity are wide open areas. What 

is the quickest computation and what is the shortest program for a compu­

tation? Computational and algorithmic complexity clearly trade off. 

Nonetheless. these two fie lds don't seem to feed on each other. The con­
tributions in this section fall in both areas. 

The chapter on communication and this chapter on computation 
should have a very close relationsh ip in the future. C learly. communica­

tion is computation limited and computation is communication limited. At 

the bottom, bolh computation and communication must call on physical 

processes to achieve their goals. When we get down to using tweezers on 
atoms, who is to say whether we wi ll think as communication theorists, 

computer scientists. physicists. or mathematicians? 
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4.1 IN SEARCH OF A ONE·WAY FUNCTION 

Jacob Ziv 

Technion 
Haifa, Israel 

Consider straight-line (SL) algorithms over a finite field with q ele­

ments. 

The e-SL complexity Ce($) of a function q, is defined as the length of 

the shortest SL algorithm which computes a function f. such that 

fix) = (x) is satisfied for at least (1 - e)q elements of F. The function 

f is called an " E-approximation of $." 

A function $ is SL-"one way" of range O. 0 :5 0 :5 1 ,if 4> satisfi es 
the following three properties: 

1. There exists an infinite set S of finite fields such the 4> is defined in 
every F E Sand E is one-la-one (Le., $-1 exists) in every F E S . 

2. For every E such that 0:5 E :5 0, C£(¢>-I) tends to infinity as the 

cardinality q of F approaches infinity. 

3. For every E such that 0 :5 E:5 0 , 

" = lim inf" ~ lim inf 
q---J OO q-+ .... 

" is called the work-factor. 

log C «<1>- 1) - log C «<I» 
log C «$) 

> 1 ; 

Example: cp(x) = X3 is one-way in the range 0 ~ 113 - l /q • where 

q is the cardinality of the field. 

C,($) = o( log q) 
Hence, 

T\ = o( log q) 
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It has been shown [I] that a lower bound of n3 on the complexity of a 

function f over GF(2") is also a lower bound on the product of run­

time and program size Turing machines. 

Open Problem: Is there a one-way function with work factor 

11 > ( log q)3 (thus making it a one-way function in terms of Turing 
complexity)? 
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4.2 AVERAGE CASE COMPLETE PROBLEMSt 

Leonid A. Levin 

CSICLA 
Boston University 

and MIT 
Boston, MA 02215 

Many interesting combinatorial problems were found to be NP­

complete. Since there is little hope to solve them fast in the worst case, 
researchers look for algoritluns which are fast just "on average." This 

matter is sensitive to the choice of a particular NP-complete problem and a 

probability distribution of its instances. Some of these tasks are easy and 
some not. But one needs a way to distinguish the "difficult on average" 

problems. Such negative results could not only save "positive" efforts but 

may also be used in areas (like cryptography) where hardness of some 

problems is a frequent assumption. ]t is shown in L1] that the Tiling prob­

lem with uniform distribution of instances has no polynominaJ "on aver­

age" algorithm, unless every NP-problem with every simple probabiliry 

distribution has it. 

It is interesting to try to prove similar statements for oilier NP­

problems which have resisted "average case" attacks. 
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4.3 DOES A SINGLE BIT ACCUMULATE THE HARDNESS 
OF THE INVERTING PROBLEM? 

Leonid A. Levin 

Computer Science Department 
Boslon University 

Boston, MA 02215 

It is demonstrated by Yao {I] what a crucial role infonnation theory 

can play in the theory of computation. These matters deserve more con­
sideration. 

Let I x I be the length of xeS = { O. I }. and x 0 y be the con­

catenation of x, y. Let (x . y) be the inner product of x. y E Z; and fix) 

be an easily computable funclion over S preserving I x I. Assume that on 

a constant fraction of instances of each length any fast algorithm fails to 

invert fix) . Prove then that even a single bit B(x, y) = (x . y) will be 

computed incorrectly, on a constant fraction of instances. by any fast algo­

rithm A (x,j(y». This would be true for B'(i t y) • equal to the jth bit of 

the Justesen code of y. Another conjecture is that the correlation 

between 8 (x, y) (or its modifi cation) and A(x, fu» divided by A 's 
running time is at most a constant power of the average of the reciprocal 

running time needed to invert f on strings of a given length. 
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4.4 COMPUTING THE BUSY BEAVER FUNCTION 

Gregory 1. Chaitin 

mM Research Division 
Yorktown Heights, NY 10598 

Efforts to calculate values of the noncomputable Busy Beaver function 

are di scussed in the light of algorithmic information theory. 

I wou ld like to talk about some impossible problems that arise when 

one combines infonnation theory with recursive function or computability 

theory. That is, I would like to look at some unsolvable problems which 

arise when one examines computation unlimited by any pmctical bound on 

running time, from the point of view of information theory. The result is 

what I like to call "algorithmic information theory" [I]. 

In the Computer Recreations department of Scientific American [2] , 

A.K. Dewdney discusses efforts to calculate the Busy Beaver funct ion 1: . 

This is a very interesting endeavor for a number of reasons. 

First of all, the Busy Beaver function is of interest to information 

theorists, because it measures the capability of computer programs as a 

function of their size, that is, as a function of the amount of information 

which they contain. Un) is defined to be the largest number that can be 

computed by an n-state Turing machine; to information theorists it is clear 

that the correct measure is bits, not states. Thus it is more correct to 

define Un) as the largest natural number whose program-size complexity 

or algorithmic information content is less than or equal to n. Of course, 

the use of states has made it easier and a definite and fun problem to cal­

culate values of 1: (number of states); to deal with 1: (number of bits) 

one would need a model of a binary computer as simple and compelling 

as the Turing machine model, and no obvious natural choice is at hand. 

Perhaps the most fasc inating aspect of Dewdney's discussion is that it 

describes successful attempts to calculate the initial values 

L(l), 1:(2), 1:(3), . .. of an uncomputable function 1:. Not only is I: 
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uncomputable, but it grows faster than any computable function can. In 
fact, it is not difficult to see that I:(n) is greater than the computable func­
tion j{n) as soon as n is greater than (the program-size complexity or algo­
rithmic infonnation content of f) + 0(1). Indeed, to computej{n) + I, 
it is sufficient to know (a minimum-size program for f) and the value of 
the integer (n - the program-size complexity of f). Thus the program­
size complexity of j(n) + I is S; (the program-size complexity of f) + 

O(log I n - the program-size complexity of f I ) , which is < n if n is 
greater Utan 0(1) + the program-size complexity off Hence, j{n) + 1 is 
included in I:(n), that is, I:(n) '2 j{n) + I, if n is greater than O( I) + the 
program-size complex ity of f. 

Yet another reason for interest in the Busy Beaver function is that, 
when properly defined in tenns of bits, it immediately provides an 
infonnation-theoretic proof of an extremely fundamental fact of recursive 
function theory, namely, Turing's theorem that the halting problem is 
unsolvable (3] . Turing's original proof involves the notion of a comput­

able real number and the observation that it cannot be decided whether or 
not the nth computer program ever outputs an nth digit, because otherwise 
one could carry out Cantor's diagonal construction and calcu late a para­

doxical real number whose nth digit is chosen to differ from the nth digit 
output by the nth program, and which therefore cannot actually be a com­
putable real number after all. To use the noncomputability of 1: to demon­
strate the unsolvability of the halting problem, it suffices to note that, in 
principle, if one were very patient, one could calculate1:{n) by checking 
each program of size less than or equal to n to detenn ine whether or not it 
halts, and then running each program that halts to detennine what its out­
put is, and then taking the largest output. Contrariwise, if I: were comput­
able, it would then provide a so lution to the halting problem, for an n-bit 

program either halts in time less than I:{n + 0(1», or else it never halts. 

The Busy Beaver function is also of considerable metamathematical 
interest; in principle, it would be extremely useful to know larger values 

of I:(n) . For example, this would enable one to settle the Goldbach con­
jecture and the Riemann hypothesis, and in fact any conjecture such as 
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Fermat's which can be refuted by a numerical counterexample. Let P be a 
computable predicate of a natural number, so that for any specific natu ral 

number n it is possible to compute in a mechanical fashion whether or not 
P(n), P of n, is true or false, that is, to determine whether or not the 
natural number n has property P. How could one use the Busy Beaver 

function to decide if the conjecture that P is true for all natural numbers is 
correct? An experimental approach is to use a fast computer to check 
whether or not P is true, say for the first billion natural numbers. To con­

vert this empirical approach into a proof, it would suffice to have a bound 
on how far it is necessary to test P before settling the conjecture in the 
affi rmative if no counterexample has been found, and of course rejecting it 
if one was discovered. I: provides this bound, for if P has program-size 
complexity or algorithmic information content k, then it suffices to exam­
ine the first I: (k + 0(1» natural numbers to decide whether or not P is 

always true. Note that the program-size complexity or algori thmic infor­
mation content of a famous conjecture P is usually quite small ; it is hard 
to get excited about a conjecture that takes a hundred pages to state. 

For all these reasons, it is really quite fascinating to contemplate the 
successful efforts which have been made to calculate some of the initial 
values of I:(n). In a sense these efforts simultaneous ly penetrate to 
"mathematical bedrock" and are "storming the heavens ," 10 use images of 
E. T. Bell. They amount to a systematic effort to settle all finitely refut­

able mathematical conjectures, that is, to determine all constructive 
mathematical truth . And these efforts fly in the face of fundamental 
information-theoretic limitations on the axiomatic method [3-5], which 
amount to an information-theoretic version of GBdel's famous incomplete­
ness theorem [6]. 

Here is the Busy Beaver version of Gt>del's incompleteness theorem: 
n bits of axioms and rules of inference cannot enable one to prove what is 

the value of I:(k) for any k greater than n + 0(1). The proof of this fact is 
along the lines of the Berry paradox. Contrariwise, there is an n-bit axiom 
which does enable one to demonstrate what is the value of I:(k) for any k 

less than n - 0(1). To get such an axiom, one either asks God for the 
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number of programs less than n bits in size which halt, or one asks God 

for a specific n-bit program which halts and has the maximum possible 

running time or the maximum possible output before halting. 

Equivalently, the divine revelation is a conjecture V k P(k) (with P of 

program-size complexity or algorithmic information content S n ) which 

is false and for which (the smallest counterexample i with -, P(i) ) is as 

large as possible. Such an axiom would pack quite a wallop, but only in 
principle, because it would take about Un) steps to deduce from it 

whether or not a specific program halts and whether or not a specific 

mathematical conjecture is true for all natural numbers . . 

These considerations involving the Busy Beaver function are closely 

related to another fascinating noncomputable object, the halting probability 

of a universal Turing machine on random input, which I like to call n, 
and which is the subject of an essay by my colleague Charles Bennett that 
was published in the Mathematical Games department of Scientific Ameri­

can some years ago [71. 
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4.5 THE COMPLEXITY OF 
COMPUTING DISCRETE LOGARITHMS 

AND FACTORING INTEGERS 

A. M. Odlyzko 

AT&T Bell Laboratories 
Murray Hill, NJ 07974 

Practi cally all knapsack public key cryptosyslems have been broken in 

the last few years, and so essentially the only public key cryptosysterns 

that still have some credibility and are widely known are those whose 

security depends on the difficulty of factoring in tegers (the RSA scheme 

and its variants) and those whose security depends on the difficulty of 

computing discrete logarithms in finite fields. Therefore, the computa­

tional complexity of these two problems is of great interest. 

At the time of the workshop, one aspect of the then-current state of 

knowledge on these two fundamental problems seemed to be highly unsa­

tisfactory. This was the fact that aU the fast algorithms fo r discrete loga­

rithms and all but one of the fast algorithms for factoring intege rs had 

running-time estimates that depended on the efficiency with which 

matri ces could be inverted. These algorithms require the solution of a sys­

tem of linear equations of the form 

Ax= y, (I ) 

where A is a matrix of size m x n. x and y are column vectors of 

lengths m and n. respectively. and m is close to n. The interesting ranges 

of va lues for n are between 103 and 107. Ordinary Gauss ian elimination 

requi res about n3 steps for the solution of (1). Strassen 's algorithm, which 

might be practical for large n, takes about nt0
&2

7 = n2.807 ... steps. The 

best general-purpose algorithm that is known, due to Coppersmith and 

Winograd [I ], takes about n2.495 ... steps , but is almost certainly impracti­

cal. No algorithm can solve the system (1) in fewer than about n2 steps 
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(there are that many entries in the matrix, after all! ). 

Depending on how fast the system ( I) can be solved, various algo­

rithms have different asymptotic running-time estimates. If we let 

L = L(P) denote any quantity that sati sfies 

L = exp( ( I + 0(1) ] ( ( log, p)(Iog, log, p) ]112] as p --+ -. (2) 

and suppose that the system (1) can be solved in time about n' for various 

values of r, then Table 1 summarizes the state of knowledge at the time of 

the workshop aoout the efficiency of the best factoring algorithms for fac­

toring integers around p in size . A similar table can be prepared for the 

running times of various discrete logarithm algorithms. 

The question that was raised at the workshop was whether the esti­

mates for the running times of these algorithms that are obtained by 

assuming r > 2 are really appropriate. Even if we cannot solve general 

systems of the form (1) in time O(n2+E) for every E > 0, we can take 

advantage of the fact that the systems that arise in factorization and 
discrete logarithm algorithms are very sparse. Some methods to take 

advantage of that sparseness were presented, and their effectiveness was 

supported both by results of large-scale simulations and heuristic argu­

ments. (See [2] for a brief description.) The conc lusion was drawn that, at 

least in the foreseeable future, these methods are likely to make the system 

(1) easy to solve. Still, a question remained about the asymptotic perfor­

mance. 

As a result of that presentation, several methods were developed that 

can solve sparse systems of the form (1) in not much more than n2 steps. 

The first such methods were developed by D. Coppersmith and the author, 

following a suggestion of N. Karmarkar. These methods consist of adap­

tations of the conjugate gradient [3] and the Lanczos [4] algorithms to 

so lve linear equations over finite fields. They have been tested success­

fu lly on quite large systems. Brief accounts of these adaptions are given 
in (2] and (5]. 

Soon afterwards, D. Wiedemann [6] found a more elegant and prob­

ably even faster method, based on the use of the BerkeJamp-Massey 
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algorithm and the Cayley-Hamilton theorem. A brief account of it can 
also be found in [2]. 

Now that the main question, whether systems of the fonn (1) that 
arise in factorization and discrete logarithm algorithms can be solved in 

about time n2 • has been answered in the affinnative. we are faced with a 
more important and basic question. 

Table 1. Asymptotic Running Times for Factoring Integers 

Algorithm r == 3 r = 2.807 ... r = 2.495 ... r =2 

Schnorr-Lenstra [7] L L L L 

Continued fraction [8] L 1.13 ... L 1.12 ... L 1.11... LU I... 

Schroeppel linear 
L 1.22 ... L 1.1 8 ... LUI... sieve [8) L 

Pomerance 
quadratic sieve [8] L 1.06 ... L1.04 ... L 1.02 ... L 

Coppersmith. Odlyzko. 
L 1.1 6 ... L 1.13. .. L 1.081 ... and Schroeppel [5 J L 

There are now several algorithms known that can factor an integer 
around p in time L(P) (see Table I and [9] , which presents a new algo­
rithm based on elliptic curves), as well as several aJgorithms that can com­

pute discrete logarithms in fields GF(p) for p a prime in time L(P). (For 
fields GF(2n), discrete logarithms can be computed much faster [10], and 
the new sparse matrix methods are also useful in speeding this algorithm 

[2].) Does this mean that L(P) is the natural lower bound for the computa­
tional complexity of factoring and finding discrete logarithms? It is the 
author's guess that thi s is not the case and that we are miss ing some 

insight that wi ll let us break below the L(P) barrier. 
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4.6 KNAPSACK USED IN FACTORING 

Don Coppersmith 

IBM Research 
Yorktown Heights, NY 10598 

Suppose we are given I integers xI' x2 ' .. . • xl' in the range from 

- /1.5 to + [1.5, These integers may be thought of as being random and 

unifonnly distributed in their range. 

Consider the event that three of the integers add to zero: 

Xi + Xj + x,\: = 0 . (1) 

If the x/s are truly random, we will have about c[I.S ordered triples (i. j, k) 

of indices satisfying (1). for some constant c. 

The problem is to discover these triples as quickly as possible. 

Specifically, in time [I.5+e, can you write down /1.5-£ triples satisfying (1)? 

One can do so in time P: sort the x/s then for each fixed Xj run for­

ward through the Xj and backward through the xI<. • trying to keep Xj + xI<. 

near -Xi' to discover all pairs (j, k) such that (i.). k) satisfies (1). 

Another approach is to use a fast Fourier transfonn; by setting up a 

vector of length 2/1.5. with 1 denoting the position of each Xj • then tak­

ing a convolution of this vector with itself, we can compute the number of 

triples involving each index i in time [1.5+£. However, we do not compute 

the triples themselves, so this does not solve the problem. 

Motivation. The problem was originally motivated by an algorithm 

for factoring integers near perfect cubes. Suppose we are trying to factor 

N = M3 + O(M). We can first find integers Yj near M which are smooth, 

that is, the product of small primes. With an appropriate choice of /, and 

an appropriate definition of "small" primes, there will be [ such Yi with 

I Yj - M I < /1.5. Now set Xj:::: Yj - M. Whenever (I) is satisfied, we will 

have 
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Yi Yj Yk - N = (Xi + M) (xj + M) (Xk + M) - N 

= (Xi Xj Xk) + M (Xi Xj + Xi Xk + Xj Xk) + M2 (Xi + Xj + Xk) + M3 -N 

= O(MI3) 

Thus Yi Yj Yk - N, being relatively small, will itself have a reasonable 

chance of being "smooth." If it is, we have related some small primes 

multiplicatively mod N. This gives us one of the I equations needed by 

the Morrison-Brillhart method of factorization. This technique could be 

viewed as an attempt to speed up the equation-gathering phase of the 

Morrison-Brillhart algorithms [1]. 

This application is supplanted, however, by the Reyneri cubic sieve 

[2,3J. In that algorithm, the Yi are replaced by the set of all integers Y/ 

in the range [M - I, M + I J. Then one ends up recovering equations 

relating the Yi with the small primes. One has to gather more equations 

then (as many equations as both the small primes and the y/) but they are 

somewhat easier to find (the residues Y/ Y/ Yk - N tum out to be smaller, 

O(MP ) rather than O(MI3 ), and thus more likely to be smooth), and in 

addition the knapsack problem disappears. 

The knapsack problem remains as an intellectual challenge, however, 

even after its motivation is removed. 
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4.7 RELIABLE COMPUTATION 
WITH ASYNCHRONOUS CELLULAR ARRAYS 

Peter Gacs 

Deptanment of Computer Science 
Boston University 
Boston, MA 02215 

1. The homogeneous construction and local connectivity of cellular 

arrays makes them the natural domain for the formulation of certain 

general questions concerning reliable computation. We have 

addressed the problem of reliable computation in di screte time in two 

works. Gacs [1] constructs a (fairly complex) one-dimensional array 

while Gacs and Reif [21 . based on Toom's work , construct a very 

simple three-dimensional array. Even if built of unreliable com­
ponents, these arrays can simulate anyone-dimensional cellular array 

reliably. 

2. Continuous-time (asynchronous) models are in many respects more 

natural to consider than the di screte ones, especially as physical sys· 

terns. Very simple methods are known to convert a discrete·time sys· 

tern into one that will work correctly even if the state transition of 

each component happens at arbitrary times, provided whenever it hap· 

pens its result is predictable. 

3. The one·dimensional model of Gacs · [l] can probably be extended to 

also deal with asynchrony. But encouraged by the simplicity of the 

Gacs-Reif model [2J and the simplicity of the model mentioned in 2 
above. we expect a simple solution, at least in three (or four?) dimen· 

sions also for the case when both asynchrony and errors are present. 

The simplest ideas were already discarded experimentally by Charles 

Bennett using the Cellular Automata Machine simulator. 

However, he is currently investigating a three-dimensional scheme 
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based on the recognition that synchronization faults In three dimen­

sions fonn rings of vortices. 

4. Three-dimensional cellular arrays are not physically realizable. Our 

newest results. obtained at Bellcore in the summer of 1985. show that 

a real complexity-tradeoff is possible in a two-dimensional reliable 

array. In this scheme, "infonnation" errors are corrected by a 

hierarchical coding and repetition scheme. while "structure" errors are 

corrected using Toom's rule (instead of the complex procedures used 

in [1 D. The bottom level of the new scheme is fairly simple but it is 

still a challenging problem to simplify it down to physical plausibility. 
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4.8 FINITE MEMORY CLOCKS 

Thomas M. Cover 

Depanments of Eleclrical Engineering 
and Statistics 

Stanford University 
Stanford. CA 94305 

How does one tell time when the number of states in the clock is 

insufficient to count the elapsed time? For that matter, how good are 
humans at estimating the passage of time? 

Let P n be the probability that a given m-state Markov chain first 

enters its clock state at time n. We can design a clock such that 

Pn =:: (m - l)/ne • for n:> m. Can one do better? 

STI\RT 

1-1' STOP 
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4.9 DISTRIBUTED SHORTEST PATH ALGORITHMS 

R.G. Gallager 

Depanment of Electrical Engineering 
and Computer Science 

M .I.T. 
Cambridge. MA 021 39 

Consider a graph G(V,E) with a distinguished node called the root 

and with some positive weight associated with each direction on each 
edge. The length of a path in the graph is the sum of the weights in the 
direction of the path over the edges of the path. The shortest path prob­

lem is to find a minimum weight path from each node to the root. In the 

special case where each edge has unit weight, we call the shortest path 

problem the minimum hop problem. 

A distributed shortest path algorithm is an algorithm for a communica­

tion network. to so lve the shortest path problem for the graph correspond­

ing to the network. Each node of the network has a processor and the 

facility to send messages over the edges adjacent to the node. Each node 
is initially unaware of the topology and knows only the weights of the 
adjacent edges and whether or not it is the root. Each node has a copy of 
the algorithm, which is a set of rules for reading messages, processing. 

and sending other messages over the outgoing edges. The communication 
is asynchronous but error free and messages travel in first come first serve 
order over any given edge in any given direction. A message consists of a 
smaIl ( i.e .• bounded) number of parameters such as path weights or node 

identities. 

The communication complexity of a distributed shortest path algo­
rithm. as a function of 1M and lEi • is the worst case total number of mes­

sages. over all edges. required to so lve the shortest path problem. We 
view the problem as solved when each node knows the first edge on a 

shortest path from itself to the root. The worst case is taken over all 
graphs and weights of given IN1 and lEI and over all delays for individual 
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messages. The time complexity is the worst case Lime to solve the problem 
under the assumption that processing time is negligible and each commun­
ication takes at most one unit of time (but thi s time unit is unknown to the 

algorithm). 

The problem is to find distributed algorithms that minimize communi­
cation complexity or time complexity or some tradeoff between the two. 
As an impon.ant special case, find such algorithms for the minimum hop 
problem. It is easy to see that the communication complexity must be at 
least tEl and the time complexity must be at least WI. It is also easy to 
see that simply Hood ing all the topology infonnalion through the network 

solves the problem with communication complexity IEl2 . Some progress 
has been made on the problem for the minimum hop case. Frederickson 
[1] has developed an algorithm with a communication complexity and time 
complexity of O( WI ...ftEi). Also. Awerbuch and Gallager [2,3] have 
developed algorithms, one of which has a communication complexity of 
O( WlI.6 + IEl ) and time complexity O( 1Nl1.6 ) and the other of which 
has a communicaiton complexity of O( IEli+e ) and a time complexity of 

O( WI!+e ) ,where E approaches 0 as ",,2 log2 log2 WI I log2 INl . 
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1. Definitions. 

4.10 THE SCOPE PROBLEM 

H.S. Witsenhausen 

AT&T Bell Laboratories 
Murray Hill. NJ "07974 

By a system we will mean a finite sequence SI • .. .• Sm of fin ite 

sets of positive integers. Denote by (a, i) the occurrence of integer a 

in set Sj. The scope of (a, i) is the union of the sets Sa with 

j :5" a :5 k ,where 1:5 j :5 i :5 k :5 m and j is as low and k is as high 

as possible subject to the condition that for all P satisfying j < P < k • 

one has a E S~. This means that the scope consists of the sets in the run 

of a's to which (a, i) belongs, extended at each end of the run by one 

additional set, unless that end of the run is one end of the system. 

A system is valid if it satisfies the scope condition: for any occurrence 

(a, i) of any integer a, the scope of (a, i) contains (1, 2, ... , a ) . 

Let 'V(k) be the largest integer that can occur in a valid system with sets 

of maximum cardinality k, and let 'l'I(k) be the largest integer that can 

occur in set SI ' or equivalently Sm' under the same assumption. 

2. Conjectures. 

From the constructions for the equivalent "saturation problem" in [1] . 

it follows that 'I' (k) ~ 4k - I and that '1'1 (k) ;?: 4k - 2. This motivates 

the following conjectures: 

Conjecture J: 'I'(k) = 4k -1 

Conjecture 2: 'V1(k) = 4k - 2 . 

Conjecture I implies Conjecture 2 because the system that gives 

'V1(k) > 4k - 2 and its mirror image can be put together. with an obvious 

adjustment, to yield a valid system contradicting Conjecture I . 
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Some Examples. Systems that achieve W(k) = 4k - 1 are the following. 

Fork=2: 
{ 1 }, {2,3},{ 4,5},{ 1,7}, {3,7 },{2,7},{ 1,6 },{2,6 },{3,6}, { 1,6}.{ 4,5 },{2,3}, {I}. 

Fork=3: 
{ 1 }, {2,3,4} ,{5,6,7} ,{ 1,8,9}, {2,8,9}, {3,8,9}, {I ,4,1O} , {2,3,lO}, {4,5,1 O}, 

{ 1,6,1O},{2,6,1O}, {3,7 ,II}, {1,7 ,II}, {4,5,11}, {2,3,11 },{ 1.4,11 }, 

{3,8,9} ,{2,8,9}, {1,8,9}, {5,6,7}, {2,3,4} ,{ I}. 

In general, valid systems achieving the conjectured values can be con­
structed recursively. What remains to be settled is whether this can be 
improved upon or not. 
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4.11 A CONJECTURED GENERALIZED PERMANENT 
INEQUALITY AND A MULTIACCESS PROBLEMt 

1. The Conjecture. 

Bruce Hajek 

Depanment of Electrical Engineering 
University of lllinois 

Urbana. IL 61801 

Let k and n be positive integers. and let I denote the set of k·tuples. 

I :::: {I , 2, ... , n )k. For 1 ~ j S k, let Sj denote the collection of subsets L 

of I such that L has cardinality n and no two elements of L have the same 

jth coordinate. Let S:::: I..! Sj" Finally. let Fn•k be the multinomial in 
J 

variables x :::: ( xi : i e I) defined by 

Fn•k (x) = L 
L E S 

n xi ' 
IE L 

Conjecture 1. Under the constraints 

x~O and L XI= 1 
I 

F n.k attains its maximum at x if and only if xi :::: n- k for all i. 

2. Permanent Inequality as Special Case. 

(I) 

We consider the case k :::: 2 in this section. Then x :::: 

( Xu : 1 s: i. j S n ) can be viewed as an n x n matrix. Now 

t Editorial note added in proof: The two equivalent conjectures 1 and I ' have 
been shown to be false in the recent preprint, 1. K~mer and K. Marton, "Ran­
dom Access Communication and Graph Entropy," IEEE Trans. In! Theory. 
under review. The problem of finding the optimizing partitions 
AI' A2 •··· • A.t in Conjecture I' remains open. however. It is intimately con­
nected to the perfect hashing problem. also treated in thi s volume O. Ktkner. 
"The Information Theory of Perfect HaShing," this volume.) 
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F(x) = L 
L e SI 

n Xi + L 
ieL LeS2 

.nXj - L nXj_ 
I ELL E SI t1 Sz j E L 

The last sum on the right-hand side is by defini tion the permanent of the 

matrix X, and the other sums can be rewritten to yield 

F( x ) = n ( L Xij ) + n ( L Xij ) - perm( x ). 
I j J i 

If Conjecture 1 is true, then it is still true under the additional con­

straint 

L Xu = L Xji = n
1 

for all i . (2) 
j j 

Under (2) we get F(x) ::: ( 21nn ) - perm(x). Thus, the conjecture implies 

the fact that the permanent of x is minimized subject to the constraints 

(I) and (2) if and only if Xu = lIn2 for all i, j. This fact was conjec­

tured in 1926 by B. L. van der Waerden and was proved in 1980 by G. P. 

Egorychev (see [1]). 

3. Application to Random Access Strategies [2]. 

Let U l .... , Un be independent random variables, each unifomlly 

distributed over the unit interval [0, 1]. We say that a partition A of the 

interval into n disjoint sets (called the atoms of A) separates (the points 

U l • ...• Un ) if each one of the atoms contains exactly one of the Ui. 

We call A an equipartition if each of its n atoms has Lebesgue measure 

lin. 

Now, let AI' ... ,Ak each partition the interval [0, I} into n atoms. 

Upon setting 

we see that Conjectu re 1 is equivalent to the followi ng conjecture. 

Conjecture 1'. Partitions AI' ... ,Ak maximize the probability 

P [at least one of the A k separates] 

(3) 

if and only if the partitions are equipartitions and are independent of each 
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other, that is, if and only if the right-hand side of (3) is n-k for each 

i l •...• ik . 

Could the conjecture be established, a number of corollaries would 

follow. For example, suppose AI' A2, . .. is an infinite sequence of 

independent equipartitions and that B is the random partition defined by 

B = AK ' where K is the random variable defined by 

K = min { k: Ak separates U I , ..• , Un } . 

Then B is a random partition. Conjecture l' and Fuch's inequality (3) 

can be used to show that B has minimum entropy over all random parti­

tions which separate U . 

Acknowledgement: I am grateful to Eli Gafni and Pierre Humblet for 
discussions on this problem. 
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4.12 ROTATION DISTANCE 

Daniel D. Slealor 

Carnegie-MeJlon University 
Piltsburgh, PA 1521 3 

Robert E. Tarjan 

Computer Science Departmenl 
Princeton University 
Princeton, NJ 08544 

William P. Thurston 

Mathematics Department 
Princeton University 
Princeton, NJ 08544 

In this note we sununarize our recent results on rotation distance. a 

distance measure on binary trees with computer science applications. Our 

main ~sult is that the maximum rotation distance between any two n-node 

binary trees is at most 2n - 6 for n ~ 11 , and this bound is tight for 

infinitely many n. 

Rotation Distance. 

A rotation is a local transfonnation on a binary tree that changes the 

depths of certain nodes but preserves the symmetric order of the nodes 
(see Figure 1). A rotation takes 0(1) time on any standard representa­

tion of a binary tree. Rotations are the operations used to rebalance binary 

search trees [1,2]; thus they playa fundamental role in data structures. 

Rotations also impose a mathematical structure on the set of all n­

node binary trees. Let Rn. the rotation graph, be the undirected graph 

whose vertices are the n-node binary trees such that two trees are adjacent 

if and only if one can be obtained from the other by a single rotation. Let 

d(TI• T2• ) • the rotation distance between trees T1 and T2 , be the dis­

tance between Tt and T2 in Rn ' that is, the minimum number of rotations 
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needed to transfonn Tl into T2 or vice versa. This note summarizes our 

recent work on rotation distance. Further details and proofs will appear in 

[3J. 

We fonnulate two fundamental questions about rotation distance: 

Problem 1. Let dn be the diameter of Rn ' that is, the minimum number 

of rotations that suffice to transform any n-node binary tree into any other. 

What is dn ? 

Problem 2. Devise a polynomial-time algorithm that. given any two n­

node binary trees T) and T2 , computes d(T), T2) . 

Our results provide an almost-complete solution to Problem ] and an 
approximate solution to Problem 2. Concerning Problem I. we prove: 

Theorem 1. dn S 2n - 6 for all n ~ 11 . 

Theorem 2. dfl = 2n - 6 for infinitely many n . 

We conjecture, but cannot yet prove, that d = 2n - 6 for all n:2: 11 . 
However, we believe that an extension of our methods will establish this. 

We have computed the exact value of dn for n S 16 (see Figure 2). 

These results show that dn = 2n - 6 for II S n S 16 . 

Concerning Problem 2, we exhibit a linear-time algorithm that will 
estimate d(T1, T2) to within a factor of 2. Coming closer than a factor of 

2 in general seems hard; however, our methods allow the exact computa­

tion of d(T). T2) in various special cases. 

There has been very little previous work on rotation distance. To our 
knowledge the only published work is by Culik and Wood [4], who 

defined the concept and showed that dn s: 2n - 2 for all n. Leighton 

(private communication) showed that dn ~ 7nl4 - 0(1) for infinitely many 

n. 

The original definition of rotation distance is not so easy to study. 
Thus it is advantageous to transform it into something more amenable. 
The binary trees are counted by the Catalan numbers [51 as are many other 
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mathematical objects, including the triangu lations of a polygon. It is these 
with which we shall work. The n·vertex binary trees are in one·to-one 

correspondence with the triangulations of an (n + 2)·gon if rotationally 
equivalent triangulations are regarded as distinct. Furthermore, rotation on 
binary trees cones ponds to the diagonal flip operation on triangulations, in 

which we remove a diagonal (causing two triangles to merge into a qua­
drilateral) and replace it with the other diagonal of the quadrilateral (see 
Figure 3). Rotation distance on binary trees corresponds to flip distance 

on triangulations; the flip disrance l (T). T2) between two triangulations T. 

and T2 (or vice versa). In the triangulation setting. Problems I and 2 

become: 

Problem 1', Detennine In = max (1(T1• T2) I T\ and T2 are triangula· 

lions of an n·gon}. 

Problem 2'. Devise a polynomial-time algorithm to compute I(T). T2) 

for any triangulations TI and T2 . 

We summarize our results on triangulations. 

Theorem 1. In:5 2n - 10 for all n ~ 13 . 

Proof. Any triangulation of an n-gon has n - 3 diagonals. Given any 
vertex x of initial degree d(x) < n - 3. we can increase d(x) by a suitable 

diagonal flip. Thus in n - 3 - d(x) flips , we can produce the triangula­
tion all of whose diagonals have one end at x. It follows that. given any 

two triangulations T, and T2 , we can convert TI into T2 in 

2n - 6 - dl(x) - ~(x) flips, where x is any vertex of degree d)(x) in T, 

and degree d2(x) in T2 • A little algebra shows that if n ~ 13 • there is a 

vertex x such that d\(x) + d2(x ) ~ 4 . The theorem follows. 0 

Theorem 2'. In = 2n - 10 for infinitely many n . 

The proof of Theorem 2' is our most interesting and complicated 

result. It uses a second transfonnation of the problem, to triangulating a 
polyhedron (dissecting it into tetrahedra), and relies on volumetric argu-
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ments in hyperbolic space. 

Lemma 1. If T1 and T2 are any two triangulations having a common 

diagonal e, then any minimum· length sequence of flips from TI to T2 

leaves e alone; indeed any flip sequence from TI to T 2 that flips e 

uses at least two more flips than the minimum number. 

Lemma 2. If TI and T2 are any two triangu lations with no common 

diagonals but some diagonal e of T1 can be converted into a diagonal 

e' of T2 in one flip, then there is a shortest flip sequence from T1 to 

T2 that first flips e to e' . 

A further result along the lines of Lemmas I and 2 concerning diago· 
nals fixable in two flips can be proved. However. such results seem to be 
of no help in solving Problem 2', because there are pairs of triangulations 
TI and T2 such that fixing even a single diagonal requires Q (n) flips. 

On me other hand, Lenuna 1 allows us to estimate f{TI , T2) to wimin a 

constant factor: 

Theorem 3. Let g(Tl' T2) be the number of diagonals in Tl that are 

not in T2 . Then g(T, . T2) Sf{T" T2) 

We close by mentioning anomer problem, having to do with rotations, 

that arises in the study of self·adjusting search trees [6,7). A LUrn is a pair 
of rotations as illustrated in Figure 4. 

Problem 3. Starting from an arbitrary n·node binary tree T , what is me 
maximum number of right turns that can be made before no more are pos· 

sible? 

We conjecture that the maximum number of right turns is O(n) , but 
can only prove O(n log n). Note mat, starting from an arbitrary tree, me 

maximum number of right rotations that can be made is exactly (~) . 
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RIGHT 
ROTATI ON 

• 
LEFT 

ROTATI ON 

Figure 1. A rotation in a binary tree. Triangles denote subtrees. 
The tree shown could be part of a large r tree. 
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n d n 

1 0 

2 1 

3 2 

4 4 

5 5 

6 7 

7 9 

8 11 

9 12 

10 15 

11 16 

12 18 
13 20 
14 22 

15 24 

16 26 

Figure 2. Values of dn for small n . 
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• 

• 

Figure 3. A diagonal flip in a triangulation. 

RIGHT 
TURN 

• 

• 
LEFT 
TURN 

Figure 4. A tum on a binary tree. 
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4.13 EFFICIENT DIGITAL SIGNATURE SCHEMES BASED 

ON MULTIVARIATE POLYNOMIAL EQUATIONS 

Adi Shamir 

Applied Mathematics 
The Weizmann Institute 

Rehovol. Israel 

In 1983. Ong Schnorr and Shamir proposed a new type of digital sig­
nature scheme, based on multivariate polynomial equations modulo com­

posite numbers. The scheme had some unique features (such as a constant 

arithmetic complexity and a universal modulus capabi lity), which made it 

an attractive alternative to the RSA signature scheme. Unfortunately, the 

first two incarnations of this scheme (based on binary quadratic equations 

and ternary cubic equations) were shown to be breakable by 1. M. Pollard. 

The major open problem concerning this scheme is whether there exists a 

safe incarnation which is still attractive from a practical point of view. 
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4.14 SOME RESULTS FOR THE PROBLEM 
"WAITING FOR GODOT" 

Michael L. Honig 

Bell Communications Research 
Morristown, NJ 07960 

Problem Statement: Consider an MIDI ! queuemg system (poisson 

arrival process, deterministic service times) and a test customer. The test 
customer is waiting for a friend whose arrival time is an exponentially dis· 

tributed random variable. The test customer can e ither join the queue, if 

one exists, or wait outside the queue. Once the test customer joins the 
queue, he must stay in the queue until he reaches the server. If the test 
customer reaches the server after his friend arrives. he is served. Other­
wise, he can either join the back of the queue, or wait outside the queue. 

What policy should the test customer follow to minimize the mean delay 

until service? 

Let A.. be the arrival rate of customers to the queue, let ).1 , the service 
rate, be nonnalized to one, and let a be the rate at which the test 

customer's friend arrives. At any given time t. let v denote the total 
service time (virtual work) of customers in front of the test customer, j 

denote the number of customers in back of the lest customer, and k be a 

variable indicating whether or not the test customer's friend has arrived. 
Define the "move-along" policy as the policy whereby the test customer 
always stays in the queue. Under the move-along policy, the test customer 
immediately moves to the back of the queue if he reaches the server 
before his friend arrives. To prove that the move-along policy is optimal 

for given A. and n, a new class of policies is defined by insisting that the 
test customer always joins the queue, but he is allowed to move to the 
back of the queue at any time. Any policy allowed in the problem state­
ment can be duplicated by a policy in this new class. If the move-along 

policy is the optimal policy in this new class of policies, then it must be 
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the optimal policy in the original set of policies. 

Define the state space for the problem as 

S={(V,j,k)IVE R+,jE r,ke {O,ll}, 

where Fr" and r+ are the set of non-negative reals and integers, respec­

tively. Where unspecified, k is assumed to indicale that the lest 

customer's friend has not anived. The state trajectory from lime t = 0 10 

t = T is defined as the continuum of states visited from time t = 0 to time 

t = T, and is denoted as s[O, T]. A general policy A is defined, which 

maps state trajectories to actions. For any policy A, the only actions 

allowed are either to stay in the current position or jump to the back of the 

queue (i.e .• move from state (v, J) to state (v + j, 0)). Suppose the state 

trajectory from time I = ° to t = T is known to be s[O, T]. The mean 

delay until the test customer is served starting at time T under policy A 

is defined as tt:[o,n' The mean delay until the test customer is served 

assuming the move-along policy is adhered to is denoted as dvJ , where 

(v, J) is the current state. For the move-along policy the state trajectory 
. previous to time T is irrelevant. 

Theorem 1: Let s[O, TJ be any state trajectory which reaches state 

(v, J) at time T. Then dVJ = i~f tt:{o,n if and only if dVJ ~ dV+j,o • for 

allvandj. 

This theorem holds for all A in the new class of policies defined above. 

The move-along mean delay, dvJ ' satisfies the recursion 

d . = v + e-{).+o.)v ~ (Avl d. 
'J ""' k' )+k,O k=O • 

with boundary condition 
)" 

doo = 7,--'-- + '+ ~ d 1.O ' 
, 11.+0; I\, ..... 

The solution can be written 
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d'J = v + e- x_(>H-j) do.o + !o [ A'(j + Ave-X') exp [ -jx, - :~ x; - VX'+I ]] • 

where 

and 

This expression can be used to prove the next two theorems. 

Theorem 2: If A. ~ ex I (1 - e-a ) • then dVJ < dv+j,o for all positive v 

and j. 

Theorems ] and 2 therefore imply that the move-along policy is 

optimal if A :5 a I (1 - e-<J. ). 

Theorem 3: Given any ex, there exists a Ao such that if A. ~ ~ , the 

move-along policy is not optimal. 

Theorem 3 applies to the original problem statement, as well as to the 
modified problem in which the test customer may leave the queue at any 

time. 

Acknowledgment: The author thanks T.J. Ott for completing the 

proof of Theorem 2. 
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4.15 PROBLEMS ON TILING, INDEPENDENT SETS, 
AND TRIGONOMETRIC POLYNOMIALS 

D. Hajela 

Bell Communications Research 
Morristown, NJ 07960 

Problem 1: Given S c zn, X E zn, a translate of S by x is S + x = 

{s + x I S E S ] . 

Question: Given S c ZfI with I S I = m : 

(a) Do disjoint translates of S cover all of Zn ? 

(b) If so, how quickly can you decide this? Is there an algorithm polyno­

mial in m to do this? 

The answer is yes for S being a periodic tile. This means there exist 

PI' ... 'Pn E Zn such that 

1. u S + k) PI + ~ P2 + ... + kn Pn :::: Zn . 
kiE Z 

2. (S + k) PI + ... + kn PII ) n (S + h PI + ... + j" p" ):::: 0 

if (k l ' .. . , kn ) '" VI ' ... ,jn ). 

Problem 2: A c Z is called independent if L ej aj :::: 0 with 
1 5 j S fI 

aj EA. Ej:::: ± I, 0 implies Ej :::: 0 for all 1 :5 i :5 n . 

Question: (pisier, 1981) For every finite B e A , say with I B I :::: n , 

assume there is aC e B, I C I ~ nl2 and C is independent. Prove or 

Disprove: A is a finite union of independent sets. 

Problem 3: Note that for any nl ' .. . , nk E Z, 

...fit {k::; max I sin n, e + ... + sin nk e I ~ k • 
a E [O.21tJ 
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since 

2. 
f 1 sin n9 + ... + sin nk 9 12 = rek . 
o 

Easy: There are nl •... , nk E Z I {OJ such that 

max 1 sin n l 9 + ... + sin nk 9 1 S C {k. 
o e [O,2It] 

for c a fixed constant (e.g., Rudin-Shapiro polynomials). 

Question: (H. Bohr, early 19505, 1952?) 

S ... .:s; nk with ni E Z for all j, such that 
Are there 0 < nl 

max 1 sin nl 9 + 
Oe[0.2xj 

+sinnk9ISc{k. 

for some constant c? 

Known: There are 0 < nl - .. S nk such that 

max 1 sin n l 9 + 
o e [0,211:] 
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4.16 COMMUNICATION COMPLEXITY OF SHIFTS 

Thomas M. Cover 

Depanments of Electrical Engineering 
and Statislics 

Stanford University 
Stanford, CA 94305 

Let X = (X l' X2 • ...• Xn ) , where Xi - Bernoulli (112). Let Y = 

(XT+1. Xn .2, ...• XT), where T is uniformly distributed over 

{ O. 1,2 . ... ,n- l } . Thus Y is a cyclic T-shift of x. Here T + k is 

modulo n. 

How many bits must y communicate to x in order that x can 

determine the shift T? We claim that log (n + I) bits are sufficient. 
n . 

Simply cycle y until L Yi+k 2' is largest, then transmit k. This works 
j=t 

whenever x,Y detennioe k. 

The problem is much harder if y' = y e e, where c - Bernoulli (P). 

The noise in y' ruins the above approach. Now how many bits are 

requi red? 
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4.17 A CODING PROBLEM CONCERNING 
SIMULTANEOUS THRESHOLD DETECTION 

Michael L. Fredman 

Department of Electrical Engineering 
and Computer Science 

University of California at San Diego 
La Jolla, CA 92093 

We define a threshold detection system (TDS) of order N to be a 

collection of N binary codewords, VI, V2 • . .. , VN • and N binary 

decision trees, Tl, T2 • ... , TN' such that the tree T; on input Vj 

reports "no" if j < i , and "yes" otherwise. 

(A binary decision tree T is a binary tree each of whose internal 

nodes is labe led with a positive integer, and whose leaves are labe lled 

"yes" or "no", When provided with a binary vector V as input, V 

defines a path through T by inVOking the rule that upon reaching a node 

labeled j. branch left if the jth bit of V is 0, otherwise branch right. 

The "yes/no" label of the leaf reached is the output generated by T on 

input V.) 

We define the read complexity of a TDS to be the maximum height of 

any of its N trees (the worst case decision time) and we define its write 

complexity to be the maximum Hamming weight of any of its N binary 

vectors (a measure perhaps of the power required to store one of these 

vectors - wors t case). Our interest centers on the inherent trade-offs of the 

read/write complexities associated with a TDS. For example, if the read 

complexity of a TDS is 1, then its write complexity must be at least 

(N - 1)12 , which is optimal; and if the write complexity of a TDS is I , 

then its read complexity must be at least (N - 1)/2 , which is optimal. 

Our first problem is to estimate or evaluate the intennediate range of pos­

sible trade-offs. (The so lution to this problem has implications regarding 

the complexity of ce rtain data structure algorithms [I].) 
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If we try to minImize simultaneously both the read and write com­
plexities, we can easily obtain an upper bound of 1 g(N) (the binary log­

arithm of N) by using the N binary vectors of dimension 1 g(N) for 
the V;'s, and simply having each Tj read these 1 g(N) bits. However, 

we can do better, obtaining an upper bound of roughly 1 g(N)12.54 [1]. 
We can demonstrate [11 a lower bound of c Ig(N)/lglg(N) (where c is a 
positive constant), but we suspect that the truth is asymptotic to c Ig(N) . 

Another variant of this problem is obtained by redefining the write 
complexity of a TDS to be the diameter of the set {VI'.··. VN } . 

REFERENCE 
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4.18 COOLING SCHEDULES FOR OPTIMAL ANNEALING 

Bruce Hajek 

Depanment of Electrical Engineering 
University of Illinois 

Urbana, IL 61801 

We study a technique inspired by statistical mechanics. caUed simu­

lated annealing [2] or stochastic relaxation [1], when applied to the max­

imum matching problem. The technique appears useful [2] for solving 

large. difficult (e.g., NP-hard) problems. OUf motivation for studying the 

relatively simple maximum matching problem is to obtain sharp results 

concerning sufficient convergence rates. Numerous extensions can be 

readily conjectured. 

Let G be an undirected graph. A matching is a set of edges, no two 

of which have a common vertex. Let M denote the set of all matchings 

for G. Let M* denote the set of matchings M with maximum cardinality. 

The maximum matching problem is to find a matching in M*. We will 

discuss a probabilistic method for doing this. 

Definition. Given p > 0, nP is the probability distribution on M 

defined by 

np(M)=pIMI/Z where Z= L p lMI 
M E M 

and IA I denotes the cardinality of a set A. Note that if we set n"" to be 

the limit of np as p tends to infinity, then 

{

I if ME M* 
n- (M) - IM* I 

- 0 otherwise. 

Thus, if we could sample a random variable with distribution nP for large 

p then it would be a maximum cardinality matching with high probability. 
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A possible method of constructing a random variable with distribution 
nP for some large p is to simulate a Markov process whose steady·state 
distribution is np. In practice. such simulations could be perfonned in 
discrete time. For theoretical purposes, we study a continuous·time Mar· 

kov process with stationary distribution TIP. The process can readily be 

simulated in discrete time, however. 

Consider a Markov chain with state space M and transition rate matrix 

Q" " defined by 

{

A ifM'=M u{e},e~ M 
Q"" (M, M') = ~ if M' = M le, e E M 

o for other M. M' with M '# M'. 

In words, links disappear at rate J.L and a link appears at a given site at rate 
A, as long as the site is eligible. It is easy to show that the chain has 
equilibrium measure nP , where p = AlJ.L. In fact, a stronger condition is 
easily checked: 

no (M) Q" " (M, M') = no (M,) Q(M', M) aU M, M'. 

We now replace A and J.L by detenninistic functions of time, (At) and 

(J.Lt)· We call (At' Ilt) a schedule since it detennines the transition rates as 

a function of time, and we set Pt = A.t l ilt. More fonnally. we consider 

the time-inhomogeneous Markov chain with transition rate matrix (Qt) 

defined by Qt = QAt. ~t. For convenience, we let At = 1 for all t so that 

Pt = I/J.Lt · We let at denote the probability distribution of the chain at 

time t. It satisfies the Kolmogorov forward equation 

at = at Qt· 

If (J.Lt) is "slowly varying," then we should have (Xt ::::: nP' for large t. 

If, in addition, J.Lt tends to zero (so p, tends to infinity) as t tends to 

infinity. then nP' converges to n-. Thus. if J.lt converges to zero slowly 

enough. it should be true that at converges to n -. This implies that the 
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Markov chain converges in probability to the set of maximal matchings, if 

IJ.t varies slowly enough. (In fact, a little more is expected; at converges 

to a uniform distribution on M* .) 

A proof of convergence based on this reasoning was given in [1] for a 

different optimization problem. Our goal is to obtain sharp estimates on 

how fast we can let IJ. tend to zero. 

In the following two theorems we implicitly make these assumptions 

on 11: 

~ < + 00, IJ.t is nonincreasing , 
and 

lim J..Lt = 0 
,~-

Theorem 1: Fix a graph G. 

(i) If all maximal matchings of G have maximum cardinality, then 

lim L 0., (M) ~ I 
,~ .... M E" M'" 

(ii) Otherwise, (1) is true if and only if 

-J J..L, dr = + 00. 

o 

Theorem 2: The following conditions are equiva lent: 

lim at = n.... for all graphs G. 
,~ -

-
Remarks. 

(I) 

(2) 

(3) 

1. For the sake of analogy with statistical mechanics, we note that nP 

can be reexpressed as 

np (M) ~ exp (- V(M)lD/Z • 

where T ~ I/ln(p) and V(M) ~ - IMI . We call V(M) the potential 
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energy of a state M and T the temperature of the system. As T tends 

to zero, np converges to the uniform distribution on the set M- of 

minimum potential-energy states. 

2. If for large t, ~t has the form ~t === r l /c , equivalently if T t = clln t , 

then by Theorem I, the chain converges in probability to the set of 

maximal matchings if and only if c ~ 1, and it converges to a uniform 

distG on such matchings if and only if c ~ 2. 

The fact that condition (2) is strictly weaker than the condition (3) 

implies that a proof of Theorem 1 based purely on the motivating discus­

sion we gave cannot be given. 

REFERENCES 
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CHAPTER V. 

PROBLEMS IN THE CRACKS 

Here we see the authors indulging themselves in a wider range of 

inquiry. Two of the problems. Ergodic Process Selection by T. Cover and 
Gambler's Ruin: A Random Walk on the Simplex by T. Cover, have 

been partially solved by Hajek (see Chapter VO. 

5.1 
5.2 
5.3 
5.4 

5.5 
5.6 
5.7 

5.8 

Contents 

Pick the Largest Number, by Thomas M. Cover 

Ergodic Process Selection, by Thomas M. Cover 

Finding the Oldest Person, by Pravin Varaiya ... .... .. ......... . . 

Gambler's Ruin: A Random Walk on the Simplex, 
by Thomas M. Cover ............................................................ . 

Linear Separability, by Thomas M. Cover ........ .................. . 

The Generic Rank of A2, by John N. Tsitsiklis .................. . 

The Stability of the Products of a Finite Set 
of Matrices. by John N. Tsitsi/dis .................. ..... ... .............. . 

Electrical Tomography, by EN. Gilbert and LA. Shepp ... . 

152 
153 
154 

155 
156 
158 

161 
164 

5.9 Figure-Ground Problem for Sound, by Thomas M. Cover .. 171 

5.10 The Entropy Power Inequality and the Brurm-
Minkowski Inequality, by Thomas M. Cover ............. .. ..... . 172 

5.11 The Weird and Wonderful Chemistry of 
Audioactive Decay. by J.H. Conway.................................. 173 
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5.1. PICK THE LARGEST NUMBER 

Thomas M. Cover 

Departmems of Electrical Engineering 
and Statistics 

Stanford University 
Stanford, CA 94305 

Player 1 writes down any two distinct numbers on separate slips of 

paper. Player 2 randomly chooses one of these slips of paper and looks at 
the number. Player 2 must decide whether the number in his hand is the 

larger of the two numbers. He can be right with probability one·half. It 

seems absurd that he can do better. 

We argue that Player 2 has a strategy by which he can correctly state 

whether or not the other number is larger or smaller than the number in 

his hand with probability strictly greater than one-half. 

Solution: The idea is to pick a random splilting number T according to a 
density fit) , f{t) > 0 • for t e (- 00, 00). If the number in hand is less 

than T, decide that it is the smaller; if greater than T, decide that it is 

the larger. 

Problem: Does this result generalize? Does it apply to the secretary prob­

lem? 
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5.2. ERGODIC PROCESS SELECTIONt 

Thomas M. Cover 

Depanmems of Electrical Engineering 
and Statistics 

Stanford University 
Stanford, CA 94305 

Let {(Xj , Y j ) Ji:\ be a jointly ergodic stationary stochastic process. 

Define a selection function On: Xn- I X yn- I ~ { D. t } • n = 1,2, .... 

We wish to maximize 

over all selection functions. Thus OJ chooses either Xj or Yj to add to 

the running average. 

It is intuitively clear that 

0, 
{

I, 
O. 

arb .• 

£{ Xj I Past > E{ Y, I Past } 

< 
= 

will maximize the above limit of the average return. The proof may be 

tricky. 

t See Hajek's solution to this problem under moment consuaints in Chapter VI. 
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5.3 FINDING THE OLDEST PERSON t 

Pravin Varaiya 

Oepanmenr of Electrical Engineering 
University of California 

Berkeley. CA 94720 

There are N people. Each person's age is independently and uni­
formly distributed over [0, 1] . You want to find who the oldest person 

is (not the person's age) wilh the minimum expected number of questions 

when the questions are structured as follows. 

You pick a number x(l) and ask, "Who is older than x(l)?" 

Depending on the response. you pick x(2) and ask, "Who is older than 

x(2) ?" Suppose at the end of K questions you determine who the oldest 

person is. Let K*: = min E K • where the minimum is over all policies 

x(I), x(2) , and so on. The value of K* can readily be determined via 

Dynamic Programming. (See. K. 1. Arrow, L. Pesolchinsky, and M. 
Sobel, "On Partitioning of a Sample with Binary-Type Questions in Lieu 

of Collection Observations," Stanford University. September 1978.) 

Suppose now we allow more general questions. You pick a subset 

A(1) of [0. 1] and ask "Whose age belongs to A(l) 1" Then you select 

A(2) and ask "Whose age belongs to A(2)?" Suppose you determine the 

oldest person after K questions. Let K# : min E K . 

Conjecture: K# = K . 

t See Chapter VI, Section 6.5 for solution. 
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5.4 GAMBLER'S RUIN: 
A RANDOM WALK ON THE SIMPLEX t 

Thomas M. Cover 

Depanments of Electrical Engineering 
and Statistics 

Stanford University 
Stanford, CA 94305 

It is known that if two gamblers with capitals p and 1 - p • respec­

tively, engage in a fair game (we can model it by Brownian motion on the 

unit interval start ing at p) until one of the gamblers goes broke. then the 

gambler with initial capita l p will win the game with probabiliry p. 

Now suppose that there are m gamblers with capitals corresponding to a 

point p in the simplex Pi ~ 0, L Pi = 1 . A random walk in the sim­

plex occurs , and the gamblers go broke one by one. Once a gambler goes 

broke, he stays broke. What is the induced probability distribution on the 

order in which the gamblers go broke? 

t Hajek has exhibited a solution to this problem for m '" 3 gamblers. See 
Chapter VI. 
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5.5 LINEAR SEPARABILITY 

Thomas M. Cover 

Departments of Electrical Engineering 
and Statistics 

Stanford University 
Stanford, CA 94305 

Let (Xi' 8 j ) . i = I , 2, ... , n , be i.i.d. random pairs, where {8;} 

is Bernoulli with parameter 1/2, and Xi - fa (X) , Xi E Rd. We say , 
{ (Xi.8j ) J7=1 is linearLy separable if there exits a vector W E Rd and a 

real number T such that 

, >T W Xj _ • 

< T. OJ = 0 • for i = 1, 2, ... , n . 

Let Pen, d, 10' !I) be the associated probability that {(Xi' 8 j ) )7=1 

is linearly separable. 

The following results are known. 

Theorem 1: Identical distributions [1,2]. 

P(n. d.t.t) = 2'"<"-') f [n i 1 J . 
,.0 

for any density fix) . 

Theorem 2: Distributions differing by translation [3]. 

Let hex) =/l(x + t v). Then Pen, d,jl.h) is monotonically 

increasing in t;:::: O. When t = 0, Pen, d, fl' h) = Pen. d. f. J). and 

P(n. d,J,. J,) ... 1 • as I ... ~ . 

·156· 



Theorem 3:. Distributions differing by scale (Krueger. unpublished). 

I 
Let h(x) = - II (ax). a > o. Then Pen. d. fl' h) is monotonically 

a 
nondecreasing in a, for a ~ 1 . 

All this seems to suggest that different densities lead to an increase in 

the probability of separability. Hence the following: 

Conjecture. 

( f f in-I ~ [n - I J 
P n, d, I' 2) ~ ( 2") j~ i • 

for all densities fl(x),h(x) . 
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5.6 THE GENERIC RANK OF A' 

John N. Tsitsiklis 

Laboratory for 
Information and Decision Systems 

M.LT. 
Cambridge. MA 02139 

We define a structured matrix A to be the set of all matrices (of a 

given dimension n x n) in which certain entries are constrained to be zero. 

W e then define the generic rank of A to be the maximum of the ranks of 
any A e A. It turns out that the generic rank of A may be computed 

easily. Form a bipartite graph G = (V, E) , where lhe set of vertices is 

v= [1 . 2 • ...• n; 1' •... • n' I . For any (i.j) E [I ..... nl'. the edge 

(i, l ) belongs to E if and only if the (jth entry of matrices in A is not 

constrained to be zero. Then, the generic rank of A equals the maximum 

number of edges in any bipartite matching of that graph. 

Suppose that we are given two structured matrices A, B of dimensions 

m x fl. n x m, respectively. We define the generic rank of A B as the 

maximum of the ranks of AB over all A E A, B E B. This problem is 

related to the problem of finding the "structurally" fixed modes of a con­

trolled linear system and has been studied under various guises [1-7] . It 

was shown in [2] that this problem is equivalent to a simple network flow 

problem and can therefore be solved in polynomial time, as follows. Con­

struct a graph for each one of the two structured matrices A, B, as in the 

previous paragraph, and join the two graphs by identifying the nodes 

corresponding to columns of A with the nodes corresponding to rows of B 

(see Figure I). Let each node in this graph have unit capacity. Then, the 

generic rank of A B is equal to the maximum flow that may be transferred 

through this graph. 

Suppose now that m = n and that A = B, so that the A and B matrices 

have to obey the same constraints. (Still, thi s does not require that 
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A = B .) If we impose the additional requirement that A = B, does the gen­

eric rank change? More formally, is it true that 

o 

max rank (AB) 
AeA 
BeB 

= max rank A2 ? 
AeA 

Figure 1. Example of the redirection to a network flow problem. 
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5.7 THE STABILITY OF THE PRODUCTS 
OF A FINITE SET OF MATRICES 

John N. Tsitsiklis 

Laboratory for 
Information and Decision Systems 

M.LT. 
Cambridge, MA 02139 

Let F = {At • ...• AN} be a set of n x n matrices. Given a sequence 

S = { Ai);"I' with A'b E F. we consider products of the form 
M 

BMS = n Ai . We are interested in questions of the following type: 
'=, • 

1. Is the set {BM.,s : M = 1,2, ... } bounded for all sequences S? (We 

will then say that F is stable.) Does BM,s converge to zero, as M --7 00 

for all S? 

2. What happens if we impose some restrictions on the set of allowed 

sequences S? 

3. What are some simple classes of matrices for which the answers to 

and 2 become simpler? 

Motivation. Such problems arise in at least two different contexts: 

(a) Lyapunov stability of time-varying linear systems [J ,2J. Given a sys­

tem of the form xU + 1) = A(t) x(t), suppose that it is known that 

ACt) E F, for each t, but that the exact value of A(t) is not a priori 

known, because of exogenous conditions or changes in the operating 

point of a nonlinear system. Questions 1-3 refer to the stability of 

such a system. 

(b) Asynchronous computation. A serial iterative algorithm may be visu­

alized as a process whereby a fixed sequence of operations is applied 
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to the initial data. Accordingly, in an "asynchronous" algorithm, a 
sequence of operations is again applied to the input data, except that 

the exact order at which different operations are applied is unknown 
and possibly chaotic. This leads naturally to the question whether the 
end result is asymptotically independent of the actual order. In this 

context, questions 1·3 are relevant to convergence conditions for asyn· 
chronous (and typically distributed) algorithms for the solution of 
linear equations or certain classes of optimization problems {3·5]. 

The main available result states that F is stable if and only if there 
exists a convex neighborhood V of the origin such that 
A, V c V, V A, E F [1 ,2]. 

We now pose some more specific questions. 

1. We restrict to sequences S such that each matrix AA; E F appears 

infinitely many times in that sequence. Are there any simple neces· 

sary and sufficient conditions (referring to the existence of convex 
neighborhoods with certain properties) for BMS to converge to zero 

as M --+ 00, for all such S? 

2. We may also pose the above question under a more stringent require· 
ment on the sequences S. Namely, we require that, for a given integer 
K, each matrix AA; E F appears at least once every K times in the 

sequence. 

3 . Assuming that some simple conditions have been found for problems 
1 and 2 above, are there any effective algorithmic tests for them? 

4. A class of algorithms has been suggested in [1,2] to lest whether there 

exists a convex neighborhood V such that AA; V C V, V AA; E F. 

However, these algorithms do not necessarily terminate in a finite 
number of steps (although they almost always do) . Is there a finite 
algorithm for this problem'! 

5. Suppose that we alter slightly the original problem to the following: 

Does there exist a rectangular V such that Ai V C V, V AA; E F? If 
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the orientation of the rectangle V is also fixed. this problem reduces to a 
simple linear programming problem. Is there a simple solution if the 

orientation of V is left free? 
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5.8 ELECTRICAL TOMOGRAPHY 

1. Introduction. 

E.N. Gilbert and L.A. Shepp 

AT&T Bell LaboralOries 
Murray Hill, NJ 07974 

Tomography deduces a physical function cr(P) (say a density), at 

points P inside a living organ, from measurements made on the outside. 

With suitable interpretation, cr(P) may reveal tumors or other abnonnali­

ties. In X-ray tomography. cr(P) is an attenuation coefficient. external 

measurements supply integrals 

a(L) = f cr(P) ds (I) 
L 

along straight line fays L through the organ, and the integral equation (1) 

is solved for cr(P) (see [1]). In another kind of tomography, using nuclear 

magnetic resonance measurements, a(P) is deduced from integrals over 

planes instead of lines (see [2]). 

Here we give a very preliminary feasibility study of electrical tomog­

raphy. Each measurement will pass a small current through the organ 

between two external electrodes; the voltage between another pair of elec­

trodes is then recorded. The function to be determined is the electrical 

conductivity a(P). If a(P) could be deduced easily from these measure­

ments , electrical tomography would have the advantages of simple measur­

ing equipment offering no health hazards. Unfortunately, there is still no 

simple solution to the problem of obtaining a(P) from the measurements. 

The difficulty in finding a(P) seems to be related to the fact that each 

measurement involves the whole organ, not just points on a line or plane. 

Without actually solving for cr(P) in general, one can still produce exam­

ples showing that certain large changes in cr(P) have only small effects on 

external measurements. Then, to give meaningful results, electrical tomog-
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raphy seems to require high-accuracy measurements. 

2. Measurements. 

The current density vector J (in amperes per square meter) is deriv­

able from a potential function u (in volts) by J = - 0' grad u, where u 

satisfies a partial differential equation 

div(a '1 u) = 0 . (2) 

If only one could measure u internally, (2) might be solved as a first-order 

partial differential equation for the unknown 0' = O'(P). The characteristics 

of this equation are precisely the current lines (having everywhere the 

direction of grad u). Along a current line, one finds 

d -Iogo=­
du 

/l.u 

IVul' . 
but even this only determines cr(P) within a constant of integration that 

can differ for different lines. Potentials for severa l diffe rent flow patterns 
will be needed before cr(P ) becomes well-detennined. Of course the real 

problem, with u available only externally, may require many more flows. 

A finite number of measurements, each using two current probes and 

two voltage probes, can use only a finite number n of probe locations. 

Viewed externally, the organ is an unknown electrical network with n 

accessible terminals. One may imagine these terminals interconnected by 

a discrete network N of unknown resistors. It is unreasonable to expect 

external measurements to determine the configuration, o r graph, of N. For 

example, with n = 3, ex ternal measurements cannot distinguish between Y 
and tl configurations (see [3]). Instead. one must assume N to have some 

convenient graph. say a lattice, and try to determine the resistance values. 

Simple examples of problems of this type are instructive. Suppose 

first that N contains resistors r 1 ••••• rn connected in a ring, with ri 

between terminals i and i + I. Suppose there are n measurements, the 

ith using terminals i and i + I for both the current probes and voltage 

probes. Each measurement then determines the res istance Pi seen across 

the terminals of r j • and one requires r1 •••• , rn satisfying 
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where 

1 1 1 - = - + -::-'-­
Pi rj R - rj 

(3) 

(4) 

One can solve (3) for rj, treating R as an unknown parameter to be 

determined from (4). Although each equation (3) has two rOOIS, only 

solutions with real positive rj are admissible. [1 turns out that only one 

of the 2n choices of roots produces a solution (see [4]). C. L. Mallows 

has also shown that (2. ] resistances rjj • arranged in a complete graph , are 

uniquely determined from the resistances P;j that can be measured exter­

nally. Of course, simple resistance measurements with point probes are 

not apt to be reliable in tomography because the measured resistances will 
depend on the probe pressure used. 

Care is needed to choose a graph such that external measurements 
determine unique resistances. For example, in Figure 1, N has 8 resis-

tors and n = 4 terminals. Since voltage probe pairs can have (;) = 6 

locations, and the current probes likewise, 36 measurements might seem 

ample to determine the resistances. However, the three sets of resistance 

values in Table 1 give like results in all 36 measurements. With n termi­

nals. there are only n - I independent ways of injecting current and only 
n - I independent voltage measurements. Further dependencies. that fol­

low from the reciprocity theorem, reduce the number of independent meas­

urements to (2]. Figure 1 should be replaced by a network with only 6 

resistors . 

The graph should also be chosen so that its resistances (or conduc­

tances) provide a discrete approximation of cr(P) in continuous tissue. The 
complete graph, for example, is inappropriate. Instead. resistors might be 

arranged in a cubic lattice . If the array fills a large cube, b resistors on 

each edge. there are n = 6b2 + 2 accessible terminals and only 

3b(b + 1)2 < (2) resistors. Since there are more possible independent 
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external measurements than resistors, there will be problems of either 

avoiding redundant measurements or using them deliberately to counteract 

measurement errors. 

3. Accuracy. 

It seems that electrical tomography will require extremely accurate 

measurements. This can be shown by a pair of examples having poten­

tials, u, u', differing only slightly externally, but which are solutions of (I) 

with radically different conductances cr(P), o'(P). In one such pair, the 

organ is taken as the unit sphere and current J is injected between north 

and south poles. For the first solution, cr(P) is taken to be a constant 00' 

For the second solution, a'(P) is the same constant 00 outside a smaller 

concentric sphere of radius a and o'(P) = OJ, another constant, inside the 

smaller sphere. Since equation (I) reduces to Laplace's equation in 

regions of constant o(P), the potentials u, u' can be found using spherical 

hannonics. On the unit sphere, the two potentials are found to differ by 

an amount given by a series, in which the most important contribution is a 

dipole tenn 

2noo(u' - u) 

1 
9(1 - 8) a3 cos e 

1 + 28 + 2(1 - 8) a3 
+ 0(a7). 

Here 0 = OJ I 00' 9 is the colatitude angle measured away from the north 

pole. and potentials have been made equal on the equator. In any meas­

urement, the two voltage readings can then differ by at most 

91 (1 - 8) a
3 

+ 0(a7). 

,tOo (I + 28 + 2(1 - 8) a3) 

If a is not large, this difference is unifonnly sOlall or order O(a3) whether 

the inner sphere represents a hole (0 = 0) or a lump of metal (0 = 00). 

Injecting current between electrodes not diametrically opposite produces 

even smaller differences in voltage readings. 

By contrast, in X-ray tomography, changing a(P) within a sphere of 

radius a has a bigger effect O(a) on some of the line integrals n(L) in (I). 
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Table 1. Resistance Values for Three Networks (Figure I), 
Indistinguishable by External Measurement 

Network 

Resistance 1 2 

a 54 ~ ~ 

b 54 54 45 

c 54 45 45 

d 54 54 ~ 

e 54 18 6 

f 54 18 30 

g 54 90 150 

h 54 90 30 
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a 2 

d b 

c 

Figure 1. A four-tenninal network. 
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5.9 FIGURE-GROUND PROBLEM FOR SOUND 

Thomas M. Cover 

Departments of Eleclrical Engineering 
and Statistics 

Stanford University 
Stanford, CA 94305 

The impossible tuning fork is a good example of a figure-ground opti­

cal illusion. Tracing the body of the tuning fork leads to the background. 

What is figure and what is ground? 

Another famous example is the face-vase illusion. Two mirror image 

blue faces lie against a red background. [ f one stares at the picture for 

awhile, one sees a red vase against a blue background. Attention flickers 

from one fo reground - background pair to its complement. 

Can we create the same sort of illusion for sound? Consider a rich 

lone against a background of silence. This tone goes off and on in such a 

manner that it is perceived by the ear-brain as a rh ythm, dah di da da, dah , 

dah .... Is it possible that the silence that lies between these bursts of 

sound also qualifies as a rhythm? Not the same rhythm, but one of 

equally compelling artistic merit? If so, we wish to give th is background 

si lence equal status by providing another ri ch tone for the silence. The 

whole waveform then is of roughly constant power. The " blue" tone 

predominates until, for some arbitrary reason, the ea r-brain focuses on the 

" red " tone. One of two interesting rhythms is perceived against a "con­

stant" backg~ound. This would consti tute an aura l figure-ground illusion. 

It remains to discover a rhythm the complement of which is also a 

rhythm and to choose the sounds appropriately. 

- 171-



5.10 THE ENTROPY POWER INEQUALITY 
AND THE BRUNN-MINKOWSKI INEQUALITY 

Thomas M. Cover 

Departmenls of Electrical Engineering 
and Statistics 

Stanford University 
Stanford, CA 94305 

The Brunn-Minkowski inequality states that the nth root of the 
volume of the set sum of two sets in Euclidean n-space is greater than or 

equal to the sum of the nth roots of the volumes of the individual sets. 
The entropy power inequality states that the effective variance of the sum 

of two independent random variables with densities in n-space is greater 

than or equal to the sums of their effective variances. Formally, the ine­

qualities can be seen to be similar. We are interested in determining 

whether this occurs by chance or whether there is a fundamental idea 

underlying both inequalities. 

Brunn-Minkowski: Let V (A) be the volume of A . If A, 8 ~ RII , 

then V(A + 8) :2 V(A' + 8 '), where A',8' are n-spheres such that 

V(A') = V(A) and V(8') = V(8) . 

Entropy Power: Let H (X) = - f f{x) ln j(x)dx, where f is the probabil­

ity density of X _ If X and Y are independent n -vectors with proba­

bility densities, then H(X + y) ~ H(X' + Y'). where X' and Y are 

independent spherical normal with H (X') = H(X) and H (Y') = H (Y) . 
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5.11 THE WEIRD AND WONDERFUL CHEMISTRY 
OF AUDIOACTIVE DECAY 

1. Introduction 

J. H. Conway 

Departmcm of Mathematics 
Princeton University 
Princeton, NJ 08544 

Suppose we start with a string of numbers (i.e., positive integers), say 

5 5 5 5 5. 

We might describe this in words in the usual way as "five fives," and 

write down the derived string 

55. 

This we describe as "two fives," so it yields the next derived string 

25 
which is "one two, one five," giving 

1 2 1 5 

namely, "one one, one two , one one, one five," or 

111 2 1115 

and so on. What happens when an arbitrary string of positive integers is 

repeatedly derived like this? 

I note that more usually one is given a sequence such as 

55555; 55 ; 25; 1215; 11121115 ; 

and asked to guess the generating rule or the next te rm. 

The numbers in our strings are usually sing le-digit ones, so we' ll call 

them digits and usually cram them together as we have just done. But 

occas ionally we want to indicate the way the number in the string was 
obtained, and we can do this neatly by inserting commas recalling the 

commas and quotes in our verbal descriptions, thus: 
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55555 

,55, 
,25, 

,I 2,1 5, 

,1 1,12,1 1,15, 

The insertions of these commas into a string or portion thereof is called 

parsing. 

We'll often denote repetitions by indices in the usual way, so that the 

derivation rule is 

When we do this. it is always to be understood that the repetitions are 

collected maximally. so that we must have 

a -::F- b, b ;t:. c, C ':# d , ... 

Since what we write down is often only a chunk of the entire string 

(i.e .• a consecutive subsequence of its terms), we often use the square 

brackets "[" or ")" to indicate that the apparent left or right end really is 

the end. We also introduce the formal digits 

O. as an index, to give an alternative way of indicating the ends (see 

below) 

X for an arbitrary nonzero digit, and 

;#. n for any digit (maybe 0 ) other than n. 

Thus x<> ao. IP c'l 

aU b~ c1 x" 
aU b~ c1 X'" 

and ao. b~ cY(:;t2);t{l 

means the same as [ an b~ c y 

means the same as an b~ c'Y] 

means aQ b~ cY followed by at least another digit, 

means that this digit is not a 2. 

I'm afraid that this heap of conventions makes it quite hard to check 

the proofs, since they cover many more cases than one naively expects. 

To separate these cases would make this article very long and tedious, and 

the reader who really wants to check all the details is advised first to 
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spend some time practicing the derivation process. Note that when we 
write L -+ L' -+ L" -+ ... we mean just that every string of type L 

derives to one of type L', every string of type L' derives to one of type 

L" , and so on. So when in our proof of the Ending Theorem we have 

(n$2) 
nn] -+ n*n] -) n'] 

the fact that the left arrow is asserted only when n =F- 2 does not excuse 
us from checking the right arrow for n = 2. (But, since n > 1 is 

enforced at that stage in the proof, we needn't check either of them for 

n = I. ) 
By applying the derivation process n times to a string L, we obtain 

what we call its nth descendant, Ln. The string itself is counted among 

its descendants, as the Oth. 

Sometimes a string factors as the product LR of two strings Land 

R whose descendants never interfere with each other. in the sense that 

(LR)n = LnRn for an n. In this case, we say the LR splits as L.R (dots 

in strings will always have this meaning). It is plain that this happens just 

when (L or R is empty or) the last digit of Ln always differs from the 

first one of Rn. Can you find a simple criterion for this to happen? 

(When you give up, you'll find the answer in our Splitting Theorem.) 

Obviously. we call a string with no nontrival splittings an atom, or 

element. Then every string is the split product, or compound, of a certain 

number of elements. which we call the elements it involves. There are 

infinitely many distinct elements. but most of them only arise from spe­

cially chosen starting strings. However. there are some very interesting 

elements that are involved in the descendants of every string except the 

boring ones [ ] and [22]. Can you guess how many of these common ele­

ments there are? (Hint: we have given them the names Hydrogen, Helium, 

Lithium, ...• Uranium.) 

It's also true (but ASTONISHINGLY hard to prove) that every string 

eventually decays into a compound of these elements. together with 

perhaps a few others (namely. isotopes of Plutonium and Neptunium. as 
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defined below). Moreover, all st rings except the two boring ones increase 
in length exponentially at the same constant rate. (This rate is roughly 
1.30357726903: it can be precisely defined as the largest root of a certain 
algebraic equation of degree 71.) Also, the relative abundances of the ete· 
ments settle down to fixed numbers (zero for Neptunium and Plutonium). 

Thus, of every million atoms about 91790 on average will be of Hydro· 
gen, the commonest element, while about 27 will be of Arsenic, the rarest 
one. 

You should get to know the common elements, as enumerated in our 
Periodic Table. The abundance (in atoms per million) is given first, fol· 

lowed by the atomic number and symbol as in ordinary chemistry. The 
actual digit-string defining the element is the numerical part of the 
remainder of the entry, which, when read in full, gives the derivate of the 
element of next highest atomic number. split into atoms. Thus, for exam· 
pie, the last line of the Periodic Table tells us that Hydrogen (H) is our 
name for the digit·string 22, and that the next higher element, Helium 
(He), derives to the compound 

Hf.Pa.H.Ca.Li 
which we might call 

"Hafnium·Protactinium·Hydrogen·Calcium·Lithide"! 

Not everything is in the Periodic Table! For instance, the single digit 

string "1" isn't. But watch: 

I 
II 
21 
1211 
111221 
312211 
13112221 
11132.13211 = Hf.Sn 

after a few moves it has become Hafnium Stann ide! This is an instance of 
our Cosmological Theorem, which asserts that the exotic elements (such as 
"1 ") all disappear soon after the Big Bang. 
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The Periodic Table (Uranium 10 Silver) 

abundance n En En inside the derivate of En+ 1 

102.56285249 92 U 3 
9883.5986392 91 Pa 13 
7581.9047125 90 Th 1113 
6926.9352045 89 Ac 3113 
5313.7894999 88 Ra 132113 
4076.3 134078 87 F, 111 3122113 
3 127.0209328 86 Rn 3 11 311222113 
2398.7998311 85 At Ho.13221 13 
1840. 1669683 84 Po 1113222113 
1411.6286100 83 Bi 3113322 113 
1082.8883285 82 Pb Pm.123222113 
830.70513293 81 Tl 111213322113 
637.25039755 80 Hg 31121123222113 
488.84742982 79 Au 13211221 121 33221 13 
375.00456738 78 Pt 111312212221121123222113 
287.67344775 77 I, 3 \1311 22 11 3221122112 133221 13 
220.68001229 76 Os 132 11 321222 11 322212221121123222 11 3 
169.28801808 75 Re 11 1312211312113221133211322112211213322113 
315.56655252 74 W Ge.Ca.31221 132221222 1 121123222 113 
242.07736666 73 Ta 13112221133211322112211213322113 
2669.0970363 72 Hf 11132.Pa.H.Ca.W 
2047.5173200 71 Lu 311312 
1570.6911808 70 Vb 1321131112 
1204.908384 1 69 Tm 11131221133112 
1098.5955997 68 '" 311311222.Ca.Co 
47987.529438 67 Ho 1321 1 32.Pm 
36812.186418 66 Dy 111312211312 
28239.358949 65 Th 3113112221131112 
21662.972821 64 Gd Ho.l3221133112 
20085.668709 63 Eu 1113222.Ca.Co. 
15408.115182 62 Sm 311332 
29820.456167 61 Pm 132.Ca.Zn 
22875.863883 60 Nd 111312 
17548.529287 59 Pt- 31131 112 
13461.825166 58 Ce 1321133112 
10326.833312 57 La 11131.H.Ca.Co 
7921.9188284 56 Ba 311311 
6077.0611889 55 Cs 132 11 321 
4661 .8342720 54 Xe 111 31221131211 
3576.1856107 53 I 31131122211311 1221 
2743.3629718 52 Te Ho. 1322 11 33 122 11 
2104.488 1933 51 Sb Eu.Ca.3 112221 
1614.3946687 50 Sn Pm.13211 
1238.434 1972 49 In 1113 1221 
950.02745646 48 Cd 31131 12211 
728.78492056 47 Ag 132113212221 
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The Periodic Table (Palladium to Hydrogen) 

abundance n En En inside the derivate of En+1 

559.06537946 46 Pd 111312211312113211 
428.87015041 45 Rh 311311222113111221131221 
328.99480576 44 R, Ho.132211331222113112211 
386.07704943 43 To Eu.Ca.31 13221 13212221 
296.16736852 42 Mo 13211322211312113211 
227.19586752 41 Nb 1113122113322113111221131221 
174.28645997 40 U Er.12322211331222113112211 
133.69860315 39 Y 1112133.H.Ca.Tc 
102.56285249 38 S, 3112112.U 
78.678000089 37 Rb 1321122112 
60.355455682 36 '" 11131221222112 
46.299868152 35 B, 3113112211322112 
35.517547944 34 Se 13211321222113222112 
27.246216076 33 As 11131221131211322113322112 
1887.4372276 32 Ge 31 131 1222 113 1 1122113222.Na 
1447.8905642 31 Ga Ho.1322113312221 1332 
23571.391336 30 Zn Eu.Ca.Ac.H.Ca.312 
18082.082203 29 C, 131112 
13871.124200 28 N; 11133112 
45645.877256 27 Co Zn.321l2 
35015.858546 26 Fe 13122112 
26861.360180 25 Mn 111311222112 
20605.882611 24 0 31132.Si 
15807.181592 23 V 13211312 
12126.002783 22 T; 11131221131112 
9302.0974443 21 So 3113112221133112 
56072.543129 20 Ca Ho.Pa.H.12.Co 
43014.360913 19 K 1112 
32997.170122 18 M 3112 
25312.784218 17 CI 132112 
19417.939250 16 S 1113122112 
14895.886658 15 P 311311222112 
32032.812960 14 S; HO.1322112 
24573.006696 13 Al 1113222112 
18850.441228 12 Mg 3113322112 
14481.448773 11 Na Pm.1232221 12 
11109.006821 10 Ne IIl213322112 
8521.9396539 9 F 31121123222112 
6537.3490750 8 0 132112211213322112 
5014.9302464 7 N 111312212221121123222112 
3847 .0525419 6 C 3113112211322112211213322112 
2951.1503716 5 B 1321132122211322212221121}23222112 
2263.8860325 4 Be 111312211312113221133211322112211213322112 
4220.0665982 3 Li Ge.Ca.312211322212221121123222112 
3237.2968588 2 He 13112221133211322112211213322112 
91790.383216 I H Hf.Pa.22.Ca.Li 
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2. The Theory 

We start with some easy theorems that restrict the possible strings 
after the first few moves. Any chunk of a string that has lasted at least n 

moves will be called an n-day-old string. 

The One-Day Theorem. Chunks of types 

,a x, b x, x4 or more and x3 y3 

don't happen in day-old strings. (Note that the first one has a given pars­
ing.) 

Proof. The first possibility comes from ,tljJ, which, however, should 
have been written ,tl+b, in the previous day's string. The other two, 

whichever way they are parsed, imply cases of the first. 

The Two-Day Theorem. No digit 4 or more can be born on or after the 
second day. Also, a chunk 3 x 3 (in particular 33 ) can't appear in any 

2-day-old list. 

Proof. The first possibility comes from a chunk: x4 or more, while the 

second, which we now know must parse ,3x,3y, can only come from a 
chunk .Jy3 , of the previous day's string. 

When tracking particular strings later, we'll use these facts without 

explicit mention. 

The Starting Theorem. Let R be any chunk of a 2-day-old string, con­
sidered as a string in its own right. Then the starts of its descendants ulti­
mately cycle in one of the ways 

[I'X' --> [13 --> [3'X"3 
h ,/ 

U or 

or e or [2' ]'X' --> [2' ]3 --> [2'3'X"3 
.... ./ 

If R is not already in such a cycle, at least three distinct digits 
appear as initial digits of its descendants. 
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Proof. If R is nonempty and doesn't start with 22, then it either starts 

wilh a 1 and is of one of the types 

[lI,xOorl or [11(220t30r32) or (1 2X1or ""l or [1 3 

or starts with a 2 and is of one of the types (21X2 or ",,2 or (23 

or starts with a 3 and is of one of the types [3 1X3 or ",,3 or [32X3 or ",,3 

or starts with some n > 3 and has form [nl , 

It is therefore visible in 

which establishes the desired results for it, 

This proves the theorem except for strings of type [22R' all of whose 

descendants start with 22, This happens only if no descendant of R' starts 
with a 2, and so we can complete the proof by applying the results we've 

just found to R', 

T he Splitting T heorem. A 2-day-old string LR splits as L.R just if one 

of L and R is empty or Land R are of the types shown in one of 

L R 

n] [m 

2] [I IXI or (1 3 or [3 1X"3 or [nl 

,,2] [22 11XI or [2213 or [223 ir 3 or [22n(O or 1) 

(n ~ 4 , m '; 3) 

Proof. This follows immediately from the Starting Theorem applied to 

R and the obvious fact that the last digit of L is constant. 
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Now we investigate the evolution of the end of the string! 

The Ending Theorem. The end of a string ultimately cycles in one of 

the ways: 

2.311322113212221]-->2.13211322211312113211] 
t ~ 

2.12322211331222113112211]<-2.1113122113322113111221131221] 

2.31221 1322212221 121 1232221 In] 
t ~ (n > I) 

2.131 1222113321 13221 1221 121 33221 In] 

or t;;l 
(Note: our splitting theorem shows that these strings actually do split at 

the dots, although we don't use thi s.) 

Proof. A string with last digit 1 must end in one of the ways visible in 

and its subsequent evolution is followed on the right-hand side of Fig­

ure 1. 

A string with last digit n > I must end nfl] or notn ] and so evolves 

vIa 

(n '" 2) 

W (n ot 2) 
---+ notn J -) nl) ---+ I n) -) lIn] -) (:;t:l) llnJ ---+ 211n] ---+ 2211n] 

and the last string here is the first or second on the left of Figure 1. 
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(~2)221InJ (n> I) (;t2)2221 J 

(~2)222 1InJ 

32211nJ 
3222 11nJ 

(~3)332211nJ 

2322211n] 

2133221 1nJ 

321 1J 

31221 1 
3 11 221 1] 
321222 1] 

3121132111 
3111221131221] 

21 1232221 InJ 
22 11213322 ll nJ 

22112112322211nl 
221 122 11 2133221 l nJ 
221222 11 21 1232221 In] 

(~3)33 1 2221 1 31 122111 

2.311322113212221] (period 4) 

2.13211322211312113211] 
2.11131221 133221131 11 221 131221J 
2.311311222.12322211331222113112211] 

2 11 32211221 121332211n] 2. 11 12133.22.12.311322113212221 ) ~-----
22 1 132221222112112322211n] 
22113321132211221121332211n] 
22.12.312211322212221121 12322211nJ 
2.131 1222113321132211221 121 33221 In] ~ (period 2) 

2.11132.13.22.12.31221132221222112112322211 n] ) 

Figure 1. The evolution of endings other than 22]. 

lbis figure proves the theorem except for the trivial case 22]. (When 

any of these strings contains a dot. its subsequent development is only fol­

lowed from the digit just prior to the rightmost dot.) 

We are now ready for our first major result. 

The Chemical Theorem. 

(a) The descendants of any of the 92 elements in our Periodic Table are 

compounds of those elements. 

(b) All sufficiently late descendants of any of these elements other than 

Hydrogen involve all 92 elements simuhaneously. 

(c) The descendants of any string other than [ ] or [22] also ultimately 

involve all 92 elements simultaneously. 

(d) These 92 elemenls are precisely the common elements as defined in 

the introduction. 
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Proof. 

(a) follows instantly from the fonn in which we have presented the 

Periodic Table. 

(b) It also follows that if the element En of atomic number n appears at 

some time t, then for any m < n , all elements on the Em line of the 

table will appear at the later time I + n - m. In particular, 

En at I ~ Hf & Li at I + n - 1 (if n;?: 2) , 

Hf & Li at I ~ Hf & Li at t + 2 and t + 71 , 

Hf at I ~ Sr & U at t + 72 - 38 , 

U at t-+En at 1+92-n. 

From these we successively deduce that if any of these 92 ele­
ments other than Hydrogen is involved at some time 10' Hafnium and 

Lithium will simultaneously be involved at some strictly later time 

~ to + 100, and then both will exist at all times ~ to + 200 , 

Uranium at all times ;?: to + 300 , and every other one of these 92 

elements at all times ;?: to + 400 . 

In other words, once you can fool some of the elements into 
appearing some of the time, then soon you'll fool some of them all of 
the time, and ultimately you'll be fooling all of the elements all of the 

time! 

(c) If L is not of fonn L'22 ], this now follows from the observation that 
Calcium (digit-string 12) is a descendant of L, since it appears in 
both the bottom lines of Figure 1. Otherwise we can replace L by 
L', which does not end in a 2. 

(d) follows from (a), (b), (c) and the definition of the common elements. 

Now we'll call an arbitrary string common just if it is a compound of 
common atoms. 
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The Arithmetical Theorem. 

(a) The lengths of all common strings other than boring old ( ] and (221 

increase exponentially at the same rate A- > I . 

(b) The relative abundances of the elements in such st rings tend to certain 

fixed values, all strictly positive. 

Notes. Since each common element has at least 1 and at most 42 digits 
we can afford to measure the lengths by either digits or atoms: we prefer 
to use atoms. The numerical value of A- is 1.30357726903; the abun· 

dances are tabulated in the Periodic Table. 

Proof. Let v be the 92·component vector whose (i)·entry is the number 
of atoms of atomic number i in some such string. Then at each deriva· 
tion step, v is multiplied by the matrix M whose (i, ))·entry is the number 
of times Ej is involved in the derivate of Ej . Now our Chemical 

Theorem shows that some power of M has strictly positive (i, )} .. entries for 

all i,* 1 (the (1, ))·entry will be 0 for j '* 1, 1 for j = 1 , since every 
descendant of a single atom of Hydrogen is another such). 

Let A- be an eigenvalue of M with the largest poss ible modulus, and 
Vo a corresponding eigenvector.. Then the nonzero entries of Vo Mn are 

proportional to A-n, while the entries in the successive images of aU other 
vectors grow at most this rate. Since the 92 coordinate vectors (which 
we'll call H, He t ...... U in the obvious way) span the space, at least 

one of them must increase at rate A-

On the other hand, our Chemical Theorem shows that the descendants 
of each of He, Lit ..... ,U increase as fast as any of them, and that this 
is at some rate > 1 ,while H is a fixed vector (rate 1).. These remarks 

establish our Theorem. 

(We have essentially proved the Frobenius-Perron Theorem, that the 
dominant eigenvalue of a matrix with positive entries is positive and 

occurs just once, but I didn't want to frighten you with those long names .. ) 
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The Transuranic Elements. 

For each number n ~ 4 , we define two particular atoms: 

an isotope of Plutonium (Pu) : 312211 3222122211211 23222 11n 

an isotope of Neptunium (Np): 1311222 11 332 11 32211 2211 213322 11 n 

For n = 2, these would be Lithium (li) and Helium (He); for 

n = 3 , they would be Tungsten (W) and Tantalum (Ta), while for n ~ 4 

they are called the transuranic elements. We won'1 bother to specify the 
number n in our notation. 

We can enlarge our 92-dimensional vector space by adding any 

number of new pairs of coordinate vectors Pu, Np corresponding to pairs 

of transuranic elements. 

Our proof of the Ending Theorem shows that every digit 4 or more 

ultimately lands up as the last digit in one of the appropriate pair of tran­

suranic elements, and (see the bottom left of Figure I) that we have the 

decomposition 

Pu -t Np -t Hf.Pa.H.Ca.Pu. 

Now Pu ± Np is an eigenvector of eigenvalue ± l modulo the sub­

space corresponding to the common elements, since Pu -tE- Np modulo 

that space. Because these eigenvalues are strictly less than A in modulus, 
the relative abundances of the transuranic elements tend to O. 

So far, I can proudly say that this magnificent theory is essentially all 

my own work. However, the next theorem, the finest achievement so far 

in Audioac live Chemistry, is the result of the combined labors of three 

brilliant investigators. 

The Cosmological Theorem. 

Any string decays into a compound of common and transuranic e le­

ments after a bounded number of derivation steps. As a consequence, 

every string other than the two boring ones increases at the magic rate At 
and the relative abundances of the atoms in its descendants approach the 

values we have already described. 
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Proof of the Cosmological 'l11eorem would fill the rest of this book! 

Richard Parker and I found a proof over a period of about a month of 

very intensive work (or, rather, play!). We first produced a very subtle 

and complicated argument, which (almost) reduced the problem to tracking 

a few hundred cases, and then handled these on dozens of sheets of paper 

(now lost). Mike Guy found a simpler proof that used tracking and back­

tracking in roughly equal proportions. Guy's proof still filled lots of pages 

(a lmost all lost) bu t had the advantage that it found the longest-l ived of 

the exotic elements, namely. the isotopes of Methuselum (22333222 1 In ; 

see Figure 2). Can you find a proof in only a few pages? Please! 

2233322211" (n > I) 
22333221 In 
2233222 1 In 
22233221 In 
32232221 In 
1322133221 I n 
1113221 1232221 In 
31 13222 1 12133221 In 
1321 133221 121 1232221 In 
La.H.1232221 122 112133221 In 
111 21332212221121 123222 1 In 
Sr.322 11 3221 122 11 213322 11 n 
132221 13222122211211232221 In 
111 332211332 11 32211221121 332211n 
3123222.Ca.(Li or W or Pu) 
1311121332 
11 133 11 2112.Zn 
Zn.321122112 
131221222112 
11 13 11 22 11322 112 
3113212221132221 12 
1321 131211322113322112 
111 3122 11 31 11 22 11 322.Na 
311 3 11 2221133 1222 11 332 
Ho.Pa.H.Ca.Ac.H.Ca.Zn 

Figure 2. The descendants of Methuselum. 
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The Degree of A.. 

Plainly. A. is an algebraic number of degree at most 92. We first 

reduce this bound to 71 by ex.hibiting a 21-dimensional invari<!-nt subspace 

on which the eigenvalues of Mare 0 or ±l. 

vI = H. Vz = He - Ta, Y3 = Li - W, ... , vzo = Ca - Pa , 

o r, in atomic number notation, 

VI = E I, v, = E, - E73• v, = E, - E,4' ' , , . v,o = E,o - Eol 

and also define 

V'I = { Sc + Sm - H - Ni - Er - 3U )/2 • 

then observe that 

An altemate base for this space consists of the eigenvectors 

vI and v3 ± Vz 

of M with the respective eigenvalues 

1 and ± I 

together with the following Jordan block of size 18 for the eigenvalue 0 

YZI - vI9 ~ vzo - vI S --+ Vs - v3 --+ v4 - Vz ~ o. 
(This shows that M is one of those "infinitely rare" matrices that cannot 

be diagonalized. Don't expect to follow these remarks unless you've 

understood more of linear algebra than I fea r most of you r co lleagues 

have! ) 

Richard Parker and I have recently proved that the residua l 71 st 

degree equation for A. is irreducible, even when it is read modulo 5. We 

use the fact that the numbers in a finite field of orde r q all satisfy XI = x 
(s ince the nonzero ones form a group of order q - I , and so satisfy 
x"-I = I ) , 

Working always modulo 5, we used a computer to evaluate the 

sequence of matrices. 
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Mo = M, M\ = M g, M 2 = M~' M 3 = M~ . ...• Mn = M~2' 

and to ve rify that the nullity (modulo 5) of Mn+2 - M2 was 21 for 

1 :5 n :5 70 , but 92 for n = 71. Note that the 2 1 vectors of the above 
"alternate base" are eigenvectors of M2 whose eigenvalues (modulo 5 ) lie 

in the fie ld of order 5. 

If the 71st degree equation were reducible modulo 5, then M 2 would 

have an eigenvector linearly independent of these with eigenvalue lying in 

some extension field of order q = 5n (1 :5: n S 70). But then the eigeo· 
va lues q, of these 22 eigenvectors would all salify q,q == 41 , and the 22 

eigenvectors would be nullveclors for 

( M 2)q - M2 = Mn+2 - M 2. 

contradicting our computer calculations. 

It is rather nice that we were able to do this without being able to 
write down the polynomial However, Professor Oliver Atkin of Chicago 
has since kindly calculated the polynomial explicitly and has also 
evaluated its largest root A as 

1.3035772690342963912570991121525498 

approximately. The polynomial is 

- x'" -..'. + 2.." + 5.." + 3..'· - 2.." - lOx'" - 3.." - 2..'2 + W ' 
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CHAPTER VI. 

SOLUTIONS TO SIX OF THE PROBLEMS 

Here we have some results. The idea at the conference was to present 
problems the first day, solve them the second day, and present the solu­

tions on the third day. Good luck! Although the authors did not have 

their egos tied up in giving hard problems, it is still clear that open prob­

lems take more than a half a day or so to solve. Only one problem was 

actually solved at the conference. That was EI Gamal's - problem solved 
by Gallager .- an interesting new problem and a very nice solution. 

Boyd and Hajela have contributed to Wyner's problem. The 

Gambler's Ruin on the Simplex by T. Cover was solved by Bruce Hajek 

for three dimensions. The solution does not seem to generalize but we are 

very happy with the teclmiques anyway. Finally. the ergodic process 

selection problem of T. Cover was successfully handled by Bruce Hajek 

under moment constraints . Cover still believes that the conjecture is gen­

erally true, but at this time we do not know whether the moment con­

straints can be removed. 

So here we have it. Some of the problems of this book can actually 

be solved. It is conceivable that some people might use the problems in 

this book as a source of research inquiries. For that reason, the editors 

will act as a clearing house on papers published on the subject of this 

book, so potential researchers can inquire about the status of these prob­

lems. 

Contents 

6.] On the Spectral Density of Some Stochastic 
Processes, by S. Boyd and D.J. Hajela ... ............................. ]9] 

6.2 Ergodic Process Selection, by Bruce Hajek ......................... 199 

6.3 Gambler's Ruin: A Random Walk on the Simplex, 
by Bruce Hajek ....................... ............................................... 204 

-189-



6.4 Finding Parity in a Broadcast Network, 
by R.G. Gallager ......................... ........ ............ ...................... 208 

6.5 An Optimal Strategy for a Conflict Resolution 
Problem, by V. Anantharam and P. Varaiya ................. ..... . 210 

6.6 Coordination Complexity and lhe Rank of 
Boolean Functions, by B. Gopinath and V.K. Wei .............. 217 
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6.1 ON THE SPECTRAL DENSITY 
OF SOME STOCHASTIC PROCESSES 

s. Boyd 

Department of Electrical Engineering 
Stanford University 
Stanford. CA 94305 

D.]. Hajela 

Bell Communications Research 
Morristown, NJ 07960 

1. Introduction. 

We prove the following theorem, which was motivated by a question 
that Wyner raised in [I] . 

Theorem: Given any £ > 0 and A > O. there is a complex stationary sto­
chastic process X(/, w) which satisfies: 

(i) I x(t, w) I ,; A a.s. 

(ii) II Sin - SAl/) III ,; E , 

where SiJ) = J e-21ti/t E X(/) X(I + t") d't is the spectral density of x 
and 

If I ,; I 

If I > I 

is the boxcar spectral density with bandwidth 1 and total power A2, 
In fact, we have (ii) from the following stronger set of conclusions: 

(iii) Si/) 2: 0 and Sx is even. 

(iv) 

(v) 

- I 
f Sxl/) df < E and I f Sxl/) - A21 < E . 
I -I 

I max Sxl/) - A2/21 < E • 
IflS I 
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Thus x is a process with nearly boxcar spectrum which is not only power 

limited to A2 but is amplitude limi ted to A (a stri cter constraint). More­

over, the process we construct is ergodic. Aaron Wyner has pointed out 

to us that there are quite simple constructions of processes satisfying (i) 

and (ii ) above, but they are not ergodic. The construction of our process 

is more delicate and thus the verification of the properties of the process is 

at least as interesting as the properties themselves. 

We also have the following corollary whose proof is immediate: 

Corollary: The process x above satisfies: 

1 A2 
f log (I + Sx (f) df? 2 log(l + - ) - E 

_I 2 

1 

= flog (1+ BA(f) df - E. 
-I 

2. Proof of Ihe Theorem. 

We now prove the theorem. 

Proof. 10 [2], p. 321, J.P. Kahane demonstrates that there are polynomi­
als, 

• 
P n(z) = ~ amn zn, I amn I = 1 • 

= 1 

and En ~ 0 such that 

II P.(e'9) II.. ,; ( I + E.)..r,; . 

In fact, he even proves a stronger result, but we shall not need this. Let 

A e-2n j tiN P (e2n j tIN) . 
..J2N+l 2N+ l 

Un is a N periodic signal with power A2 and peak 

II u. 11_ :5 (I + E.) A . 
Let 
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utl-t, 0» = UN(t + 9(0))) , 

where 8(00) is uniformly distributed on [0, NJ. UN is a complex sta­

tionary stochastic process such that 

and with spectral measure 

These spectral measures approximate the boxcar spectrum in distribution 

but we want a stronger approximation of the densi ties. 

To do this. we modulate the process UN as follows: Let ZN,a be ran­

dom telegraph process with rate aJ2rrN • independent of UN ' where 

a> 1. Then, 

I ZN,a I = 1 a.s. 
and 

Sz if) = 
N .• 

Let 

Then 

and 

2N A' -- L 
2N+1 21t Inl:SN 

u 

The theorem now follows at once from the lemmas below by choosing N 

and a large enough. (See Lemma F in particular.) 0 

Lemma A: For fi xed a > 1 , 
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Proof. 

Now 

and so 

_ _ I A'I lim II Sx - BA III 54 lim max 1 Sx 1- -
N.....y.x. N,t}.. N-+oo f e [-1.11 N,n 2 

Note that Sx if) is an even function. We show first that 
N .• 

f Sx If) df -> 0 . 
1 H,I>. 

I 
df= ­

N 

by Cesaro convergence. Therefore, 

f SxN .• lf)df -> 0 . 
I 

Similarly, since Sx (j) is even, 
N .• 

-
Also, by a similar calculation, 

-
Now 

I I A'I - -I II SXN .• - BA Ih = f SxN .• - 2" df + f SxN .• If)df + f SxN .• lf)df 
-I 1 ___ 

and so 

_ _ II A'I lim II Sx - B A Ih 5 lim f Sx a - - df· 
~ ~ 2 

-I 
Now 
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f., SXH .• - ~2 diS III SXH .• II_ - ~21).. [/ 11/1 S I , SxH .• ;, ~2) 
Sx ~­.. 2 

,; 2111 Sx II.. - £ I, 
H. 2 

where II Sx 11_ = max I Sx I. Moreover, 
N,a. Ie [-1, 11 H,a. 

[ 
A2 ] I f - -Sx dl=A 2-f Sx dl+ f 

1 2 N,a N,a. 2 
A -I A 

rsx~ S-2 I" (- 1.11 Sx > -

[ SX - A2]dl . 
H,u. 2 

~.. 1'/0 2 

Therefore. - _I A21 lim II Sx - BN Ih S 4 lim II Sx 11_ - - . 0 
N.a. N,a. 2 

Lemma B: 

max fix). 
x e [-1.1] 

Let fix) = ~ 
In[ S N 

Then max fix) = 
x e I-N.N) 

Proof. Since fix) is even, it suffices to show max f(x) = max j(x). 
x e (O,NJ x e (0.11 

Fix yE [0,1] and let s,=I(y+k) for k=O,1. ... ,N - I . We 

show So ~ s , ;?: s2 ;?: ... 2: sN_I' This clearly suffices to finish the 

proof. Now 

k+N ex k+I+N ex 
= L ---"'------,,- - ~ 

j=k-N ex + (y + Ji j=k+ l (X2 + (y + ))2 

= -:;-_~a_----:;­
a 2 + (y + k - N)2 

-195-

a 2 +(y+k+ I +N)2 
;, O. 0 



Lemma C: Let eN be a square with vertices at (N + ~)(1 + i) , 

(N+ ~)(-I +i), (N+ ~)(-I-i), and (N+ ~)(I -i). Let g(,) be 

a function with poles at z = PI' ... ,Pk (and assume N is large enough 

so the eN contains all these poles within its interior). Suppose that 

I g(,) I = 0 [-l,] on eN' Then 
1'1 

f. g(n) = [- f. Residue (1t cot "'g(') at pj)] + 0(_1 ) 
~N j=1 N 

This is a standard fact from the theory of residues. 

Lemma D: For a, h, c, d E R with a -:j:. 0 we have. 

N d nd 
~ ---"'-;;---:;- = --2 (cot w - col W) 

n=-N (an + b)2 + c? 2j~ 

where w = 1t( -Ai - J..l) and A = E., J..l = ..E.... Lemma D follows at once 
a a 

from Lemma C after calculating residues and elementary algebra. 

Lemma E: 

Proof. 

max I Sx I 
Ie [-1,1) N,fJ 

= 
2N A 2 sec2 1tX coth 1tCX I 
-- - max -~'---'7-~!!..!!~- + O( N ) . 

(1 + EN)2 2N+l 2 x e (0,11 + coth2 1tCX 1302 1tX 

II Sx IL = max I Sx I 
N,a Ie [-J,1j N ,a 

= max Sx (since Sx is even and positive) 
I e [-I,ll N,n N,n 

a 

a' + (N! - II)' 
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where 

2N A' 
max fix), 

(1 + EN)2 2N + I 21t x t: [O,NI 

a By Lemma B. max f(x):::: j(x) = L 
X E [O,N) I n I S N 

max f(x). Setting d:::: at a :::: I , c:::: a , and b:::: -x in Lemma D 
XE [0,11 

gives that 

f(x):::: ;i (cot 1t (x - in) - cot 7t (x + ia» + O( ~) 

:::: rt( sec2 
7tX coth nu ) 

1 + coth2 1t a ta02 1U 

The resu lt now clearly follows. 0 

Lemma F: lim lim II Sx - BA III :::: 0 . 
O;~- N---+<- N.n 

Proof. For fixed a > I , 

_I A' I II Sx - BA lit ~ 4 lim max 1 Sx 1- -
N,D. N--+- f E (-1. 1] H,ts. 2 

by Lemma A. By Lemma E, 

_I A2 A2 
lim max 1 Sx 1 - - 1 = - 1 max 

N-+- IE [-l,l) N,n 2 2 XE [0.11 

sec2 1tX coth 1[0. 

Since sec2 
7tX :::: 1 + tan2 1tX and lim coth 7ta :::: I • we have 

a_ 

lim I max 
(1-4_ x E [0,1) 

sec
2 

1tX coth 7tU _ I I = 0 
1 + cOlh2 1t(( ta02 

1tX 

which completes the proof. 0 
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6.2 ERGODIC PROCESS SELECTION 

Bruce Hajek 

Department of Electrical Engineering 
University of Illinois 

Urbana, TL 61801 

The purpose of this note is to give a partial solution to the following 

problem posed by Thomas M. Cover (1]. Let (X, y) :::: (Xi' Yi • i E Z) be a 

jointly ergodic stationary stochastic process. A random process 

0 :::: (0,.. i E Z) is called a selection strategy if OJ E {O,l} with probability 

one for each i, and a selection strategy 8 is called sequential if for each 

i 2 1, OJ is measurable with respect to 

which represents the finite past. 

Cover's problem is to prove the conjecture that the limit 

1 " lim - L (OJ Xi + (1 -0j) Y) 
11 ---+ - n 1'=1 

is max imized over all sequential selection 

se lect ion strategy o· which satisfies 

strategies 0 by any sequential 

{

I, 

S; = O. 
arb., 

<0 
= 0 

(I ) 

with probability one for each i. We will prove this conjecture under the 

assumption that 

E( Xr + Yr ) < + 00 for each i. 

We begin by saying that a se lection strategy &' is weakly sequential if, 

for each i, &~ is measurable with respect to the infinite past 
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In the remainder of this note, we use 0 to denote an arbitrary sequen­

tial selection strategy, and we use Zj to represent the corresponding reward 

at statei: Zj = OJ Xi + (1-0i) Y j • Similarly, we let 0' be an arbitrary 

weakly admissible selection strategy and we let (Z;) denote the 

corresponding reward sequence. 

We also suppose that O· is any sequential strategy satisfying the con­

jectured optimality conditions (1), and we let 0·· be any weakly sequential 

strategy satisfying the analogous conditions 

{

i . 

O~· = 0 , . 
arb., 

<0 
= O. 

Finally, we let <Z;) and <Z;*) denote the reward sequences corresponding 

to the strategies O· and 0**, respectively. 

Lemma 1: 

I· . f 1. ~ Z· - Z· > 0 1m 10 ~ j ! _ a.s. 
n ~ - n i=l 

1 " , 
lim inf - L Z;· - Zj ~ 0 a.s. 
n ~- n i=l 

Proof. • We have Zj - Zj = D j + Ai , where 

The random variables D i are pairwise orthogonal and EDT is bounded 

independently of it so by the strong law of large numbers for orthogonal 
random variables [Doob's 1953 book, p. 158] 

1 " lim - L D j = 0 a.s. 
n -) <>0 n j=1 

We also have Ai ~ 0 a.s. for each i so that 
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lim inf 1. i Aj :2: 0 a.s. 
n -+ 00 n j",1 

Combining these facts proves the first assertion of the lemma. The second 

assertion can be proved in the same way. 0 

Let oK denote a sequential selection strategy such that for i with i > K 

{
I. 

oK = , O. 

E[ Xj - Yj I Xj_I' YH .... ,Xi_K, Yj - K ] :2: 0 

<0 

and let 000 denote the weakly admissible rule defined by 

{
I. 

O. 

E{ Xj - Yj I Xj_I' Yj_ l •... , Xo, Yo • ... ] :2: 0 

< O. 

We let (ZKj) denote the reward sequence when rule OK is used for 

1 :5 K :5 00, Since, ignoring a finite interval in the case that K is finite, 

each oK is a stationary rule, the ergodic convergence theorem implies that 

1 " - L ZKi ~ J K in L I and a.s. senses, 
n j=1 n-+oo 

where 

JK = E { E[XO I X _I ' Y_I • . ..• X_K• Y-K 1 V 

E [ Yo I X _I' Y_I • ...• X_K• Y -K]} for I '; K < ~ 
and 

J_ = E{ E[Xo I X_I' Y_I • .. . 1 v E[ Yo I X_I' Y_I • ... 1 } 

where a v b denotes the maximum of a and b. By the martingale conver­

gence theorem for uniformly integrable martingales, the conditional expec­

tations in the above expression for J K converge in L I to the corresponding 

conditional expectations in the above expression for J oo . Therefore, 

Since each oK is a sequential selection strategy, we conclude from the 

first assertion of Lemma I that 
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[
lim inf ~ i Z~]- Jx ?. 0 3.S. 
II --+.... n ;=1 

On the other hand, taking 5' in Lemma 1 equal to 5· and 6'" in Lemma 1 

equal to 500
, the second assertion of Lemma I implies that 

1_ + [lim iof - 1. i Z; ] ?. 0 a.s. 
I! --+ "" n i=1 

Combining these two inequalities, we get that with probability one, 

I < I" "f 1. ~ ~ < I" 1. ~ -* < I K - 1m In ~ L.j _ 1m sup ~ Lj _ _ " 

n --+ "" n i=1 n -+ .... n ;=1 

Since 'x converges to J_ as K tends to infinity. this yields that 

lim 1. r. Z; = '"" with probability one. 
n -+ "" n i=l 

Once again applying the second part of Lemma 1, we can deduce the 
following theorem. 

Theorem: 
1 II , 1 /I • 

lim sup - L Zj :s:; '"" = lim L Zj a.s. 
I! -+.... n ;=1 n -+ 00 n i=l 

for any sequence (Z) arising from a weakly sequential (in particular a 

sequential) selection strategy. 

Remark. By using sharper convergence results and a truncation argu­

ment, we believe that our proof extends to cover the case that 

E[ IX'! log IX'! + IY,Ilog IYil1 < +~" 

We hesitate to conjecture exactly what happens under the sole assumption 

that E[ !Xd + IYjl ] < + 00 • although we can prove the result if it can be 
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shown that 

I " lim L E[ Xi I Xl' ... ,Xi_I) 
11 -t 00 n ;=1 

exists and is finite with probability one for any ergodic random process X 
with E Ix; I finite. 

REFERENCE 

[IJ T. Cover, "Ergodic Process Selection," this book, Chapter Y, Section 
5.2. 
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6.3 GAMBLER'S RUIN: 
A RANDOM WALK ON THE SIMPLEX 

Bruce Hajek 

Depanment of Electrical Engineering 
UniversilY of Illinois 

Urbana, IL 61801 

The purpose of this note is to give a solution to a problem of Thomas 

M. Cover (see Chapter V, Section 5.4). Suppose there are three gamblers 

with respective capital Pa • Pb' and Pc' where Pa + Pb + Pc = 1. The 

players engage in a symmetric three-way game modeled by Brownian 

motion in the two-dimensional simplex Pi :2: 0, Pa + Ph + Pc = 1. When 

one of the players goes broke, play continues between the remaining two 

players, where the play is now modeled by a Brownian motion in one 

dimension, until a second player loses, and lhe remaining player is 

declared a winner. Doab's optional sampling theorem implies that player i 

will be a winner with probability Pi' Cover's problem is to find the pro­

bability that the players lose in a specific order. For example, we would 

like to find the probability that player 3 loses first and then player 2 loses. 

We provide a "messy" solution. 

It is convenient to represent the simplex by the region bounded by an 

equilateral triangle. For convenience, we choose the triangle to be a sub­

set of the complex plane as shown in Figure 1. .6. is a positive constant 

detennined below and a = exp (21ti/3) is a cube root of unity. A point ro 

within the triangle at respective distances 3Pa 612, 3Pb 612 ,and 3pc 612 

from sides be, ac ,and ab of the triangle represents a point (Pa, Pb' Pc) 

in the game simplex. 

The key to solving the problem is to find the hitting distribution on 

the boundary of the triangle for Brownian motion started at a given point 

inside the triangle. To solve this problem we confonnally map the triangle 
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to a disk. Since the map is conformal, it maps Brownian motion into 

Brownian motion modulo a random time change, and it thus preserves the 

hitting distribution. In tum, the hitting distribution for a disk is given 

explicitly by the classical Poisson kernel. 

The mapping ro :::: F(z), where 

, d 
F(z)~f 1 

o [(I - 1) (I - a) (I - IT )]213 

, 
dl l [13 - 1]213 

confonnalJy maps the interior of the unit disk shown in Figure 2 onto the 

open region bounded by the triangle in Figure 1, with the provisions that a 
branch of {l/3 is chosen so that (_1)213 :::: 1 and that we set 

'" ~ F(l). 

This mapping is a variant of the Schwarz-Christoffel formula [1]. To see 

that it has the desired property, note that at the singular points I, a, and 0:, 

the mapping reduces angles by one-third since it locally looks like z1l3. 

Then direct calculations show that 

[ ] 
{ 

51t16 0 < 9 < 21t13 
Ar dF (e

iB
) :::: -1tI2' 21t/3 < 9 < 41t13 

g d9 • 
1tI6. 41t13 < 9 < 2" • 

which shows that arcs db', b'c', and c'a' of [he unit circle are mapped to 

the respective sides of the equilateral triangle. 

The distribution of where a Brownian motion hits the boundary of the 
unit disk when the starting point is a point z in the di sk is 

K(e. z)d el2" 0 < e < 2" • 

where K is the Poisson kernel [2], 

K(e.z) ~ 
1 - Iz 12 
lei9 _ z12· 

Given that the process starting inside the triangle reaches the boundary 

at a point u in side ab, the conditional probability that the process will be 
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absorbed at point a is 

a - ult1 

a-I 

since this probability is proportional to the distance between u and a. 

We thus have that 

P[ c loses first. then b loses I start at (DO ] 

is equal to 

2Jt13 ·0 
_1 f a - P(e' )/t!. K (8. r-' ( » d8 
27, 0 a-I "'0 

We do not know if this expression can be simplified. nor do we know 

how to proceed if there are more than three players. 
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Figure 1. An equilateral triangle in the complex plane. 
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Figure 2. A di sk in the complex plane. The dashed lines encircle rays 
which are not to be integrated over in the definition of F(z). 
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6.4 FINDING PARITY IN A BROADCAST NETWORK 

R.O. Gallager 

Department of Electrical Engineering 
and Computer Science 

M.I.T. 
Cambridge, MA 02139 

Consider a broadcast network of N nodes in which each binary digit 

transmitted by each node is received by each other node via a binary sym­

metric channel whose crossover probability £ is independent over 

transmitters. receivers. and time. Each note has a binary Slate and the 

problem is to construct a distributed algorithm to find the parity of the set 

of states with some given reliability. This problem was first fannulated by 

A. EI Gamal (see Chapter III, Section 3.10) and is of interest because it is 

one of the simplest distributed algorithm problems involving noise. 

The straightfotward approach is for each node to send its own state j 

times for some integer j. A receiving node will make an error in detect­

ing a given node's state with probability Ej closely upper bounded by 0), 

where a. = [ 4E(l - E) ] 112. The probability that a receiving node will 

make an error in calculating the parity of the states is then proportional to 

NEj (for NEj small). This means that j must grow as log N . 

A more sophisticated approach is lO partition the nodes into subsets of 

k nodes each for some k. Each node again sends its own state j times 

but then estimates parity of its own set of k nodes and sends this parity. 

A receiving node will then receive k different estimates for the parity of 

each subset. A given estimate is incorrect if an odd number of errors 

occur, first, in the sending node's transmission and, second, in the sending 

node's estimates of the other states in the subset; the probability of this is 

B = [1 - ( 1 - 2Ej )k-l ( I - 2e ) ] 12. Finally, a receiving node will esti­

mate this parity incorrectly if more than half of the k received parity esti­

mates are incorrect, which is upper bounded by { 4R(l - 8) JkI2. 
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The optimum subset size k for a given Ej can now be calculated as 

approximately 1I( 4Ej). The overall parity of the N states can be calcu­

lated by a receiving node from the subset parities. With the above value 
for k and with a constraint P on the overall error probability, it is easy to 

see that the required number of binary digits required to be transmitted 
from each node (i.e., j + I) is (in in (NIP» I I In ex I plus a constant 
which is independent of Nand P. 

The above constant can be improved slightly by allowing nodes to 
transmit a limited number of parities of other subsets, but no way is 

known of improving the log log dependence on Nand P. 

Essentially the same strategy can be used if each node must reliably 
delennine all the states. We simply generate a larger set of subsets in 
such a way that each subset contains k nodes, each node is contained in k 

subsets, and no pair of subsets contains more than one node in common. 
Each node, as before, sends its own state j times and then sends its esti­
mate of one of the subset parities; remember each subset parity is thus 
sent once. A receiving node then estimates the state of each node from 
the j receptions and generates an internal estimate of the parity of each 

subset. For each subset, the internal parity estimate is compared with the 
received parity. The node changes the state of a given node from its ori­
ginal estimate if more than half the above comparisons disagree on the 

subsets containing the given node. 

The number of transmissions per node, for this scheme, is again ( In 

In (NIP)) I I In ex I plus a cons tant that is slightly larger than in the case 
where only parity is calculated. 
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6.5 AN OPTIMAL STRATEGY FOR A 
CONFLICT RESOLUTION PROBLEM 

V. Anantharam and P. Varaiya 

Department of Electrica1 Engineering 
University of California 

Berkeley, CA 94720 

Relevant to the design of multiple access protocols is the problem of 

finding the largest of N i.i.d. number Xl •...• XN unifonnly distri· 

bUled over [0,1] using the minimum number of questions of the following 

type . We pick a set ACt) c [0.11 and ask which Xi e A(l) . Depending 

on the response, we pick another subset A(2) and ask which Xj E A(2) , 

and so on, until we identify the largest Xj . It is shown that the optimum 

sequence of question must be of the type A(k) = (o(k), 1]: the best 

sequence (a(k) } can then be determined by dynamic programming fol· 
lowing the work of Arrow, Pesolchinsky, and Sobel. Thus [3] is resolved. 

1. Introduction. 

In their paper [1] , Arrow, Pesolchinsky, and Sobel, considered prob-

lem P: 

P: Let Xl •...• XN be i.i.d. random variables uniformly distri­

buted in [0.1]. The aim is to decide which Xj is the largest with 

the minimum expected number of binary questions, namely. ques­

tions to which the response is a simple yes or no. We ask a 

question, and each Xi responds. Based on the responses we ask 

the next question, and so on, until the largest Xi is determined. 

This problem is relevant to the design of multiple access protocols. 

Here there are N contenders each of which has a message that it desires 

to transmit over a single channeL A fair scheme to ensure this is for each 

contender to be assigned a random priority. for example, according a ran­

dom number uniformly di stributed on [0,1], and give the channel to the 
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leader, that is, the contender with the highest priority. Each contender 

only knows the number assigned to it. To begin. based on its number, 
each Contender sends a bit to a decision maker. If these bits are not 
enough to detennine the leader, the decision maker requests a second bit, 

and so on. At any stage the only infonnation available to the decision 
maker is the set of past responses. To detennine the leader as quickly as 
possible we would like to minimize the expected number of stages the 
decision maker has to go through. It is clear that any good solution to the 
problem P in [ I] translates directly into a good solution to this multiple 
access problem. For further discussion of multiple access problems, see 
[2J. 

In (I]. the optimal strategy (and the minimum expected number of 
questions) is found within the class of strategies of the fo llowing fonn: 
Given N, pick a number a(I) E lO,I"] and ask "Whose number is bigger 
than a(l)?". Depending on the responses, pick a number a(2) and ask 
"Whose number is bigger than a(2) ?", and so on. Call such questions 
right-handed. A question is right-handed if it is of the type: "Whose 

number belongs to the set A ?", where A is of the Conn (a,l ] , for some 
a E [0.1)" It is straightforward to set up a dynamic programming recur­
sion to detennine the optimal right-handed strategy and this is done in [l]" 

It is natural to ask whether we can decrease the expected number of 
questions requ ired when arbitrary binary questions are allowed. For such 
questions. one picks an arbitrary (measurable) set A c (0,1] and asks 
"Does your number belong to the set A ?". Thus the most general stra­

tegy is one that picks a subset A(I) of [0.1] and asks: "Does your number 
belong to A( I)?". Then. based on the responses it picks a subset A(2) and 

asks "Does your number belong to the set A(2)?", and so on, until the 
leader is found. Can we do any better with such genera l strategies as 
compared to the strategies considered in [ I]? The fundamental difficulty 

in answering this question is that there is no obvious way to set up a 
dynamic progranuning recursion. Our main resu lt is that the added gen­
eral ity cannot help to reduce the minimum expected number of questions. 
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2. Theorem. 

The best right-handed strategy is also optimal in the class of all stra­
tegies. 

Proof of the Theorem. 

The proof proceeds in two steps. We use the result of [1] that the 
expected number of questions required to detennine the leader using the 
best right-handed strategy is strictly less than 2.5. We wiU show first, by 
induction on the number of contenders. that any strategy entails at least 2 
questions on average to detennine the leader. Using this. a "bootstrap­
ping" argument shows that any strategy whose first question is not right­

handed requires on average more than 2.5 questions to resolve conflict. 
This suffices to establish the theorem. 

Before proceeding. we make a preliminary remark. Since every ques­
tion is equivalent to its complement. we can assume without loss of gen­
erality that a question (more precisely. the corresponding set) contains I. 

This will be implici t in the following. 

Step 1: We first show that for any strategy K. E K ~ 2 • where E K 

denotes the expected number of questions required to resolve conflict 
under strategy K. 

I. Consider the case of two contenders. N = 2. Suppose 

infEK = 6.<2. 
K 

If the first question of K is not right handed, the leader cannot be 

detennined immediately. so K requires at least 2 questions on every 

sample path. in particular E K ~ 2. (Note: We do not distingu ish 

between sets that differ by zero measure; in particular. A is right­
handed if it differs by zero measure from a set of the form (1-a, 11.) 

We may therefore assume that K has a right·handed first question, 

(1-a.l]. If the number of contenders answering yes to this first ques­
tion is 0 or 2, we are left with a problem identical to the one we 

started with. and we need at least 6. more questions on average to 
-212-



resolve conflict. If only one of the contenders answers yes to the first 

question, we are immediately through. Thus 

E K?: 2a(l - a) + (l + "')(1 - 2a)(1 - a) . 

Observe that for any a e [0,11 we have 2a(l - a) ::;; 112 , so 

EK"I+~. 

Since this holds for any K, .6. ~ I + ~ ,or .6. ~ 2 . 

2. Consider now the case of general N. Assume as induction 

hypothesis that, for any m < N , the expected number of questions to 

resolve conflict for any strategy is at least 2. We will show that for 

any strategy K with N contenders. the same holds . Suppose, to the 
contrary that 

infEK = .6.<2. 
K 

Reasoning as before, we may assume that the first question of K 

is right-handed and of the fonn (I-a,I]. Three types of responses 

are possible to this first question. 

(a) Each contender. or none of them, responds yes to the question. 

In this case, we are left with a problem identical to the one we 

started with and require at least .6. more questions to resolve 

conflict. 

(b) Exactly one contender responds yes to the question. Then we are 
immediately through. This event has probability N(l - a)N- I a . 

(c) Anywhere from 2 to N - 1 contenders respond yes to the 

question. By the induction hypothesis, we then require at least 

2 more questions to resolve conflict. 

Thus we have 

E K ?: N(l - a)N- 1 a + (I + t.) (l - N (l - a)N- 1 a ) • 
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where for the event (c) we used ~ < 2. Since for a E [0,1] , 
N(t - a)N- 1 a":;: 1/2 , this gives 

This holds for any 

EK;>1 tJ. +-
2 

tJ. 
K,andso ~2:1+2' ~2:2. 

Step 2: The final step is to use the result above to show that E K 2: 2.5 

for any strategy K for which the first question, A c [0,1] , is not right 

handed. We directly consider the case of general N. Let AO denote the 
complement of A . 

I. Consider the event where either every contender or no contender 

responds yes to the first question; that is, every Xi is in A or in AO. 

Then we are left with a problem identical to the one we started with 

restricted to the set A or AO, and by Step I above, we need at least 2 

more questions on average to resolve conflict. Thus, on this event, we 

need on average at least 3 questions to resolve conflict. 

2. Consider the complementary event where the number of contenders 
rcponding yes to the first question is between 1 and N - 1 . We pos­

tulate the following genie: 

• The genie tells us which of the sets A and AO contains the leader. 

• If A contains the leader, the genie tells us the value of We leader 

among the contenders whose values are in AO, and the identities 

of the contenders whose values arc in A and which exceed the 

leading contender in AO. 

• Similarly, if AO contains the leader, the genie tells us the value of 

the leader among the contenders in A, and the identities of the 

contenders whose values are in A ° and which exceed the leading 
contender in A. 

By postulating a genie, we mean that we pennit ourselves to use 

different strategies on events for which the genie gives us different 

answers. Clearly, we can do no better without the genie than we can with 
it. 
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If A contains the leader, the genie leaves us with the problem of deter­

mining the leader among the contenders in A that exceed the leading con­

tender in A 0, and these contenders are independently and unifonnly distri­

buted On the portion of A which exceeds the leader in AO. Similar remarks 

apply when the leader is in AO. 

Thus, except on the event where the leader is in A and the second best 

contender is in AO or vice versa, which event we denote r, we require, by 

Step 1 above, at least two more questions on average to detennine the 

leader. On the other hand, if the genie is absent, then we require at least 

two questions on every sample in r. Thus, if we can prove that the meas­

ure of r is at most 112, we will have proved the Theorem. Note: We do 

not distinguish between sets which differ by zero measure; in particular, a 

question A is right-handed if A differs by zero measure from a set of the 
fonn (a,I]. 

Let ~(X) denote the measure of X ,for Xc [0,1]. Define two 

functions F and F ° on [0,1] by 

F(x) = I'(A n (x,l] ) , 

FO(x) = I1(AO n (x,l] ) . 

Notice that F(x) + P(x) = 1 - x. Next, define functions S and D 

(mnemonics for same and different, respectively) by 

S(x) = F(x)l(x E A) + F"(x) I (x E AO) , 

D(x) = F(x) I (x E AO) + FO(x) I (x E A) . 

Then S(x) + D(x) = I - x. Now 

I 

11(0= L fp{X,<x for k"';,j,X,E AOn{x,x+dx),XjE An(x,I]] 
i~jO 

I 

+ .L . [ P[ X" < x for k:t: i, j, Xj E A n [x, x + dx), Xj E A O rl (x,l] J, 
1""-16 

so that 
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! 

Il(r) ~ f N(N-I) ;('-2 D(x)dx. 
o 

One can now easily check that 

If we define 

! 

1 - Il(r) ~ f N(N - I) ;('-2 S(x)dx . 
o 

! 

P(X) ~ f (S(Y) - D(y))dy , 
x 

we can easily prove that P(x) ~ 0 • for x E [0,1] , and since 

! ! ! 

f ;(,-2 [ S(x) - D(x) jdx ~ - f ;(,-2 dxd P(x)dx ~ f P(x).E... ;(,-2 ~ 0 , 
x=O x:=O x=O dx 

we have shown that ~(r):5 1/2 and the proof is complete. 
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6.6 COORDINATION COMPLEXITY 
AND THE RANK OF BOOLEAN FUNCTIONS 

B. Gopinath and V.K. Wei 

Bell Communications Research 
Monistown, NJ 07960 

The MEX machine is a model for describing the coord ination between 

concurrent processes in a distributive protocol. (See Figure 1.) The 

discrete recursion operates as follows: Every second is divided into two 

equal periods. There is a bus connecting all processes, and all information 

needed for the coordination of the processes is transmitted over the bus. 

During the first period. a state of the bus is selected. In the second period, 

each process "resolves" its task by changing its state according the 
selected bus state. Once the bus state is given, the state transitions at the 

processes afC independent. 

The MEX machine is a useful model in protocol specification and 

validat ion. The complexity of the MEX machine is the number of bus 

lines required for the coordination of the processes. It is the logarithm of 
the number of bus states. Here. we derive the coordination complexity of 

the MEX machines corresponding to many well·known Boolean functions. 

including AND. OR. NAND. k·Threshold. and Adder. 

Each process is assumed to have only two states. The operation of 

the MEX machine can be described by a directed graph consisting of 2n 

nodes and a number of edges. The nodes correspond to all possible binary 

lHuples. There is an edge from node i to node j if and only if "cause" i 

produces the "effect" j in the MEX machine. For example. for the AND 

function. there is an edge from node i to node j if and only if the most 

significant bit of j is equal to the AND of all bits in the binary expansion 

of i. For the Adder, there is an edge from node i to node j if and only if 

the numerical value of the first nl2 bits is equal to the sum of the numer· 

ical values of the first n/2 bits of i and the last nl2 bits of i . 
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Some nodes in the directed graph may have out-degree zero; this 

corresponds to some unacceptable "causes." Some nodes may have out­

degree greater than one; this corresponds to don't-care "effects" -- given 

some particular "causes," one of several possible "effects" is produced 

with equal consequences. 

The graph representation of the composite MEX machine which con­

sists of two smaller MEX machines placed side by side is the tensor pro­

duct of the two graphs representing the component machines. The new 

graph has 2m+n nodes, if the two component graphs have 2m and 2n 

nodes. respectively. There is an edge from the composite node (i, i') to 

(J,I) if and only if there are edges from i to J and from i' to l in 

the component graphs. 

The sum of two graphs with 2n nodes is a graph with 2n nodes 

whose edges are the union of the edges of the summand graphs. The 

smallest possible graph consists of only two nodes. There are 16 such 

graphs; they are called atoms. 

The rank of a Boolean function IS the logarithm of the minimum 
number of products of atoms which sum up to its representing graph. It is 

a measure of the coordination complexity of the MEX machine. It is 

equal to the minimum number of bus lines required to coordinate the 

processes. In the first period of a discrete recursion, one of the atom pro­

ducts is selected, and in the second period, each process changes state 

independently as an atom. 

The ranks of several well-known Boolean functions are shown in 

Table 1. For convenience, the graphs for the Comparator and the Adder 

are assumed to have 22n nodes. The ranks of the sum, the product, the 

tandem, and the overlap of two Boolean functions are also studied. 

These results answer several open problems posed by Gopinath in the 

1984 SPOC Conference. The proofs of our results are contained in a 
longer version of the paper. 
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Table 1. Ranks of Well-Known Boolean Functions 

Function Rank 

AND log (n+ 1) 

OR log (n+1) 

NAND log (n+1) 

NOR log (n+1) 

INVERT 0 

Counter log(n) 

Parity log(2") 

Sequence Reverser 10g(2") (n even) 

Cyclic Shifter log(2") 

k-Threshold log [n;l] 
n!2 bi-input AND log (3"12) 

Maximum possible rank log(4"-I) 

Comparator log (20+1 - 2) (2n inputs) 

Adder log(3") 
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