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MFCS '79 

F O R E W O R D  

This volume contains the papers which were selected for presenta- 

tion at the symposium on Mathematical Foundations of Computer Science 

- MFCS'79, held in Olomouc, Czechoslovakia, September 3 - 7, 1979. 

The symposium is the eighth in a series of annual international 

meetings which take place alternately in Czechoslovakia and Poland. 

It has been organized by the Mathematical Institute of the Czechoslovak 

Academy of Sciences, Prague, the Faculty of Mathematics and Physics 

of Charles University, Prague, and the Faculty of Natural Sciences 

of Palack~ University, Olomouc, in co-operation with the Federal 

Ministry for Technical and Investment Development, the Technical 

University, Prague, the Computing Research Centre, Bratislava, the 

Faculty of Natural Sciences of Komensk9 University, Bratislava, and the 

Faculty of Natural Sciences of ~af~rik University, Ko~ice. 

The articles in these Proceedings include invited papers and short 

communications. The latter were selected from among 95 extended 

abstracts submitted in response to the call for papers. Selection was 

made on the basis of originality and relevance to theoretical computer 

science by the following Program Committee: J. Be~vi~ /Chairman/, 

J. Gruska, P. H~jek, M. Chytil, J. Kr~l, M. Novotn~, B. Rovan. A number 

of referees helped the Program Committee in the evaluation of the 

abstracts. 

The papers included in these Proceedings were not formally 

refereed. It is anticipated that most of them will appear in a polished 

and completed from in scientific journals. 



IV 

The organizers of the symposium are much indebted to all those 
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papers. Special thanks are due to the referees of the abstracts. 

Thanks are also due toall the above mentioned co-operating institutions 

for their valuable assistance and support, and to all the persons who 

helped in organizing the symposium. The Organizing Committee consisted 

of J. Be~vi~, J. Gregor, J. Gruska, P. H4jek, I. Havel, ~Hud~k, 

M. Chytil, J. Kr~l, F. Krutskg, B. Miniberger, M. Novotng, A. R~ek, 
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P. Pudl~k, and S. ~ik in editing this volume. 

The organizers Of the symposium wish to express their thanks to 

the representatives of the Palack~ University in Olomouc for their 

support and interest in the symposium. 

Finally, the help of the Springer-Verlag in the timely publication 
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A SOUND AND COMPLETE PROOF SYSTEM FOR 

PARTIAL PROGRAM CORRECTNESS 

J.W. de Bakker 

Mathematical Centre 

2 e Boerhaavestraat 49, Amsterdam 

I. Introduction 

We investigate soundness and completeness of a proof system dealing with partial 

correctness of programs in a language with assignment, composition, conditionals, 

block structure, subscripted variables and (possibly recursive) procedures with the 

parameter mechanisms of call-by-value and call-by-address (call-by-variable in PASCAL, 

call-by-reference in FORTRAN). The paper is a continuation of Apt & de Bakker [3] pre- 

sented at M FCS '76, and of its successor Apt & de Bakker [4]. In the meantime various 

problems not yet well-understood at that time have been pursued further and, we hope, 

solved. 

Section 2 presents syntax and (denotational) semantics of our language; in section 3 

we are confronted with an unpleasant consequence of our way of defining the semantics 

of a block b new x; S i, and propose as solution to restrict our correctness consider- 

ations to programs obeying the restriction that all such local variables x be initial- 

ized. Section 4 introduces the proof system; in the course of trying to prove its 

soundness we were somewhat shocked by the discovery that essential rules such as, for 

example, the familiar composition rule turned out to be invalid with respect to the 

natural validity definition, requiring a complicated refinement of that definition 

to remedy the situation. Section 5, finally, discusses the completeness of the sys- 

tem. 

All proofs are omitted in this paper; they are scheduled to appear in a forthcoming 

publication. 

Our paper could not have been written without Apt [I]. Though the technical results 

differ (e.g., [I] does not treat parameter mechanisms, nor does it impose the initial- 

ization requirement), there are many similarities, in particular concerning the valid- 

ity definition and soundness proof. Also, the problem signalled at the beginning of 

section 3 was found by K.R. Apt. Various other approaches to the topic of our paper 

have appeared in the literature (Cartwright & Oppen [6], Clarke [7], Cook [8], 

Gorelick [9], to mention only a small selection~ for a detailed survey see Apt [2]). 

However, out treatment of both soundness and completeness of the proposed proof sys- 

tem differs substantially from the techniques used elsewhere; in particular, we have 

not encountered any analogue of our validity definition in its refined form. 



Acknowledgement. As should be clear from the above, our paper owes a lot to the work 

of K.R. Apt. J.I. Zucker contributed many helpful co,~ents on a previous version. 

2. Synta~ and semantics 

Convention. By writing V'Let (~e)V be the set such that ... "we introduce a set V, with 

variable a ranging over V, such that .~.. 

2.]. Syntax. "~" denotes identity between two syntactic objects. Let (n,m,e)laon be 

the set of integer constants, let (x,y,z,ue)SvaYt, (a~)Au@Jt, (P,Q~)Pu~Ut be the (infi- 

nite, well-ordered) sets of simple variables (s.v.), array variables and procedl~re 

variables. 

Let (v,w~)Iu~ be the set of integer variables defined by v:: = x[a[s] 

... (s,te)lexp ... integer expressions ... s::=nlv]sl+s2[if 5 then s] else s2fi 

(b¢)Bexp boolean expressions 

(S¢)StaZ statements 

(De)Dec/ declarations 

(B¢)Pbod procedure bodies 

(Re)Prog programs 

(p,q,r¢)ASSn assertions 

(f~)Fo~ correctness 

formulae (c.f.) 

(g¢)Gfor generalized c.f. 

Remarks. 

b::=true]false[sl=s2]-]b[blmb 2 

S::=v:=S[Sl;S21if b then S 1 else S 2 fi[ 

b new x; S e]P(t,v) 

D::=PI~B],...,Pn~Bn, n~ 0, and, 
for }!i, j Nn, (PiEPj)~(i=j) 

B::=<val x, add y:S>, x~y 

R::=<D:S> 

p::=true]false]s|=s2[Tp]plmP2[Bx[p] 

f::=p[{p}S{q}]flAf 2 

g::=<D:fl~f2 > 

|. We write <DIS> instead of <D:S>, and similarly in B and g. If R ~ <DIS>, with 
n 

D E <Pi~Bi>i=l , and all procedure variables occurring in S or any of the Bi, 

i = 1,...,n, are included in {PI,...,Pn}, we call R closed. 

2. Our statements have local s.v. declarations, but, for simplicity's sake, no local 

array or procedure declarations, nor array bounds. 

3. In B ~ <val x, add y[S>, x is the formal value parameter and y the formal address 

parameter, and, in P(t,v), t is the actual value par. and y the actual address par. 

(cf. also the definition of syntactic application in 2.2). 

4. <D]f> is short for <D]true~f>. 

5. For the intended meaning of "~" in a formula g, cf. the remark on the validity of 
<D]fl> 

<D[fl~f2 > versus the soundness of ~ below. 

2.2. Substitution and syntactic application 

Substitution is denoted by ['''/...3, e.g. we use notations such as sit/x], pit/x], 

S[v/x], S[a'/a], S[Q/P], etc. In case a construct contains a variable binding operator 

(in 3x[p] and ~ new x; S e, occurrences of x in p and S are bound) the usual precau- 

tions preventing clashes between free and bound variables apply. A notation such as 



n 
s[Yi/Xi]i= I implies that, for I ~ i, j ~ n, (xi=xj) ~ (i=j). Substitution in a pro- 

cedure call only affects its parameters (i.e., P(t,v)Ew/x] ~ P(tEw/x],v[w/x])), but 

not the procedure body (possibly) associated with P in the accompanying declaration 

D. svar(s), 8var(p), aver(S), pvar(f), etc., denote the set of all free simple vari- 

ables of s, of p, all array variables of S, all procedure variables of f, etc. Note 

that sVar(<val x, add ylS>) = svar(S)\{x,y}. Notations such as s~ar(D,p,S,q) should 

be clear. We also employ the substitution s[w/v] etc., for the definition of which we 

refer to de Bakker [5]. Constructs which differ at most in their bound variables are 

called congruent. The congruence relation is denoted by "~". 

Syntactic application is a technique of associating with a procedure body B and two 

actual parameters t, v, a piece of program text B(t,v) such that, for B the body of 

procedure P, B(t,v) embodies the meaning of P(t,v) according to the customary seman- 

tics of the parameter mechanism of call-by-value and call-by-address: let 

B ~ <valx, add ylS>. 

(i) v ~ z. B(t,z) ~ b new u; u:=t; S[u/x][y/z]!, where u is the first s.v. not in 

8var(x,y,z,t,S) 

(ii) v ~ a[s]. B(t,a[s]) ~ b new ul,u2; u1:=t; u2:=s ; S[ul/x][a[u2]/y]!, where ul(u2) 

is the first (second) s.v. not in svar(x,y,s,t,S) 

2.3. Domains 

A apo(xe)C is a partially ordered set with least element ±C such that each (ascend- 

ing) chain <xi>i= 0 has a lub y x i. Let C;, C 2 be cpo's. If fl,f2: C I + C2, we put 

f; ~ f2 iff fl(x) E f2(x), all x e C I. For f: C I + C2, we call f monotonic if 

x; E x 2 = f(xl) ~ f(x2). A monotonic function is called continuous if, for each chain 

<xi> i, f( U x:) = U f(xi). Each continuous function f: C ÷ C has a least fixed point 
i i ~ i 

~f = U f (±C)" 
I 

Let V 0 be the set of integers, W 0 = {tt,ff} the set of truth~values, and E 0 the (in- 

finite, well-ordered) set of addresses. Let (~c)V = V 0 v {±V }, (Bc)W = W 0 u {/W }, 

(e~)E = E 0 u {IE}, with ~I ~ ~2 iff ~I = ±V or al = a2' and similarly for E3, e. Let 

($£)In~tv = Sv~ u (Av~x V0) be the set of intermediate variables, and let intv(s) = 

8var(s) u {<a,~> I a E aver(s), ~ e VO} , etd.. Let (ce)Enu = Iyutv + E be the set of 

environments which are required to satisfy: let dom(c) = {~ E I~vtu I c(~) # ±E }, 

range(c) = {e ~ E I c(E) = e for some $ ¢ dom(e)}. Then (i) e is I-I on its domain 

(ii) e(a,a) # l E for some a ~ V O~ c(a,a) # ±E for all a c V^ (iii) l~utv\dom(c) # ~, 

Eo\range(c) # ~. Let, for y ~ dom(g), e E E0\range(c), c' df~ e U <y,e> denote the 
n extension of c such that e'(y) = e, and similarly for c u <Yi,ei>i=l, c u <<a,~>, 

e > V0, etc. Let (oe)Z = (E÷V) o {±E} be the set of states, where, for u c E + V, 

~(e) = i V iff e = IE, and ±Z (1' for short) df__= ~e.lv. Let ~{~/e} df___=. ±, if o = 1, 

and %e. if e = e then ~ else ~(e) fi, otherwise. Let (~¢)M df___~. ~u + (Z+Z), (~)N df__= 

Igxp  × Ive~÷ M, (ye)r df___~. PU~ + H, and let y{qi/Pi}i be defined similarly to o{~/e}. 

Let, finally (@e)H n ÷ H. 



2.4. Semantics 

The functions R: Iexp ÷ (~+V), L: Ivar÷ (Z÷E), W: Bexp ÷ (z÷W), N: Stat÷ (~÷M), 

M: Prog ÷ (Z-~M), T: Assn ÷ (Env + (~÷{tt,ff})), F: Form~ (r + (Env + (Z ÷ {tt,ff}))), 

and G: Gfor + (F÷{tt,ff}) are defined by 

a. If intv(s) i dam(e) or ~ = i then R(s)(e)(o) = i V . Otherwise, R(v)(s)(o) = 

o(L(v)(~)(~)), R(m)(s)(~) = a, where ~ is the integer denoted by the integer con- 

stant m, R(sl+s2)(e)(o) = R(sl)(e)(c) + R(s2)(s)(o), R(if b then s! else s 2 f i) 

(e)(o) = if [9(b)(e)(o) then R(sl)(e)(o) else R(s2)(e)(o) f i. 

b. If intv(v) i dam(e) or o = ± then L(v)(E)(o) = IE" Otherwise, L(x)(e)(q) = e(x), 

L(aEs])(~)(~) = ~(a,R(s)(~)(~)). 

c. ~(b). Omitted. 

d. If intv(S) i dam(s) or ~ = ± then N(S)(~)(s)(o) = ±. Otherwise, N(v:=s)(y)(~)(o) = 

o{R(s)(e)(o)/L(v)(E)(o)}, N(SI;S2)(X)(s)(o) = ~(S2)(y)(m)(~J(S|)(y)(E)(d)), 

N(if ... f i) = ..., N(b new x; S!)(~)(~)(o) = N(S[y/x])(y)(E u <y,e>)(o), where y 

is the first s.v. not in dam(E) and e is the first address in Eo\range(s). (Remark. 

The use of a new s.v. y ensures that we obtain the static scope rule for proce- 

dures.) N(P(t,v))(y)(s)(o) = y(P)(t,v)(s)(o). 

e. If intv(R) ~ dam(s) or o = ± then ~(R)(y)(s)(o) = ±. Otherwise, let R z <DIS>, 
n 

D z <Pi~Bi>i=l. A~(R)(x)(e)(o) = N(S)(~{ni/Pi}~=l)(e)(o), where <n! .... ,~n > = 

u[~| ..... tn ], and, for j = I ..... n, Cj = hnl.--'.h~'lt'Xv, N(Bj(t,v))(Y{~i/Pi}i). 

f. If intv(p) ~ dam(e) or d = ± then T(p)(~)(o) = ff. Otherwise, T(true)(~)(o) = 

= tt ..... T(~x[p])(e)(o) = ~aET(p[y/x])(e u <y,e>)(d{e/e})], with <y,e> as in 

part d. 

g. If imtv(f) ~ dam(e) or o = ± then F(f)(y)(s)(o) = ff. Otherwise, F(p)(y)(s)(a) = 

/(p) (m) (a) , ~({p}S{q})(X)(s)(a) = Vo'[r(p)(s)<a) AO' = ~(S) (7) (s) (a) AO' ¢ ± 

T(q)(~)(o')], F(flAf2)(X)(e)(O) = F(f](x)(s)(o) ^ /(f2)(y)(s)(o). 
n 

h. Let g ~ <Dlf I ~f2 >, with D ~ <Pi ~Bi>i=l" Let ~ = X{ni/Pi } =I' with ~i as in part e. 

G(g)(y) = [rE such that intv(D,f l) [ dam(s), o # ± [[(fl)(~)(s)(o)] ~ Ve such that 

intv(D,f 2) E dam(s), o # ± [F(f2)(~)(e)(~)]]. 

Validity and soundness (first definition, to be modified below). 

a. ~ g (g is valid) iff G(g)(y) = tt for all y ~ F 

b. An in~erence g|,''',gn . is called sound whenever I=gl~...,bg n implies l=g. 
g 

Remark. Observe the difference between the validity of <Dlf I ~f2 > and soundness of 

<Dlfl > df • f 
~ .  Putting (i) ~" V~ such that ~ntv(D, i) ~ dam(e), all ~ # ± [F(fi)(y)(e)(o)], 

'2 
i = 1,2, we have that the former corresponds to Vy[(1)~(2)], whereas the latter cor- 

responds to the weaker fact that Vy[(I)] ~ ~y[(2)]. 

2.5. Len~nas. A number of lemmas stating properties of our various constructs will be 

used below. First we have a lemma relating substitution to state modification. 



LEMMA 2.1. 

a. If i~tV(s,t,v) ~ dom(g) then R(s[t/v])(~)(o) = R(s)(e)(o{R(t)(e)(o)/L(v)(~)(o)}) 

b. Similarly for b ~ Bexp, p ~ A&S~. 

END 2.1. 

Next, we have a useful property of closed programs, asserting that such programs only 

affect the values of variables occurring in them: 

LEMMA 2.2. If <DIS> is closed, y e r, ~ as usual (cf. 2.4h) then, if (i) intv(D,S) 

dom(e), (ii) ~ ~ dom(c)\intv(D,S), (iii) o' = N(S)(~)(c)(o), ~' # ±, then, (iv) 

END 2.2. 

The last lemma is rather technical, and foreshadows a property of statements to be 

discussed in section 3. Notation. For ~ E IMJ~V, (aos)16 denotes the function composed 

of ~ and ~ restricted to ~. 

LEMMA 2.3. 
• n m 

a. Let m,n ~ 0. If (i) ~ntv(s)\{xi}i=1\{<aj,~>acVo}j= ] c ~ c dom(~) n dom(~), (ii) 

(~°~)16 = (~°~)I~, (iii) For i = 1 ..... n, either o(e i) = ~(~i ), or x i 4 sVar(s), and, 

for j = ] ..... m, either, for all ~ ~ V0, o(e ,~)~ = $(e ,j), or a~ ~ avar(s), then, 

(iv) R(s[y./x.].[a!/a.].)(~_ i i z j ] J_ u <Yi,ei>i u <<<a~,~>,e ,j> >j)(~) = R(s[zi/xi]i[a~/aj]j) 

(~u<zi,ei>i u <<<a'],~>,e .> >.)(~) ] a,j ~ j 
b. Similarly for b c BexN and p ~ Assn. 
END 2.3. 

3. Initialization 

The validity definition as given in 2.4 is, though rather natural, not satisfactory 

for our purposes. First, it implies the validity of formulae such as (*): <l{true} 

b new x;x:=0 e; h new x;y:=x ~{y=0}>, or (**): <I{true} b new x;y:=x e; b new x;z:=x 

~{y=z}>. The source of this problem is that our semantics is overspecified in that, 

when declaring a new local s.v., we want its initial value to be some arbitrary inte- 

ger. Now in defo 2o4d, we take for this the value stored at the first free address 

and, in a situation such as (*), upon entry of the second block we find, as after- 

effect of the first block, 0 stored at this address. ((**) can he explained similar- 

ly.) A solution to this problem is either to change the semantics (ensuring by some 

flag-mechanism that no address is ever used twice as first free address), which we do 

not adopt mainly because of severe technical complications, or to restrict our cor- 

rectness considerations to programs in which all local s.v. are initialized. The second 

solution is the one elaborated below (also motivated by the idea that the correctness 

of programs containing uninitialized local s.v. is probably not very interesting any- 

way). A second problem with the validity definition is the following: For reasons to 

be explained below we have to consider in a formal correctness proof also non-closed 

programs in which case counter examples can be found to the validity of quite natural 

c.f. such as <DI{p}SI{ q} ^ {q}S2{r} ~ {p}S1;S2{r}>. The second problem is dealt with 



in section 4; we now define the notion of initialization and state the main theorem 

concerning it. 

DEFINITION 3.1. (initialized s.v.) 

a. The set (nit(R) of all s.v. initialized in R is the smallest subset of Sua~ satis- 

fying 

(i) If x ~ svar(s) then x • init(<Dlx:=s>). 

(ii) If x • init(<DIS]>), or x ~ svar(S]) and x • init(<DIS2>) then 

x • init(<DIS|;S2>). 

(iii) If x ~ svar(b), x • init(<DISi>), i = 1,2, then x • init(<Dlif b then S I 

else S 2 fi>). 

(iv) If x ~ y, x • init(<DIS>) then x e init(<Dlb new y; S!>). 
n 

(v) If D ~ <Pi~Bi>i =] then, for i = ],...,n, if B i ~ <val xi, add YiISi >, 

x ~ svar(t), x ~ v, and Yi • init(<DISi>)' then x • init(<DIPi(t,v)>). 
n 

b. All local s.v. in a program <DIS>, with D ~ <Pi~Bi>i= ], B i ~ <val xi, add YilSi >, 

are initialized whenever for each statement b new x; S O ! occurring as substate- 

ment of S or any of the Si, ! N i ~ n, we have that x • init(<DISo>). 

END 3.1. 

For an initialized local s.v., the value associated with it through def. 2.4d is ir- 

relevant. This is one of the (somewhat hidden) messages of 

THEOREM 3.2. Let <DIS> be a closed program in which all local s.v. are initialized. 

Let n,m e 0, and let y, v be as usual. If 

(i) intv(D) u (intv(S)\{xi}i\{<aj,~>a}j) ~ 6 ~ dom(e) n dom(7) 

(ii) (ooe)l~ = (ooe) 16 

(iii) For i = ] ..... n, either o(e i) = $(ei ), or x i ~ svar(S), or x i • init(<DIS>). 

For j = ! ..... m, either, for all a • VO, o(e ,j) = a(e ,j), or aj ~ avar(S). 

u <<<a~ ~> e .> >. (a) = a' (iv) ~(S[Yi/Xi]i[a~/aj]j)(~)(~u<Yi,ei> i j, , ~,j ~ j) 

~(S[zi/xi]i[a~/aj]j)(~)(~]_ u <zi,ei>i u <<<a'~,~>,ej ~,J'>~>')(~)J = ~' 

then 

(v) (~'o~)I~ = (~'o~) 

(vi) For i = ],...,n, 

For j = ],...,m, 

END 3.2. 

16 

either a'ie i) = a'(ei), or x i ~ svar(S). 
~' - or aj 4 avar(S) either, for all ~ • V 0, ~'(e ,j) = (e ,j), 

In section 4 two special cases of this theorem are of interest, mentioned in 

COROLLARY 3.3. Let <DIS>, m,nSx,~.., be as in theorem 3.2. 

a. If (i) intv(D,S) ~ ~ ~ dom(c) n dom(~), (ii) (ooe)16 = (oo~)I~, (iii) N(S)(~)(E)(O) 

= o', N(S)(~)(~)(~) = ~',then (iv) (o'os) l~ = (~'o~)I~ . 

b. If (i) intv(D) u (~ntv(S)\{xi}i\{<aj,~>~} j) ~ dom(s), (ii) (S[Yi/Xi]i[ ai/aj] j) 

u <<<a! ~> e .> >. (o) = 0', N(S[zi/xi]i[a~/aj]j)(y)(eu <zi,ei>i (~)(g u <Yi,ei>i j, , ~,J ~ j) 
u <<<a~,~>,ea,j> >j)(o) = ~", then (iii) (o'oe) Idom(s) = (o"oc) Idom(e). 

END 3.3. 



Remark. Let us call a pair <a,c>, <o,~> matching with respect to 6 if it satisfies 

condition (ii) of part a. We ~ee that a program satisfying the indicated requirements 

preserves the property of matching. Cor. 3.3b tells us that substituting different 

fresh s.v. y, z (since y,z ~ dom(e), y,z ~ intv(D) u (intv(S)\...)) for some x makes 

no (essential) difference in the outcome, provided that they are associated with the 

same address. 

4. A sound proof system 

The following proof system will be considered: 

A. Rules about "~". 

I. <Dlf ~ true> 

<Dlfl~f2 > 
2. 

<Dlfl^f3~f2> 

<DIf]~f2>,<Dlf2~f3> 
3. 

<Dlf]~f3> 

<DIf~fl>,<DIf~f2> 
4. 

<DIf~f2^f2 > 

(strengthening) 

(weakening) 

(transitivity) 

(collection) 

5. <DlflA...Afn~fi> , n e I, I ~ i ~ n (selection) 

B. Rules about programming concepts. 

6. <D]{p[t/v]}v:=t{p}> (assignment) 

7. <Dl{P}Sl{ q} ^ {q}S2{r} ~ {p}S1;g2{r}> (composition) 

8. <DI{pAb}S1{ q} A {pAqb}S2{q} =~ {p} if ... fi {q}> (conditional) 

9. <DI{p}S[y/x]{q} ~ {p}b new x; S !{q}> 

provided that y ~ sN~(D,p,S,q) 

(s.v. declaration) 

I0. Let a be a procedure constant such that N(g) = hy.kt.%v.hc-Eo.i. 

<<Pi~Bi>ilf[~/Qi]i>,4<Pi~Bi>ilf~f[B~/Qi]i > 

<<Pi~Bi>i]f[Pi/Qi]i> 
(induction) 

where Qi ~ pvar(Pl ..... Pn'BI .... ,Bn), and Bi z Bi[Qj/pj]j, 
i = l,...,n. 

C. Auxiliary rules 

II. <Dl(p=pl ) ^ {Pl}S{ql) A (qlmq) ~ {p}S{q}> (consequence) 



12. <D[(p}S(ql) A {p}S{q2} ~ {p}S{qlAq2}> 

<<Pi~Bi>ii(fl~f2)[Qi/Pi]i > 
13. 

<<Pi~Bi>i[fl~f2 > 

where Qi ~ pvar(Pl""'Pn'fl'f2) 

14. <Dl{p}S{p}> 

provided that intv(p) n intv(D,S) = 

(conjunction) 

(instantiation) 

(invariance) 

15. <D]{p}S{q} ~ {p[y/xXa~/a]}S{q}> 

provided that x ~ sVar(D,S,q), a ~ avar(D,S,q) 

(substitution, I) 

16. <Dl{p}S{q} ~ {p[y/x][a'/a]}S[y/x][a'/a]{q[y/x][a'/a]}> 

provided that x ~ svar(D), a ~ avar(D), y ~ svar(D,S,q), 

a' ~ ava-~(D,S,q) 

17. <Dl{p}S{q} ~ {p}S{q}> 

provided that S ~ 

(substitution, II) 

(congruence) 

Let ~<Dl{p}S{q}> denote that <Dl{p}S{q}> is formally provable in the proof system 

consisting of 

I. As axioms: Rules I~ 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, together with all c.f. 

<Dip> such that ~<D]p> 

2. As proof rules: Rules 2, 3, 4, 10, 13. 

We are interested in showing soundness (if [-<D]{p}S{q}> then l=<Dl{p}S{q}>) and com- 

pleteness (if ]=<Dl{p}S{q}> then ~<D[(p}S{q}>) of the above system in case <DIS> is 

closed and contains only initialized local s.v. In the present section we discuss 

soundness, in the next one completeness. 

Due to the presence of the induction rule (#10), even when we start the formal proof 

of <Dl{p}S{q}> with <DIS> closed, we may encounter at intermediate stages non-closed 

programs ( note that the Qi in the premise of rule 10 are not declared), and we there- 

fore cannot restrict our attention to closed programs only. However, for non-closed 

programs various of the c.f. in the system are invalid. (E.g., take rule 14, with D 

empty, p ~ q ~ (x=O), S ~ P(O,y) with y ~ x, and let y(P) df. ~t.%v.%e-~o-o{I/e(x)}. 

In fact, rules 5, 7, 8, 9, 11, 14, 15, 16 are all invalid.) Hence, we have to refine 

the notion of validity. Instead of putting: l=g iff ~(g)(x) holds for all X e F (cf. 

2.4), we introduce a subset F D ~ F, such that, for all P, t, v, and y e F D, y(P)(t,v) 

satisfies the properties as mentioned in lemma 2.2 and theorem 3.2 for closed pro- 

grams. More specifically, we have 

rD 
DEFINITION 4.1. Let D ~ Oga£. ~ is the subset of P consisting of those y which sat- 

isfy, for all P, t, v: 



a. If (i) intv(D,t,v) ~ dom(g), (ii) ~ ~ dom(e)\intv(D,t,v), (iii) a' = y(P)(t,v) 

(e)(o), a' # ± then, (iv) ~'(e(~)) = o(s(~)) 

b. If n,m e 0 and 

(i) ~ntv(D) u (intV(t,v)\{xi}i\{<aj,e>a}j) ~ ~ ~ dom(s) n dom(~). 

(ii) (~°~)16 = ($°~)l~- 

(iii) For i = ],...,n, either a(ei) = o(ei) , or x i ~ svar(P(t,v)). 

For j = ],...,m, either, for all a e VO, c;(ea, j) = a(ea,j) , or 

a. ~ avar(P(t,v)). 
3 

(iv) x(P)((t,v)EYi/Xi]i[a~/a~]j)(e~ ~ u <Yi,ei>i_ u <<<a~3,a>,e ,j> >j)(~) = _a' 

x(P)((t,v)Ezi/xi]i[a~/aj]j)(Tu <zi,ei>i u <<<a~,a>,e ,j> >j)(~) = ~', 

then 

(v) 

(vi) 

( ~ ' o ~ ) 1 6  = ( ~ ' o ~ ) l ~ .  

For i = l,...,n, either ~'(e i) = ~'(ei) , or x i ~ svar(P(t,v)). 

For j = ~, ..,m, either, for all ~ ~ V0, c~'(e ,~)~ = ~'(e ,j) • • , o r  

a ~ avar(F(t,v)) 
3 

END 4.1. 

Combining the postulated properties of F D with lenm~ 2.2, thm. 3.2, cor. 3.3, ~e 

obtain 

THEOREM 4.2. As lemma 2.2, thm. 3.2 and cor. 3.3, but now for arbitrary programs 

<DIS> (i.e., closed or non-closed), provided (all local s.v. are initialized and) 

y ~ F D 

END 4.2. 

Using thm. 4.2 it is not difficult to prove 

LEMMA 4.3. If ¥ ~ r D, ~ as usual, then, if (i) intv(D,f) ~ 6 E dom(~) n dom(~), 

(ii) (o°e)I~ = ($o~)I6 then, (iii) F(f)(~)(e)(~) = F(f)(~)(e)(o)° 

END 4.3. 

The refined validity definition takes the form 

g ~ <Dlfl~f2>. We call g valid (~g) if, for all y c £ D, G(g)(x). DEFINITION 4°4. Let 

END 4.4. 

Remark. The definition of soundness of an inference remains unchanged (but now refers 

to the new notion of validity). 

At last, our efforts are rewarded by 

THEOKEM 4.5. (soundness theorem). All c.f. of the above proof system are valid, and 

all its inferences are sound. 

The proof uses more or less traditional means for rules such as the assignment rule, 

the induction rule (employing the continuity of %ni°....hn~.%t.%v. N (Bj(t,v)) 

(x{n~/Pi}i)) and a number of further rules. For the rules of selection, composition 

and consequence it moreover uses lenmla 4.3. Finally, the proofs of validity of the 
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s.v. declaration rule, the invariance rule and the two substitution rules rely heavily 

on theorem 4.2 and lermna 4.3 (and lermma 2.1, 2.3). 

END 4.5. 

5. Completeness 

We now prove the completeness of the system of rules ! to 17 (extended with all 

<Dip> such that I=<DIp>; this follows an idea of Cook [8], and leads to what may be 

called relative completeness). Let us recall that we only consider programs in which 

all local s.v. are initialled. For simplicity's sake, from now on we restrict our- 

selves to programs with only one procedure declaration, say D ~ P ~ B, with B ~ <val 

x, add ylS>. We can then specialize the induction rule to 

m m 
<P~Bl<{pi}Q(ti,vi){qi}>i=1 ~ <{Pi}B'(ti,vi){qi}>i=1> 

10'. (induction') 
m 

<P~Bl<{Pi}P(ti,vi){qi}>i=1 > 

where m e I, B' ~ B[Q/P], Q ~ pvar(P,B). 

For the completeness proof we need some auxiliary results. First, we introduce the 

notion of strongest postcondition of a program <DIS> with respect to an assertion p. 

Let r be an assertion satisfying 

I. ~<Dl{p}S{r}> 

2. For all q ~ ~Sn, if ~<Dl{p}S{q}>, then l=<Dlrmq>. 

We then say that r is a strongest posteondition of <DIS> with respect to p, and denote 

it (with slight abuse of language) by sp(p,<DIS>). 

LEMMA 5.1. 

a. For each closed <DIS> and p e A6sn there exists r ~ ASSn such that r ~ sp(p,<DIS>) 

and intv(r) ~ intv(p,D,S). 

b. For p, D, S, r as in part a, and ~ such that intv(p,D,S) ~ dom(c), T(r)(s)(o) = 

(O#±) ^ 3o'[T(p)(e)(o') ^ (aoE) Idom(~) = (N(s)(~)(~)(~')os)Idom(e)] (here ~ = 

Y{n/P} (n as usual) which, since <DIS> is closed, is independent of X). 

c. ~sp(p,<DIS>)[y/x] = sp(p[y/x],<DIS[y/x]>), provided x ~ svar(D), y ~ svar(p,D,S). 

END 5.1. 

Remark. The proof of part a of this lemma is non-trivial and uses tools from recursive 

function theory. 

Next, we need 

LEMMA 5.2. 

a. Let <DISI;S2 > be a closed program. Then 

~<DI{p}SI;S2{q} ~ {p}S1{r} ^ {r}S2{q}> , where r E sp(p,<DIS1>) 

h. l=<Dl{p}S[y/x]{q} ~ {p}b new x;S !{q}>, provided y @ avar(D,p,S,q) 

END 5.2. 
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The proof of the completeness theorem uses a key lemala (following Gorelick [93): 

LEMMA 5.3. Let p,q ¢ A6Sn, <D[S> a closed program, and let S ~ S be such that no bound 

s.v. of S occurs free in D. Let P(tl,vl),...,P(tm,V m) be the occurrences of procedure 

calls (of P, by closedness no other calls are possible) in S. For each i = 1,...,m 

i _ . , df. , (i) (i), ^ a , (i) (i), ^ , (i) -(i), A A " (i) 7(i)~ 
et pit.,v.) ~ ~x I = z~ ) ... kXk. = z~. ) ~a I = a I ) ... ~aF. = =po j, 

where {x ...... x k. } = 8var(D,t.,v.), {a ...... s~ } = a~aP(D,t.,v.), 
(1) (1) --(l~ --(~) . . . . .  

Z, ,-..,Zd. , a, ,...,a~. are completely fresh, and a = a abbrevlates Vx[a [x] = 
* ~i i ~i df. 

a"[x]]. Let moreover, r(ti,vi) ~ sp(p(ti,vi),<D]P(ti,vi)>), i = l,...,m. We have: 
m 

If ~<D]{p}S{q}> then ?<D]<{P(ti,vi)}Q(ti,vi){r(ti,vi)}>i= 1 ~ {p}S[Q/P]{q}>. 

PROOF (sketch). The proof uses induction on the complexity of S. If S ~ v:=t or 

5 if... fi, the result is clear by the rules for assignment and conditionals. If 

~ SI;$2, apply lemmla 5.2a. If S E b new x;S] e (note that x ~ 8ua~(D) by assumption) 

use lemma 5.1c, 5.2b, and the rules of s.v. declaration and substitution II. If S 

P(ti,vi) for some i, I N i ~ m, we need a more elaborate argument involving the rules 

of invariance and conjunction, and both substitution rules. 

END 5.3. 

From now on we assume that S O (the statement of the procedure body B) contains pre- 

cisely one recursive call of P, say S0E ...P(t0,v0) .... (We expect that, at the cost 

of a rather tedious elaboration of the argument to follow, the general case can also 

be taken care of.) Let t,v be arbitrary parameters. We show that, using the notation 

of lemma 5.3, (*): ]-<D[{p(t,v)}P(t,v){q(t,v)}>. First, we have the following corollary 

of lemma 5.3. 

4 
COROLLARY 5.4. ~<D[<{P(ti,vi)}Q(ti,vi){r(ti,vi)}>i=l ~ <{P(ti,vi)}B'(ti,vi)~{r( 

>3 
ti,vi)} i=l >, where t I ~ t, v] E v, and, for i = 2,3,4, Q(ti,vi) is the procedure call 

occurring in B'(ti_|,vi_l) (and B' ~ B[Q/P]). 

END 5.4. 

Next, we use 

LEMMA 5.5. (Notation as in cor. 5.4). ~<D]{P(t3,v3)}Q(t3,v3){r(t3,v3)} ~ {P(t4,v4) } 

Q(t4,v4){r(t4,t4)} >. 

PROOF (sketch). We distinguish eight cases, depending on the form of v 0 and v 1 

(v 0 ~ x, v 0 ~ y, v 0 ~ Zo(~X,y) , v 0 ~ aEs0] , v I ~ Zl, v I ~ a[sl]), apply the definition 

of syntactic application repeatedly in order to determine ti, vi, i = 2,3,4, and, 

finally, use substitution rule II twice. 

END 5.5. 

By corollary 5.4, lemma 5.5 and the congruence rule we obtain ~<D]<{P(ti,vi)}Q(ti,vi) 

{r(ti,vi ) >3 } i=! ~ <{P(ti'vi)}B'(ti'vi){r(ti'vi) 3 }>i=i>, so by the induction' rule (#I0') 
>3 

~<D]<{P(ti,vi)}P(ti,vi){r(ti,vi)} i=l >, implying that (*): ~<Dl{p(t,v)}P(t,v)(r(t,v)}> 

is indeed satisfied. We are now sufficiently prepared for the proof of 
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THEOREM 5.6. (completeness theorem). Let p,q e ~n, <DIS> a closed program, and 

assume ~<Dl{p}S{q}>. Then ~<Dl(p}S{q}>. 

PROOF (sketch). Let S be as in lemma 5.3., and let P(tl,Vl),...,P(tm,Vm) be the 

occurrences of a procedure call in S. By lemma 5.3, ~<D[<{P(ti,vi)}Q(ti,vi){r( 
m 

ti,vi)}>i=l ~ {p}S[Q/P]{q}>o Thus, by the instantiation rule, l-<Dl<{P(ti,vi)}P( 
m 

ti,vi){r(ti,vi)}>i=1 ~ {p}S{q}>. By (*) (and the collection rule) ~<Dl<{P(ti,vi)}P( 
m 

ti,vi){r(ti,vi)}>i=l> , and the desired result follows by the (transivity and) con- 

gruence rule. 

END 5.6. 

Altogether, we have achieved the goal of our paper: We have presented a proof system 

for partial correctness, and proved is soundness (theorem 4.5) and completeness 

(theorem 5.6). 
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ABSTRACT 

A new method for verification of programs is proposed. The main idea is to 

reduce assertions about programs to the problem of reachability. It is sbown in [ 1 ] 

t hat the reachability problem is algorithmically solvable for a wide class of programs. 

1. INTRODUCTION 

The following problem of reachability of instructions in programs is considered: 

given a program P and an instruction K in the program P, the question is whether 

the instruction K is reachable~ i.e. whether there is an input data sample S such 

that while running the program P on the sample S, the instruction K is executed. 

It was shown in [1] that this problem is algorithmically solvable for a sufficiently 

wide class of data processing programs. An experimental system was built for reach- 

ability testing of programs in a COBOL-like language [I,2 ]. The results obtained 

make us believe in the possibility of implementing a system which solves the reachability 

problem for most of real data processing programs. 

There arises a question: is it possible to utilize the solvability of the reachability 

problem for proving assertions about programs. In other words, we ask what 

advantage can be got by introduction of the following type of derivation rules : 

Program P, instruction K, K in P 

R(P, K) , if K is reachable in P , 

"7 R(P~ K) , if K is not reachable in P 
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The aim of this paper is to show that a wide class of assertions about programs 

is reducible to the problem of teachability. The idea of this reducibility is as follows. 

We add new blocks to the program P~ and these blocks check the validity of the given 

assertion about the input-output relation in the program P. This~ in a sense~ is a 

further development of ideas by Panzl ~3] for a wider class of assertions. 

2. THE MAIN IDEAS AND EXAMPLES 

In order to expose the main ideas we consider a very simple programming lan- 

guage L o introduced in ~1]. This language could be used for processing of sequen- 

tial files. We consider file as a variable whose values are finite sequences (XI~X2~ • .. 

X ) of integers: and X is the i-th record of the file. Each program has a finite 
p i 

number of input files and a finite number of output files. There are internal variables 

in the program. These variables take integer values. The initial value of each internal 

variable is 0. 

be an input file and Z be an output file. Let t and u be the internal 

c be a constant~ i.e. a fixed integer. Instructions of the following type 

L e t  A 

v a r i a b l e s  a n d  

a r e  a l l o w e d .  

1 ° . A --> t. The current record of the file A is assigned to the variable t. Thus 

if A = (AI~ A2~ ... ~ A )~ then the first occurence of the instruction A --~t 
P 

assigns record A 1 to the variable t~ the second assigns record A 2 to the 

same variable t etc. The instruction has two exits~ namely~ the exit " + " 

for the case if the current record exists~ and the exit " - " for the case~ if 

the current record does not exist. In the latter case the value of the variable 

t is not changed. 

2 °. t --> Z. The value of the variable t is assigned to the current record of the 

file Z. 

3 °. u --> t (respectively~ c --~t). The value of the variable u (the value of the 

constant c) is assigned to the variable t. 

4 ° . u Ot (respectively~ c Qt)~ where OE{<~>~<~=)~] • The instruction 

has two exits~ namely~ " + " for the case~ if the condition holds~ and " - "~ 

otherwise. 

5 ° . STOP 
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Let L be the language generated by the instructions 1°-5°~ where the prog- 
o 

rams are given as flowcharts over this instruction set. Fig. 1 gives an example of a 

program~ which creates a new sorted file Z by merging sorted files A and B. 

4+ 
12 ~bl-- 

A 3 :  a ~ b  L 

I ~ .  a - ~  Z I i~ " b - ~ Z  

5 A ~ a l l T " B - ~ b  

i 
12 : STOP I 

Fig. I. 

Now we consider the following assertion (~ about programs with hlput files 

A and B~ and output file Z: if the input files A and B are sorted~ then the out- 

put file Z also is sorted. Now we describe how to reduce checking of the assertion 

Og to the problem of reachability. Let P be a program. We try to check the assert- 

ion 06 for it. Let the program P contain instructions of the following types: 

A -~ a~ B -~-b~ a~> b~ a-~Z~ b-~ Z~ STOP. Weuseno more information about 

the program P~ while describing the reduction. We use the following blocks for the 

reduction: ~ ~  "~ 
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E 

~a-'-~ Z = 

The b l o c k  
A--~ a 

c h e c k s  t h e  i npu t  f i l e ' s  

Z ~_ lSb"~z= 
checks the input file's A being sorted, the block ~B-,-b 

B being sorted. The blocks ~ a-~ Z and ~ b -.- Z 

Z being sorted. We add a new instruction K and the ]~ - check the output file's 

b l o c k s  in to  t h e  p r o g r a m  P a s  f o l l o w s :  

I B--bl 

] I ] I I [i J 

Lb z] 

The result of this substitution is a new program P'. Fig.2 shows the result of the 

substitution for the program P shown in Fig. I. It is obvious that the instruction K 

is reachable in the program P' if and only if the assertion ~ does not hold for 

the program P. Hence~ the checking of the assertion ~ for P is reduced to the 

problem of reachability. 

We consider one more example. Let ,~ be the following assertion: the output 

file Z is a result of merging of the input files A and B. We will prove that the 

checking of the assertion 6~: is also reducible to the problem of reachability. Let 

the program P~ for which the assertion ~ is to be checked~ contain instructions 

ofthe following types: A-~a~ B-bb~ a >~ b~ a-~Z~ b-~Z~ STOP. Weuse 

the following blocks for the reduction: 
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We add a new instruction K and perform the following substitutions of B -blocks 

into the program P: 

vr2~ 



18 

L_% 

The r e s u l t  o f  t h i s  s u b s t i t u t i o n  i s  a new  p r o g r a m  P~ ' .  I t  i s  o b v i o u s  t h a t  t h e  

i n s t r u c t i o n  K i s  r e a c h a b l e  in  t h e  p r o g r a m  p,  w i f  and  o n l y  i f  t h e  a s s e r t i o n  

d o e s  not  h o l d  fo r  t h e  p r o g r a m  P. Hence~  we  h a v e  r e d u c e d  t h e  c h e c k i n g  of  t h e  a s s e r t -  

ion  ~ to  t h e  p r o b l e m  of  r e a c h a b i l i t y ~  a n d :  m o r e o v e r ~  t h e  t r a n s f o r m e d  p r o g r a m  i s  

in  t h e  s a m e  l a n g u a g e  L . 
o 

I n  t h e  r e d u c t i o n  d e s c r i b e d  w e  c o n s t r u c t e d  a p r o g r a m  P '  ( o r  P '  ' ) f r o m  t h e  

p r o g r a m  P. T h i s  c o n s t r u c t i o n  h a s  t h e  f o l l o w i n g  p r o p e r t y .  We had  a c o r r e s p o n d i n g  b l o c k  

for any type of instructions ~ and w e  inserted this block ~ immediately after 

or immediately before the corresponding instruction. This way a new program P' 

was got. Such a construction of program P~ from program P will be called const- 

ruction by blocks ~ and the corresponding reducibility will be called reducibility b~ 

blocks. It is easy to present a correct mathematical definition~ but for the sake of 

brevity we shall not do this. 

A question arises: are the other natural assertions about programs reducible to 

the problem of reachability as well ? Our main conjecture asserts that such a reduci- 

bility is~ a s  a r u l e ~  not  o n l y  p o s s i b l e  but  q u i t e  a s i m p l e .  Fo r  a p a r t i a l  c o n f i r m a t i o n  of  

t h i s  c o n j e c t u r e  w e  i n t r o d u c e  a l a n g u a g e  fo r  a s s e r t i o n s  abou t  p r o g r a m s  and  f o r m u l a t e  

a t h e o r e m  abou t  r e d u c i b i l i t y .  
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,3. A LANGUAGE FOR THE DESCRIPTION OF ASSERTIONS ABOUT PROGRAMS AND THE 

MAIN THEOREM 

We use a highly restricted predicate calculus as the language for the description 

of assertions. On the other hand~ this language contains a number of individual predi- 

cates. These predicates will be called elementary formulas. 

Now we describe the language precisely. Capital Latin alphabet letters A~ B, 

•.. ~ Z denote the variables. These variables are called file-variables (or files). 

A~ ... S are used for input file-variables (or input files) , and T, ... ~ Z are 

used for ou__~Dut file-variables (or output files). Small Latin alphabet letters a~ 

b, ... , z denote other variables. These variables are called record-variables (or 

records). (In general case an infinite alphabet is used. It contains, for instance~ 

letters with lower-case indices. This remark do not influence the validity of the result 

below). 

Let ~ ~9 be arbitrary record-variables~ and ~ ~ be arbitrary file-variables. 

The elementary formulas are as follows. 

E A ("The record 

e • A ("The record 

cates of ~ in 

~- b / A ("The record 

~/A ("The record 

// A ("The record 

• D ("The value of ~. 

~ i ~  (" -'I ~ >~ "); 
= ~ (,, ~ i ~  ~ ~ " ) ;  

~ / 7~ (', - 1 ~  = i ~ " ) .  

is contained in the file A") ; 

is contained in the file ~-~ and there  are  no dupli- 

X "); 

immed ia t e ly  p r e c e d e s  the r e c o r d  ~ in the  file ~,") ; 

is the first record in the file A") ; 

is the last record in the file A") ; 

exceeds the value of b") ; 

Formulas are the formulas of first-order predicate calculus built from elemen- 

tary formulas using ,~ ~ V ~ ~ ~ "7 and quantifiers. There is a severe restriction~ 

namely~ only quantifiers over free record-variables are allowed. Hence all the file- 

variables in our formulas are free. For example~ in the formula 

V a  ( a ~ - b  / A  ~ a > b )  

the f r ee  v a r i a b l e s  a r e  b and A.  
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Simple formulas are the quantifier-free formulas, i.e. the formulas built 

from elementary formulas by use of ~ ~ V ~ ~ "I . 

Let ..~ (a~ b ~ ... ) be a formula. We consider the formula 

Va V b  . . .  ~ ( a ,  b, . . . ) ,  

w h e r e  t h e  u n i v e r s a l i t y  q u a n t i f i e r s  a r e  t a k e n  o v e r  a l l  t h e  r e c o r d - v a r i a b l e s  in . ~ .  

We d e n o t e  s u c h  a f o r m u l a  by { .~ t} .  It i s  e a s y  to  s e e  t ha t  on ly  f i l e - v a r i a b l e s  a r e  f r e e  

Local  a s s e r t i o n  about  t h e  f i le  ~ is  a f o r m u l a  { . ~ } ,  w h e r e  .D~ i s  a s i m p l e  

fo rmula~  and i t s  on ly  f i l e - v a r i a b l e  is  A . 

A s s e r t i o n  about  t h e  f i le  ~ wi th  r e s p e c t  to  f i l e s  ~k, B~ . . .  i s  a f o r m u l a  

{.,¢~ ~ ~ } ~ w h e r e  . ~  is  a s i m p l e  f o r m u l a  con t a in ing  no o t h e r  f i l e - v a r i a b l e s  

t h a n  .k~ B~ . . .  ~ and ~ is  a s i m p l e  f o r m u l a  c o n t a i n i n  9 on ly  one  f i l e - v a r i a b l e  

A s s e r t i o n  about  p r o g r a m s  wi th  input  f i l e s  A~ B~ . . .  and output  f i l e s  T , U ,  . . .  

i s  a f o r m u l a  

where 

every {~4 i} is a local assertion about an input file ~ ~ {A, B, ... ), 

every{J~i = Ci} is an assertion about an output file ~ {T, U, ...} with 

respect to input files A, B, ... 

every {'~i} is a local assertion about an output file ~E {T, U .... ]. 

It is easy to see that the free variables in assertions of this type are the file-variables 

A~ B~ ... ~ T, U, ... 

We denote the lan9uage for the description of assertions about programs by C~.. 

Two examples of assertions about programs with input files A~ B and an output 

file Z are considered below. 

Example 1 

({(x ~A & y E  A & xl-y/A) D x~ y] & 

&{(x~ B & y~ B & x~-y/S) = x~ y} ) = 

m ({x~Z a y~Z a x~y/Z)=x_~y]) 

E x a m p l e  2 

{(x~A V x ~ B )  ~ x~z] 
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It will follow from the semantics described below that Example 1 is in a sense 

equivalent to the assertion ~ of Section 2 ~ and Example 2 is equivalent to the 

assertion 

Now we describe the semantics of the language ¢~ . To do this we slightly 

change the interpretation of the record and of the file given in Section 2. Now we 

interpret a record as a pair (I~ n) ~ where the identifier I of the record is an 

arbitrary word (I may be the empty word as well) consisting of Latin alphabet letters 

and digits~ and the numerical value n of the record is an arbitrary integer. We 

interpret a file as a finite sequence of records 

( ( I I, n I ) , (12, n 2 ) .... , (Ik, n k) )- 

An example of the value of a file: 

( (DE I, 7) , ( E, -2 ), (A 1, 5) , ( E, -2) , (A I, 7) ). 

This example contains two occurrences of the record ( E, -2 ) in the value of the 

file. By the way~ it is easy to express inthe language ¢~ an assertion about a file 

A prohibiting multiple occurrences of records- 

{a~A = a~. A}. 

Now let records ~, b and a file A take certain values: 

.o nO ), o o 
= a = , = = ( I ~  , n~. ) , 

o nol ) ' ( i  o n k  ) ) .  _K=X°  = ( ( I ~  . . . . .  k ' 

Then the values of the elementary formulas are defined as follows. 
.O ~O 

~ A is true, if a is contained in ~ and false otherwise; 

~.i is true~ if a is contained in and there are no multiple occurrences 

of ~o in ~o and false otherwise; 

~-b/A 
.o 

is true~ if there are occurrences of ~o and ~o in ~o such that a 

precedes ~o and false otherwise; e.g. for ~ = (A, 5)~ ~ = (B, 7)~ 

= (C~ 2) and X = ( (C~ 2)~ (A, 5): (B~ ?)~ (A~ 5) ), ~-~/A istrue, 

b~,~/A istrue, ~.-~/7~ is false; 

~li 
- . 0  

is true~ if the first record in A ° is a ~ and false otherwise; 

~ I I  
.o 

is true~ if the last record in ~o is a ~ and false otherwise; 

o 
> b is true, if n~ > n~. , and false otherwise; 
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~> b i s  t r u e ,  if  n~ ~> n~ , and f a l s e  o t h e r w i s e ;  

o 0 
= ~) i s  t r u e ,  if  n E = n~ ~ and f a l s e  o t h e r w i s e ;  

o O 
~ ~ is true, if n¢ ~ n$. , and false otherwise. 

The v a l u e s  of  s i m p l e  f o r m u l a s  and a s s e r t i o n s  about  p r o g r a m s  for  given v a l u e s  

of  the  f r e e  v a r i a b l e s  a r e  def ined  in the  n a t u r a l  way .  

S ince  we h a v e  s l i gh t l y  changed  the  i n t e r p r e t a t i o n  of  f i l es  and r e c o r d s ,  w e  a r e  

t o change  the  i n t e r p r e t a t i o n  of  i n s t r u c t i o n s  of  the  l anguage  Lo as  w e l l .  Now the  

v a l u e s  of  the  r e c o r d s  ~ i . e .  a r b i t r a r y  p a i r s  of  ( I ,  n ) t y p e ,  wi l l  be c o n s i d e r e d  a s  

t h e  v a l u e s  of  t he  i n n e r  v a r i a b l e s  of  the  p r o g r a m .  The c o n s t a n t s  of  the  p r o g r a m  wil l  

be  denoted  a s  ( ~ , c )  , w h e r e  ~. i s  the  e m p t y w o r d ~  and c i s  an i n t e g e r  s 

namely~  the  n u m e r i c a l  va lue  of  the  g iven c o n s t a n t .  The i n s t r u c t i o n s  A--~t~ t -*- u , 

t --*- Z now m e a n  the  a s s i g n m e n t  of  the  v a l u e s  of  the  r e c o r d s ,  i , e .  p a i r s  of  the  m e n -  

t i oned  t y p e .  On the  o t h e r  hand ,  i n s t r u c t i o n s  of  t < u type  c o m p a r e  only  n u m e r i c a l  

v a l u e s  of  the  r e c o r d s .  Hence  the  p e r f o r m a n c e  of  t he  p r o g r a m  in fact  do not  depend  

on the  i d e n t i f i e r s  of  the  r e c o r d s  u s e d .  The i d e n t i f i e r s  of  the  r e c o r d s  a r e  i n t r o d u c e d  

only  fo r  the  i n t e r p r e t a t i o n  of  a s s e r t i o n s  about  p r o g r a m s .  

Let F be an a s s e r t i o n  about  p r o g r a m s  wi th  input  f i les  A ,  B, . . . .  and output  

f i l e s  T, U,  . . .  Let a p r o g r a m  P u s e  the  s a m e  f i l e s .  We s a y  tha t  the  a s s e r t i o n  

F i s  t r u e  fo r  the  p r o g r a m  P if fo r  all  p o s s i b l e  v a l u e s  of  input  f i l es  A A ° 

B = B ° ,  . . .  s u c h  tha t  the  p r o g r a m  P t e r m i n a t e s  and fo r  the  ob ta ined  v a l u e s  T = T ° ,  

U = U °~ . . .  of  the  output  f i l es  the  a s s e r t i o n  F i s  t r u e .  

When the  l anguage  for  t he  d e s c r i p t i o n  of  a s s e r t i o n s  about  p r o g r a m s  i s  fixed~ the  

f o l l o w i n g  p r i n c i p a l  q u e s t i o n  a r i s e s :  g iven an a r b i t r a r y  a s s e r t i o n  F in the  l anguage  

and g iven an a r b i t r a r y  p r o g r a m  P ~ i s  it p o s s i b l e  to find out  e f f ec t ive ly  w h e t h e r  the  

a s s e r t i o n  F i s  t r u e  fo r  the  p r o g r a m  P. The fol lowing t h e o r e m  g ives  an a f f i r m a t i v e  

a n s w e r  in the  c a s e  of  the  l anguage  ot . 

THEOREM. T h e r e  i s  an a l g o r i t h m  which  for  an a r b i t r a r y  a s s e r t i o n  F in the  

l a n g u a g e  d and for  a r b i t r a r y  p r o g r a m  P in t he  l anguage  L o c o n s t r u c t s  by b locks  

a p r o N r a m  P' in t he  s a m e  l anguage  L o and an i n s t r u c t i o n  K E pw s u c h  tha t  t he  

i n s t r u c t i o n  K is  r e a c h a b l e  in the  p r o g r a m  P' if  and only  if  the  a s s e r t i o n  F i s  

f a l s e  fo r  the  p r o g r a m  P. 
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The proof of the theorem is a bit lengthy and, therefore, we are not able to 

include it in the paper. 

4. CONCLUSION 

From the theoretical point of view our research resembles the problem of equi- 

valence of programs in the language L o . In the general case this problem is apparent- 

i y extremely hard problem. A highly particular case of this problem ~ namely the 

equivalence problem for two-tape finite automata)was solved by Bird [4] . From this 

point of view our Theorem can be interpreted as the solution of the equivalence prob- 

i em for programs in the language L o under the restriction providing the description 

of the performance of the given program in the language ~ . (It is evident that such 

a description is possible not for every program in the language L o ). 

It seems that our Theorem can be generalized by adding new elementary pre- 

dicates to the language ¢~ . However, when extending the language ~ ~ it should be 

remembered that algorithmic unsolvability can appear easily. For example~ let a 

language ~.' contain 0~ and at the same time let it contain means to express identity 

of two input files. Then it is easy to prove (by usage of Post's combinatorial problem) 

t hat there is no algorithm to recognize whether an assertion in the language (Z' about 

programs in the language L o is true. 
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ASSERTION PROGRAMMING 

Andrzej J. B l i k le  

I ns t i t u te  of Computer Science, Polish Academy of 

Sciences, PKiN, P.O. Box 22, 00-901 Warsaw, Poland 

ABSTRACT. The paper describes a method of the systematic development of programs sup- 
plemented by spec i f ica t ions.  A program in our sense consists of an ins t ruc t ion (the 
v i r t ua l  program) plus the spec i f i ca t ion  which in turn consists of a precondi t ion,  a 
postcondit ion and a set of assert ions. Such a program is cal led correct  i f  the 
ins t ruc t ion is t o t a l l y  correct  wrt  the pre-and postcondi t ion,  i f  i t  does not abort 
and i f  the set of assert ions is adequate fo r  the corresponding proof of correctness. 
In the presented method correct  programs are developed by sound transformations. The 
method is i l l u s t r a t e d  by the der ivat ion of  a bubblesort program. 

I .  INTRODUCTION 

The mot ivat ion for  structured programming (Di jks t ra  [14]) was to help the pro- 

grammer in developing, understanding, documenting and possibly also proving correct  

programs. The l a t t e r  goal,  however important and worth of  e f f o r t  (D i jks t ra  [ !6] ) ,may 

be qui te cumbersome i f  we f i r s t  develop the complete program and only then t r y  to 

prove i t  correct .  I t  is much easier to develop and prove programs simultaneously 

since in such a case in s t ructur ing a program we may also structure the proof. This 

idea st imulated many authors to formal ize the process of programming by describing 

i t s  steps as more or less formal transformations (D i jks t ra  [15],  Darl ington [1 ! ,12 ] ,  

Spitzen, Lev i t t  and Lawrence [30],  Wegbreit [31],  B~r [2 ] ,  Burstal and Darl ington [10],  

Bj@rner [3 ] ) .  In such a case every step of the proof of  correctness has the same 

scheme: we prove the correctness of the current version of the program on the strength 

of the correctness of a l l  former versions, This raises immediately a new idea. 

Instead of checking each time that  our transformation does not v io la te  the correctness, 

we can prove once and for  a l l  that  in a certa in class of programs th is  transformation 

always preserves the correctness (Dershowitz and Manna [13],  van Emden [17],  I r l i k  

[24], Bl ik le [4,5,7],  Back [ l ] ) .  In this way the correctness proofs of programs are 

replaced by the soundness proofs of transformation rules. 

In developing programs by sound transformations we avoid the necessity of prov- 

ing programs correct but at the same time we lose a substantial source of information 

An early version of this paper was presented at the international con- 
ference Fomaale Methoden und Mathematische Hilfsmittel f~r die Software- 
konstruktion, Oberwolfach, January 1979. The present version was prepared 
when the author was a visiting Mackay professor in the Dept. of Electrical 
Engineering and Computer Science of the UC Berkeley and was also partly 
supported by NSF Grant MCS 77-09906. 
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aboUt the program which is contained in the proof of  correctness (cf .  D i jks t ra  [16]) .  

Even i f  th is  information may be i m p l i c i t l y  accessible to the programmer through the 

way he has developed theprogram, i t  ce r ta in ly  w i l l  not be seen by the user. In order 

to maintain a l l  the advantages of programming by sound transformations without loosing 

the advantages of having the proof of correctness in an e x p l i c i t  form we propose in 

th is  paper to enrich the input-output spec i f ica t ion of programs by the spec i f ica t ion 

of the proof of  correctness. Technical ly,  the proof of correctness is speci f ied by 

a set of  assertions nested in the appropriate places between the inst ruct ions of  the 

program. Program correctness is understood as pa r t i a l  correctness plus non-looping 

and non-abortion. Such correctness is stronger than so cal led to ta l  correctness which 

usual ly means Ccf. Manna and Pnueli [28] and Manna [27]) pa r t i a l  correctness plus non- 

looping. The fact  that  we deal with the abort ion problem makes the c lassical  log ic  

inadequate fo r  the treatment of condit ions and assertions in our method. We are using 

therefore McCarthy's 129] pa r t i a l  log ic  which per fec t ly  f i t s  to that  goal. 

Another method of developing programs wi th assert ions has been described by Lee, 

de Roever and Gerhard [25]. In that  method, however, the underlined concept of pro- 

gram correctness is the pa r t i a l  correctness and the assert ions coincide wi th Floyd's 

invar iants.  

The fact  that  we extend the I /0  spec i f i ca t ion  of programs (the pre- and postcondi- 

t ions)  by adding assert ions seems to have the fo l lowing advantages: F i rs t  of a l l ,  

assert ions describe local propert ies of programs which may be helpful not only in pro- 

gram understanding but also in i t s  maintenance and tes t ing .  Secondly, knowing asser- 

t ions we can recheck program correctness in a nearly mechanical way, This option may 

be of in te res t  whenever we need an extra high r e l i a b i l i t y  of  programs; i . e . ,  in micro- 

programming. F ina l l y ,  since our assert ions sa t i s fy  the requirements of proofs of t e r -  

minat ion, they adequately describe the time complexity of a l l  loops. 

The paper is organized as fo l lows:  Sec. 2 contains the descr ip t ion of an abstract 

programming language. Sec. 3 is devoted to the pa r t i cu la r  log ica l  framework which is 

needed in order to handle the problem of abort ions,  Sec, 4 introduces the concept of  

the assert ion-correctness of programs. Program development rules and the problem of 

t he i r  soundness are discussed in Sec. 5. The las t  Sec. 6 i l l u s t r a t e s  the method by an 

example of the bubblesort program. Due to space l im i t a t i ons  the proofs of theorems, 

many comments and also some facts have been omitted in th is  paper. For more de ta i l s  

see B l i k le  [9] .  

2. THE LANGUAGE OF PROGRAMS' DEVELOPMENT AND SPECIFICATION 

I t  is not the aim of th is  paper to concentrate on the technical de ta i l s  of a pro- 

gramming language sui table for  our method of program der iva t ion .  Al l  we want to con- 

vey to the reader is the general idea of such a language along with some technical 
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suggestions about the transformation rules and the programming techniques. The langu- 

age which is described below should be considered as only an experimental version. 

Since i t  represents a certa in method of programming and since i t  is the f i r s t  approxi-  

mation of what we may expect to have in the fu ture ,  we shall ca l l  i t  PROMETH-I (pro- 

gramming method~ I ) .  

PROMETH-I is an abstract  programming language which allows abstract  programming 

construct ions and abstract  data types. These abstract  elements are used only in pro- 

gram development and documentation and therefore need not be necessari ly implementable. 

Data types in PROMETH-I are user def inable and may be developed together wi th the 

development of  programs. Each time we derive a program we f i x  our i n i t i a l  version of 

data type thus estab l ish ing the i n i t i a l  p r im i t i ves  of a problem-oriented version of 

the language. PROMETH-I const i tu tes a mathematical environment for  the development 

and the documentation of programs, rather  than a pa r t i cu la r  programming language. I t  

is not intended fo r  implementation. Instead, we may establ ish l inks between PROMETH-I 

and any implementable language ( l i k e  FORTRAN or ALGOL) and define sound transformations 

from programs in PROMETH into programs in that  language. 

In th is  paper by an abstract  data type (cf .  Guttag [23],  Liskov and Z i l l es  [26] 

ADJ [22]) we mean a many sorted re la t iona l  system of the form DT=(D,f . . . . .  fn ,q l  . . . .  qm ) 
d i ~ b. 

where D is a nonempty many-sorted ca r r i e r  and f iElD ÷ D] and gjE[D J ÷ { t r u e , f a l s e } ]  

are pa r t i a l  functions and pa r t i a l  predicates respect ive ly .  The p a r t i a l i t y  of functions 

and predicates is  an essent ial  point  in our approach since i t  al lows us to introduce 

and invest igate the problem of abort ion (Sec. 3). The problem of data-type spec i f ica-  

t ion is skipped. For the sake of th is  paper we simply assume that  our data type is 

always somehow defined (e .g . ,  in the set theory).  A very elegant formalism for  data- 

type spec i f ica t ion is provided by the i n i t i a l - a l g e b r a  approach (see ADJ [22],  Goguen 

[21],  Erig, Kreowski, Padawitz [19] and the papers referenced there) .  

Given DT we f i r s t  estab l ish the p r im i t i ve  syntact ical  components of PROMETH-I. 

With each f i  and qj we associate the symbols F i and Qj respect ive ly .  For sim- 

p l i c i t y  "=" denotes both, the i den t i t y  re la t ion  in D and the corresponding predicate 

symbol. For each sor t  in D we have in the set of q j ' s  the corresponding sort  

predicate.  This is a unary to ta l  predicate which gives the value true for  arguments 

of the given sort  and gives fa lse fo r  a l l  other arguments. Typical sort  predicates 

are integer n, array a, etc. We also have constant predicates true and fa lse defined 

in an obvious way. Having introduced the data-type or iented syntax we estab l ish the 

i n f i n i t e  set of  i d e n t i f i e r s  ( ind iv idua l  var iables)  IDE and we are ready to define 

the class EXP of expressions and the class CON of condi t ions.  These classes are 

mutual ly recursive:  

EXP is the least  syntact ical  class wi th the fo l lowing propert ies:  

I )  IDE c EXP 
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2) Fi(E 1 . . . . .  Eai) ~ EXP for any i ~n and any E l . . . . .  Eai E EXP 

3) i f  c then E l else E 2 f i e  EXP for any c E CON and any EI,E 2 E EXP. [ ]  

CON is the least syntactical class with the following properties: 

l) Qj(E l . . . . .  Eb. )j E CON for any j ~m and any E l . . . . .  Ebj E EXP 

2) c I ÷ c2,c 3 E CON for any Cl,C2,C 3 E CON 

3) (Vx)cF=CON and (~x)cECON for any xEIDE and cECON [ ]  

Remark: In the applications we identify F i with f i  and Qj with qj and allow 

the inf ix  notation. Typical elementary expressions are therefore x+y~v~-, (x+y)-z, 

max{kl~2n}, etc. and typical elementary conditions are of the form z~,  a is sorted 

i ~length a, etc. [ ]  

Having defined IDE, EXP and CON we can define subsequent syntactical classes: 

ASR - of assertions, TES - of tests, ASG - of assignments, EIN - of elementary instruc- 

tions, and INS - of instructions. We use the BNF formalism for this purpose: 

ASR::=as CON sa 

TES::=if CON f i  

ASG::=IDE:=EXP 

EIN::=skipIabortITESIASGIEIN;EIN 

INS::=EINIINS as CON sa INSlif CON then INS else INS f i I 

while CON do INS as CON saEXP o_d_dlinv CON;INS vni 

So far we have defined rather usual programming concepts, although with somewhat 

extravagant syntax. The latter is the consequence of the assumption that our instruc- 

tions (programs) are enriched by assertions. In the semantics of instructions these 

assertions play the role of comments and are simply skipped in the execution. Their 

role becomes essential in the semantics of assertion specified programs (abbreviated 

a.s. programs). This class is denoted by ASP and is defined by the equation: 

ASP::=pre CON; INS post CON 

In a.s. programs the conditions following pre and post are called the precondition and 

the postcondition respectively. In contrast to instructions, which describe algorithms 

the a.s. programs are statements about algorithms. This is formalized in Sec.4. 

In the description of the semantics of PROMETH-I we use the algebra of binary 

relations. For any sets AI,A2,A 3 any relations RI_CAIXA 2, R2_c-A2xA 3 and any subset 

C_CA 2 we define the composition of relations by R IR2={(a,b)l~c)(aRlc&cR2b)}, the 

coimage of C w.r.t. R l by RlC={aI(~c)(aRlC&C~C)}. For any A, by I A - or simply 

by I i f  A is understood - we denote the identity relation in A, i .e . ,  I< (a,a)laF-A}. 
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By ~ we denote the empty relation and the empty set. I f  R_CAxA, then R°=l and 

R*=U~=oRi. Ri+I=RR for any integer i>_O. By the iteration of R we mean For more 

details see Blikle [6,8]. By [AI÷A 2] and [AI÷A2] t we denote the set of al l  part ial,  

resp. total functions from A 1 into A 2. By S=[IDE÷D] t we denote the set of states. 

Consequently states are valuations of identif iers in the carrier of our data type DT. 

In this paper semantics is understood as a function (str ic t ly  speaking a many- 

sorted homomorphism) (ADJ [22]) which assigns meanings to al l  the investigated syntac- 

t ical entit ies. This function is denoted by [ ] hence [X] denotes the meaning of X, 

where X may be an expression, a condition, an instruction, etc. Of course, depend- 

ing on the class where X belongs, IX] is of appropriate type: 

I )  [ ]:EXP÷[S÷D] 

2) [ ]:CON÷[S+{true, false}] 

3) [ ]:INS÷IS+S] 

4) [ ]:ASPs{true, false) 

The semantics of the class EXP is defined by the following recursive (schemes 

of) equations: 

l )  [x](s):s(x) 

2) [Fi(E l . . . .  ,Eai)](s)=fi([El](S) . . . . .  [Eal](S)) 

F [EI](S) i f  [c](s)=true 

3) i f  c then E l else E 2 f i (s) =~[E2](s) i f  [c](s)=false 

Undefined i f  [c](s) undefined 

This coincides with the usual understanding of expressions both in programming 

languages and in mathematical logic. The semantics of CON is postponed to Sec. 3. 

Below we define the semantics of INS using standard denotational equations. Let 

x,E,c and IN, possibly with indices, denote identif iers, expressions, conditions and 

instructions respectively. 

I) [as c sa]=~skip]=l 

2) [ i f  c f i ]={(s,s)![c](s)=true} 

3) [x :=E] : { (S l ,S2) Is2(x}=[E] (S l )  and s2(Y)=Sl(Y) for a l l  yEIDE-{x}} 

4) [gbort]= 

5) [ INI ; IN2]=[ INI ] [ IN2 ] 
6) [ i f  c then IN 1 else IN 2 f i ] = [ i f  c f i ] [ I N l ] U [ i f  ~c fi_ ] [ IN 2] 
7) [whi le c do IN a__ss c a sa E od ]= ( [ i f  c f i ] [ I N ] ) * [ i f ~ c  fi__] 

8) [IN 1 as c sa IN2]=[ INI ] [ IN 2] 
9) [ inv c; IN vn i ]= [ IN]  

The semantics of the class ASP is described in Sec.4, 
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3. ON THE PARTIALITY OF CONDITIONS AND THE UNDERLINED LOGIC 

In the majority of approaches to the problem of program correctness expressions 

and conditions represent total functions. This assumption simplif ies the mathematical 

model but is hardly acceptable from the practical point of view. Every programmer 

knows that both expressions and conditions may lead to abortion i f  evaluated in an 

improper environment. For instance we cannot evaluate the condition a(i)~a(j) when- 
ever either i or j is outside of the scope of a. Despite this fa i r ly  clear moti- 

vation the part ial i ty of conditions has not been widely recognized in the theory of 

programs, although this problem was pointed by McCarthy [29] as early as in 1961. We 

adopt McCarthy's model as the base for our semantics of conditions. 

Similarly as for case of EXP the semantics of CON is defined by a set of 

(schemes of) recursive equations 

I) [Qj(El,...Ebj)l(s)=qj([El](S) . . . . .  [Eb.](s)).j 

F [c2](s) i f  [Cl](s)=true 

2) [Cl÷C2,C3](s)=~[c3](s) i f  [Cl](s)=false 
[,undefined i f  [Cl](S) undefined 

F true i f  for any state s I which differs 

I from s at most in x,[c](s)=true 
3) [(Vx)c](s)=ifalse i f  there exists a state s I which differs from s 

I at most in x, such that [c](sl)=false 
~undefined in all other cases 

The existential quantification is defined in a similar way. For better explana- 

tion consider the following example. Let the carrier D contain just two sorts - 
integers and integer arrays. Let sES, yEIDE with [integer y](s)=true. Then 

I) [ (~Ax) (x+y)2 >0] { s)=fal se 

2) [(Vx)(x+y)2~O](s) is undefined 

3) [(Vx)(integer x÷(x+y)2>O, true)](s)=true 
4) [(~x)(x+y)2~O](s)=true 

5) [(~x)(x+y)2<O](s) is undefined 

6) [(~x)(integer x÷(x+y)2<O, false)](s)=false 

Examples 3) and 6) show that i t  may be worth to extend the syntax of CON by 
allowing the conditions of the form (Vsort x)c and (~sort x)c, with the follow- 

ing semantics: 

[(Vsort x)c]=[(Vx)(sort x÷c, true~] 
[(7 sort x)c]=[(~x)(sort x÷c, false)] 

Now, 3) and 6) can be written in a more readable way: [(V integer x)(x+y)2>O](s)= 
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true and [ ( ~ i n t e g e r  x)(x+y)2<O](s)=false. For fur ther  convenience we extend CON 

again by introducing the usual connectives such as v,&, and D. We define the i r  

semantics a f te r  McCarthy [29]: 

I )  [ClVC2]=[cl÷true, c 2] 

2) [Cl&C2]=[Cl+C2 , fa lse ]  

3) [~c l ]  = [c l+ fa lse ,  t rue]  (3.1) 

4) [ClDC2]=[Cl÷C2, t rue]  

These connectives const i tu te  a natural genera l izat ion of the c lassical  case. In the 

present case, however, v and & are not commutative. 

In our approach we f requent ly  have to describe certa in metarelat ionships which 

may hold between condit ions. In order to define them we introduce an aux i l i a r y  nota- 

t ion .  Let fo r  any c { c } < s I [ c ] ( s ) = t r u e } .  As is easy to prove, fo r  any c I and c 2 

{Cl&C2}={Cl} n { c 2 }  

{ClVC2~C{c I }  U { c  2} 

Now, we define four re la t ions  in the set CON: 

Cl=C 2 i f  [Cl]=[c 2] read: c I is s t rongly equivalent to c 2 

Cl~C 2 i f  [Cl]~[c 2] read: c I is less defined than c 2 

Cl~C 2 i f  {Cl }={c  2} read: c I is equivalent t 9 c 2 

Cl~C 2 i f  {Cl }~{c 2} read: c I impl ies c 2 

Our strong equivalence coincides wi th the McCarthy's strong equivalence but our 

equivalence is not his weak equivalence. The set CON may be regarded as a re la t iona l  

system with the operations =,~,~,~. Below we sketch some propert ies of th is  system. 

Here and in the sequel we adopt the convention of using the words equivalent and 

impl ies homonymously: in the sense attached to ~ and ~ and in a co l loqu ia l  sense, 

e .g . ,  in saying that  Cl~C 2 impl ies Cl~C 2. The appropr iate meaning is always defined 

by the context.  

THEOREM 3.1. The re la t ions  ~ and ~ are equivalence re la t ions in CON. Moreover 

is a congruence, but ~ is not. [ ~ ]  

The re la t i on  ~ is not a congruence since c I ~ c 2 does not imply ~c I ~ ~c 2. 

THEOREM 3.2. The re la t ions  ~ and ~ are pa r t i a l  orderings in CON/~ and CON/~ 

respect ive ly .  The operations v and & are monotone wrt both these orderings and the 

remaining operations are monotone only wrt  ~.  [ - - ]  
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THEOREM 3.3. The equivalence : is s t r i c t l y  stronger than ~ , i . e . ,  Cl=C 2 implies 

c I ~ c  2 but not vice versa. Also the o rder ing~  is s t r i c t l y  stronger than ~,  i . e . ,  

ClEC 2 impl ies c I ~ c  2 but not vice versa. [ ]  

McCarthy's proposi t ional  calculus wi th the strong equivalence is qui te s im i la r  

to the c lassical  calculus (see B l ik le  [9 ] ) .  We have a l l  the assoc ia t i v i t i es  and d is -  

t r i b u t i v i t i e s  for  v and & as well asdeMorgan's laws. We do not have the commutativity 

of v and & and we have ClV-C 1 ~ true and Cl&~Cl E false instead of the usual tau- 

to log ies.  There are also some laws which hold for  ~ and ~ but does not hold for  

and ~: 

c I ~ClVC 2 

Cl&C 2 ~ c  1 

Cl&C 2 ~ c2&c 1 

Observe that  in CON/~ , & is commutative but v is not. In pa r t i cu la r  

c I ~c2vc  I does not hold! 

4. THE CORRECTNESS AND THE ASSERTION CORRECTNESS OF PROGRAMS 

As was already mentioned in Sec.2 assert ion speci f ied programs are statements 

about programs and therefore t he i r  semantical meanings are t ru th  values. Accordingly 

to the t r ad i t i ona l  wording of the f i e l d  we shall  say, however, that  an a.s. program 

is correct  rather than true, Below we define two concepts of correctness. An asser- 

t ion speci f ied program pre Cpr;IN post Cpo is cal led correct  i f  

{Cpr} c [INl{Cpo} (4.1) 

This means that  for  any state s which sa t i s f i es  c the execution of IN termin- pr 
ates successful ly; i . e . ,  nei ther aborts nor runs i n d e f i n i t e l y ,  and the output state 

sa t i s f i es  Cpo.  Observe that  in the usual understanding of to ta l  correctness (Manna 

and Pnueli [28],  Manna [27]) the problem of abort ion is neglected: successful t e r -  

mination simply means no i nde f i n i t e  execution. Consequently, the correctness defined 

by (4.1) is stronger than the to ta l  correctness. 

The above defined concept of correctness is res t r i c ted  to global propert ies of 

programs. Below we define the assert ion correctness which refers not only to the pre- 

and postcondit ion but also to the assertions of the program. I n t u i t i v e l y  pre Cpr; 

IN post Cpo is assert ion correct  i f  i t  is  correct  and i f  the assertions which occur 

in IN may be used in the proof of (4.1). The formal de f i n i t i on  is induct ive w . r . t .  

the syntax of INS: 

(A) For any elementary ins t ruc t ion IN the a.s. program pre Cpr; IN post Cpo 

is assert ion correct  i f  i t  is  correct.  Notice that  elementary inst ruct ions contain 

no assert ions. 
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(B) The aoS. program pre Cpr; i f  c then IN 1 else IN 2 f i post Cpo is assertion 

correct i f  

(BI) Cpr ~ cv ~c 

(B2) rp_r_e_Cpr&C; IN 1 post Cpo 

(B3) rp_ze_Cpr&~C; IN 2 post Cpo 

is assertion correct 

is assertion correct 

(C) The aos. program p_[e_Cpr; while c do IN as c a __ __ 

correct i f  

sa E od post Cpo is assertion 

(CI) Cpr~Ca&EhO 

(C2) pre Ca&E>l; i f  c f i ;  IN post Ca&E>__O is a.c. 

(C3) ~ C a & E < l ;  i_f_f-c fj_i ~ C p o  is a.c. 

(C4) [i_f_f Ca&E>l fi__][IN][E] c [E-I]  

Here E is the loop counter, i . e . ,  a real expression whose integer value gives 

the number of eycles through IN which must be performed in order to ex i t  from the 

loop. This concept may be eas i ly  generalized using well founded sets (Floyd [20]). 

The condit ion c a is cal led the loop assertion and loosely speaking describes the 

global ef fect  of IN. 

(D) The a,s. program pre Cpr; IN 1 as c a sa IN 2 post Cpo 

(D]) pre Cpr; IN 1 post c a is assertion correct 

(D2) pre CaB IN 2 post Cpo is assertion correct 

(E) The a.s. program p__[~Cpr; i n v c i ;  IN vni post Cpo is assertion correct i f  

the a.s. program rp_r_eCpr; IN 1 op~Cpo  where IN 1 results in from IN by the sub- 

s t i t u t i on  for  each assertion as c a s a i n  IN the assertion aS Ca&C i sa, is assertion 

correct. 

The condit ion c i in (E) is cal led the permanent inVariant and inv c i is 

cal led i t s  declarat ion. The mirror  key-word v n i  defines the sco~% of th is  declara- 

t ion.  Permanent invar lants are used to " factor ize"  conditions which are permanently 

sat is f ied in a segment of a program. Typical factor izable conditions are these which 

describe the unchangable properties of the environment, e ,g. ,  the sort of i den t i f i e rs .  

THEOREM 4.! .  Every a.s. program which is assertion correct is correct. ~ ]  

is assertion correct i f  

5. THE RULES OF THE COMPOSITION AND THE TRANSFORMATION OF PROGRAMS 

Due to space l im i ta t ions  we show only a few rules, mainly these which we need 
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in our example Qf Sec.6. First of al l  we have five composition rules which are impli- 

c i t  in the defi'nition (A)-(E) of assertion correctness (Sec.4). Below we give an 

example of a transformation which introduces an invariant into a program. Generally 

speaking, given an assertion correct program pre Cpr; IN post Cpo and a condition 

c we say that we are introducing the invariant c into this program i f  we transform 

IN onto a certain IN l such that pre Cpr&Cl; IN l post Cpo&C l is assertion correct. 

In the description of our transformation we use the inclusion of the form [IN][E]C{E], 

where INEINS and EEEXP. This inclusion is equivalent to the implication 

(¥Sl,S2)(Sl[IN]s 2 ~[E](Sl)=[E](s2)), which says that the value of E before and after 

the execution of IN is the same. E.g.  [x:=x/z][y+z]C[y+z]. 

THEOREM 5.1. 

then for any 

l) 

2) 

3) 

then 

I f  pre Cpr; while c do IN as c a saE od post Cpo is assertion correct, 

c I,c~ECON and any INIEINS i f  

pre Ca&Cl&E>l; i f  c f i ;  IN post Ca&C ~ is assertion correct 

pre Ca&C~; IN l post Ca&E>O&c I is assertion correct 

[ i f  Ca&C'&E>Ol - --fil[INl][E]C[E] 

pre Cpr&Cl; while c do IN aS Ca&C ~ sa IN l a_ss Ca&C l sa E o d post Cpo&C l 

is assertion correct. F- l  

COMMENT. Since IN violates the required invariant c I (assumption l ) ) ,  we have to 

supply the loop body with a recovery instruction IN l leading back to c I (assumption 

2)). To make i t  sure that the alteration of the loop does not violate the termination 

property, we assume that IN l preserves the value of the loop counter E (assumption 

311 [ ]  

A large group of programming rules consists of transformations which modify only 

the condi t ion in a program. Two examples of such rules are given below. 

THEOREM 5.2. I f  the a.s. program pre Cpr; IN post Cpo is assertion correct and 

c ~ • c l ~ l  C'pr ~Cpr and Cpo ~C'po, then pre pr' IN post po is assertion correct. 

THEOREM 5.3. I f  in an arbitrary assertion correct program we replace: 

l )  any while-do or if-then-else condition c by c I such that c~c l ,  

2) any precondition, postcondition or assertion c ,by c I such that c ~ c l ,  

then the resulting program is assertion correct. D 

The essential point in the last theorem is that we cannot replace ~ by ~ in I). 
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An appropr ia te example is given in Sec.6. We shal l  also see in tha t  section tha t  

many condi t ions,  appearing in a.s.  programs are of  the form Cl&.. .&c n. Since & 

commutes in CON/<~ but does not commute in CON/~ (Sec.3)~ our theorem indicates 

tha t  the order ing of  c!s in Cl&.. .&c n is i r r e l e v a n t  in precondi t ions,  postcondi- i 
t ions and assert ions but is re levant  in whi le-do and i f - t hen -e l se  condi t ions.  

6. AN EXAMPLE OF PROGRAM DERIVATION; BUBBLESORT 

To get s tar ted we reca l l  the i n t u i t i v e  idea of  bubblesort .  Suppose tha t  we are 

given a ve r t i ca l  column of bubbles, each bubble having a cer ta in  weight.  Suppose tha t  

our bubbles are immersed in an environment which sa t i s f i es  the fo l low ing  Archimedes' 

p r i nc ip le :  each bubble which is l i g h t e r  than i t s  upper neighbor tends to swap with 

th i s  neighbor in moving up. At some i n i t i a l  moment a l l  the bubbles are glued together .  

In the f i r s t  step of bubblesort we f ree the f i r s t  bubble from the top. Of course 

nothing happens since th i s  bubble has no upper neighbor. Next we f ree the second 

bubble. This t ime a swap may occur i f  the second bubble is l i g h t e r  than the f i r s t  

one. In each successive step of  our procedure we f ree the successive bubble and th i s  

bubble immediately s ta r ts  to move up in searching fo r  such a pos i t ion  in the column 

which does not v i o l a t e  the Archimedes' p r i nc i p l e .  

The systematic development of  the bubblesort program requi res,  f i r s t  of  a l l ,  the 

establ ishment of  an appropr ia te  data type. This data type w i l l  be developed in a 

stepwise manner along wi th the development Of the program. Since in th is  paper we 

skip the problem of  the formal spec i f i ca t i on  of  data type,  we are using below a mix- 

ture of  formal and i n t u i t i v e  mathematics. We s t a r t  by the f i r s t  approximation of  our 

data type and program. 

SORTS: In t  - in tegers;  Arr  - arrays;  each array is a t o t a l  func t ion ,  

a:{O . . . . .  n} ~ I n t ,  where n>_O; Bol - { t r u e ,  f a l se } .  

FUNCTIONS: +, - ,  O, l - the a r i thmet i ca l  funct ions and constants 

length.: Arr  + I n t  - the length of an array 
component: Arr  x In t  -> In t  - the i - t h  component of an ar ray;  according to the common 

s ty le  we shal l  w r i te  a ( i )  ra ther  than component.(a,i) 

se_eg_: Arr  x In t  ÷ Arr - the i n i t i a l  segment; 

~ ( a , j ) = ( a ( O )  . . . . .  a ( j ) )  fo r  O< j~ leng th  a 

PREDICATES: 

in teger ,  ar ray - the sort  predicates (Sec.2) 

~, < - the usual a r i thmet i ca l  i n e q u a l i t i e s  

is sorted: Arr -~ Bol; a is sorted: = (Vinteger i )(0<_i<]engtha~ a ( i )<a ( i+ l )  

perm: Arr x Arr ÷ Bol; a I pe,rm a2: =a I is a permutation of  a 2 
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Now, we may establish the f i r s t  approximation of our program which we informally 

call the propulsion loop. Here and in the sequel the operational part of the program 

wil l  be framed in order to distinguish i t  visually from the specification part. 

prear ray  A&a=A&j=O&k=length A 

invk=length a&a perm A&Ck_j~k 

l while j<k d__oo j := j+ l  I (Pl) 

as true sa k-j od 

vni 

post j=k 

This program only defines the framework of further approximations and is ,  obvi- 
ously, assertion correct. Into th is program we introduce the invar iant  

sorted using Theorem 5.1. Let 

Cl:~seg (a , j )  is sorted 

c~:=seg ( a , j - l )  is sorted & j~l  

c:~k=length a&a perm A&O<j<k 

Of course, c is the permanent invariant declared in PI" Now, according to Theorem 
5.1 we have to check that the program 

pre C&Cl&k-j>_l; l i f  j<k f i ;  j := j+ l  I post c&c~ 

is assertion correct and we have to construct an instruct ion IN 1 such that the fo l -  
lowing two conditions are sat is f ied:  

pre c&c~; IN 1 post C&Cl&k-j~O is assertion correct (6.1) 

[ i f  c&c~&k-j>_O f i ] [ IN l ] [k - j ]C[k- j  ] (6.2) 

The f i r s t  requirement is, of course, satisfied. Therefore, on the strength of 

Theorem 5.1, for any IN l which satisfies (6.1) and (6.2) the subsequent program is 

assertion correct. We write i t  already in a simplified form removing c l 

precondition - since for j=O i t  is always true - and replacing j=k&c l 

condition by j=k&a is sorted, since j=k&k=length a & seg(a,j) is sorted 

j=k&a is sorted. Formally we apply here the Theorems 5.2 and 5.3. 

prear ray  A&a=A&j=O&k=length A 

inv c 

(a,j) i s  

from the 

in the post- 

implies 
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whi le  j<k do 

J : : j + !  (P2) 

as seg ( a , j - l )  is  sorted & j > l  sa 

IN1 I 

as seg ( a , j )  is sorted sa k - j  o d 

vni 

post j=k&a is sorted 

Since there are many IN 1 which sa t i s f y  the condi t ions (6.1) and (6 .2) ,  our P2 

represents a class of  sor t ing procedures organized according to the fo l low ing  i t e r a -  

t i v e  scheme: given an ar ray a w h e r e ~ ( a , j )  has a l ready been sorted,  increase j 

by 1 and permute a in such a way tha t  the new seg(a , j )  is sorted again. Our pro- 

spect ive bubblesort  belongs to th i s  class. In order to describe i t  we extend our 

data type by two new sor ts ,  four  new funct ions and one new predicate.  

SORTS 

Vec - vectors;  each vector  is a t o ta l  funct ion v:N ÷ In t  where N is an a r b i t r a r y  

f i n i t e  set o f  in tegers 

Set - f i n i t e  subsets of  In t  

FUNCTIONS 

swap: Arr  x In t  x !nt  ÷ Arr ;  swap ( a , i , j )  i s ,  fo r  O<_i,j<length a, the resu l t  of swap- 

ping the i - t h  wi th the j - t h  element in a 

but: Arr  x In t  ÷ Vec; a but i i s ,  f o r  O~i<length a, the r e s t r i c t i o n  of array a to 

the domain {0  . . . . .  length a} - { i }  

max: Set + I n t ;  max B is the maximal element o f  the set B 

bd: Arr  x In t  ÷ I n t ;  read: bubbledepth 

b d(a,i)=i_#_f i<_O Y a ( i ) > a ( i - l )  then 0 else max { d l a ( i ) < a ( i - d ) }  

PREDICATES 

F i r s t  we extend the fo rmer ly  def ined predicate is sorted to the sor t  of  vectors.  

We also assume tha t  the empty vector  sa t i s f i e s  th i s  predicate.  Now, we def ine the 

new predicate.  

bubbles in seg( , ) :  I n t x l n t x A r r  + Bol 

i bubbles in seg(a, j ) :=O<_i ! jgength  a & seg(a , j )  but i is sorted & i < j D a ( i + l ) > a ( i )  

The fo l l ow ing  may be proved eas i l y :  
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b_d_d(a,i)>_l=i>O&a(i)<a(i-l) 

i=j&j>_l&i bubbles in seg(a,j) ~ i=j&j>l& se_9_g_(a,j-I ) is sorted 

b d(a,i)=O&i bubbles in seg(a,j) ~ se_9_g_(a,j) is sorted 

Using the predicate i bubbles in seg(a,j) we may construct the assertion- 
specified program which describes the bubbling process: 

pre c&i=j&j~l&i bubbles in seg(a,j) 
inv c 

I while b d(a, i )> l  do 

a:=swap(a, i - l , i )  

as i - I  bubbles in seg(a,j) sa 

i : = i - I  I 
as i bubbles in seg(a,j) sa bd(a, i)  o_d_d 

vnl 

post c&b_d_d(a,i)=O&i bubbles in seq(a,j) 

(6.3) 

(6.4) 

(6.5) 

(P3) 

The assertion correctness of this program may be proved d i rec t l y  from the def in i -  

t ions (C) and (D) of Sec.4. Now, we modify (P3) into the form required by the condi- 
t ions (6.1) and (6.2). This is done in the fol lowing steps. 

( I )  The pre- and postcondition are modified on the strength of (6.4) and (6.5); 
cf. Theorem 5.2. 

(2) The while condition b_~d(a,i)>_l, which is inacceptable from the pract ical 

viewpoint, is replaced by i>0&a( i )<a( i - l ) ;  cf. (6.3) and Theorem 5.3. 

(3) The program which results in from (1) and (2) is combined sequential ly 

(rule (D) of Sec.4) with the program 

rp_re_c&j>_l&se_eg_(a,j-l) is sorted 

post c&i=j&j~l&seg(a, j- l )  is sorted 

We get 
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c&j>l&seg(a,j-1) is sorted 

inv c 

as i=j&j_>l&seg(a,j-I ) is sorted sa 

_whil___~e i>0&a( i )<a( i - l )  do 
[ a:=swap(a , i - l , i )  (P4) 

a s i - I  bubbles in seg(a,j) s a 

i : = i - I  

as i bubbles in seg(a,j)s_aa bd(a, i)  o_d_d 

vni 

post c&se_eg_(a,j) is sorted 

Since c ~ k-j>_O, the l a t t e r  condit ion may be added to the postcondition of (P4). 

Therefore, the instruct ion of (P4) sat is f ies  (6.1). I t  also sat is f ies  (6.2) since 

neither j nor k is modified in (P4). Consequently, the instruct ion of (P4) has 

a l l  the properties required for  IN 1 of (P2) and may be substituted there, In th is 

way we get the f ina l  version of our program: 

array A&a=A&j=0&k=length A 

inv k=lenqth A&a ~ A&O<j<k 

while j<k do 

j := j+ l  

as j> l&seg(a , j - l )  is sorted sa 

as i=j&j>_l&se__eg_(a,j-l) is sorted sa 

while i>O&a( i )<a( i - l )  do ! 
a:=swap(a,i-I ,i) 

as i - I  bubbles in seg(a,j) s_aa 

l i ::i-I ] 
i 

as i bubbles in seg(a,j) sa bd(a,i) o d 

as seg_(a,j) is sorted sa k-j o d 

vni 

post j=k&a is sorted 
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Observe that i f  in the inner loop we replace the while condition i>O&a(i)<a(i-l) 

by the condition a(i)<a(i- l)&i>O which is equivalent - but not strongly equivalent - 

to the former, then we get a program which is no longer correct. That new program 

aborts whenever the value of i reaches 0 since in that case a( i )<a( i - l )  cannot be 
evaluated. 
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Introduction 

How do time and space relate? How is the structure of a complexity 

class related to the structure of its various relativized versions? 

~at classes of sets can serve as bases or sub-bases for generating the 

most common complexity classes of formal languages? 

In this paper these questions are investigated by studying com- 

plexity classes of formal languages and considering their positive 

closure properties. Recently, a number of new characterization theorems 

for complexity classes have been developed [3-5,10] and these character- 

ization theorems are discussed and interpreted here in the context of 

the questions above. While each of the characterization theorems in 

[3-5,10] may be considered to be a technical result of limited interest, 

the usefulness of these results becomes clear when the entire collection 

is viewed as a whole (and this could not be done until the results of 

[5] were discovered). This paper is a summary of the complete devel- 

opment [6]. 

In studying computational complexity one must specify a model for 

computation and then specify the measure of difficulty to be used in 

studying this model. When studying dynamic measures, the most common 

examples are the running time (the number of steps in the computation) 

and the amount of space (memory cells) used in a computation. One wishes 

to know the inherent space (time) complexity of a problem. Also, if the 

%The research reported here was supported in part by the National Sci- 
ence Foundation under Grant MCS77-I1360. 
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space (time) complexity of a problem or a class of problems is known, 

then one wishes to bound the time (space) needed in terms of space (time) 

used. Here we study classes of formal languages specified by nondeter- 

ministic oracle machines with time bounds or space bounds taken from 

certain sets of bounding functions, e.g., for any language A, the class 

NP(A) of languages accepted in polynomial time by nondeterministic or- 

acle machines using the language A as oracle set. Characterization the- 

orems for classes specified by time-bounded (space-bounded) oracle ma- 

chines are developed. Using the class of regular sets as the sub-basis, 

closure under a small set of operations characterizes the class speci- 

fied by the time-bounded machines, and the class specified by the space- 

baunded machines is obtained by adding one more closure operation, an 

operation that captures the notion of the transitive closure of a length- 

preserving binary operation. 

We will say that a class of languages is "weakly transitively closed" 

if a language encoding the transitive closure of length-preserving binary 

relation is in the class of languages whenever a language encoding the 

relation itself is in that class. (This notion of being "weakly transi- 

tively closed" is defined in Section 3.) For a suitably nice set of 

bounding functions and any oracle set, the class specified by time-bounded 

machines is equal to the class specified by space-bounded machines if and 

only if the class specified by time-bounded machines is weakly transi- 

tively closed. For example, for any language A, if PSPACE(A) is the 

class of languages accepted by machines using polynomial space and or- 

acle set A, then NP(A) = PSPACE(A) if and only if NP(A) is weakly transi- 

tively closed. Thus we have an algebraic closure operation that charac- 

terizes the difference between time and space, and the definition of this 

operation does not depend on the set of bounds used. 

The notion of relativizing the computations of an algorithm or of a 

Turing machine plays an important role in recursive function theory. In 

complexity theory there are several reasons for introducing the notion of 

relativization: to see if the methods that have been successful in re- 

cursive function theory can be successful in complexity theory; to under- 

stand the structure of certain classes and the structural differences be- 

tween different types of classes; to better understand the ideas of 

complexity-bounded reducibilities and the appropriate notions of com- 

plete sets; to develop a theory showing how knowledge of the computations 

of one algorithm can help in computing another algorithm. Research on 

complexity-bounded reducibilities has led to the study of complexity 

classes of formal languages specified by various types of oracle machines. 

In this paper the classes NTIME(~,A) and NSPACE(~ ,A) are characterized 
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in terms of closure operations and the oracle set A, where ~ is a suit- 

able set of bounding functions. This algebraic characterization of the 

relativized version of a class in terms of the oracle set and the oper- 

ations used to characterize the class itself does not require additional 

operations which depend on the measure or on the set of bounds used. To 

go from the class NSPACE(~) to its relativized version NSPACE(~,A) we 

require exactly the same information as used to characterize NTIME(~,A) 

in terms of NTI~(~), and this information is uniform in the oracle 

set A. Further, for certain classes of languages encoding relations 

such as the rudimentary relations, this method can be used to character- 

ize the relativized version of the class in terms of the operations used 

to characterize the class itself and the oracle set. 

Section 1. Preliminaries 

It is assumed that the reader is familiar with the basic notions 

from the theories of automata, formal languages, and automata-based 

complexity. Here we establish notation. 

For a string w, the length of w is denoted by Iwl, the reversal of 

w by w R, and w I = w. 

A homomorphism h : ~* ÷ A* is nonerasing if for all w E ~*, h(w) = e 

implies w = e. If f is a function, h : Z* ÷ 4" a homomorphism, and 

L C Z* a language, then h is f-erasing on L if there is some k > 0 such 

that for all w E L with lwl > k, lwI ~ kf(ih(w) I). If ~ is a set of 

functions, h : Z* ÷ 4" a homomorphism, and L C E* a language, then h is 

~-erasing on L if there is some f E ~ such that h is f-erasing on L. 

A function f majorizes a function g if for all n ~ 0, f(n) ~ g(n). 

Section 2. Time Classes 

In this section we define "oracle machines" and state the character- 

izations of the classes specified by time-bounded machines. 

An oracle machine is a multitape Turing machine M with a distin- 

guished work tape, the oracle tape, and three distinguished states, 

QUERY, YES, and NO. At some step of a computation on an input string, 

M may transfer into state QUERY. In state QUERY, M transfers into state 

YES if the string currently appearing on the oracle tape is in some 

oracle set A; otherwise, M transfers into state NO; in either case, the 

oracle tape is instantly erased. The set of strings accepted by M 
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relative to the oracle set A is L(M,A) = {w I there is an accepting 

computation of M on input w when the oracle set is A}. 

When we consider an oracle machine operating within some time 

bound, then the oracle calls are also counted within that time bound. 

Let A be any language and let T be a function (of the length of 

the input string) that serves as a time bound. Let DTIME(T,A) = 

{L(M,A) I M is a deterministic oracle machine that operates in time 

bound T} and let NTIME(T,A) = {L(M,A) I M is a nondeterministic oracle 

machine that operates in time bound T}. 

Let ~ be a set of functions such that for all f E ~ and all 

m, n > 0, f(m) + f(n) < f(m+n) and f(n) > n. For any language A, the 

class of languages that are nondeterministic (deterministic) ~-time in 

A is NTIME(~ ,A) = U{NTIME(f,A) 1 f E ~ } (DTIME(~,A) = U{DTIME(f,A) 1 

fe~}). 

If a machine's instructions do not ~l16w any oracle calls, then the 

oracle tape may as well not be present. Another way of interpreting 

this is to say that the oracle set is empty. When A is the empty set, 

we write NTIME(~) (DTIME(~)) for NTIME(~,#) (resp., DTIME(~,~)). 

For any oracle set A, there is one class of particular interest 

here. Let NP(A) = U NTIME(nk,A) so that NP(A) is the class of languages 
k~l 

that are nondeterminlstic polynomial time in A. Also, NP is the class 

of languages accepted in polynomial time by nondeterministic machines. 

The classes to be characterized in this section are those of the 

form NTIME(~ ,A) and NTIME(~). We assume that each set ~ of time 

bounds is closed under composition. 

To obtain our characterizations we need an operation on languages 

that allows us to perform "nondeterministic copying." 

Let n be a positive integer and let p be a function from {l,...,n} 

to {I,R}. Let L be a language and let hl,...,h n be a sequence of n 

homomorphisms. The language < p;h I .... ,h n) (L) = {hl(w) P(1)...hn(w)P(n) I 

w @ L} is a homomorphic replication of L. Let ~ be a class of lan- 

guages and let ~ be a class of functions. If for every n > 0, every 

function p : {l,...,n} ÷ {I,R}, every language L E ~, and every sequence 

hl,°..,h n of n homomorphisms, each of which is nonerasing (~-erasing on 

L), the language <P;hl,...,hn } (L) is in ~, then ~ is closed under non- 

erasing (~-erasing) homomorphic replication. 

Clearly a class of languages closed under nonerasing (~-erasing) 

homomorphic replication is closed under nonerasing (~-erasing) 

homomorphism. 

If for each i, p(i) = i, then we have a homomorphic duplication. 
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Notation. For a language A, let A be the smallest alphabet such that 

A C A*, define A = A* - A and let A @ A = {c}A U {d}A for any two sym- 

bols, c, d ~ A. 

Now we can state the characterization theorem. 

Theorem 1. Let ~ be a set of time bounds containing some function that 
2 

majorizes the function f(n) = n . 

(a) For any language A, the class NTIME(~,A) of languages that are 

nondeterministic ~-time in A is the smallest class containing all regular 

sets and the language (A ~ A)* , and closed under intersection, ~- 

erasing homomorphic replication (duplication), and inverse homomorphism. 

(b) The class NTIME(~) of languages accepted in time ~ by nonde- 

terministic machines is the smallest class containing all regular sets 

and closed under intersection and ~-erasing homomorphic replication 

(duplication). 

TO what classes does Theorem 1 apply? Since it is assumed that each 

set ~ of time bounds is closed under composition, the requirement that 

f(n) = n 2 be majorized in ~ implies that for every polynomial p there 

is a function q e ~ such that for all n ~ 0, p(n) ! q(n). Thus for 

each set ~ and every language A, NP C NTIME(~) and NP(A) ~ NTIME(~,A). 

If ~ is the class of functions obtained from f(n) = n 2 by composition, 

then for any language A, NTIME(~,A) = NP(A). If ~ is the class of re- 

cursive (primitive recursive, partial recursive) functions, then 

NTIME(~ ,A) is the class of languages that are recursive (resp., primi- 

tive recursive, partial recursive) in A. Similarly, we obtain for each 

k h 3, the class ~[A) of languages that are ~k in A where ~k is the 

Grzegorczyk class [12]. Other classes to which these characterizations 

apply include each of the Z-classes in the arithmetic hierarchy and in 

the arithmetic hierarchy relativized to language A [15,17], and in the 

polynomial-time hierarchy and in the polynomial-time hierarchy relativ- 

ized to A [20-22]. Also, these characterizations can be applied to the 

linear-time hierarchy, the linear-time hierarchy relativized to A, and 

the appropriate Z-classes even though linear functions do not majorize 

f(n) = n 2 [22-24]. 

Suppose that in Theorem 1 we require closure under complementation, 

hence, under the Boolean operations. In three cases this characterizes 

a class of languages that is of interest here. If ~ is the class of 

partial recursive functions, then for any language A the smallest class 

containing all regular sets and ((A ~ A)*) and closed under the Boolean 

operations, ~-eras±ng homomorphic replication, and inverse homomorphism 
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is the class of sets that are arithmetic in A [i0]. If ~ is the class 

of polynomialss then for any language A the smallest class containing 

all regular sets and (A ® A)* and closed under the Boolean operations, 

~-erasing homomorphic replication, and inverse homomorphism is the 

class of sets that are extended rudimentary in A [i0]. If ~ is the 

class of linear functions (so that f(n) = n 2 is not in ~5 ), then for 

any language A the smallest class containing all regular sets and 

(A ~ A)* , and closed under the Boolean operations, ~-erasing homo- 

morphic replication (duplication), and inverse homomorphism is the class 

of sets that are rudimentary in A [i0]. 

In Theorem 1 the sets of time bounds are required to contain f(n) = 
2 n . Let us consider the case when the set ~ is the set of linear func- 

tions. It is not known whether every language in NTIME(~) can be ob- 

tained from the class of regular sets using the operations of intersec- 

tion and homomorphic replication; in fact, it is conjectured that the 

Dyck sets cannot be so obtained [8]. 

Consider the behavior of a machine to be restricted so that its 

read-write heads can make only a bounded number of changes of direction. 

Such a machine is called reversal-bounded. Let ~BN P be the class of 

languages accepted in linear time by nondeterministic reversal-bounded 

machines [9]. If an oracle machine has its work tape heads reversal- 

bounded but has no restriction on the oracle tape head, then we say that 

the oracle machine is reversal-bounded. For any language A, let 

~BNp(A) = {L(M,A) I M is a reversal-bounded nondeterministic oracle 

machine that operates in linear time}. 

A reset ta~e is a one-way infinite tape with one read-write head 

which moves only left-to-right and can be reset once to the left end of 

the tape. A nondeterministic multiple-reset machine is an acceptor with 

a one-way input tape, finite-state control, and some finite number of 

reset tapes as work tapes. Let MULTI-RESET denote the class of languages 

accepted in linear time by nondeterministic multiple-reset machines [7]. 

Just as in the case of revemsal-bounded machines, we can consider 

oracle machines that have reset tapes as work tapes and an unrestricted 

oracle tape. For any language A, let MULTI-RESET(A) = {L(M,A) I M is a 

nondeterministic oracle machine that has reset tapes as work tapes and 

that runs in linear time}. 

The classes ~BNp(A) and MULTI-RESET(A) can be characterized in a 

manner similar to that of Theorem i. 

Theorem 2 

(i) For any language A the class ~BNp(A) (MULTI-RESET(A)) is the 

smallest class containing all of the regular sets and the language (A ~ A)* 
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and closed under intersection, linear-erasing homomorphic replication 

(duplication), and inverse homomorphism. 

(ii) The class ~BNP (MULTI-RESET) is the smallest class containing 

all of the regular sets and closed under intersection and linear-erasing 

homomorphic replication (duplication). 

Finally we have a characterization of the class of languages ac- 

cepted in linear time. Let LIN be the set of linear functions. 

Theorem 3 

(i) For any language A, the class NTIME(LIN,A) of languages that 

are nondeterministic linear-time in A is the smallest class containing 

all context-free languages and (A ~ 2)* and closed under intersection, 

linear-erasing homomorphic replication and inverse homomorphism. 

(ii) The class NTIME(LIN) is the smallest class containing all 

context-free languages and closed under intersection and linear-erasing 

homomorphic replication. 

Section 3. Space Classes 

In this section we state the characterizations of the classes spe- 

cified by space-bounded oracle machines. 

When we consider an oracle machine operating within some space 

bound, then the oracle tape is required to operate within that same 

bound. 

Let A be any language and let S be a function (of the length of the 

input string) that serves as a space bound. We only consider those func- 

tions such that for all m, n > 0, S(m) + S(n) < S(m+n) and S(n) > n. Let 

DSPACE(S,A) = {L(M,A) I M is a deterministic oracle machine that operates 

in space bound S} and let NSPACE(S,A) = {L(M,A) I M is a nondeterministic 

oracle machine that operates in space bound S}. 

Let ~ be a set of space bounds that is closed under composition. 

For any language A, the class of languages that are nondeterministic 

(deterministic) ~-space in A is NSPACE(~,A) = O{NSPACE(f,A) I f @8 } 

(DSPACE(~,A) = O{DSPACE(f,A) I f e 8}). 

If a machine's instructions do not allow any oracle calls, then the 

oracle tape may as well not be present. Another way of interpreting 

this is to say that the oracle set is empty. ~en A is the empty set, 

we write NSPACE(~) (DSPACE(~)) for NSPACE(~,~) (resp., DSPACE~,~)). 

It is known that for every nondeterministic oracle machine M 1 oper- 

ating with space bound S, there is a deterministic oracle machine M 2 

operating within space bound S2(n) = (S(n)) 2 such that for all languages 



50 

A, L(M2,A) = L(MInA). Thus if ~ is a set of functions containing some 
2 

function majorizing f(n) = n and closed under composition, then for all 

languages A, NSPACE(~,A) = DSPACE(~,A) [18]. 

Of particular interest is the case where ~ is the set of polynom- 

ials. In this case we see that for every language A, DPSACE(~,A) = 

NSPACE(~ ,A) and so we write PSPACE(A) for DSPACE(~,A) and we write 

PSPACE for DSPACE(~,~). 

The classes of languages to be characterized in this section are 

of the form NSPACE(~,A) and NSPACE(~). We assume that each set ~ of 

space bounds is closed under composition. 

To state the characterizations it is necessary to discuss relations 

on strings and their encodings as languages. 

Consider n-ary relations on strings. If R is a binary relation on 

strings over the alphabet Z, then the transitive closure of R is R* = 

{(x,y} I x, y 6 ~ and either x = y or there exist n ~ 1 and z 0 ..... z n 

E Z* such that z 0 = x, z n = y, and for each i = l,...,n, R(Zi_l,Z i) 

holds}. A binary relation R is length-preserving if for all x, y, when 

R(x,y) holds, then Ixl = lyl- 

Let R be an n-ary relation on strings over the alphabet Z. Let # 

be a symbol not in Z. The language SE#(R) = {Wl#...#w n I for i = l,...,n, 

w i E Z*; R(Wl, .... Wn) holds} is the sequential #-encoding of R. 

By using sequential encodings, relations can be interpreted as lan- 

guages. For example, the concatenation relation over an alphabet Z gives 

rise to the language {x#y#z I x, y, z @ Z* and xy = z}, where # is a 

symbol not in Zo 

We are interested in interpreting a language as an encoding of a 

binary relation. Let L be a language and let Z be a finite alphabet 

such that L C Z*. For any a E Z the binary relation a-encoded by L is 

Ra(L) = {<x,y} I x, y e (~-{a})* and xay E L}. 

Notice that SEa(Ra(L)) = (Z-{a})*{a}(Z-{a})* A L and that if T is 

a binary relation on strings over Z and # ~ Z, then R#(SE#(T)) = T. 

To say that a relation R is transitively closed is to say that R* 

= R. Here we develop the notion of "a class of languages being transi- 

tively closed" by considering the relations encoded by the languages in 

the class. 

Let ~ be a class of languages. From a language L in ~, we con- 

sider the relation Ra(L) a-encoded by L. Then we take the transitive 

closure R*(L) of R (L) and consider the language SEa(R~(L)), that is, a a 
the sequential a-encoding of the relation R~(L). For our purposes it is 

sufficient to restrict attention to the cases where Ra(L) is length- 

preserving and in that case to demand that the language SEa(R~(L)) is 

in ~. More formally, we have the next definition. 
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A class ~ of languages is weakly transitively closed if the fol- 

lowing condition holds: Let L be any language in ~, let Z be the smal- 

lest finite alphabet such that L C Z*, and let a be a symbol in Z. If 

Ra(L) is length-preserving, then SEa(R~(L)) is in ~. 

Now we can state our characterization theorems. 

Theorem 4. Let ~ be a set of space bounds. 

(i) For any language A, the class NSPACE(~,A) of languages that 

are nondeterministic ~-space in A is the smallest class of languages 

that contains all regular sets and the language (A @ A)*, is closed under 

intersection, inverse homomorphism, and ~-erasing homomorphic replication 

(duplication), and is weakly transitively closed. 

(ii) The class NSPACE(~) of languages accepted by nondeterministic 

machines using at most ~ space is the smallest class of languages that 

contains all regular sets, is closed under intersection and ~-erasing 

homomorphic replication (duplication), and is weakly transitively closed. 

Examples of classes to which Theorem 4 applies include the case 

where ~ is the class of linear functions so that NSPACE(~) is the 

class of context-sensitive languages and the case where ~ is the class 

of polynomials so that NSPACE(~) is PSPACE. 

Theorem 4 is related to the work of Jones [13,14] and of McCloskey 

[16]. In both cases different sets of operations are used. Jones ap- 

plies transitive closure to the class of strictly rudimentary relations 

and McCloskey uses AFL operations as well as others. 

Section 4. Comparing Time and Space 

What is the difference between time and space? Let us use Figure 1 

to aid in focussing our attention on this question. Let ~ be a set of 

functions that can be either time bounds or space bounds and assume that 

~ contains some function that majorizes f(n) = n 2. Let A be an arbitrary 

language. From Theorem 1 we see that NTIME(~,A) is the smallest class 

containing all regular sets and (A @ A)* and closed under intersection, 

-erasing hom0morphic replication, and inverse homomorphism. From The- 

orem 4 we see that NSPACE(~,A) is characterized in precisely the same 

way except that it is required to be weakly transitively closed. 

Theorem 5. Let ~ be a set of functions that can be either time bounds 

or space bounds. Suppose that ~ contains some function that majorizes 
2 f(n) = n . 

(i) For any language A, NTIME(~,A) = NSPACE(~,A) if and only if 

NTIME(~,A) is weakly transitively closed. 
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(ii) NTIME(~) = NSPACE(~) if and only if NTIME(~) is weakly 

transitively closed. 

Consider the situation when the set of bounding functions is the 

set LIN of linear functions. See Figure 2. From theorems 2-4 we see 

that once again the requirement of being weakly transitively closed is 

crucial. 
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Theorem 6 

(i) For any language A, let ~(A) be in {MULTI-RESET(A), ~BNp(A), 

NTIME(LIN,A)}. Then ~(A) = NSPACE(LIN,A) if and only if ~(A) is weakly 

transitively closed. 

(ii) Let ~ be in {MULTI-RESET, ~BNP, NTIME(LIN)}. Then ~= 

NSPACE(LIN) if and only if ~ is weakly transitively closed. 

Thus we see that the difference between time and space can be char- 

acterized by the requirement of being weakly transitively closed. It is 

known that if a set ~ of bounding functions contains a function major- 

izing f(n) = 2 n and ~ is closed under composition, then DTIME(~) = 

NTIME(~) = NSPACE(~) = DSPACE(~). This is also true when these clas- 

ses are relativized in terms of an arbitrary oracle set. 

An important case arises when ~ is taken to be the set of poly- 

nomials. It is not known whether NP = P~PACE. 

Consider the following statements. 

(a) NP = PSPACE. 

(b) For every language A, NP(A) = PSPACE(A). 

While it is obvious that (b) implies (a), it is not known whether 

(a) implies (b). It is known that there exists a language A such that 

NP(A) ~ PSPACE(A) so that (b) is false [2,19]. 

We can prove that one statement is equivalent to (a). 

Theorem 7. For any language A, let ~(A) = {L(M,A) I M is a nondetermin- 

istic oracle machine that uses at most polynomial work space and calls 

the oracle at most a polynomial number of times}. Then NP = PSPACE if 

and only if for any language A, ~(A) = NP(A). 

The proofs in [2,19] showing that statement (b) is false do not 

appear to apply to classes such as ~(A) since the number of oracle calls 

is very large. 

We note that one can apply the form of Theorem 5 to classes such as 

the class of rudimentary languages and the class of extended rudimentary 

languages to find that the class of rudimentary languages equals 

NSPACE(LIN) if and only if the class of rudimentary languages is weakly 

transitively closed, and the class of extended rudimentary languages e- 

quals PSPACE if and only if the class of extended rudimentary languages is 

weakly transitively closed. This is also true of the relativized versions. 

It is important to note that the property of being weakly transi- 

tively closed is defined algebraically. It does not depend on a measure 

and it does not depend on the set of bounds used. 
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Section 5. Re!ativizations 

Consider Figures 1 and 2. 

Theorem 8. Let ~ be any set of time or space bounds. Let ~ be any of 

the classes NTIME(~), NSPACE(~ ), ~BNP' MULTI-RESET, the rudimentary 

languages, the extended rudimentary languages, or the arithmetical sets. 

For any language A, let -~(A) be the relativized version of ~ with A 

as oracle set. Then ~ = ~(A) if and only if every language of the 

form h-l((A ~ A)*), where h is a homomorphism, is in~. 

Under the assumptions about the sets of bounds considered here, 

each class NTIME(~) and each class NSPACE(~) is closed under union, 

inverse homomorphism, and Kleene *, so that every language of the form 

h-l((A ~ A)*) is in that class if and only if both A and A are in the 

class. However, the class ~mNP is not known to be closed under Kleene * 

so that for any oracle set A, ~BNP=-~BNp(A) if and only if (A ® A)* is 

in ~BNP" 

If ~ is a set of space bounds that contains a function majorizing 

f(n) = n 2, then ~ is closed under squaring so that NSPACE(~ ) = DSPACE(~) 

and so NSPACE(~) is closed under complementation. In this case, 

NSPACE(~ ) = DSPACE(~,A) if and only if A e NSPACE(~). 

If we wish to characterize the relativized version of the class, 

then we can do this uniformly by requiring closure under inverse homo- 

morphism and the presence of the language (A ~ A)*. Thus the information 

required about the oracle set is uniform in that set and this information 

does not depend on the measure used to define the class nor on the set 

of bounds. However, using information about the measure and the set of 

bounds may allow one to limit the information required of the oracle set. 

Section 6. The Class of Regular Sets as a Sub-Basis 

Let ~ be a class of languages and let ~ be a class of operations 

such that ~ is closed under each operation in ~. If ~0 C ~ has the 

property that ~ can be characterized as the smallest class of languages 

containing every language in ~ 0 and closed Under each operation in ~, 

then we say that g0 is a sub-basis for ~ with respec_______~t t__oo ~. When there 

is no chance of ambiguity, we say that 4~ 0 is a sub-basis for ~. 

Except for the classes NTI~(LIN) and NTIME(LIN,A) characterized in 

THeorem 3, each of the classes considered here has the class of regular 

sets or the class of regular sets plus information about an oracle set 

as a sub-basis. Somewhat stronger results can be obtained if we consider 

any of the space classes and only those time classes specified by a set 
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2 
of bounding functions that contain a function majorizing f(n) = n . In 

these cases the class of all regular sets can be replaced by the class 

of all regular sets of star height two without adding to the set of clo- 

sure operations. It is not known whether this can be done for classes 

such as MULTI-RESET, ~BNP' or NTIME(LIN), but results in [8] suggest 

that this may not be the case. 

Finally, let us note that if we use the class of linear context- 

free languages as a sub-basis, then we can replace the operation of ho- 

momorphic replication, a very powerful operation, with that of homomor- 

phism. Thus there is a real "trade-off" between the power of the oper- 

ations used and the class that forms the sub-basis. 

Section 7. Remarks 

What has been presented is an attempt at a unified treatment of 

certain types of complexity classes of formal languages in such a way 

that the essential differences between time and space and between a 

class and its relativized version are emphasized. An exposition that 

generalizes and strengthens the results of [3-5,10] in a unified frame- 

work is in preparation [6]. 
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FAST PRORABILISTIC ALGORITHMS 
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Riga~ USSR 

1. INTRODUCTION 

When p r o b a b i l i s t i c  a l g o r i t h m s  a r e  c o n s i d e r e d  it i s  u s u a l l y  s u p p o s e d  tha t  the  

r igh t  r e s u l t  i s  obta ined  only "in m o s t  c a s e s " ~  i . e .  for  su f f i c i en t ly  m a n y  input da ta .  

The we l l -known M o n t e - C a r l o  method~ m o r e o v e r  ~ p r o d u c e s  only a p p r o x i m a t e  v a l u e s  of  

the  r e s u l t .  The following ques t ion  a r i s e s  n a t u r a l l y -  a r e  t h e r e  any a d v a n t a g e s  of p r o -  

bab i l i s t i c  a l g o r i t h m s  o v e r  d e t e r m i n i s t i c  ones~ when the  r e s u l t s  a r e  of  y e s  - n_~o type  

(and t h e r e f o r e  no a p p r o x i m a t i o n  is  p o s s i b l e )  ~ and we d e m a n d  the  r e s u l t  to be r igh t  

with high p robab i l i ty  for  any v a l u e s  of the  input da t a .  

We u s e  the  t e r m  " p r e b a b i l i s t i c  a l g o r i t h m s "  for d e t e r m i n i s t i c  a l g o r i t h m s  us ing  

r a n d o m  n u m b e r  g e n e r a t o r s .  In o r d e r  to avoid u n d e s i r a b l e  e f f ec t s  d e s c r i b e d  in [12 ~ l?J 

we u s e  only the  s i m p l e s t  Bernoul l i  r a n d o m  n u m b e r  g e n e r a t o r s  with two equ ip robab le  

ou tpu ts  0 and I .  

The only e x a m p l e  of p r o v e d  runn ing  t i m e  a d v a n t a g e s  of p r o b a b i l i s t i c  a l g o r i t h m s  

o v e r  d e t e r m i n i s t i c  ones  i s  the  r ecogn i t i on  of p a l i n d r o m e s ~  a s  shown in [4] ( s e e  a l so  

[511. A polynomial  - t ime  probabil ist ic  algorithm for pr imal i ty  testing is  found in [15]. 

D e t e r m i n i s t i c  po lynomia l  - t i m e  a l g o r i t h m s  for  p r i m a l i t y  t e s t i n g  a r e  not known but~ 

on the  o t h e r  hand~ nobody h a s  p roved  t h e i r  n o n - e x i s t e n c e .  

The p a p e r  d e a l s  with fas t  p r o b a b i l i s t i c  a l g o r i t h m s  for  t e s t i n g  of mu l t i p l i ca t i on  

of i n t e g e r s  ~ m a t r i c e s  and p o l y n o m i a l s .  The a l g o r i t h m  for  t e s t i n g  of mul t ip l i ca t ion  of 

i n t e g e r s  i s  p r e s e n t e d  as  o n e - h e a d  p robab i l i s t i c  Tur ing  m a c h i n e .  Running t i m e  a d v a n t a -  

ge ove r  d e t e r m i n i s t i c  Tur ing  m a c h i n e s  is  proved~ and u n i m p r o v a b i l i t y  of p r o b a b i l i s t i c  

running time is proved as well. The algorithms for testing of multiplication of matrices 

and polynomials are presented as computation schemes. This allows us to show that the 

advantages of probabilistic algorithms are not implied by specific character of one - 
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h e a d  Turin@ m a c h i n e s .  On t h e  o t h e r  hand~ t h i s  d i s a b l e s  u s  t o  p r o v e  any  n o n t r i v i a l  l o w -  

e r  b o u n d s  of  t i m e  c o m p l e x i t y ~  j u s t  l i k e  t h e  c a s e  of  p r i m a l i t y  t e s t i n g .  S e c t i o n  4 t a k e s  

a q u i t e  o p p o s i t e  l i n e  and  c o n s i d e r s  c o m p u t a t i o n  u n d e r  s e v e r e  r e s t r i c t i o n s ~  n a m e l y ~  i t  

c o n s i d e r s  r e a l  - t i m e  r e c o g n i t i o n  of  l a n g u a g e s  by c o u n t e r  m a c h i n e s .  I t  i s  p r o v e d  t h a t  

s o m e  l a n g u a g e s  c a n  be  r e c o g n i z e d  r e a l  - t i m e  by p r o b a b i l i s t i c  m u l t i - c o u n t e r  m a c h i n e s  

and  c a n n o t  be  r e c o g n i z e d  r e a l  - t i m e  by d e t e r m i n i s t i c  o n e s .  

2 .  TESTING OF MULTIPLICATION OF INTEGERS 

We say that a probabilistic off-line Turing machine M recognizes language L 

with probability p in time t(x) if~ when M works at arbitrary x: the probability of 

the following event exceeds p: the machine stops in no more than t(x) steps with the 

result l~ if x ~ L; and 0~ if x~ , 

As usual in the theory of computational complexity~ we consider along with t(x) 

as a function on strings~ a more clear measure of complexity 

t ( n )  = m a x  t ( x ) ,  

w h e r e  t h e  m a x i m u m  i s  t a k e n  o v e r  a l l  s t r i n g s  c o n s i s t i n g  of  no m o r e  t h a n  n l e t t e r s .  

The  m a c h i n e  r e c e i v e s  t h r e e  n u m b e r s  a~ b~ c ( i n  b i n a r y  r e p r e s e n t a t i o n )  ~ and  

p r o d u c e s  r e s u l t  1 i f  a . b  = c i s  t r u e  and  0 o t h e r w i s e .  F o r m a l l y ~  l e t  x~ y~ z~ be  t h e  

n a t u r a l  n u m b e r s  -whose b i n a r y  r e p r e s e n t a t i o n s  a r e  s t r i n g s  x~ y~ z .  We c o n s i d e r  r e -  

c o g n i t i o n  of  t h e  l a n g u a g e  A~ c o n s i s t i n g  o f  a l l  s t r i n g s  in  f o r m  x x y $ z~ w h e r e  x~ y~ 

z are strings in ~0~1~ + and ~ . y = z. 

THEOREM I. For every g ~ 0 there is a one-head probabilistic Turing machine re- 

cognizing A in const, n, log n time with probability i- g . 

Theorem 1 was published in L6J. Recently the author found that a similar re- 

sult for multi-tape Turing machines was proved in [18J. Let us note for sake of cont- 

rast that Barzdin [I] has proved a lower bound const- n 2 for running time of determi- 

nistic one-head Turing machines recognizing A. 

i 
THEOREM 2. Let £4~ 

A with probability 1- g 

and let a probabilistic Turing machine recognize the language 

in time t(n). Then there is c >0 such that t(n)> c - n • log 

n for infinitely many n. 
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PROOF d i f f e r s  f rom the  p roo f  of T h e o r e m  5 in [ 5 ] only in n o n e s s e n t i a l  d e t a i l s .  

3. TESTING OF MULTIPLICATION OF MATRICES AND POLYNOMIALS 

Unfortunately~ Turing machine is a highly restricted model of computers ( in 

comparison with~ say~ multitape machines or Kolmogorov algorithms). In this section 

we try to explore advantages of a wider class of probabilistic algorithms ~ namely~ we 

consider computation chemes. 

Computation schemes are understood in the same sense as in [9). They are 

ordered lists of arithmetic operations over real numbers. These operations are per- 

formed either over input data or over results of previous operations. In a sense~they 

are programs without loops. [9] contains an impressive collection of computation 

schemes ~ among them being schemes for computation of a fixed polynomial for vari- 

ous values of the argument~ schemes for multiplication of n× n size matrices etc. 

We consider probabilistic schemes~ i.e. schemes that contain only arithmetical 

operations but also coin tossing ~ i.e. usage of Bernoulli random number generator with 

two equiprobable outputs 0 and I. 

It is proved in this section that for several problems there are probabilistic 

computation schemes containing essentially less operations than any known determin- 

istic scheme for the same problem. The next step in this direction would be to prove 

that every deterministic computation scheme for this problem contains more operat- 

ions. The well-known difficulties of establishing lower bounds of complexity prevent 

us from it. 

We consider schemes for testing of multiplication of n~ n size matrices and 

schemes for testing of multiplication of one-argument n-th degree polynomials. The 

input of the first scheme consists of 3n 2 real numbers~ namely~ the elements of 

three n×n  size matrices A~ B~ C. The result is to be l~ if A.B = C~ and 0 

otherwise. The input of polynomial multiplication testing schemes consists of 4n + 

3 real numbers~ namely~ the coefficients of the given polynomials Pl(X) ~ P2(x) 

P3(x). The result is to be I, if Pl(x) • P2(x) = P3(x) ~ and 0~ otherwise. 

THEOREM 3. For every ~>0 and for every natural n there is a probabilistic comput- 

2 
ation scheme with const, n operations such that it tests with probability I - 

multiplication of any two matrices of size n x n. 



60 

PROOF. All the logarithms below are supposed to be binary ones. [.~J denotes the 

greatest integer less than or equal to ~" (the "floor" of ~ ). F~'7 denotes the least 

integer larger than or equal to ~ (the "ceiling" of ~) . 

1 
Let k = [ log ~ + 1 ]. The scheme generates k random vectors X of 

size 1 ,~ n with elements from { -1, i}. Each of these vectors is used to test 

whether A" (B-X) = C'X. If at least one test fails: then A. B ~ C. Ifthe mat- 

rices pass all k tests~ then the scheme produces result i. 

We will prove that the probability of the right result exceeds 1 - E . We use 

C. for the elements of C: and d.. for the elements of A - B. Then the 
lj  13 

i d e n t i t y  o f  i - t h  e l e m e n t s  o f  m a t r i c e s  - c o l u m n s  A -  B" X and  C • X m a y  be  e x -  

p r e s s e d  a s  f o l l o w s :  

( d i l  - c i l ) .  x 1 + (d i2  - c i 2 ) . x  2 + . . .  + ( d i n  - Cin) .  x n = 0 

This identity can be regarded as orthogonality of two vectors : 

F i = {(dil - Cil) (di2 - ci2) , ... (d. - Cin) }, ~ In 

X= {Xl, x2, ..., Xn}. 

It is easy to prove that for any F. ~ 0 no more than 2 n-I out of all 2 n a 
1 

priori possible vectors X are in the hyperplane orthogonal to F.. 
1 

Therefore for any fixed F. ~ 0 the probability to generate a vector X such 
i 

that F. X ~ 0 exceeds 1/2. When k independent vectors X are generated~ the 
1 

probability of inequality is I-2 -k > l-g . If A" B = C~ then for any i the vec- 

tor F. is zero - vector~ and the scheme produces I. Q.E.D. 
i 
Note for compai~ison that the best known deterministic computation scheme for 

this problem is based on results by Stresses [16] and Pan [14] and contains const. 

2.795 
n operations. 

THEOREM 4. F o r  e v e r y  £~-0 a n d  f o r  e v e r y  n a t u r a l  n t h e r e  i s  a p r o b a b i l i s t i c  

c o m p u t a t i o n  s c h e m e  w i t h  c o n s t ,  n o p e r a t i o n s  s u c h  t h a t  it  t e s t s  w i th  p r o b a b i l i t y  1 - ~  

m u l t i p l i c a t i o n  o f  a n y  two o n e  - a r g u m e n t  p o l y n o m i a l s  o f  n - t h  d e g r e e .  

PROOF. U s i n g  t h e  r a n d o m  n u m b e r  g e n e r a t o r ,  t h e  s c h e m e  p r o d u c e s  a n  i n t e g e r  x o ,  

c h o o s i n g  i t  e q u i p r o b a b l y  a m o s  9 

- w + l ,  - w + 2 ,  . . .  ~ - 1 ,  0 ,  1~ . . .  ~ w , 

w h e r e  w=2 Flog kn~ a n d  k = f l g  ] +  1. The  v a l u e s  P1 ( X o ) '  P2(Xo ) ' P3  (Xo) 
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a r e  eva lua ted~ and it i s  t e s t e d  w h e t h e r  P l (Xo )  - P2(Xo) : P3(Xo)-. I f  no___~t ~ then  t h e  

p o l y n o m i a l s  a r e  m u l t i p l i e d  i n c o r r e c t l y ;  i f  ye__~s~ t h e  s c h e m e  p r o d u c e s  r e s u l t  1. 

The d e g r e e  of  P l ( X )  - P2(x)  - P3(x)  d o e s  not  e x c e e d  2n.  If  it  i s  not  equa l  

to  z e r o  iden t ica l ly~  t h e n  i t  t a k e s  t h e  va lue  0 fo r  no m o r e  than  2n v a l u e s  o f  t h e  

a r g u m e n t .  T h e r e f o r e ~  t h e  f r e q u e n c y  o f  t h o s e  v a l u e s  o f  fo r  w h i c h  Xo ~ P l  (Xo) " P2 (Xo) : 

: P 3 ( X o ) ~ d o e s  n o t  e x c e e d  ~ . Q . E . D .  

N e x t  we  c o n s i d e r  c o m p u t a t i o n  s c h e m e s  w h e r e  on ly  o p e r a t i o n s  w i th  b i t s  a r e  

a l l o w e d .  

THEOREM 5. For  e v e r y  g ~,0 and fo r  e v e r y  n a t u r a l  n and r t h e r e  is  a p r o b a b i -  

l i s t i c  c o m p u t a t i o n  s c h e m e  wi th  c o n s t  ( n + l )  2- ( r + l )  2- log (n+r )  b i t - o p e r a t i o n s  

s u c h  tha t  it  t e s t s  wi th  p r o b a b i l i t y  1 - 6  m u l t i p l i c a t i o n  of  any two m a t r i c e s  of  s i z e  

n x n t h e  e l e m e n t s  of  w h i c h  a r e  n a t u r a l  n u m b e r s  no t  e x c e e d i n g  2 r .  

PROOF. The algorithm used is the same as in Theorem 3. 

THEOREM 6. For every £ ;-0 and for every natural n and r there is a probabi- 

l i s t i c  c o m p u t a t i o n  s c h e m e  wi th  c o n s t  - ( n + l )  - ( r + l )  - log (n+r )  b i t - o p e r a t i o n s  

s u c h  t h a t  i t  t e s t  wi th  p r o b a b i l i t y  1- £ m u l t i p l i c a t i o n  o f  any  two o n e - a r g u m e n t  

p o l y n o m i a l s  o f  n - t h  d e g r e e ~  t h e  c o e f f i c i e n t s  o f  w h i c h  a r e  n a t u r a l  n u m b e r s  not  e x -  

c e e d i n g  2 r .  

PROOF. I d e a s  of  p r o o f s  o f  T h e o r e m  1 and T h e o r e m  4 a r e  c o m b i n e d  fo r  t h i s  p r o o f .  

We u s e  J~'(£) fo r  t h e  n u m b e r  of  p r i m e s  a m o n g  t h e  f i r s t  ~ n a t u r a l  n u m b e r .  Let 

R 1 ( £ ) - -  ~ ' ( 2 r l ° g ~ ] ) .  Let R2(~ ~ N~ N ' ' )  be  t h e  n u m b e r  of  d i f f e r e n t  p r i m e  d i -  

visors of I N' - N'' ~ not exceeding 2 [l°g ~] Let R3(~ ~ s) be maximum of 

R2(e~ N'~ N'') overallpairs (N'~ N'') suchthat N'~2s~ N''~2s~ N' ~ N'' 

Let N' ~ N'', N'42s, N''~2 s, andlet Pl'" P/"'" P;~ betheca- 

nonical, expansion of I N~ - N W ' I into product of prime divisors. Since all ~¢, o(~ .... 

~ k! ~ are positiveand PI' P2 .... ' Pk are different, pl ~ p;~... Pk ~ Hence 

2 s >/ k. / and k ~ const - s / log s. Consequently~ there is cl>0 such that R2(~ ~ N w 

m '~) & c I- s / log s. Bythe £eby~ev theorem on ~"(~) (see Theorem 324 in [2]) 

there are constants a and b such that 0 <a<b and for all ~2 

a-~ / log ~<56(1) < b-~ /log 4. 

Therefore~ for every ~ >0 there is a natural c(£ ) such that 
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R 3 (c(£) s, s) 
!ira < 

R (c(~) s) 
s-~ 1 

(Indeed, we can use any natural number exceeding 3c~/a£ for c(E ). ). 

Let d denote rl°gdn'1 r , w denote 2 , u denote + (n+l) log (kn), 

and v denote Flog (c(g) . u) I. 

The computation scheme begins with generation of a random string consisting of 

letters from { 0~ 1}° This string is regarded as binary representation of a natural V 

number m, and scheme tests whether this number is prime. If not, a new number 

m is generated and its primality tested~ etc. The scheme a11ows to generate this 

number log (~) / log (I - v-a ) times. If no m has turned out prime, the scheme 

produces result I. If y.~, a random x is generated~ its value being equiprobab- 
O 

ly chosen of the following: -w+ I, -w+2, ... , -I~ 0, I, ... , w. Then residues 

modulo m are calculated for Pl(Xo), P2(Xo), P3(Xo) and the following test per- 

formed: 

PI(Xo) P2(Xo) ~ P3(Xo) (rood m) (*) 
If false, the polynomials have been multiplied incorrectly~ and the scheme produces 

0; if true, the scheme produces I. 

£ )/log (I a ) times. For large n+r The number m is generated log ( ~ - v 

this is a value of the same order of magnitude as log u. One test of primality of a 

number, not exceeding 2 v, can be performed using const, v 2. 2 v/2 operations with 

bits. Hence no more than o(n+r) bit-operations are used for the generation of m 

and all the primality tests. No more than o(n+r) bit-operations are used for the 

generation of x as well. Computation of Pl(Xo) (mod m), P2(Xo) (mod m) , 
O 

P3(Xo) (rood m) and the test (*) takes const (n+l)-(r+l) - log (n+r) bit-operat- 

ions. 

Now we prove that for sufficiently large (n+l) • (r+l) the probability of the 

right result exceeds I- C • Indeed, the degree of Pl(X) • P2(x) - P3(x) is not 

higher than 2n. If this polynomial does not equal zero identically~ it takes value 0 

for no more than 2n values of x. Therefore, the probability to choose a number x , 
O 

for which PI(Xo) • P2(Xo) = P3(Xo), does not exceed ~/3. 

It follows from the definition of c(g) and from the way how the value of m 

is chosen that, if Pl(Xo) • P2(Xo) ~ P3(Xo) ' then the probability of Pl(Xo) • P2(Xo) 
v v 

P3 (xo) (mod m) exceeds 1 - g/3. By the Cebysev theorem cited above, the 

probability to get a prime m at the very first time is 
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a 2V/v a 

2 v v 

The number t = log (~) / log (1- a ) of repetitions of generations of m is fixed 
v 

to guarantee that a prime modulo m can be generated in t trials with the probabi- 

lity i- E/3. Hence~ for large (n+l)-(r+1) the probability of the right result exceeds 

i- ~ , This implies our theorem for small n and r as well because the estimate 

includes an arbitrary multiplicative constant. Q.E.D. 

4. REAL-TIME RECOGNITION OF LANGUAGES 

Counter machines were first investigated by M.Minsky tl2J. We referL3 J for 

a formal definition. Informally~ k-counter machine is a Turing machine with k work- 

ing tapes but there is a severe restriction on the usage of these tapes. A non-blank 

symbol is allowed only in the initial square on the tape. Therefore, the only information 

that matters is the position of the head on the tape. This way~ a natural number is 

stored on this tape. At any moment this number can be changed only by adding +1, 

0 o r  - 1 .  

P r o b a b i l i s t i c  k - c o u n t e r  m a c h i n e  d i f f e r s  f r o m  d e t e r m i n i s t i c  one  only  in the  p o s -  

s i b i l i t y  to u s e  a Bernoul l i  r a n d o m  n u m b e r  g e n e r a t o r  wi th  2 e q u i p r e b a b l e  ou tpu t s  0 

and 1 at any m o m e n t .  

A m a c h i n e  i s  r e a l - t i m e  if it r e a d s  one s y m b o l  f r o m  the  input  at e v e r y  m o m e n t  

and p r o d u c e s  a r e s u l t  c o n c e r n i n g  the  s t r i n g  c o n s i s t i n g  of  all  s y m b o l s  tha t  have  a l r e a d y  

entered. 

We say that a probabilistic counter machine recognizes a language L with 

probability p~ if the probability of producing a result 

~I ~ if x ~ L 

Cz(X) \0 if x e ]~ 

exceeds p. 

We consider the problem whether there are languages recognizable in real time 

by probabilistic counter machines and not recognizable by deterministic ones. 
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Let {L k } be the [ollowing family of languages. L k ~{al~ bl~ a2, b 2 ..... 

a k ,  b k ) + .  L k i s  t h e  l a n g u a g e  o f  a l l  s t r i n g s  x s u c h  t h a t  fo r  a l l  i e - ~ l , 2 , . . .  , 

k } t h e  n u m b e r  o f  s y m b o l s  a.  in t h e  s t r i n g  x e q u a l s  to  t h e  n u m b e r  o f  s y m b o l s  b. 
1 1 

in x .  L k c a n  be  i n t e r p r e t e d  a s  t h e  l a n g u a g e  o f  a l l  t r a j e c t o r i e s  in k - d i m e n s i o n a l  

i n t e g e r  s p a c e  r e t u r n i n g  to t h e  z e r o - p o i n t .  

THEOREM 7. (Lain9 ~llJ ) (1) For every k >,.I there is a deterministic k-counter 

machine recognizing h k in real time. (2) For any k >2 there is no deterministic 

(k-l)-counter machine recognizing L k in real time. 

We prove that probabilistic counter machines can recognize real-time more 

ianguages than deterministic ones. 

THEOREM 8.  For  e v e r y  k >/1 a n d  e v e r y  E ~" 0 t h e r e  i s  a p r o b a b i l i s t i c  1 - c o u n t e r  

m a c h i n e  r e c o g n i z i n g  L k in  r e a l  t i m e  w i t h  p r o b a b i l i t y  1 - £  . 

PROOF. F i r s t  o f  a l l  t h e  m a c h i n e  c h o o s e s  e q u i p r o b a b l y  an  i n t e g e r  r e { 1  ~ 2 , 3  ~ . . .  

2 [ l ° g  k / a ] 2 .  On  e v e r y  o c c u r r e n c e  o f  s y m b o l s  a 1~ b 2~ a 2~ b 2~ . . .  ~ ak~ b k t h e  
k k m a c h i n e  a d d s  n u m b e r s  +r~ - r ~  +r2~ - r 2 ~  . . .  ~ +r  ~ - r  ~ r e s p e c t i v e l y ~  to t h e  

c o u n t e r .  T h e  s t r i n g  i s  a c c e p t e d  i f  a n d  o n l y  if  t h e  c o u n t e r  b e c o m e s  e m p t y .  If  x e Lk~ 

t h e n  t h e  c o u n t e r  s u r e l y  b e c o m e s  e m p t y .  If  t h e  s t r i n g  x c o n t a i n s  n ( a~  1) s y m b o l s  

al~ n(b~l) symbols bl~ .... ~ n(a,k) symbols ak~ and n(b~k) symbols bk~ 

the counter contains the number 

r (n(a,l) - n(b~l)) +r2(n(a,2) - n(b,2)) + ... +rk(n(a~kl - n(b,k)). 

We shall prove that if x ~Lk, then the probability of the counter' s not becom- 

ing empty exceeds l-g . Indeed, let x ~ Lk, i.e. there is an i such that n(a,i)- 

n(b,i) ~ 0. Then at most for k-i different values of r the equality 

1 (n(a~l) - n(b~l)) + r I (n(a~2) -n(b,2))+ ... +rk-l(n(a,k) - n(b,k)) = 0 

holds. Otherwise we would get a system of k linear algebraic equations (with un- 

knowns n(a,j) - n(b,j) ) the determinant of which is not equal to 0 as Vandermonde 

determinant. Q. E. D. 

We are going to prove that a probabilistic multi-counter machine can recognize in 

real time with probability I- £ a language nonrecognizable by any deterministic 

multi-counter machine. For this we consider the following language which in a sense 
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is a union of all  languages L k. 

To desc r ibe  s t r ings  of this  language we introduce the following blocks : 

OLkJ : 00 ~__% 
k t i m e s  

A k 

B 
m~i 

0 [ k ] l  012°110121J l  012211 . . .  1 012k-112 0~2kl 

1 0 [ m l ] 1 0 [ m 2 1 1  . . .  1 0 [ m i - 1 ] l  2 [ m i l l  0 [ m i + l J l  . . .  1 0 [mk-1 ]3  0 [ m k ] l  

code (a . ) :4B 3 3 . . .  3B k 4B k 
i 1,i B2~i  B3~i3 2 - l ~ i  2 ~i 

code (b.): 5 B 3 B 2 3 3 . . .  3 B2k_l 5 B k i l~i  , i  B3~i ~i 2 ~i 

code (x(1)x(2)... x(n)): A code (x(1)) code (x(2))... code (x(n)) 
k 

We cons ider  two languages D and E. 

D={yly {0,1,2,3,4,ay (3k)  4a1,  1 ..... ak,bkp I I-  y = code 

E= {yly~{0,1,2,3,4,5}+& (~k) (~× EL k ) (IxI >z k&y=code (x))} . 

LEMNIA. There is a deterministic 9-counter machine recognizing D in real time. 

PROOF. The machine tests the syntactic correctness of ali blocks~ including the testing 

whether k is the same for all blocks.Two counters are used to contain the parameter 

k. When 0[k] of the block A k is entered, the first counter counts up to k. 

After that whenever +I (or -I~ respectively) is added to one of the two counters: 

-I (+I) is added to the other. This way, the sum of the contents of these two counters 

i s always equal to k. Using these two counters~ th@ machine tests whether: I) there • 
a r e  k+l blocks of 0~2iJ  type in ak, and 2 ) t h e r e  a r e  k blocks of 0 [ m  and 

2 [m  i ]  type in eve ry  Bm~ i .  Two more  counters  a r e  used to contain 2 k. Using 

these  two coun te r s ,  the machine t es t s  whether :  1) e v e r y  block 012i+1j  is twice  as 

2 k long as the preced ing  0 r  1L2id in A k~ and 2) t he r e  a r e  blocks of B m type 
i 

in e v e r y  code (a.)  and in e v e r y  code (b . ) .  Two counters  a r e  used to contain m,  

and two counters  a r e  used to contain m . Using these  4 counte rs ,  the machine t e s t s  

whether :  1) the length of eve ry  0 [m ~+1] is equal to the product  of the length of 

0 [m ~] and 0 [m 1] in e v e r y  Bin , i ,  and 2) e v e r y  block Bm+l ,  i in eve ry  code 
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(a.)l (or  in code (b.))z is  p r e c e d e d  by a block Bm~ i. The ninth counter  accumula te s  

k f rom 0~k]  in A k and uses  it to t e s t  whe the r  [ x [ ~ k .  Q . E . D .  

THEOREM 9. (1) For eve ry  ~ .~0 t h e r e  is  a p robab i l i s t i c  12-counter  machine  

recogn iz ing  E in t e a !  t i m e  with probabi l i ty  1 - g .  (2) There  is  no d e t e r m i n i s t i c  

m u l t i - c o u n t e r  machine  recogn iz ing  E in r ea l  t i m e .  

PROOF. The assertion (2) follows from Theorem 7. The probabilistic machine men- 

t ioned in (I) produces right results for all short strings, For long strings the proba- 

bilistic machine uses 9 counters to recognize the language D. If x ~ D~ then 

x ~ E. Two counters are used to produce and to contain a random number r 

(I ~r~ 2 k). While A k is entered, the random number generator is used at every 

moment when input symbol 1 enters, i.e. immediately before every block 0 ~2°]~ 

0[21 ] . . . . .  oL2k-1].  If the  g e n e r a t o r  p roduces  O, t h e b l o c k  012 i ]  i s i g n o r e d .  

If the  g e n e r a t o r  p r o duces  1~ the  length 2 i of the  block 0~2i~ is  added to the 

coun te r .  The va lues  of r a r e  equ ip robab le .  

The r e s t  of the p e r f o r m a n c e  of the  machine  and of the  p r o o f  r e s e m b l e s  the  p roof  
i 

of Theorem 8. The value + r is  added to the twelf th counter  wheneve r  code (a .)  
1 

i 
i s  e n t e r e d ,  and - r is  added whenever  code (b.)  is  e n t e r e d .  The output of the  

1 

probab i l i s t i c  mach ine  is  1 if and only if the twelf th  counter  is  empty .  Q. E .  D.  

COROLLARY. The language E is not in Boolean closure of languages recognizable in 

real time by deterministic multi-counter machines. 

Counter machine is a particular case of pushdown automata, stack automata,e~c. 

It turns out that probabilistic counter machines can recognize some languages not re- 

cognizable by deterministic pushdown automata, by deterministic stack automata, and 

even by nondeterministic stack automata~ 

Stack automata were introduced by S.Ginsburg, S.Greibach and M.Harrison [?l" 

We consider one-way nondeterministic stack automata. Such an automaton works like 

an one-head on-line nondeterministic TurinG machine whose entire tape to the right of 

the head at any moment when the head writes (i.e. changes a symbol on the tape) is 

filled only with empty symbols. Recall that for pushdown automata entire tape to the 

right of the head is empty at any moment. The difference is in the possibility of the 

head of a stack automaton to read symbols from inner parts of the stack. 
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THEOREM I0. There is a language F such that: 1) for every £ ~ 0 there is a 

probabilistic 1-counter machine recognizing F in real time with probability 1 - ~., 

and 2) there is no nondeterministic stack automaton accepting F. 

PROOF. It follows from corollary 1 in [10] that the language 

F={I I 0n-12120n-22130n-32 ... 2 I n-I O I) 

cannot be recognized by a deterministic stack automaton and~ moreover~ cannot be 

accepted by a nondeterministic stack automaton. 

We describe a probabilistic 1-counter machine. If the input string is not of 

I i~ 0 j~ 2 I i~ 0 j~ 2 i i3 0 j3 2 . . .  2 I i~ 0 j~ 

typ% where i I = 1 and Jm = I~ the machine rejects it. If the input string x 

t his type~ the machine should check whether 

is of 

i2=il+ 1 ~ i3 =i2+ 1 ~ ... ~ im ='im-I + 1 

J2 = Jl- 1 ' J3 = J2- 1 ..... Jm = Jm-I - 1 . 

Since it is not possible to check all these equalities precisely: the machine chooses 

random coefficients al~ a2~ ... ~ am_l~ bl~ b2~ ... ~ bin_ 1 and checks whether 

al(i2-il-l) + --. + am_l(im-im_l-l) + bl(J2-Jl+l) + ... + bm_l(Jm-Jm_l) = 0 . 

The coefficients are chosen equiprobably among 1~2~3~ ... , r ~ where r is an 

1 
integer degree of 2 exceeding ~ . Q. E. D. 

S.Greibach [8] has called a counter-machine blind if: I) the instructions 

of it do not depend on counters' being empty~ and 2) the string is accepted only if 

all the counters are empty at this moment. 

THEOREM 11. If a language L is recognized in real time by a blind deterministic 

multi-counter machine, then for every g • 0 the language L is recognized in real time 

by a blind probabilistic 1-counter machine with probability I- E . 



68 

PROOF. The same idea as in Theorem 8 is used. Let k be the number of counters 

of the deterministic machine. For the beginning a random number r is chosen just 

Iike the proof of Theorem 8. When the deterministic machine adds +i to the i-th 
i-I 

counter, the probabilistic machine adds +r to its only counter. If the determinis- 

tic machine accepts a string~ the probabilistic machine surely accepts it as well. If 

the deterministic machine rejects a string, the probability of rejectin 9 it by the pro- 

babilistic machine exceeds l-g . Q.E.D. 
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Abstract 

In this paper we study the relative succinctness of different representations 

of determiniNtic polynomial time languages and investigate what can and cannot be 

formally verified about these representations. We also show that the relative suc- 

cinctness of different representations of languages is directly related to the sep- 

aration of the corresponding complexity classes; for example, PTIME ~ NPTIME if and 

only if the relative succinctness of representing languages in PTIME by determinis- 

tic and nondeterministic clocked polynomial time machines is not recursively bounded, 

which happens if and only if the relative succinctness of these representations is 

not linearly bounded. 

Furthermore, we discuss the problem of approximating the recognition of com- 

plete languages in NPTIME by deterministic polynomial time machines which accept 

finite initial segments of these languages. We conclude by discussing the relative 

succinctness of optimal and near-optimal programs and the nature of the families of 

minimal machines for different representations. 

Introduction 

In this paper we discuss the relative succinctness of different representations 

of languages and draw several consequences from these results about the problems of 

separating computational complexity classes. To give an easily understood interpre- 

tation of these results, which are not technically difficult, we concentrate this 

study on representations of the class of deterministic polynomial ti~e languages, 

* Research supported in part by National Science Foundation grant MCS 78-0041fl 
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PTIME, which is currently accepted as a good mathematical model for the feasible 

computations. 

We define a variety of deterministic representations for the languages in PTIME 

and show between which pairs of these representations the relative succinctness is 

not recursively bounded (leaving a tantalizing open problem). 

Several of these representations require that there be formal proofs that the 

machines involved are true descriptions of languages in PTI~E, the extreme case being 

verified representations, which include as a part of each description a formal proof 

of its validity. We also consider nondeterministic polynomial time representations 

of languages in PTIME and show that the families of deterministic and nondeterminis- 

tic polynomial time computable languages are equal, PTIME = NPTIME, if and only if 

the relative succinctness between the deterministic and nondeterministic representa- 

tions can be linearly bounded. The size of the constants in the linear succinctness 

bound determine how large a deterministic polynomial time machine must be (if it 

exists) to recognize a complete NPTIME problem; the linear relationship could pos- 

sibly be used to show that the desired deterministic polynomial time machine must be 

immensly large (and therefore incomprehensible) or that it does not exist. 

It is interesting to note that our current understanding of these prohlems 

leaves open the possibility that PTIME = NPTIME, but not in a way that knowing this 

information can be of any use. Conceivably, it might be provable that there are 

deterministic polynomial time machines that accept complete languages for 

NPTIME, for example the satisfiable Boolean formulas in conjuncti~enormal form, CNF- 

SAT, but it might also be that no specific one of these machines can be proven to do 

so. Or, the smallest such machine might be so large in size that we are not likely 

to find it, rendering its existence meaningless for practical purposes. (See the 

later discussion why this possibility is not eliminated by the related result in [7].) 

We consider also the problem of approximating the recognition of NPTIME complete 

sets by deterministic polynomial time machines which accept correctly all strings in 

the complete set up to a given size. For example, we say that a machine, M accepts 

an initial segment of CNF-SAT if for some n O an input is accepted if and only if it 

is a satisfiable formula no longer than n o . 

On the one hand, we show that under the assumption that PTIME # NPTIME there is 

no recursive succinctness bound for several pairs of deterministic and nondeterminis- 

tic polynomial time representations of the initial segments of CNF-SAT. On the other 

hand, we show that there are succinct deterministic polynomial time machines (recur- 

sively related in size to the equivalent nondeterministic machines) which recognize 

the initial segments of CNF-SAT. Unfortunately, our proofs also show that the poly- 

nomial degree of these machines must grow nonrecursively in their size and so must 

the length of proofs that they accept an initial segment of the satisfiability prob- 

lem. 
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In conclusion,we observe that there is no recursive succinctness bound between 

the representations of languages by optimally fast and near-optimally fast algorithms. 

We discuss the possibility that the difficulty of finding optimal algorithms and 

proving algorithms optimal for many practical problems may be caused in some cases by 

the possihly i=~ense difference in size between the known near-optimal and the desired 

optimal algorithms. It would be very interesting to find a natural language for which 

one could prove that its optimal algorithms must be immense while exhibiting a small 

near-oprimal algorithm. 

The results reported in this paper are not technically hard, and their proofs 

make use of refinements of techniques which can already be found in earlier work on 

program size [3,8]. At the same time, they do address new questions, not answered 

by these previous studies, which arise naturally from more recent work on polynomial 

time complexity. We believe that these results gain relevance from their relation to 

classic open problems in theory of computation, from their possible contributions to our 

overall understanding of complexity of computations and from the problems they suggest 

for further investigation. 

Preliminaries 

In this section we establish our notation and define the basic concepts and re- 

presentations used in this paper. 

Let MI,M2,... be a standard enumeration of all deterministic multitape Turing 

machine (Tm's), let L(M i) denote the language accepted by Mi, let Ix I denote the 

length of x and define 

Ti(n ) = max{mlm is number of operations performed by M i on input 

x, Ixl = n~. 

Let IMil be the length of the description of M i in a fixed alphabet. Similarly, let 

NI,N2,... be a standard enumeration of all nondeterministic multitape Tm's. 

Let the set of all polynomial time languages [i] be denoted by 

PTIME = {L(M i) I Ti(n) ~ k+nk, k~l} 

and let the corresponding set of nondeterministic polynomial time languages be de- 

noted by NPTIME. PTIME consists of all the languages accepted by deterministic 

Turing machines in polynomial time. The main object of this paper is to investigate 

the relative succinctness of different representations of this family of languages 

and relate these results to the classic problem of determining whether PTIME = NPTIME. 

A number of representations studied in this paper, and previously discussed in 

[2], consist of machines about which we can formally prove that they accept the de- 

sired type of language. To make these concepts more precise let FS be an axiomatiz- 

able, sound formal mathematical system which is sufficiently rich to formulate and 

prove elementary facts about Turing machines and their computations. Since FS is 
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axiomatizable we know that the set of provable theorems is recursively enumerable and 

that soundness of FS assures that only true theorems can be proven. The particular 

choice of FS is not important for this study, so instead of specifying FS in detail 

we will state explicitly (later) what has to be provable in FS. (The reader can think 

of FS as formalized Peano Arithmetic with an agreed upon representation of Turing 

machines and their computations.) For a formal statement T provable in FS we write 

Fs~- IT]. 

We now define several well known deterministic representations of deterministic 

polynomial time languages: 

i. Clocked polynomial time machines, CPTM; this is the set of Tm's 

CPTM = {M (i,k) I i,k = 1,2 .... }, 

with standard, easily recognizable polynomial clocks, which shut off the 

computation of M i after k+n k steps. The set CPTM is seen to be recursive. 

2. Verified polynomial time machines, VPTM; this is the set of Tm's for which 

there is a proof in FS that they run in polynomial time, 

VPTM = {M.l I FS I-- (~k) [Ti(n) ~ k+nk]}. 

The set VPTM is reeursively enumerable, but not recursive (because FS is as- 

sumed to be sufficiently rich to make M. e ? VPTM an undecidable problem). 
1 

3. Verified polynomial time language machines, VPLM; this is the set of total 

Turing machines for which it can be shown in FS that they accept a language 

in PTIME, 

VPLM = {M.I I FS ~ [M i is total and n(Mi) s PTIME]}. 

Again we note that VPLM is recursively enumerable but not recursive. 

4. Polynomial time machines, P__~; this is the set of Tm's which run in poly- 

nomial time, 

PTM = {M i ] (~k) [Ti(n) ~ k+nk]}. 

Clearly this set is not recursively enumerable. 

5. Polynomial language machines, PLM; this is the set of total Tm's which ac- 

cept languages in PTIME, 

PLM = {M i I M i is total and L(M i) e PTIME}. 

PLM is not reeursively enumerable. 

6. Partial polynomial language machines, PPLM; this is the set of partial Tm's 

which accept languages in PTIME, 

PPLM = {M i I L(M i) ~ PTIME}. 

This set is not recursively enumerable. 

To link the succinctness results to the classic open problem about nondeterminis- 

tic polynomial time computations we consider nondeterministic representations of fang- 
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uages in PTIME. 

ines. 

7. 

They are defined similarly to the corresponding deterministic mach- 

Nondeterministic clocked polynomial time machines, NCPTM; this is the set 

of nondeterministic machines with standard polynomial clocks which shut them 

off and which accept languages in PTIME, 

NCPTM = {N6(i,k) I L(N6(i,k)) e PTIME}. 

This set is not recursively enumerable. 

8. Nondeterministic verified polynomial time machines for which it can be proven 

in FS that they run in polynomial time and accept languages in PTIME, 

NVPTM = {N i I FS ~ [(~k) r.(n)l ~ kq~nk and L(N i) s PTTME]}. 

This set of machines is recursively enumerable. 

For a family of machines C, we write 

LANG[C] = {L(M i) I M i e C}. 

Clearly, 

LANG[CPTM] = LANG[VPTM] = ..o = LANG[NVPTM] = PTIME. 

We observe in passing that under very mild assumptions about FS, it can be shown 

that 

FS~ [LANG[CPTM] = PTIME]. 

On the other hand 

LANG[VPTM] = PTIME 

can be shown not to be a theorem in FS, since 

FS ~ [LANG[VPTM] ~ PTIME] 

leads to a consistancy proof of FS in FS, which is impossible by Goedel's second In- 

completness Theorem. 

Let R 1 and R 2 be two different representations of a family of languages F. We 

will say that the relative succinctness of representation of languages in F by R 1 

and R 2 is recursively bounded if there exists a recursive function f such that for 

any A in R 2 there is an equivalent A' in R 1 satisfying 

f(IAl) > I A' I" 

Therefore, we see that the succinctness gained by going from representations in R I 

to representations in R 2 is bounded by f. 

If such a reeursive succinctness bound d~es not exist then we say that the re__- 

lative succinctness of the representation R 1 and R 2 of F is no trecursively hounded. 

In the following we will investigate the relative succinctness Between represen- 

tations of languages in PTIME and relate the relative succinctness between determinis- 
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tic and nondeterministic representations of languages in PTIME to the classic PTIME = ? 

NPTIME problem. Furthermore, we will investigate what happens if we attach formal 

proofs to these representations that they accept the desired languages. We will also 

investigate the possibility of the existence of succinct deterministic polynomial time 

machines which accept correctly all strings from an NPTIME complete problem up to a 

given length. We will conclude with some observations about the relative succinctness 

of representations of optimal and near-optimal algorithms and a look at the nature of 

the sets of minimal machines for the different representations discussed in this paper. 

Succinctness Results 

The relative succinctness of different representations of languages has been in- 

vestigated extensively before and succinctness results related to computer science 

problems can be found~for example, in [3,5,8,9,10,11]. Blum's pioneering paper [3] 

contains the result that any infinite r.e. sequence of machines contains some machines 

whose size can be reduced by an arbitrary recursive amount. Meyer [8] presents a 

stronger theorem, to the effect that given any recursive enumeration of total functions 

that includes the zero-one functions of finite support, another similar enumeration 

can be constructed so that, for the zero-one functions of finite support, the gain in 

succinctness going from the first representation to the second is not recursively 

bounded. While this theorem does not apply directly, we make use of an important 

technique found in its proof, refining it to handle the more stringent requirements 

of our present application, where we must deal with verified and non-r.e, representa- 

tions. 

In Fig. i we have summarized schematically the information about some of the pairs 

of representations of languages in PTIME for which we will prove that there do not 

exist recursive succinctness bounds; for example the arrow from VPTM to CPTM indicates 

that we have nonrecursive succinctness loss going from verified polynomial time re- 

presentations to clocked polynomial time representations. 

We will start these proofs by explaining a very simple proof technique which has 

been used before and showing why it is not sufficiently powerful for o~r purposes (since 

it does not remain valid under the addition of proofs of correctness to these represen- 

tations). 

PTM , ~  ~ .  VPLM 

Fig. i 
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Fact i: The relative succinctness of representing languages in PTIME by machines from 

CPTM and PTM is not recursively bounded. 

Proof: For a Tm~ Mi, which halts on blank tape let m i he the number of steps performed 

by M i before halting. Clearly, m i is not recursively bounded in the size of Mi, or 

the halting problem would be solvable. To show that the relative succinctness between 

CPTM and PTM cannot be recursively bounded we will construct a Tm Md(i) which runs in 

polynomial time and accepts a finite set not accepted by any clocked machine, M (j,k) 

such that 

IMo(j,k) I ~ m i. 

Construction of Md(i): for input x Md(i) computes m; and enumerates all clocked 

machines Mo(j,k) such that TkM (j,k) I ~ m i, say MiI,Mi2,...,M i . The input x is rejected 

if Ix! > p, else P 

Md(i)(x) = i - M i (x). IxI 
It is seen that if M i halts on blank tape then Md(i) runs in polynomial time and ac- 

cepts a finite set not accepted by any M (j,k) of size less than m i. Since IMd(i) 1 

is reeursively related to IMil and IMil is not recursively related to mi, we see that 

there is no recursive succinctness bound between the representations in CPTM and PTM. 

If the formal system FS is sufficiently rich then for any machine M i which halts ~ 

on blank tape, we can prove this fact in FS and therefore get a proof in FS that Md(i) 

is in PTM. We make this assumption explieit. 

Assumption about FS: We assume that for any Tm, M i which halts on x we can prove 

this fact in FS, i.e. 

FS ~ [Mi(x) halts]. 

Furthermore, we assume that (for a simple and uniform construction d(i)) we can 

prove in FS that Md(i) runs in polynomial time (and that this proof in FS implies 

that Mi(-) halts). 

It should he observed that in any reasonably rich logic designed to reason about 

computations and machines, we should be able to prove the above stated theorems. 

Under the above assumptions about FS we know that Md(i) is in VPTM iff Mi(-) halts, 

and therefore we get the next result. 

Fact 2: The relative succinctness between the representations of PTIME languages by 

CPTM and VPTM is not recursively bounded. 

It is interesting to note that there is a lack of symmetry between the represen- 

tations of languages in PTIME by CPTM and PTM (or VPTM). For any machine Mo(i,k) in 

CPTM we can easily verify that it indeed is a clocked machine and that it therefore 

runs in polynomial time and accepts a language in PTIME. On the other hand, no such 

certainty exists for machines in PTM or VPTM. Since the set PTM is not recursively 
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enumerahle we have no way of verifying that the machines in PTM run in polynomial time. 

For machines in VPTM there are proofs that they run in polynomial time but no decision 

procedure. These considerations suggest that to make the representations symmetric 

we should consider "certified" representations by including with the machine a proof 

that the machine accepts a language of the desired type. Such representations are dis- 

cussed in [5]. 

In view of these considerations let 

VPTMp = {(M i, Pi ) I Pi is a proof in FS that M i runs in 

polynomial time} 

and let 

I(M i, pi ) I ° IMi1+ Ip il 
Let VPLMp be defined similarly. 

It should be pointed out that the previously constructed proof of Fact 2 does 

not prove that there is no recursive succinctness bound between CPTM and VPTMp, as 

shown by the next observation. 

Fact 3: For any axiomatizable, sound formal system FS there exists a recursive func- 

tion H such that 

H[ Iproof in FS that Mi(-) haltsl] ~ m.. 
1 

Proof: The reeursive functiou H is given by 

H(n) = max[{o} u {mi I Iproof in FS that Mi(-) halts I ~ n}]. [] 

Let us now consider representations of PTIME by machines from VPTM with added 

proofs that they run in polynomial time, VPTMp. A proof in FS that Md(i) , used in 

the proof of Fact I, runs in polynomial time implies a proof in FS that M.(-) halts. 
1 

Therefore, by Fact 3 we must conclude that m. is recursively bounded with respect to 
1 

IMd(i) I + Iproof in FS that Md(i) runs in polynomial time I 

and therefore the relative succinctness between machines in CPTMand the Md(i~'s with 

attached proofs that they run polynomial time is also recursively bounded. 

It has been pointed out in [5] that, though many of the previous succinctness 

constructions lose their succinctness when we attach proofs of their validity as a 

part of the representation, there are other constructions for these succinctness re- 

sults which have short proofs of validity and therefore extend these results to re- 

presentations with attached proofs. (We will see later in this paper that the represen- 

tations of approximations to NPTIME complete problems behave quite differently and that 

these representations lose their relative succinctness if we demand that they contain 

proofs of validity.) 

In the following we describe a construction which will be used in our proofs and 

state what we assume is provable in FS about this construction. For a related hut 
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differently formulated construction used in succinctness results see [8]. 

Let l~(r) be a Tm which: 

a) Enumerates all Tm's up to size r, i.e. Mil , Mi2 , o.., Mit such that 

IMij I ~ r, l~j~t, 

b) simulates in a dove-tail manner these machines on blank tape and prints 

(between special markers) the maximal running time so far achieved by these 

machines before halting. 

It is seen that ~(r) computes in the limit the nonrecursive and not recursively 

bounded function 

E(r) = max{m i } J~i } ~ r}. 

That is, eventually B(r) will be printed on the tape of ~(r) and no larger value 

will ever be printed, (but as increasing values are printed, we have no effective way 

of determining whether B(r) has Been reached). 

Assumption about FS: We assume that we can prove in FS, with proofs of length 

recursively bounded in r, that,(r) prints (between special markers) only finitely 

many outputs. 

We are now ready to prove a number of succinctness results about the representa- 

tion of PTIME. The notation VPTM(p) in the result indicates that the result holds 

for the verified representations as well as for the verified representations with the 

proof as part of the representation. 

Theorem 4: The relative succinctness between the following pairs of representations 

of languages in PTIME is not reeursively hounded: 

CPTM and VPTM(p), "TPLM(p) and PTM, 
VPTM(p) and PTM, PTM and PLM, 
VPTM(p) and VPLM(p), VPLM(p) and PLM, 
PTM and VPLM(p), PLM and PPLM. 

Proof: We give only the proofs of the more interesting cases, the other cases follow 

by very similar methods. 

CPTM and VPTMp: Below we construct a Tm Md(r) which can easily be proved in FS to run 

in polynomial time and accepts a finite set not accepted by any clocked polynomial 

time Tm, Mo(i,k), with 

IM (i,k) I ~ B(r). 

Since the size of Md(r) will be seen from the construction to be recursively related 

to r (and the length of the proof that Md(r) runs in polynomial time also recursively 

bounded in r) we conclude that the relative succinctness between the representations 

CPTM and VPTM as well as CPTM and VPTMp is not recursively bounded. 

In the construction of Md(r) we use an auxiliary list, Ln, of machines in CPTM 
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which have been found not to be equivalent to Md(r) by processing ~puts up to length 

n-l. 

Description of Md(r): Let L I = 9, reject the null string and all inputs not in 

0". For w = O n , n ~ i, lay off [logn] tape squares and in this amount of tape simulate 

~(r) on blank tape. If ~(r) has no output reject, else let N be maximal output of 

~bCr) 
Reconstruct the list Ln, and try to find the smallest Mo(i,k) in CPTM such that 

Mo(i,k) ~ Ln and l~o(i,k) i ~ N. 
If no such Mo(i,k) can be found on the available tape then reject input and set 

= O n Ln+ I L . If is found then simulate M(i,k)on n Mo(i,k) an do the opposite and set 

Ln+ I L u = n {MG(i,k) }" 

It is seen that Md(r) runs in polynomial time and that IMd(r) I is recursively 

bounded in r (and so is the proof in FS that Md(r) runs in polynomial time), but that 

the size of the smallest equivalent M (i,k) is not recursively bounded in r. This 

completes the proof. 

VPTM(p) and PTM: This case follows by a very similar construction and the use of the 

fact that FS is sound to guarantee that all the machines in VPTM indeed run in poly- 

nomial time. 

PTM and VPLM: Recall that PTM is not recursively enumerable and therefore this is a 

somewhat different case (and does not follow directly from the general formulations of 

succinctness results). Nevertheless, we can easily prove this result by constructing 

the appropriate Md(r). Let Md(r) be a simply and uniformly constructed total machine 

(using ~(r)) which accepts a finite set not accepted by any M i which converges for 

infinitely many inputs of length n in 2 n steps and for which IMil N B(r). Since the 

size of Md(r) is recursively related to the size of r and since no machine in PTM of 

size less than B(r) can be equivalent to Md(r) , we conclude directly that there is no 

recursive succinctness bound between 

PTM and PLM. 

Furthermore, since we can prove in FS (by short proofs) that Md(r) is total and accepts 

a finite set, there is no recnrsive succinctness bound between 

PTM and VPLM(p). 

By transitivity we also conclude that there does not exist a recursive succinctness 

bound between 

VPTM and VPLM(p). 

The other succinctness results follow By slight veriations on the above arguments.~ 

Note: It is interesting to observe that for example, the proof that there is no re- 
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cursive succinctness bound between PTM and VPLM can be formulated and proven in FS, 

provided we can prove in FS that any machine in PTM converges for infinitely many in- 

puts in 2 n steps. On the other hand, the proof that there is no recursive succinctness 

bound between VPTM and PLM cannot be formulated and proven in FS, since we assume the 

soundness of FS in this proof. 

Nondeterministic Representations 

In this section we consider the relative succinctness of representing languages 

in PTIME by deterministic and nondeterministic polynomial time Turing machines. These 

representations are particularly interesting because the relative succinctness of some 

of these representations is directly linked to the classic problem of determining 

whether the families of deterministic and nondeterministic polynomial time recogniz- 

able languages are different, PTIME = ? NPTIME. Furthermore, these results suggest how 

we could try to show that PTIME # NPTIME or, even if PTIME = NPTIME, that the size of a 

deterministic polynomial time machine recognizing the satisfiability problem in IfPTIME 

must be very large. 

We first observe that without any assumptions about the relation between PTIME 

and NPTIME, we can derive some succinctness results which show that certain determinis- 

tic representations are nonrecursively more succinct than certain other nondeterminis- 

tic representations. 

Corollary 5: The relative succinctness between the following pairs of representations 

of languages in PTIME is not recursively bounded: 

NCPTM and VPTM, 
NVPTM and PTM, 
NVPTM and VPLM. 

Proof: Similar to the ones given for Theorem 4. [] 

Theorem 6: Assuming that PTIME ~ NPTIME, the relative succinctness of representing 

PTIME by CPTM and NCPTM as well as by VPTM and NCPTM is not recursively bounded. 

Proof: CPTM and NCPTM. To obtain this succinctness result we will construct a non- 

which runs in n 5 time and by the delayed diagonalization deterministic machine Ng(r ) 
method accepts a set not accepted by any M (i,k) in CPTM with 

IM (i,k) I ~ B(r). 

Prom the construction of Ng(r ) it will be seen that INg(r)] is recursively bounded in 

r, which will yield the desired result. 

Construction of Ng(r): 

a) for input w Ng(r ) determines in lwl 3 steps whether w is in CNP-SAT, 

after that, 

b) for n 3 steps Ng(r ) recomputes the previous computations (on shorter 
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inputs) and tries to find a M (i,k) , _  _ IM (i,k) I ~ B(r), for which 

there has not yet been found a witness that Moll,k)__ is not equiva- 

lent to Ng(r ) ._ _ If such a machine is not found the input is rejected. 

If Mo(i,k)__ is found then Ng(r )_ accepts the input if it is a satisfi- 

able formula and rejects it otherwise. 

Since we have assumed that PTIME # NPTIME, for each M (i,k) _ _ with ]M (i,k) I N B(r) 

the machine Ng(r )_ by its delayed diagonalization will accept enough elements from 

CNF-SAT to find a witness that the machines are not equivalent. Because of the con- 

struction of NgCr )__ we will have the desired nonrecursive succinctness on the represen- 

tations of finite sets and therefore on PTIME. 

The other case follows by similar reasoning. [] 

From the previous results we see that if PTIME # NPTIME then the use of nondeter- 

ministie algorithms to describe deterministic programs can yield recursively unbounded 

succinctness. Therefore, even if we know that a nondeterministic polynomial time al- 

gorithm has an equivalent deterministic polynomial time algorithm we may not be able 

to use the deterministic polynomial time algorithm because of its immense size. 

Clearly, (by contrast) an equivalent deterministic algorithm which does not have to 

run in polynomial time can be effectively computed from the nondeterministie algorithm 

and its length will be recursively related to the length of the nondeterministie al- 

gorithm. 

Next we show that the nonreeursive succinctness given by Theorem 6 occurs iff 

PTIME # NPTIME and that, furthermore, PTIME = NPTIME iff the relative succinctness 

can be bounded linearly. 

Lemma 7: If PTIME = NPTIME then there exists a recursive mapping F, which maps every 

Np~i,k)__ in NCPTM onto an equivalent Mofl,t)_~ in CPTM, and there are two constants c l 

and e 2 such that for all i and k 

CllNp(i,k) I +c 2 ~ IF(Np(i,k)) I = IM~(j,t) I. 

Proof: Note that the language 

U = {Np(i,k) # W(#1Np(i,k~lw[k) I Np(i,k) accepts w} 

is a complete language for NPTIME [6]. If PTIME = NPTIME then U is accepted by some 

Mo(j,t) = Mi0 and therefore for every Np(i,k) we can write down a deterministic poly- 

nomial time machine F(Np(i,k)) which for any input w first writes down 

Np(i,k) #w(#1Np(i,k~ lw]k) 

and then starts Mi0 on this input. It is easily seen that 

L[F(Np(i,k))] = L(Np(i,k)) 

and that for c 2 = ..IMi01 and a c I > 0 
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cllNp(i,k) l + c 2 ~ IF(Np(i,k))l = IMo(j,t) l, 

as was to be shown (the constant c I can be computed easily if we fix a representation 

of Tm's). [] 

Combining these results we get a direct relation between the PTIME = ? NPTIME 

problem and the problem of succinctness of deterministic representation of sets in 

PTIM~. 

Corollary 8: PTIME # NPTIME iff the relative succinctness of representing languages 

in PTIME by deterministic and nondeterministic clocked polynomial time machines (CPTM 

and NCPTM) is not recursively bounded (and this happens iff the relative succinctness 

is not linearly hounded). 

Proof: Follows from Theorem 6 and Lemma 7. 

The above theorem could give further insights into the classic separation problems. 

First of all~ if we could show for arbitrarily large B that the size of a deterministic 

equivalent of some nondeterministic machines Np(i,k) must exceed 

ClINp(i,k) ] + 

then we would have shown that PTIME # NPTIME. Similarly, if we could show that B in 

the above equation must be at least of a given size then we would have a lower bound 

for the size of the (possibly non-existent) polynmmial time machine Mi0 which recog- 

nizes the set U (Lemma 7); if B is very large then so must be Mi0, indicating that it 

will be very hard to find. 

Our current understanding of this problem area is still so limited that we cannot 

eliminate the strange possibility that PTIME = NPTIME and that the smallest determinis- 

tic polynomial time machine recognizing CNF-SAT is so large that it is of no practical 

importance. In the following we discuss some results related to this possibility. 

First we recall L.A. Levin's observation [7] that if PTIME = NPTIME then we can 

exhibit a small deterministic machine which is guaranteed to find in polynomial time 

an assignment for any satisfiable Boolean formula in CNF-SAT. This is achieved very 
3 

simply by a machine Mj0 which slowly enumerates (say in n t/me) more and more deter- 

ministic polynomial time machines and runs them and checks (which can be done in poly- 

nomial time) whether their computed assignments indeed satisfy the given formula. It 

is easily seen that if PTIME = NPTIME then Mj0 will find the desired assignment in 

polynomial time. Unfortunately there is no known way to make Mj0 stop in polynomial 

time if the formula is not satisfiable (so that Mj0 is only in PPTM). Therefore, though 

Mj0 is a small machine it is not a small machine which solves the satisfiahility problem 

in case PTIME = NPTIME. 

Next we discuss an observation made in discussions with Seth Breidbart of Cornell 

University, between the size of machines recognizing CNF-SAT and what can he formally 

proven about PTIME and NPTIME. If we can show in FS for some specific machine M (i,k) 

that it accepts CNF-SAT (specified by some easily understood machine MSAT), 
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FS ~ [L(M (i,k)) = L(MsAT)] 

then there exists a "small" deterministic polynomial time machine accepting CNF-SAT. 

To see this consider the machine Mi0 which searches in a dove-tail manner for a proof 

in FS that some M (i,k) , i,k = 1,2,..., accepts CNF-SAT and then efficiently simulates 

on the original input the first M (i,k) for which it derives the desired proof. 

Clearly, the size of Mi0 is linearly bounded in the size of FS and it recognizes CNF- 

SAT in deterministic polynomial time. 

The strange possibility is still open that we can prove in FS that PTIME = NPTIME 

and that we cannot prove for any specific M (i,k) that it accepts CNF-SAT, i.e., we may 

have 

and that for no M (i,j) 

FS ~ [L(MsAT) e PTIME] 

L(M (i,j)) = L(MSA T) 

is provable in FS. In other words, we may have only nonconstructive proofs in FS of 

the fact that PTIME = NPTIME and therefore even a formal proof of PTIME = NPTIME 

would not assure the existance of succinct deterministic polynomial time recognizers 

for CNF-SAT. 

It should furthermore he pointed out that so far we have not been able to prove 

that there is no reeursive succinctness bound between the representation of languages 

in PTIMEby PTM and NCPTM under the assumption that PTIME ~ NPTIME. This leaves the 

possibility open that for all languages in PTIME we can only gain a recursively bound- 

ed succinctness by going from PTM to NCPTM representations. (Recall that going the 

other way, from NCPTM to PTM the succinctness gain cannot be recursively Bounded.) On 

the other hand, we know from our results that if this is possible then the polynomial 

running time of the machines in PTM has to grow nonrecursively in the size of these 

machines (Theorem 6) and that the proofs that they accept sets in PTIME also grow 

nonrecursively in their size. Therefore we see that if there is recursively bounded 

succinctness between the representations of PTIME language By PTM and NCPTM that this 

is achieved at the expense of immense running times and very long proofs that the 

machines accept the right languages. 

Still we conjecture that there exists no recursive relative succinctness bound 

between PTM and NCPTM for languages in PTIME. 

The previous results, Lemma 7 and Corollary 8, can easily be extended to other 

separation problems such as deterministic and nondeterministic context-sensitive 

languages, PTIME and PTAPE, etc. Similarly, for example, we can prove that the re- 

lative succinctness of representing the languages accepted in time n 3 by k tape mach- 

ines and by k+l tape machines running in n 3 time, is not recursively bounded iff k+l 

tape machines are faster than k tape machines. This result, stated more completely 
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below, links the old open problem about speed of k and k+l tape machines with the suc- 

cinctness of representations. 

Corollary 9: The relative succinctness of representing sets accepted by k tape mach- 

ines in time n 3 by k tape and k+l tape machines running in time n 3 is not recursively 

bounded iff there is a set accepted in time n 3 by a k+l tape machine which is not ac- 

cepted by any k tape machine in time n 3 ( and this happens iff the relative succinct- 

ness of these representations is not linearly bounded). 

Approximations of Complete NPTIME Problems 

In this section we make a few observations about the problem of recognizing ini- 

tial segments of complete NPTIME problems by deterministic polynomial time machines. 

Let the initial part of the satisfiability problem CNF-SAT, be denoted by 

[SATn] = {x I Ixl ~ n and x e CNF-SAT}. 

Theorem i0: If PTIME # NPTIME then relative succinctness of the representation of 

[SATn] , n = 1,2,..., is not recursively bounded for machines from CPTM and NCPTM as 

well as for VPTM and NCPTM. 

Proof: Let M r he a Tm which halts on blank tape in m r steps. Let Nd(r) be a uniformly 

constructed nondeterministic machine which runs in n 5 time and for input w: 

a) determines if w is in CNF-SAT (in lwl 3 time), 

b) it then spends lw] 3 steps to enumerate as many machines Mil, Mi2,..., 

possible from CPTM such that IMO(i,k) 1 Mi. as m r , 

c) another~lwl 3 steps are spent checking the preceding inputs (in lexi- 

cographic order) for witnesses that Nd(r) is not equivalent to Mil, 

Mi2,o..,Mi.. If it is found that Nd(r) is not equivalent to any 

Mo(i,k) wi~h IM (i,k) l~mr then the input is rejected, otherwise it 

is accepted iff it is in CNF-SAT. 

Since we know that CNF-SAT is not in PTIME there is a sufficiently large finite part 

CNF-SAT which is not accepted by any Mo(i,k) such that IMo(i,k) 1 [SAT n] of m r , 

and Nd(r) will eventually discover witnesses for all these machines. Note that in 

searching for the witnesses Nd(r) may lag behind and search through much shorter 

strings then the current input to be able to compute what Mo(i,k) is doing on these 

inputs in time lw] 3. Nevertheless, eventually by this delayed diagonalization Nd(r) 

will find all the desired witnesses and reject all longer inputs. Thus it is seen 

that the size of Nd(r) is recursively related to the size of r, but since m r is not so 

related, we get our desired succinctness result. 

A similar proof yields the second part of this theorem. [] 

It is interesting to observe that the proofs that Nd(r) accepts [SAT n] for some 

n are not recursively related to its size and that in general the above succinctness 
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results cannot be extended to representations with proofs. 

Theorem ii: There is a recursive succinctness bound for the representation of [SATn] , 

n = 1,2,..., by CPTM and (nondeterministic) Turing machines with attached proofs that 

they accept [SATn]. 

Proof: The desired recursive succinctness bound F can be constructed as follows: 

a) for n enumerate all machines N i such that in FS 

INil + Iproof that L(Ni) = [SATe] for some k I ~ n, 

b) compute for each sueh N. the length of the first satisfiable formula 
i 

not accepted by N. 
1 

c) F(n) is the maximum of all these values. 

Because of soundness of FS we see that F is the desired recursive bound. [] 

It is also interesting to observe that the relative succinctness of the represen- 

tations of [SATn] , n = 1,2,..., by PTM and NCPTM is recursively bounded. 

Corollary 12: The relative succinctness of representing [SATn] , n = 1,2,..., by PTM 

and NCPTM is reeursively bounded. On the other hand, the polynomial degree of the 

running time of these machines in PTM (which recognize [SATn] , n = 1,2,..., and whose 

size is recursively bounded in the size of the equivalent machines in NCPTM) must grow 

nonrecursively in their size as must the length of the proofs that they accept [SATn]. 

Proof: For any Np(i,k) such that 

L(Np(i,k)) = [SATn] 

we can effectively compute the first place where Np(i,k) stops accepting CNF-SAT. To 

construct a succinct deterministic polynomial time machine which accepts [SATn] let 

Mj use Np(i,k) to compute the above bound (i.e. n) and reject all inputs longer than 

n; the shorter inputs are accepted or rejected after an exhaustive search through all 

possible assignments. Clearly M i accepts [SATn] , (trivially) runs in polynomial time, 

and has size recursively related to INp(i,k) I. 

The last assertion follows from the previous results about CPTM and VPTM (Theorems 

i0 and ii). [] 

An Observation about Optimal Algorithms 

By techniques similar to the ones used in previous sections or from results in 

[8] we can easily prove that for tape or time bounded computations a "slight" increase 

in the resource bound permits a reeursively unbounded shortening of the representations. 

We state just one special case of this general result. Let TAPE [t(n)] denote the set 

of languages accepted on t(n) tape [i]. 

Theorem 13; The relative succinctness of representing languages in TAPE [n 2] by mach- 
2 2+s 

ines using n -tape and machines using n -tape,e > O, is not recursively bounded. 
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This result has some interesting implications for optimization of algorithms. It 

is well known that we can not recursively decide whether, for example, algorithms run- 

ning on n3-tape have equivalent algorithms running on n2-tape. At the same time, there 

is a feeling that for any particularly important n3-tape algorithm by hard work and 

cleverness we will find either a proof that a faster algorithm does not exist or find 

a faster algorithm. The above result shows that this may not always be the case. There 

are n3-tape algorithms for which equivalent n2-tape algorithms exist and we may even 

be able to prove that they exist (!), but we cannot ever obtain them because of their 

immense size. It is not the lack of cleverness or the weakness of our formal mathemati- 

cal system (which we are willing to change) which prevents us from using the fast al- 

gorithms for these computations, it is their enormous physical size which makes them 

inaccessible to us. 

Similarly, if PTIME # NPTIME and we use nondeterministic machines (programs) to 

specify deterministic polynomial time computations we may not be able to ever write 

down the equivalent deterministic polynomial time algorithm because of their size. 

It is not clear whether there exist any natural problems for which there are 

reasonable-size near-optimal algorithms, but whose optimal algorithms are so large 

that they are of no practical importance. On the other hand, we may be able to prove 

for some natural problem that it has fast algorithms but that their length must exceed 

a large bound, as it was done in our proofs for the "unnatural" sets constructed to 

show the existence of reeursively unbounded relative succinctness for these representa- 

tions. 

It is indeed possible that our difficulties with finding optimal algorithms or 

proving algorithms optimal for natural problems are partially caused by the immensity 

of the size of the optimal algorithms. It seems well worth to investigate this pos- 

sibility further. 

Similarly, when we consider bounded resource algorithms we observe nonrecursive 

succinctness gains as we go from resource bounded algorithms to asymptotically re- 

source bounded algorithms. We state a special case of this observation. 

Corollary 14: The relative succinctness of representing languages in TAPE[n 2] by Tm's 

which work on n2-tape for all inputs and by Tm's which work on n2-tape for almost all 

inputs is not recursively bounded. 

Proof: Obvious. [] 

Again it would be very interesting to determine whether there are some natural 

problems with short algorithms running asymptotically on n2-tape for which the cot- 
2 

responding algorithms running everywhere on n -tape must grow very large. 

Sets of Minimal Machines 

Since most of the results in this paper deal with relative succinctness of maeh- 
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ines and relate the growth of minimal machines to separation of complexity classes, 

we conclude this study by a few observations about sets of minimal machines for dif- 

ferent representations. 

First, it is well known that minimal size Taring machines (ordered lexicographi- 

cally) form random sequences, in the sense of Kolmogorov and Chaitin [4] and that any 

axiomatizable formal mathematical system can only prove a finite number of them minimal. 

In other words, the set of minimal size Tm's is an immune set. 

It turns out that even for several of the restricted representations of languages 

in PTIME discussed in this paper, the minimal machines form immune sets, indicating 

that proving machines minimal in these representations is a hopeless task. 

Theorem 15: The minimal size machines in 

VPTM, PTM, VPLM, TPLM and PPLM 

are immune sets. 

Proof: We will show that for VPTM there exists a constant c 0 such that no minimal 

machine M. in VPTM can be printed out by a machine M (starting on blank tape) if 
i p 

I~l + c o < IMil. 

This immediately implies that the minimal set of machines in VPTM is immune and that 

in any formal system we can only prove those machines of VPTMminimal which are "not 

much larger" then the size of the formal system. 

To prove the above assertion assume that M can print out the description of M. 
p l 

for an M i in VPTM. Then we Can construct a machine Mr(p,i) which: 

at for input w, using % prints the description of M i on its tape 

b) simulates in polynomial time M. on input w. 
1 

If M i is in VPTM then Mr(p,i) is also in VPTM since we just have to verify that 

M prints the description of M. (which has been proven in FS to be in VPTM) and verify 
p i 

that the simulator works in polynomial time. All of these proofs are very simple and 

provable in any reasonable F$. Therefore we see that 

where c is basically the size of the simulator. 

If M. is a minimal machine then 
1 

IM il ~ IM r(p,itl ~ L~pl+c, 
which by setting c 0 = c, shows that 

I%1+ Co< JMil 

cannot hold, as was to be shown. 

The other cases follow by similar arguments. 
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On the other hand, it is easily seen that the set of minimal machines in CPTM 

can be recursively enumerated and therefore there are complete and sound proof rules 

for proving machines minimal in CPTM. 

Theorem 16: The set of minimal machines in CPTM is recursive enumerable. 

Proof: Standard. [] 

2 
Similarly we observe that the minimal machines running on, say, n -tape almost 

everywhere is an immune set, but the set of minimal machines running everywhere on 
2 

n -tape is recursively enumerable. 
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ON TWO TYPES OF LOOPS 
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I. INTRODUCTION 

Whether directly or indirectly, the phenomenon of looping undoubted- 

ly contributes to the high level of mathematical sophistication in current 

computer science. In a rather general setting we can approach loops by 

considering them as a special property of processes evolving in a suitably 

defined state space. A process enters a loop if from a certain state it 

returns, possibly through several intermediate states, again to the same 

state. Here the word 'same' simply means that the new state cannot be, 

within a certain discrimination level, distinguished from the original 

state. (Note that, in agreement with common programmers' Jargon, we use 

the term 'loop' where a graph theorist would prefer 'cycle'.) 

In the theory of loops to be reported here the chosen discrimination 

level does not take into account the internal structure of a particular 

state and considers only its "environment": the possible transitions to 

other states. This alone would hardly yield any interesting theory yet. 

What is novel in our treatment of loops is their combination with branch- 

ing. We consider the case where the transitions from any given state are 

lumped together into (several, possibly overlapping) groups and the pro- 

cess in question always proceeds from such a state by taking all trans- 

itions from exactly one chosen group (the choice being dependent, in 

general, on the past history of the process). The evolving process thus 

have a structure resembling more a branching tree than Just a single 

sequence. 

As a mathematical tool we use the formalism of the theory of auto- 

mata and formal languages. In particular, the mentioned concept of a 

state space takes the shape of a finite automaton with special branching 
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relations (the finite branching automaton of [i]; alternatively we could 

talk about AND/OR graphs [2] with labeled arcs). Using a fixed abstract 

alphabet ~ as a source of names of state transitions we can conveniently 

represent processes by means of languages (with emphasis on their branch- 

ing structure - cf. [3]) rather than by trees. 

Our aim is to classify various types of loops which can occur in 

our automata and relate them to certain natural properties of correspond- 

ing families of languages. We believe that the research in this direction 

may contribute to our understanding of some combinatorial aspects of such 

concepts as iteration, choice, infinite processes, variability of proces- 

ses etc. 

(The results reported in this paper, together with some other re- 

lated material, will appear with complete proofs in a forthcoming paper 

[4]. Here we mostly present just outlines of proofs, leaving out most 

technical details.) 

2. AUTOMATA AND BRANCHING 

Let Z be a nonempty finite alphabet. We use the symbols ~ ~+, A 

with their usual meaning. Moreover, ~^ := ~- U {A} . By lg(u) we denote 

the length of a string u ~ ~* . Throughout this paper let ~6(Z) be the 

set of all nonempty languages over ~ . 

The principal notion of our theory, the finite branching automaton, 

was introduced in [1]. Its definition rests on the standard concept of 

a finite automaton. Let ~ = ~Q, ~, qo' F~ be an ordinary deterministic 

finite automaton over ~ (Q is a finite set of states, ~ : Q x~- -~ Q 

is the transition function, qo e Q is the initial state, F c Q is the 

set of final states). We extend ~ in the usual way to Q ×~_* --~ Q and, 

if there is no danger of confusion, we write qu instead of ~(q,u) for 

any u ~ ~. We denote by [~I the language recognized by ~ , i.e., 

Let ~ = ~Q, ~, qo~> be a finite automaton (over ~ ) without final 

states. LetB @ Q x 2 E^. The finite branching automaton (over ~ ), 

shortly the fb-automaten, is the quadruple 

= <Q, qo, B> . 

We call B the branching relation (of ~ ). 
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To be able to describe the accepting behavior of fb-automata we need 

some tools for expressing the related structural properties of languages. 

Let ~ be the natural prefix relation on ~, viz. u ~ v iff v = uw 

for some w E ~ . Let L g~, u a ~ ~. We define 

pref L := {u I u ~ v for some v e L} , 

9J. :: {v{ , 

~(u) := (pref~uL n Z ) U ( 9uL a {A} ) . 

The poset <pref L, ~> corresponds to the prefix-tree structure of L , 

9u L is the derivative (or quotient) of L with respect to u , and the 

function ~ [ ~ 2 Z^ expresses the local branching structure of L : 

for any a e ~ , a E ~(u) iff ua g pref L , and /k~/kL(U) iff ueL. 

A language L E ~(Z) (note that @ ~ ~(~) ) is accepted by 

iff 

(qo u, /kL(U)) g B (2) 

for all u e pref L . We define 

n I{ :: {L{ L 

the family recognized by ~ . A family 

is accepted by ~}, 

X ~ ~(~ ) is recognizable iff 

it is recognized by some fb-automaton. Thus, as recognizing devices the 

fb-automa%a do not represent languages but families of languages. 

For technical reasons we shall always assume that 

(q, ~) 6 B (3) 

for all q 6 Q. Since /kL(W) # ~ for all w 6 pref L , this assumption 

is irrelevant in (2) and thus it has no influence on II~II. 

Let us discuss the intuitive role of branching in these devices. 

Given a state q in an fb-automaton ~ let us define the set 

(Note that by (3) IBq # ~ .) The "dynamics" of the fb-automaton is best 

visualized by imagining it as a game of two players, One and Two. In 

each state q One chooses ~ 6 ]Bq and Two chooses a E r (unless 

= ~ in which case Two wins). Now either a 6 ~ and the next state is 

qa = ~(q,a) , or a = A and One is the winner. It is not important at 

what time One's or Two's decisions are actually made (or at what time 

they are disclosed to the oponent). Now any language L accepted by 
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represents One's strategy (in the wide sense, i.e. One's decisions may 

depend on the history of the game: P = AL(U) , qo u = q ). In agreement 

with this intuition we may call elements of IBq the primary branching 

options and, if F 6 IBq , elements of P the secondar~ branching o- 

ptions. If A6 ~, A is the terminatin$ option. 

Formally our concept of an fb-automaton resembles the alternating 

finite automaton of [5] and [6~ which are distinguished by the transition 

function of the form 

: Q xZ ---> 2 2Q 

(in our case we have ~ : Q×[ -->Q but IB : Q -->2 2EA ). The alter- 

nating finite automata are, however, designed to recognize languages 

rather than families of languages. 

According to our definition of an fb-automaton there are no general 

restrictions on the choice of an element of IBq (the primary branching 

option) in every subsequent visit of any given state q . Due to this 

variability the family ~I~ is, in general, rather rich of languages, 

which, in turn, may be quite arbitrary elements of ~(~) . (Note that 

~([) itself is a recognizable family. For other examples of recogniza- 

ble families cf. [3] ~e can, however, consider a much more restrictive 

mode of acceptance by allowing, for each accepting behavior, only one 

permanent choice of primitive branching option for every state. Let 

~= <Q' ~' qo' B > be an fb-automaton. We define a branching function 

(for ~) as a function ~ : Q --~ 2 x^ , for each q ~ Q satisfying 

(q ,  ~(q)) e B (4) 

(note that due to (3) it is justifiable to assume ~ being a total fun- 

ction). 

Intuitively, say in our game-playlng analogy, a branching function 

represents a strategy in the narrow sense: One's decisions depend only 

on the current position, not on the previous history of the game (let us 

call such a strategy "simple"). 

For a given branching function ~ define a partial transition 

function as follows. For a E~ let 

~ ( q , a )  ~= ~ (q ,e )  i f  a e ~(q)  , (5) 

otherwise undefined. ~oreover, let 
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This yields an ordinary finite (partial) automaton over 5- , 

=:  qo ,  , 

called the ~-factor of ~ . We use the following abbreviated notation 

related to ~ : for u E ~ , a ~ ~--, 

(q/k)~ :: q , 

(qua~ := ~ ((qu)~, a) 

-thus (qua)~ is defined iff (qu)~ is defined and a ~ ~((qu)~) ; 

note that, in general, ((qu)v)~ ~ (quv)~ = ((qu)~v)F) ; for L ~I * 

(qL)B := {(qu)~l u E L}  . 

A ~-factor of ~ can be viewed as a "subautomaton" of ~ with transiti- 

ons restricted by ~ and thus with limited accessibility of states. We 

develop specific notation for the reduced accessibility. 

Let q ~ Q , K ~ Q . We say that K is ~-accessible from q , 

symbolically q ~ K  (or q ~p if K = {p~ ), iff (qu)~ e K for 

some u ~ ~_~. Trivially, q --~K whenever q E K . We talk about a 

nontrivial ~-accessibility, and write q~--~K ) if (qu)~ E K 

for some u ~ A • 

We say that K is strongly C-accessible from q , symbolically 

q =~K , iff q--~p implies p--~K for each p ~ Q , i.e., iff 

K is ~-accessible from every state ~-accessible from q . We call a 

branching function ~ for ~ perfect iff qo---~F~ . 

It can be easily shown that any perfect branching function for % 

defines an accepting behavior: 

Fact 2.1 If ~ is a perfect branching function for ~ then 

I . ~ / f ~ l  ~ I1,~11 . 

In view of the fact that I~/~l is a regular language one can show 

that any nonempty recognizable family of languages contains a regular 

language just by constructing a perfect branching function for any fb- 

automaton ~. (Such a construction, utilizing a "sample" language from 

II~I , is described in [4].) In the formalism of AND-0R graphs, solving 

a problem essentially amounts to finding a particular branching function. 

A corresponding algorithm can be found in [7]. 
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3. TAXONOMY OF LOOPS 

The breaching functions are a convenient tool for expressing various 

properties of loops. Let ~be an fb-automaton, ~ a branching function 

for ~ sad q a state in ~ . We say that ~ induces a loop (through 

q ) iff q is nontrivially ~-accsssible from itself, i.e. iff 

q " " - - ~ , ' " ~ q  • (7) 

If, moreover, 

we say that ~ induces a productive loop (through 

if (7) is combined with 

q 

and with 

(8) 

q ). On the other hand, 

(9) 

Fig. 2. a, 

In Fig. ~ there are two alternative branching functions: ~ induces an 

idle loop through both states, while ~ induces s productive loop through 

state 1 alone. In Fig. 4 ~ induces an idle loop through state 2 (and 

neither p.~oductive nor idle loop through state 1 ). 

F i g .  = o 

A 

1 ~ 2 1 

a a 

q - - ~ F ~  , (I0) 

(read: no state in F is ~-accessible from q ) we say that ~ induces 

an idle loop (through q ). 

Note that due to (8) and (i0) the existence of both types of loops 

depends on the accepting power of the corresponding branching function. 

This agrees with our intention to study looping as a behavioral phenome- 

non rather than just a structural property of the underlying state graph. 

Examples of loops of both types are in Fig. 1 - 4. In Fig. 1 the 

branching function ~ induces an idle loop through both states, in Fig. 2 

induces a productive loop through both states. 
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a. 

b 2 ' ' ' ^  

8. 

Fig. = = {a ,b} ,  { a } ,  {^t .  

b 

To explain the intuitive difference between idle and productive 

loops let us invoke our game-playing interpretation, where these two 

types of loops represent various ways how the power of keeping the game 

in a loop may be divided among the two players (One and Two). A loop is 

idle when One has a simple (i.e. state dependent) strategy for permanent 

looping so that neither One nor Two can win. On the other hand, a loop 

is productive when One has a simple strategy in which looping is possible 

but only if Two likes - otherwise I can always exit from the loop by 

letting One win. (Surprisingly enough, in most recreational games loops 

are regarded as pathological events.) 

A more realistic interpretation can be given to the productive loops 

in action planning. Consider a physical action (like striking a nail with 

a hammer) for which we have reasons to believe that some (unpredictable) 

number of repetitions lead to a desired goal. A finite-state representa- 

tion of the environment cannot incorporate this belief "locally" (in 

terms of a transition from one state into another). One possibility is 

to use a probabilistic approach (an face the problem how to convert our 

beliefs into real numbers). The other possibility is to represent such 

a situation "globally", by means o~ a productive loop. Obviously, the 

resulting plan - in its explicit form - is infinite (cf. Theorem 5.1). 

Up to now we have related loops to branching functions. Since we 

want to attribute them directly to fb-automata it is natural to restrict 

ourselves only to loops passing through states which can contribute to 
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the accepting behavior. Let us call a state q 

there exists a branching function ~ such that 

and 

relevant (in ~) iff 

qo ~q (n) 

We say that an fb-automaton has a (productive or idle) loop (through q ) 

iff there is a branching function for ~ inducing a (productive or idle) 

loop through a relevant state ( q ) . 

Note that the branching function needed in (II) and (12) need not be 

identical with the branching function inducing a loop. For example the 

fb-automaton in Fig. 5 has a productive loop through state 2 induced by 

, but since I ~ 2  ~e need for the relevancy of 2 another branch- 

ing function, ~J @ 

i 

~t 

Fig. 5. = {At, = {a} 

It appears that idle loops, viewed from the point of view of accept- 

ing behavior of the fb-automaton, are by no means as sterile as they seem 

at first sight. Recall that our definition of acceptance counts with the 

possibility of using various branching options at different visits of the 

same state. Thus after a certain period of idle looping through a given 

sta~e (with respect to some branching function ~ ) a switch to another 

function ~ may lead to final acceptance. In this case we shall talk 

about a "soft" idle loop. 

Formally we say that ~ has a soft idle loop (through q ) Iff it 

has an idle loop through q and 

for some branching function ~ . (Indeed, ~ has to differ from the fun- 

ction inducing the loop in question.) For instance, in the example of 

Fig. ~ the fb-automaton has an idle loop through both states I and 2 : 

it is induced by ~' while ~ satisfies (13). 
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4. IDLE LOOPS AND HOLES IN LANGUAGES 

In this section we shall concentrate on the idle loops. First we 

need two auxiliary lemmas which we present here without proofs. Let 

be an fb-automaton and let L E ll~II be any language accepted by ~ . 

Lemma 4.1 Let 

that 

v 6 L . Then there exists a branching function ~ such 

qo ~ %v (14) 

and for each prefix u ~ v 

%u==~F~ (15) 

The second lemma is a consequence of the first one and of the defi- 

nition of relevant states (ll), (12). 

Lemma 4.2 Let v 6 pref L . Then qo v is a relevant state in ~ . 

We have introduced soft idle loops which have a nontrivial role in 

the accepting behavior of fb-automata. On the other hand, Idle loops 

which are not soft, once entered, block further acceptance and thus they 

have the same effect as dead states (similarly as in ordinary finite au- 

tomata). Therefore the recognizing power of an fb-automston is not altered 

by their removal. This suggests that if an idle loop is present in all 

equivalent fb-automata, it has to be a soft loop. This observstion is 

more precisely expressed by the following theorem (which, in fact, holds 

in both directions, as we shall see later on). 

Theorem 4.1 Let X be a recognizable family of languages with the 

property that every fb-automaton recognizing X has an idle loop. Then 

X is recognized by an fb-automaton with a soft idle loop. 

Proof. It is enough to show that every Idle loop which is not soft can 

be eliminated. Indeed, if there is a non-soft idle loop through a state 

p in some fb-automaton ~ recognizing X , by (13) there is no branch- 

ing function ~ for ~ with the property that p==~-@F~ . Thus by Lemma 

4.1, (15), for no L~ X there is u E pref L such that qo u = p . Thus 

p can be easily "removed" from ~ without altering its accepting 

behavior. [] 
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The following !emma often helps to decide whether a branching 

function induces an idle loop through a particular state. 

Lemma 4.3 Let ~ be an fb-automaton with s stete q and a branching 

function ~ such that q---~S F# and such that q >Gp umplies 

~(p) # @ for every p . Then ~ induces sn idle loop through some 

state which is ~-accessible from q . 

Proof. Assuming the hypothesis of the lemma use an induction on 

card(q~)~ . Basis: If q==~q then ~(q) # ~ implies q >~6q 

and we are done. Induction step: The property of q in the hypothesis of 

the lemma is obviously shared by all q' e (q~[~)~ . Thus, if (q'~-~)~ 

is a proper subset of (q~'~)~ , the result is established by induction 

hypothesis. Consider, therefore, the case when 

(q' ~)~ = (qE*)~ (16) 

for all q' e (q~)~ . Then ~ induces an idle loop directly through 

q : By (16) for all q' , q~q' implies q,~ q . Hence q==~q. 

Since card(q ~-~)~ > 1 , we have q~---~q and the result follows.~ 

Our next objective is to introduce a certain interesting automaton- 

independent propert~ of families of languages which holds for a family 

recognized by an fb-sutomaton ~if and only if ~ has a soft idle loop. 

Consider a language L together with its prefix closure pref L . 

Having L ~ pref L , we may be interested in analyzing the way how ele- 

ments of L are distributed in the set pref L . An obvious extreme 

case leads to the family [LI L = pref L} of prefix-closed languages, 

while the other extreme are the prefix-free languages, { L ~ L n LZ + = @~ 

Let us assume a more detailed viewpoint by asking for existence of certain 

specific subsets of pref L - L . 

Let L E ~(~) and let n ~0 . We say that L has a hole of size 

at least n iff there exists u ~ pref L such that 

~u L c ~-n~-+ . 

(Note that ~uL # ~ for u E pref L .) Let X ~(~) be a family of 

languages. We say that X has the unbounded hole property iff for each 

n ~0 , X contains a language with a hole of size at least n . Converse- 

ly, if there is a bound on the size of holes in languages belonging to 

X , we say that X has the bounded hole property. 
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In [3] we have introduced the metric space of languages <~(~ ), d> 

where d is the natural distance function 

I O if L I = L 2 , 

d(LI'L2) = 2-s(LI'L2) if L I i L 2 

where s(LI,L 2) is the length of s shortest string u £ 5q~such that 

We have shown (cf [3], Theorem 3a) that every recognizable family 

is closed in the metric space <~(~), d> . On the other hand~ not 

every recognizable family is compact in this space. The following theorem 

establishes the connection between compactness and occurence of holes in 

recognizable families. 

Theorem 4.2 A recognizable family is compact iff it has the bounded 

hole property. 

Proof. (=~). Assume X compact but with the unbounded hole property. 

Then there exists an infinite sequence (L n) of languages in X such 

that L n has a hole of size at least n for n = O, I, 2, ... Co~sider 

the infinite sequence 

(M n) := (~uLn) 
n 

where 

Since 

zna 

X is recognizable, by Ill,Theorem 4.1, there is only s finite 

number of distinct families 

x v :: {9 IL X}, 

Thus at least one among them, say 

(Mni) i of (M n) . Let (El) i 

that 

9ji : 

X w , contains an infinite subsequence 

be the sequence of languages in X such 

for i = 0,1,2, .... Thus K i 

assumption, X is compact and thus (K i) 

say (Kij) j . Consider the language 

K :~ j-~c~lim Kij 

= n~ c Y ni~ Mn i ~u n i -- 

has a hole of size at least n i . By 

has a convergent subsequence, 

6 X . 
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Since w 6 pref K i for all i , also w ~pref K . There is v such 

that wv e K . Then there is m ~0 such that for all j>m , wv 6Kijo 

But this is impossible since for sufficiently large j , Ki. has a 

hole "after" w of size greater than the length of v . J 

(~). Let m ~ 1 be such that no language in X has a hole of 

size m . The family X is precompact (cf [3], Theorem l) and closed 

(since recognizable). So it is enough to show that every Cauchy sequence 

in X has a limit. Let (L n) be a Cauchy sequence. There exist n o 

n I ~ n 2 ~ ... such that 

d(Lnk,L n) < 2 -k (17) 

for all n ~n k , k ~0 o Define 
co 

Lo@ := U L [k] 
k=O nk 

where we use the notation L [k] for the set of ell strings in L of 

length at most k . It can be shown (we omit the details) that for k~m , 

d(L~,Lnk) < 2 -(k-m) (18) 

By the triangular inequality we obtain from (18) and (17) 

d(Lc@,L n) < 2-k(2m+l) . 

Therefore L~= lim L n . [~ 

Note that while the compactness is a general topological property 

of a family of languages, the presence (or absence) of holes tells some- 

thing about the internal structure of particular languages. Now we relate 

these properties to the occurence of soft idle loops in fb-automata. 

Theorem 4.3 Let X be a recognizable family with the unbounded hole 

property. Then each fb-automaton recognizing X has a soft idle loop. 

Proof. Let X = ]1,~11 for an n-state fb-automaton ~. By the hypothesis 

there is a language L E X with a hole of size at least n+l , i.e., 

~u L C_ ~-n+l~-~ (19) 

for some u £ pref L . Consider the state q := qou . For this state we 

shall define inductively an auxiliary partial function ~: Q ---> ~ and 

a branching function 6 : Q --~ 2 ~^ . First set q~(q) := /k and ~(q) := 

~L(U) . For the general case assume that ~(q') and ~(q,) has been 

defined for some q, e Q , ~(q,) = v , but for some p := q'a , where 



a ~ ~(q') , ~(p) has not yet been defined. Then set 

q/~(p) : =  va , (20) 

F(p) :: /~L(UVa) (21) 

Eventually, when such q' does not exist, the construction ends and 

remains undefined for the remaining states, while ~ is extended to a 

total function by setting ~(p) = ~ (cf. (13)). We shall show that q 

an ~ meet the hypothesis of Lemma 4.3. 

Let us first observe that for any p e Q , if q -i~p then q~(p) 

is defined. Moreover, each extension of the domain of ~ (by executing 

(20)) increases just by one the maximal length of a string in the range 

of q~. Since there are only n s~ates in Q , lg~p) ~ n . At the same 

time, q~(p) e pref BuL . Now let p ~ Q be such that q--~p . By 

(20) and (21) 6(p) = AL(u~(p)) and thus ~(p) # ~ . Moreover, 

~ ~(p) since otherwise 9u L would contain ~(p) , a string of 

length less than n , contrary to the assumption (19). We can now use 

Lemma 4.3 for q and ~ to conclude that ~ induces an idle loop 

through some state p where q ~ p  . 

It remains to show that p is relevant and that the loop is soft. 

Since q ~p , we have p = qv = qoUV where v = ~(p) . Thus uv m 

pref L and by Lemma 4.2 p is relevant state in ~. By Lemma 4.1 (15), 

p=~F~, for some branching function ~J. Thus ~has a soft idle 

loop (through p ). [] 

Theorem 4.4 Let X be a family recognized by an fb-automaton with a 

soft idle loop. Then X has the unbounded hole property. 

Proof. Let ~ be the fb-automaton assumed by the theorem and let n be 

an arbitrarily large number, n ~ 1 . We need to construct a language 

L n~ X with a hole of size at least n . The property of ~ having a 

soft idle loop involves, in fact, three branching functions, ~, ~2' 

~3 ' and a state q satisfying altogether six relations (viz. (ll) and 

(12) for ~l ' (7), (9), and (lO) for ~2 ' and (13) for ~3): 

qo 
(22) 
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The idea is to combine ~I, ~2' and ~3 to an auxiliary function 

G n : ~--~ 2 z~ with the aim to use G n as the function /kLn for L n . 

We define three distinguished sets of strings according to their behavior 

in (22): 

(i) W I is the set of all strings w E ~-~ such that (qoW)~ is defined 

and w does not pass through q ; 

(ii) W 2 is the set of all strings w = VlV 2 , where v I is the shortest 

qoVl)~ = is defined, and w prefix of w such that ( q ~ (qv2)~2 

passes through q at most n times; 

(iii) W 3 is the set of all strings w = VlV2V 3 , where v I is the short- 

(qoVl)~l = is eat prefix of w such that = q , (qv2)~2 q , (qv3)~3 

defined and VlV 2 passes through q exactly (n+l)-times. 

Let Gn(w) := ~i(qo w) if w E W i (i=1,2,3); otherwise Gn(W):= @ . 

Define L n := [w I ~ 6 Gn(w)~ " From the definition of W i , i=1,2,3, 

and G n it follows that W l~ W 2 U W 3 = pref L n and L n = ll~II 

To prove the theorem it remains to show that L n has s hole of size 

at least n . Since qo --~q ' there exists w o 6 ~-~ such that (qoWo)~l 

= q . Without loss of generality, assume that no proper prefix of w o 

passes through q ~ Thus w O E W 2 t We have w O 6 pref L n ; let us show 

that 9w Ln ~ ~n~ . Assume the contrary: Ig(u) < n for some u E 

~woL n o Then since w o passes through q only once, WoU passes 

through q at most n times. Since WoU E pref L n = WIUW20 W 3 and 

w o 6 W 2 , we have WoU e W 2 o Thus (qu)~2 is defined and Gn(Wo u) = 

~2(qoWo u) = ~2(qu) . Since WoU £L n , ~ 6 ~2(qu) • Hence q >~F~ ~ 

which contradicts our assumption that ~2 induces an Idle loop. [] 

The following corollary summarizes our above results. 

Corollary 1 For any recognizable family X the following properties 

are equivalent; 

(i) X has the unbounded hole property. 

(ii) X is not compact . 

(iii) Some fb-automaton recognizing X has a soft idle loop . 

(iv) Every. fb-automaton recognizing X has an Idle loop 

(v) Every fb-automaton recognizing X has a soft idle loop. 

Proof. (i) iff (ii): Theorem 4.2. (i) implies (v): Theorem 4.3. 

(v) implies (iv): obvious. (iv) implies (iil): Theorem 4.1. (iii) implies 

(i): Theorem 4.4. [] 
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Note that properties (i) and (ii) are automaton independent while 

the remaining properties concern the looping behavior of fb-automata. The 

corollary was expressed in terms of the whole family X and the whole 

class of fb-automata recognizing X . If we focus on a concrete fb-auto- 

maton and a property of a particular accepted language we can state some 

further interesting results. 

Corollary 2 An fb-automaton with n states has soft idle loop iff it 

accepts a language with a hole of size at least n + 1 . 

Proof. (~): Immediate from Theorem 4.4. (~): The proof of Theorem 

4.3 is actually a proof of this result for a concrete (but arbitrary) 

fb-automaton. [] 

Corollary 3 If an fb-automaton with n states accepts a language with 

a hole of size at least n + 1 then it accepts infinitely marly languages. 

Proof. Immediate from Corollary 2 and Theorem 4.4. [] 

5. PRODUCTIVE LOOPS~ DEFLECTIONS, AND INFINITY 

We shall now consider the case of productive loops. There are strong 

reasons to expect an intimate relation between existence of productive 

loops in fb-automata and the ability to accept infinite languages. The 

objective of this section is to give a detailed account of this relation. 

Theorem 5.1 Any fb-automaton with a productive loop accepts an infinite 

language. 

Froof. Let ~ be an fb-automaton with a productive loop through q . 

There are two branching functions ~l and ~2 satisfying 

(23) no~ 

Analogously as in the proof of Theorem 4.4 we combine ~i and ~2 into 

a function G : ~-~ ~ 2 I~ to be used as A L for an infinite language 

L . Let 
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(i) W 1 be the set of all strings w a ~ such that (qoW)~l is 

defined and w does not pass through q ; let 

(ii) W 2 be the set of all strings w = VlV 2 , where v I is the short- 

est prefix of w such that (qovl)~l = q , and (qv2)~2 is defined. 

Now let G(w) := ~i(qo w) if w ~ ~i (i=l,2), otherwise G(w) := ~ . 

Define L := ~w ! /kE G(w) 

Now similarly as in the proof of Theorem 4.4 we can show that 

WlU ~2 = pref L and L E ~ .  Let us show that L is infinite. By 

(23) there are w o , u a ~ , u # ~ , such that (qoWo)~l = q and 

(qu)~2 = q . Assume, without loss of generality, that no proper prefix 

of w o passes through q . Thus for arbitrary n ~ 0 , woun ~ W 2 

pref L . 

Is the converse also true, i.e., if ~ contains an infinite 

language, does it follow that ~ has a productive loop? The following 

example shows that this is not always the case. The fb-automaton in Fig. 6 

has a (soft) idle loop through states 1 and 2 but no productive loop. 

Despite of that it accepts some infinite languages, e.g. (aa~b , (ba)*a . 

Fig. 6 

Thus for a recognizable family X , 

(i) X contains an infinite language 

fails to entail 

(ii) Every fb-autematon recognizing X has a productive loop. 

Nevertheless, we can still show (cf. Theorem 5.2 below) that (1) entails 

(iii) Some fb-automaton recognizing X has a productive loop. 

Let us introduce a certain structural property of languages which 

may reveal the presence of a productive loop in the corresponding fb- 

automaton. Let L ~ ~*, Vl, u, v2, w Epref L and let ~ be an fb- 

automaton. We say that the quadruple (Vl, u, v2, w) is a deflection in 

L (with resp. to ~ ) iff the following four conditions hold: 

v I ~ u < v 2 , (24) 



105 

u is the longest common prefix of v 2 and w , (25) 

qoVl = qoV2 , (26) 

w 6 L (27) 

A useful notation for a deflection is 

W 

/ (2s) 
v I u v 2 

The presence of a deflection in a language accepted by ~is, in 

a certain sense, a property of an intermediate character between 

having a productive loop and ][~]] containing an infinite language (the 

letter property being automaton-independent). Note that in the definition 

of a deflection the dependence on a particular fb-automaton appears only 

in (26). The following two lemmas establish the role of deflections in 

languages. Let ~ be a fixed fb-automaton. 

Lemma 5.1 Any infinite language L ~ I]~]I has a deflection with 

respect to ~ . 

Proof. Let L ~ B~I~ be an infinite language. The prefix tree of L is 

also infinite and by KSnig's Lemma there exists an infinite string oC 

with all its prefixes in pref L . Thus there are infinitely many prefixes 

u of oC such that, for some w 6 L , u is the longest common prefix 

of OC and w . At the same time there is a state q in 9~ such that 

for infinitely many prefixes v 

exist strings v I ~ u < v 2 < 

v 1 

is a deflection in L .[] 

of ~ , qo v = q • Thus there necessarily 

and w eL such that 

W 

/ 
- -  V 2 

We say that a deflection (28) is strict iff for all 

x ~ v 2 and u <y ~w implies qo x # qoy . 

Lemma 5.2 Let L 6 [I~II and let (28) be a strict deflection in 

with reap. to ~. Then ~ has a productive loop through qo u . 

We omit the proof of this lemma which depends on specific features of 

a standard construction of a perfect branching function from a given 

accepted language. 

X, y 6 ~-~, 

(29) 

L 
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Theorem 5.2 If a recognizable family X contains an infinite language 

then some fb-automaton recognizing X has a productive loop. 

Proof. By Lemma 5.1 an infinite language L has a deflection with reap. 

to any fb-automaton ~reco~nizing X . We can modify ~ (by duplicating 

its states while preserving its recognizing power) in such a way that 

the deflection in question acquires the property of being strict. Now 

the theorem follows from Lemma 5.2. 

We can summarize our results as follows: 

Corollary. For any recognizable family X the following properties 

are equivalent: 

(i) X contains an infinite language . 

(ii) X contains a language with a strict deflection with respect 

to some fb-automaton recognizing X. 

(iii) Some fb-automaton recognizing X has a productive loop. 

Proof. (i) implies (ii): Lemma 5.1 and the proof of Theorem 5.2. 

(ii) implies (iii): Lemma 5.2. (iii) implies (i): Theorem 5.1. 

We have seen that the property of recognizable families of contain- 

ing languages with arbitrarily large holes is characterized by presence 

of idle loops in fb-automata. Now recognizable families with the unbound- 

ed hole property are all infinite (the recognizability is needed for that: 

the singleton family ~ aZ~! n ~ 0~} has obviously the unbounded hole 

property). Thus the presence of idle loops yields an infinite variety of 

accepted languages. Of course, there are also infinite recognizable fami- 

lies with the bounded hole property where the infinity can be explained 

only by the presence of loops which are not idle. It can be easily shown 

that any infinite compact family of languages contains an infinite lan- 

guage. By Theorem 4.2 a recognizable family with the bounded hole property 

is compact and thus if it is infinite it contains an infinite language. 

By Theorem 5.2 it is then recognized by an fb-automaton with a productive 

loop. 

We shall now state a much stronger result (analogous to Theorem 4.3) 

vim. that every fb-automaton recognizing such a family has a productive 

loop. The following lemma covers the essential part of the proof. 

Lemma 5.~ Let ~ be an fb-automaton qnd let X = II~ll be an infinite 

family with the bounded hole property. Then there exists L ~ X with a 

~trict deflection with respect to % . 
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Proof. As noted above X contains an infinite language, say L o . By 

Lemma 5.1 L o contains a deflection with resp. to ~ . However, this 

deflection need not be strict. Since we are commi~ed to a fixed fb- 

automaton ~ we cannot obtain a strict deflection Just by modifying 

(as in the proof of Theorem 5.2); the only possibility is to prove that 

a strict deflection exists, if not in L o , then in another language in 

X . The argument can be made by contradiction. Assuming that p_2o language 

in X has a strict deflection we can, starting with L o , construct an 

infinite sequence of languages in X with arbitrary large holes, con- 

trary to the hypothesis of the lemma. (The construction and its proof 

are relatively involved and will be therefore omitted.) [] 

From Lemma 5.2 and 5.3 we immediately obtain the theorem: 

Theorem 5.3 Let X be an infinite fb-recognlzable family with the 

bounded hole property. Then every fb-automaton recognizing X has a 

productive loop. 

Let us conclude by combining Theorem 5.3 with its twin theorem for 

idle loops (Theorem 4.3): 

Corollary. Let X be an infinite recognizable family. Then either all 

re-automata recognizing X have idle loops or they all have productive 

loops. 
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INTRODUCTION 

In [Plol] a powerdomain was defined which was intended as a kind of analogue of 

the powerset construction, but for (certain kinds) of cpos. For example the power- 

domain~(S±) of the flat cpo Si, formed from a set S, is the set {X ! S~I(X#~) and 

((±cX) or X is finite)} with the Egli-Milner ordering : 

X ~ Y ~ (~x ~ X.~ y ~ Y. x C y) A (~y c Y.3 x e X. x ~ y). 
E-M 

This enabled nondeterminism to be modelled by an analogue of set-theoretic union and 

a denotational semantics for a simple language with parallelism was given, treating 

parallelism in terms of non-deterministic mergeing of uninterruptible actions. Expec- 

ted identities such as the associativity and commutativity of the parallel combinator 

were true in this semantics. 

Unfortunately, other reasonable identities do not hold, in particular the 

distributivities : 

P ; (Qor R) ~ (P ;Q) or (P ; R) 

(Qo!r R) ; P~ (q; ~) or (R ; P) 

and so, with a suitable definition of behavior, the semantics will not be fully 

abstract [Mil I] , [Plo 2]. Analysis of the problem leads us to the desire for a 

variant of the product of two powerdomains and a ~finition of union, u, on the new 

structure and a pairing function, ®, so that : 

x ®(y u z) = (x ®y) u (x ®z) 

(y u z) ®x = (y ®x) u (z ®x). 

The ordinary product and pointwise union will not do as then the stronger equation : 

(x u x') ®(y u y') = (x®y) u (x' ®y') 
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holds and the corresponding equivalence for programs should be false. 

In the present paper we further develop the idea of non-deterministic domains 

[Egl] [Hen] which are cpos with an associative, commutative, absorptive continuous 

binary function (called union). Their connection to cpos gives a definition of the 

powerdomain for all epos, extending [Plol][Smyl]; there is a tens~Or product which 

satisfies the above desire ; we can give a semantics using non-deterministic domains 

for a simple parallel programming language like that in [Plol] which in at least one 

sense, is fully abstract. Interestingly most of the manipulation of sets explicit in 

[Plo;] disappears here as it is "built in" to the domains and their constructions. 

2. THE PROGRA}&MING LANGUAGE 

Syntax Our language has three sets of syntactic items. 

I. BExp - a given set of Boolean expressions, ranged over by the metavariable b. 

2. Act - a given set of primitive actions, ranged over by a. 

3. Stat - a set of statements, ranged over by s, and given by the grammar : 

s::= aI(s;s) l(if b then s else s) I(while b do s) I(s or s) I(s par s) l(s co s). 

It is not necessary here to assume anything about the structure of BExp or Act ; 

standard examples of elements would be "x ~ y" or "x:=y+5" for an arithmetic langua- 

ge. The statements provide a simple imperative language with parallelism, which will 

be treated in terms of interleaving of atomic actions, and with a somewhat strange 

" eoroutine" facility which gives a very strict interleaving of the atomic actions. 

Operational Semantics 

We will use the set T = {it ,~ } of truthvalues and a given set, S, of states, 

ranged over by c. The behaviours of the Boolean expressions and the primitive actions 

are given, rather abstractly, by two functions : 

1. ~ : BExp ÷ (S + T), 

2. g~ : Act ÷ (S ÷ T). 

For the statements we axiomatise a relation ÷ : StrxStr where Str=defSU(StatxS ~ 

the relation <s,o> ÷ o' (<s,o> ÷ <s',G'>) is to mean that executing the first unin- 

terruptible step of s, starting from o, results in o' with the termination of s 

(respectively, with s' being the remainder of s) ; no other relations are possible : 

11. <a,~> +~E a~ (~), 

Ill. <sl,~> ÷ a' 2. <s1,~> ÷ <s{,~'> 
<(S]jS2),O> + <S2,G'> ' <(Sl;S2),~ > ÷ <(S~;S2),O'> 

<sl,O> + str (~ [[ b ~(~) = it ; str e Str), 
III.] <(if b then sl else s2),o> + str 
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2. 

IV I. 

2. 

<s2,0> ÷ str 
<(if b then sl else s2),J> ÷ str (~ ~ b ] (~) = N ; str ~ Str). 

<S,O> + U ~ 
<{while b do s),o> + <(while b do §),if'> (~gb N (o) = t t ) ,  

<(while b do s),o> ÷ <(s';(while b do s)),o'> ( ~ b  11(o) = tt) ,  

3. <(while b do s),o> ÷ o (~ b ~ (o) = if). 

V|. <s{,O> ÷ str 
<(sl or s2),C> ÷ str 

Vl I. 

2. 

Vll]. 

(i = I, 2 ; str ~ Str). 

<SI,~> ÷ ~I , <$2~ > ÷ O' , 

<(slpa_~r s2),U> + <s2,~'> <(sl par s2)~> ÷ <sl,O'> 

<SI~U > + <S{~U T> <S2,~> ÷ <S~U'> 

<(Sl par S2),O> + <(S{ par s2),o'> ' <(sl par s2),o> ÷ <(sl par s~),o'> 

<SILO> ÷ ~ 
<(szco s2),o> + ~' 2. <(sl co s~),~> + <(s~ co s{),~ 

Now we can give a definition of the behavior of a statement in terms of a non- 

deterministic state transformation function : 

3. OR : Stag ÷ (s +~(s±)), 

where :~ ~ s ~ (o) = {~' ~ Sl<s,~> % ~'} u 

{±I there is an infinite sequence <s,o> + .. ÷ <Sn,~n > ÷ ..}. 

As {strI<s,o> ÷ str} is always finite and nonempty, Konigs lemma shows~s~ (o) is 

always finite or contains ± and so is in ~(S±) as required. 

Note the flexibility of the method for specifying interruption points ; if we 

had wished conditionals to be interruptable after the test, instead of the present 

"test and set" capability, we would have written : 

Ill'l. <(if b then s! else s2),O> ÷ <s],~> (~E b~ (~) = ~), 

2. <(if b then s| else s2),o> ÷ <s2,o> (~ ~ b~ (o) = if). 

3. NON-DETERMINISTIC DOMAINS 

We discuss the extra structure provided by the union function, the connections 

with powerdomains and useful constructions such as the tensor product. 

Definition 3.] : A complete partial order (cpo____) is a partial order, <D,~>, with a 

least element, iD' and lubs, UDXn , of increasing ~-chains ; a function f: D + E of 

partial orders is strict, monotonic or continuous according, respectively, as it pre- 

serves the least element, the order or the order and all existing lubs of increasing 



111 

~-chains. We let CPObe the category of cpo's and continuous functions, let ~ be 

the subcategory of strict functions, and let 0 be the category of partial orders with 

lubs of all increasing u-chains and continuous functions. 

The reason for considering the three categories, CPO c CP0 c 0 is that the main 

one of interest, CPO, lies between the more natural CP~O and 0_. All three have all 

small products given by Cartesian product ; CPO± and ~ are small complete. 

Definition 3.2 : A non-deterministic partial order (nd-po) is a structure <D,~,u> 

where <D,!> is a po and u : D 2 ÷ D is a monotonic function (called union) where : 

I. Associativity For all x, y, z in D, (x u y) u z = x u (y u z). 

2. Commutativity For all x,y in D, (x u y) = (y u x). 

3. Absorption For all x in D, (x u x) = x. 

A function f: D ÷ E of nd-po's is linear if it preserves union. We let ND be the 

category of non-deterministic domains (nd-pos which are cpo's and have a continuous 

union) and continuous linear functions, let ND be the subcategory of strict func- 

tions and let NO be the category of nd-po's ~lich are O-objects and which have a 

continous union and continuous linear functions. 

Again, __ND ± c ND c NO and all three have all small products given by Cartesian 

product and ND± and NO are small complete. Note that in any nd-po, D, we can define 

a "subset relation" by : x ! y iff (x u y) = y ; this is a partial order and if D 

is __NO then ~ is inductive in the sense that if <Xn>,<yn > are two increasing u-chains 

with x n ~ Yn then (UXn) ! (Uyn). 

For constructions on ND± we use the Freyd Adjoint Functor Theorem (FAFT-see 

[Mac] ) in conjunction with a useful lemma. 

Definition 3.3 : An 0 -category is one whose hom sets are equipped with a partial 

order so that they form an O-object and so that composition is continuous in each 

argument ; an 0-functor G:A ÷ X of O-categories is one which is continuous with res- 

pect to the order on the hom-sets. An N0___-category is an 0-category whose hom -sets 

are equipped with a binary function so that they form an NO-object and so that compo- 

sition is linear in each argument ; an N0--functor G:A ÷ X of N0--categories is an 

0-functor which is linear with respect to the union on the hom-sets. 

Note that all the above categories are 0-categories with respect to the natural 

pointwise ordering of morphisms ; further NO, ND and ND ± are all N0--categories with 

respect to the natural pointwise union. Any small product of NO-categories is an 

NO--category and so the product functor is an N0-functor (which is also strict on the 

horn-sets). 

Definition 3.4 : Let G:A ÷ X be an ~-functor. Then f:x ÷ Ga is a G-orderepi iff 

whenever a g ' g~ a' are such that (Gg)f ~ (Gg')f then g ~ g'. 

Le~na 3.5 : Let G:A÷ X be an ~-functor such that every f:x÷ Ga factorises as 
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x fL Ga ~ ~g Ga where f' is a G-orderepi. Then the left adjoint of G is also an 

~-functor and if g is an N00-functor its left adjoint is an N00-functor too. 

Powerdomains : The evident forgetful functor V2:N~ ÷ ~ has a left-adjointO:~ *N0 

which is an ~-functor ; further ~ cuts down to a left-adjoint to each of the forget- 

ful functions VI:ND ÷ CPO, Vo: ND i ÷ CP__O0 I. The powerdomain construction in ~loJ]Smyl] 

is the restriction of ~ : CPO ÷ ND to the ~-algebraic case and then the unit map is 

s£~gleton, {I "I} : D ÷~(D) and the "big union"~ :~(~(D)) ÷~(D) is the multiplica- 

tion of the associated monad. 

Other powerdomain constructions [Smyl][Mil]] can be treated similarly. Smyth's 

one can be obtained by adding the inequation : 

4. (x u y) cx. 

If instead we add : 

5. (xu y)]x 

we would obtain a construction involving the "other half" of the Egli-Milner orde- 

ring. Variations with an empty set EMilI] are obtained by considering algebras, 

<D,C_,u,~> where ~ is an element of D satisfying : 

6. (x U 9) = x. 

Other possibilities are to consider a strict construction with the equation : 

7. (x u J_) = ± 

or to drop the absorption axiom to obtain a kind of multiset construction. 

In all cases where we have the experience, all the neccessary auxiliary func- 

tions can be obtained from categorial considerations ; it is not clear however whe- 

ther the required properties can be (conveniently) so obtained and we might need 

detailed constructions as in [Plo]][Smy]][Mil]], although they are not necessary 

in the present paper. 

Sums : The category ND has binary sums ; that is for any nd-domains, Do, DI there =± 

is another (Do+DI) and strict continuous linear functions, in. : D. + (Do+D1)(i=0,1) 
i i 

such that for any other nd-domain, F, and strict continuous linear functions 

fi:Di + F(i=0,|) there is a unique such function ~o,fl]:(~+Dl) + F such that the 

following diagrams conmlute : 

D. 

in i i i ~  (i=0,1) 

Do+D1 ~ F 
[fo,fl] 
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Further, [.,.] is strict continuous and linear on the hom-sets and so is 

+ : ND 2 ÷ ND considered as a functor (it is an NO-functor). 

ND ÷ NO has a left adjoint (.)±: NO ÷ ND ; Lifting : The forgetful functor V± : =± = = =± 

that is for any NO object, D, there is an nd-domain, (D)±, and a continuous linear 

up : D ÷ (D)~ such that for any other continuous linear f: D ÷ E there is a unique 

strict continuous linear lift(f) : (D)± ÷ E such that the following diagram commutes: 

D± lift(f) ~ E 

Further lift(.) is continuous and linear as is (.)± on the hom-sets. Finally, we 

note that (.)1 cuts down to a left adjoint to the forgetful functor from ND± to ND. 

Tensor products : The point of the tensor product is to reduce multilinear functions 

to linear ones. 

Definition 3.6 : Let A,B,C be nd-domains. A continuous function f : A × B ÷ C is 

bistrict iff for all b in B f(±,b) = ± and for all a in A, f(a,±) = ± ; it is bi- 

linear iff for all a, a' in A and h in B, f(a u a',b) = f(a,b) u f(a',b) and for 

all a in A, b, b' in ~, f(a,b u b') = f(a,b) u f(a,b'). (N.B. We are not assuming f 

either strict or linear). We let Bislin (A,B;C) be the set of bistrict, bilinear 

continuous functions from AxB to C equipped with the pointwise order and union (and 

so an nd-domain). 

Note the bistrict functions are strict and linear binary functions are bilinear. 

Any nd-domains A,B have a tensor product A ~ B ; that is, there is a bistrict, 

bilinear continuous ® : A×B ÷ A®B which is universal in the sense that for any 

bistrict, bilinear f: A×B ÷ C there is a unique strict, linear continuous slin 

(f): A®B ÷ C such that the following diagram commutes : 

A×B 

A C 
s l i n ( f )  

F u r t h e r  s l i n  : B i s l i n  (A,B;C)  ~ HoraND (A®B,C) i s  an i s o m o r p h i s m  o f  n d - d o m a i n s .  We 

e x t e n d  ® t o  a f u n c t o r  ® : ND~± × ND±~ ÷ ND±= by  r e q u i r i n g  t h a t  t h e  f o l l o w i n g  d i a g r a m  

a l w a y s  commutes : 
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AxB fxg A~ < B ~ 

l 
A®B f®g ~ A~®B ' 

Then we find that ® is continous, linear and bistrict on the hom-sets. 

Domain Equations : All the theory in [Smy2] applies to ND and as constructions we 

can use x, powers, ~ o Vo, +, (.)±oV±, ® (and others not mentioned here). In the 

present work we only need to solve the one equation : 

~: R ~- (~(S±) + (@(S±) ® (R)±)) S 

(where we have omitted the V±). This gives us the nd-domain, R, of resumptions, 

which have the same motivation as the corresponding cpo in [Plol]. Below we shall 
-I 

treat the isomorphism as an equality, omitting to write ~ or 

4. DENOTATIONAL SEMANTICS 

We present a useful sbbrevia~on. Suppose a,b,c are different variables of types 

~(S±), ~(S±), R, respectively, and , , .... , are expressions of types 

(~(S±) + (~(S±) ® R±)), D, D respectively where --- is strict and linear in a, and 

.... is strict in b and linear in h and c ; then the expression, e, where : 

e = (cases - -  first a : .... second b, c, : .... ) 

is of type D and abbreviates : 

[%a E~(Si). ---- , slin (~b ~(S±), d ~ R±. lift0~c ~ R ..... )(d))] ( ) 

where d is a new variable of type R± not free in ..... There are two "evaluation" 

values for e : 

(cases in0(a) first a : .... second b,c : .... ) .... , 

(cases inl(b~up(c)) first a : --- second b,c : .... ) = . .... 

From now on we will often omit in 0, in I , up and {.} when they are clear from the 

context. If , , .... are all continuous in a variable, x , so is e ; if 

-- is strict in x or else if both .... and .... are strict in x then e is strict 

in x ; if - -  is linear in x, but x does not occur free in .... , .... or else if 

both .... and .... are linear in x, but x does not occur free in --then e is 

linear in x. 

We now consider various useful combinators. 

Sequence : The sequence combinator is the least continuous *: RxR + R such that : 

r L * ~ = <cases 5(0) first a : a~ 5 second b,c : b®(c*~)> o ~ S 

The sequence combinater is bilinear and left-strict. 
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Parallelism : The parallelism combinator is the least continuous *:RxR÷ R such that 

r I II r 2 = <cases r1(o) first a:aer 2 second b,c:b®(c II r2)> ~ e S 

u<cases r2(~) first a:aer, second b,c:b®(rll c)> o e S. 

It is bilinear. 

Coroutine : The coroutine combinator is the least continuous co : RxR ÷ R such that 

r I co r 2 = <cases rl(~ ) first a:a second b,c:h®(r 2 co c)> ~ e S 

It is bilinear and left-strict. 

The denotational semantics of our language is given by a function ~ :Stat ÷ R 

defined by structural induction on statements : 

I. ~[[ a~ = <0~F ~a~ (0)>O£ S 

I I .  ~Y~ s];s2~ =~S] ] ]  *~'~'Es2]] 

III. ~ if b then s] else s2~ = <if~ b~ ([~) then%re sl~(~ else~[[s2]]O> ~ £ S 

IV. ~ while h do s~ = Y(kr ~ R. <if~[ b~ (<~) then ~f~ s~ *r)(~ else (~> O e S) 

v. ~/~s I or s 2~ =~sll u %f[s2~ 

VI. %~ s I pa__~r s2~ =%r~- s|~ []~FF s2] l 

VII. ~ s I co s2~ = ~[F Sl]] co%~s2~ 

Again the method is flexible for specifying interruption points ; if we had 

conditionals to be interruptable after the test we would have written : 

III'. ~ if b then s] else s2~ = <i_f~b~(o) then ~ ~ff~ s1~ else ~ ®~/~2 ~ > 

g ~ S. 

5. RELATIONS BETWEEN THE TWO SEMANTICS 

We begin by showing that the denotational semantics,] F , can be derived from 

the operational semantics as "the least model of +". Specifically we can regard 

(Stat ÷ R) as an nd-domain - the power R S~at - and define a continuous map 

: R Stat ÷ R Stat by : 

u{~'~ ~'~ ]<s,o> ÷ <s',o'>} 

The definition makes sense as, by the properties of ÷, at least one of the sets 

the right is non-empty and both are finite. 

~n fixed-point of ~ n~0[-J ~/'n So putting = ~n(±), the least is ~/=de f 
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Lemma 5.1 ~ =q~F. 

Proof (Outline) One proves that ~satisfies the equations defining ~]f'. 

For example to show~E s I par s2~= ~ sl]] II ~f[ s2]] one proves by induction on n 

that ~n ~ Sl par s2~ ~_~[[~l ~ I!~[F s2~ and similarly that 

~[[Sl]] IL~[[s2~ _U~[[s I pa__~r s2~ where IL is the nth approximant to II • ~ 

Next we recast the definition of '~:Stat ÷ (S ÷~(S±)) in the same style defi- 

ning ~ : (@(si)S) Star ÷ (@(sI)S) Stat by : 

¢(~)  FFs]] ~ = U { ~ ' l < s , o  > + ~ ' }  u 

U{ ~ [ [ s ' ] ]  ~, [<s,~> ÷ <s '  , ~ ' > }  

L~rmna 5.2 ~ = Y(~) 

Proof Put ~n = ~n(±) and then~=def Y(~) = [j ~" n n 

One proves by induction on the length of the derivation that <s,~ > ~ ~' implies 

~'~e~ s~ ~ and by induction on n that ~' ~ ~n ~ s~ implies <s,~> ~ ~' ; next one 

÷ . ÷ <s ~ > ÷ ... is an infinite derivation sequen- shows that if <s,~> = <So,~o> .. m, m 

ce then, by induction on n, ± c ~n ~ s~ ~ and finally one shows by induction on n 

that if for all s,~ we have I e .~[s~then there is a derivation sequence of length 

n from <s,~> and then applies Konig~s lemma. Q 

Now let B be the least continuous function from R to (~(S±)) S such that : 

~) = <cases r (~) first a:a second b,c : Ext(~(c))(b)> o e S. 

Here Ext :~±)S ÷ (~(S±) +~(S±)) is defined sofi~atExt(f) is thetmique strict continuous 

linear extension of f: Ext(f)(X) = {o:~x ¢ X. ~ ~ f(x)} where f:S± ÷~S±) is the 

unique strict extension of f. 

Lemma 5.3 The continuous function ~Stat : RStat ÷ (~(si)S)Stat is strict and the 

following diagram eon~nutes : 

RStat 

6Stat t) 
(@(S±) Stat 

_R Stat 

BStat 

(~(s±)S) Stat 

Proof 

Theorem 5.5 

Proof 

Straightforward calculation. 

~=~o~ 

= B Stat (y~) 

=~oI~ 
=Bo~¢ 

(i emma 5.2) 

(lemma 5.3) 

(by definition) 

(lemma 5.1). 
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Thus the semantics,~, determines the behavior,~ (via 6). 

Full abstraction 

Given a measure of behaviour, such as~, and relations between behaviours, such 

as =, C, c on ~(Si)) S, we can define corresponding substitutive behavioural rela- 

tions, ~, ~, ~. First, a context is a statement, C[.,..., .] with several "holes" 

which can be filled by any statements Sl,...,s n to give a statement, C[s|,...,s n| ; 

a formal definition is obtained by adding the production s :: = [ ~o those given 

above for Stat. Now the relations ~, ~,C ~on Stat are defined by : 

s| ~ s 2 iff VCE.]. ~ ~CEs] ]~ = 

C s| ~, s 2 iff ~C[.I. ~ [[CEs|]~ _C_ 

s.| ~ s 2 iff ~C[.]. ~[[C[sl]~ c__ 

Cle~rly s I ~ s 2 iff (s] ~ s 2 C sl) iff (s I F% s 2 F% Sl). 

Proposition 5.5 I. ~[[ si~ = ~[[ s2]] ~ S| ~ S 2 

2. clf'[[ Sl ] l  ~ ~/[[_ s2]] = sl ~ s 2 

3. ~ sl ] ]  % %~[[ s2]] ~ s 1% S 2 

~Ec[s2]~ 

~cEs2]~ 

(by the continuity of *, 

Proof I. ~'~ sl~ =~ s21 ~ ~ C[.l. ~E C~l]I =~ C[S2]~ (by definition of~) 

~s I ~ s 2 (by theorem 5.4). 

2.~[ sl~C~ s2~ ~ V C[.]. ~[ C[s ]~ ~ ~C[s2]~ 
! 

, c s2 (by the continuity of ~ and theorem u, }I co and the definition of ~) = ~I 

5.4). 

3. As 2, but using the linearity of u, the bilinearity of *, H , co and the 

easily proved monotonicity in c of the conditional and while constructs and B- ~ 

The rest of the section establishes, under certain reasonable assumptions, the 

converse of these implications, therely obtaining three full abstraction results. 

The assumptions are : 

]. S is infinite but denumerable. 

2. For each ~ in S there is an element K of A such that for all o' in S, 

6~[ K ~ (o') = ~ (a next instruction). 

3. For each o in S there is an element is 

~is ~ (~') = m iff (~ = ~'). 

of BExp such that for all o' in S, 
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Under these assumptions we have : 

Lemma 5.6 If ~Y[ s1~ #~ s2~ then there is a context, C[.] and a state 

so that ± ~ ~C[sl] ~(~ ) u~C[s2]~ (O) and~l C[sl]~)~ ~EC[s2]~ (~). 

which is enough to show: 

Theorem 5.7. l. ~ sl~ = ~F~ s2~ ~ s I ~ s 2 

~ Sl~ £ ~ s2~ ~ s 1 ~ s 2 

2. ~£~ Sl~ i ~ s2~ ~ S| ~ s 2 

Proof 1 The lermna implies that~Sl~ # ~V~ s2 ~ implies s I ~ s 2. 

So~[[Sl~ =~s2~ ~ ~ s]~ ~[[s2~ ~ s I ~ s 2 ~ ~ Sl~ = ~E s2~ and the rest 

of 1 is immediate° 

2. First s I ~ s 2 ~ (s I or s 2) ~ s 2. For let C[.] be a context ; then 

~EC[s I or s2]~ ! ~ C[s 2 o__[r s2]~ (as s I £ s 2) =~ C[s2]~ (as~KE s 2 or s2~ 

=%~ s2~ shows s 2 or s 2 ~ s2) and conversely as ~ s2~ ~ q/~s] or s2~ , we have 

~ C[s2]~. ~ ~ C[s I or s2]~ . But then by l,e~ s1~ ~ q/~s I or s2~ =q~ s2~ . 

We now outline the proof of the lemma. First for any pair <s,o> put : 

A = {O']<s,~> ÷ J'} 
s~ 

B = {~' I~ S'.<S,O> ÷ <S',~'>} 
S~ 

and for any ~' in Bs, 0 : 

' or (...(s' I or s' )...)) stEs,~,~'] = (s| __ n- -- n 

where {s~ .... ,s n} = (s'I<s,o > ÷ <s',o'>} and clearly n # 0. 

We say <s,o> is of types 1,2,3 according as Bs, ~ , As, ~ or neither is ~. 

We have the useful formulae : 

= ° 

S , O  ~ 

V~s% = U As, ~ U o'~B o "  ® ~ff~st[s,O,~']]] 
s,(7 

° VAs, 

Define the relation ~ between such pairs by : 

<s,O> ~ <s',~'> iff (As, ~ = As,,~,) and (Bs, ~ = Bs,,O,) 

~n ~ 0 . s m Lemma 5.8 If ~ ~ Sl~ # ~ s2~ .then there are statements s i = si,.. , i (m >- 0) 

states ~', .... o m and states ~J. in. Bs i,O! (J < m) such that 

• " ' m m 
= ~ m m ?c <sl, ~ > sJ+ll st[s~ '~j' ~j] (j < m), <s~,g j> <s~,OJ> (j < m)but <Sl,g > - 
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This sets up the path we want to follow to extract a difference. For assuming 

~E Sl~ # ~. s2~ we have ~ s|~ # ~nnES2~ .for some n. And we apply the le~mma 

to obtain s~(j < m ; i=1,2), ~3 (j ~ m), ~J (j < m). 

Now for a state~/and a statement pm (to he chosen later) we define statements 

PJ(o ~ j < m) by : 

PJ = (if is_a j then (K (j+1) ; pj+l) else K%/) 

and for a statement Q' (to be chosen later) we set : 

= (if is I then KN/ else 

(i_ff is 2 then K/else 
d 

(if is m then K/else Q')...)) 

and then calculate the following two formulae : 

~ s o co pO~ (g0) ( U A j) u C u ~ s m pm 
= co _~ 

i -- j < m i -- 

(where C c {~/}) 

(~m) 

[ ( s  0 ; ~ )  co_ o pO_]] ((70) = C u U 

(where  C c_ { ~ / } )  

~E(s m ;~) co pm]] (m) 

Then the proof is completed by considering various cases based on the types of 
m m m m 

<Sl,(5 >,  <s2,(7 > r e s p e c t i v e l y  and u s i n g  one o f  t h e  c o n t e x t s  ( [ ]  c..~o P O) o r  
v 

(([] ; ~) c_~o p0) and choices of ~/, pm, ~ as appropriate for the case at hand. 

6. DISCUSSION 

We make a few critical remarks to obtain some perspective on the above results. 

First the notion of behaviour chosen is inappropriate for languages for writing 

continuously interacting programs expressly written not to terminate. One should 

study our language with the addition of some I/0 instructions and a different notion 

of behaviour. Again the coroutine instruction is 9omewhat peculiar and its rSle is 

somewhat similar to that of the "parallel or" in [Plo2] ; without it our semantics 

would, we conjecture, not be fully abstract, as we would have : 

( x :  = x )  ; ( x :  = x )  ~ ( x :  = x )  

(X: = g(f(x))) £ (x: = f(x) : x: = g(x)) 

We could also study definability questions, as in [Plo2] , and look for proof rules 

for ~ ,~ ,~ using the semantics. Most importantly, our language is hardly a good 

model of cormnunicating processes, and we feel it is rather important to study many 
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other models of parallelism ([Bri], [Hoa] [Mill and others) before claiming that 

the semantics of parallelism is understood. 
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ON SOME DEVELOPMENTS IN CRYPTOGRAPHY AND THEIR 

APPLICATIONS TO COMPUTER SCIENCE 

Hermann A. Maurer 

I n s t i t u t  f u r  I n f o rma t i onsve ra rbe i t ung  

Techn. Univ.Graz,  S teyre rg .17 ,  A-8010 Graz /Aus t r ia  

SUMMARY 

This paper presents a d iscuss ion and summary of  r esu l t s  obta ined 

j o i n t l y  wi th  K.Cul ik  [1] and M.Nivat [2 ] .  

The idea of  pub l i c  key systems as a p p l i c a b l e  to i n fo rma t i on  sys- 

tems is reviewed. The development of  i n fo rma t i on  systems based on the 

new concept of  enc ryp t ion  t r i p l e  is o u t l i n e d .  Although the cons t ruc t i on  

of  enc ryp t ion  t r i p l e s  using number - theore t ic  too ls  is poss ib l e ,  systems 

of  enc ryp t ion  t r i p l e s  obta ined tha t  way do not possess a l l  p rope r t i es  

des i rab le  f o r  des ign ing i n fo rma t i on  systems. As f i r s t  step towards an 

a l t e r n a t i v e  approach, regu la r  b i j e c t i o n s  i . e .  b i j e c t i o n s  d e f i n a b l e  by 

a- t ransducers  are i n v e s t i g a t e d ,  and a complete c h a r a c t e r i z a t i o n  of such 

b i j e c t i o n s  is g iven.  

INTRODUCTION 

The main quest ion considered in t h i s  paper is how to assure tha t  

i n f o rma t i on  stored in an i n fo rma t i on  system can be accessed by autho- 

r i zed  persons on ly .  

To achieve such a goa l ,  two complete ly  d i f f e r e n t  methods are 

c u r r e n t l y  in use. The f i r s t  i nvo lves  access-path oontrol ,  the second 

eneryption teohniques. With the access-path con t ro l  approach, unautho- 

r i zed  access is prevented by b u i l d i n g  in to  the (so f tware)  system 

app rop r i a te  con t ro l s  (main ly  based on secret  passwords and the l i k e )  

which presumably can be passed only  by au thor ized  users. There are a 

number of  obvious disadvantages inheren t  to t h i s  technique.  For exam- 
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p le ,  " i n t e r n a l  s e c u r i t y "  is compara t i ve ly  small ( t h a t  i s ,  data process- 

ing persone l l  i n t i m a t e l y  f a m i l i a r  w i th  the system can ci rcumvent access- 

path con t ro l s  f a i r l y  e a s i l y ) .  A s t i l l  more ser ious drawback is the fac t  

tha t  i t  does not s u f f i c e  to guard data stored i n t e r n a l l y  in the computer, 

but i t  is a lso necessary to p ro tec t  data stored e x t e r n a l l y  (on punched 

cards, magnetic tapes e t c . )  from unauthor ized access. Nothing shor t  of 

phys ica l  p r o t e c t i o n  is poss ib le  f o r  t h i s  purpose. Because of  t h i s ,  i n -  

fo rmat ion  systems r e q u i r i n g  an extreme l eve l  of  s e c u r i t y  (e .g .  in m i l -  

i t a r y  environments) are o f ten  p h y s i c a l l y  guarded as a whole, unautho- 

r i zed  usage of  i n f o rma t i on  being prevented by the sheer fac t  tha t  on ly  

au tho r i zed  persone l l  is permi t ted  to get near the system and i t s  ex- 

t e rna l  data s torages.  In con t ras t  to the access-path con t ro l  approach 

j u s t  descr ibed ,  access to i n f o rma t i on  is guarded by the use of  encryp- 

t i o n  techniques by despos i t i ng  i n f o rma t i on  in encrypted form. Although 

the encrypted vers ion  of  i n f o rma t i on  may e a s i l y  be ob ta inab le  by un- 

au tho r i zed  persons i t  is presumably useless to anyone not knowing the 

decryp t ion  process. Hence, assuming tha t  " h a r d - t o - b r e a k "  encryp t ion  

methods are used and the corresponding dec ryp t ion  methods are known to 

au tho r i zed  users on ly ,  any data stored ( i n t e r n a l l y  or e x t e r n a l l y )  in 

encrypted form is p ro tec ted  aga ins t  unauthor ized usage. 

In what f o l l ows  some of the problems connected wi th  encryp t ion  

techn iques,  and how they can be reduced by employing pub l i c  key systems 

are exp la ined .  Next, a more advanced set-up based on encryp t ion  t r i p l e s  

is d iscussed.  F i n a l l y ,  recent  r esu l t s  on b i j e c t i o n s  def ined by a - t r a n s -  

ducers which may serve as a general  model f o r  enc ryp t ion  and decryp t ion  

processes are mentioned. 

ENCRYPTION OF INFORMATION AND INFORMATION SYSTEMS 

Encrypt ion and dec ryp t ion  of i n f o rma t i on  is accomplished by a 

complementary pai r ,  i . e .  a pa i r  (E,D) of t o t a l  f unc t ions  where D is 

the inverse of  E, D = E - I .  To encrypt  i n f o rma t i on  I ,  we apply the en- 

c r yp t i on  a lgo r i t hm E y i e l d i n g  E(1)o The dec ryp t ion  a lgo r i t hm D app l ied  

to encrypted i n f o rma t i on  E(1) d e l i v e r s  the o r i g i n a l  informat~ion I because 

o f  D(E(1) )=  I .  

Complementary pa i rs  (E,D) o r d i n a r i l y  used in cryptography have an 

a d d i t i o n a l  p roper ty  which is impor tant  to keep in mind: knowledge ef the 

enc ryp t ion  a lgo r i t hm E immedia te ly  imp l ies  knowledge of the decryp t ion  

a l go r i t hm  D, e.g.  because both a lgor i thms are based on a common parame- 
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ter usually called key. Indeed one usually does not keep secret the a l -  

gorithms E and D "as such", but jus t  the key used. 

Throughout the rest of th is paper the fol lowing simple model of in- 

formation system w i l l  be considered. An i n fo rmat ion  system has a f i n i t e  

set t?Lof users and contains m d i f fe rent  types of information. The set 

of a l l  users authorized to access information of type i ( i <  i <m) is de- 

noted by A i and called an au tho r i za t i on  class ( for  type i information). 

~x~= {AI,A 2 . . . . .  A m } denotes the set of authorization classes. Observe 

that A i~U for a l l  i ( l ~ i ~ m )  but that A i n Aj ( i~  j )  may well be non- 

empty: a user may belong to a number of authorizat ion classes. An in- 

formation system as described is ~eeure i f  information of type i can 

only be retr ieved by the users in authorization class A i .  

A naive attempt to use encryption techniques for  designing an in- 

formation system as described is to choose a complementary pair  (Ei,Di) 

for each authorizat ion class A i ,  to deposit information I of type i as 

Ei( I  ), secrecy being preserved(to some extent) by making the algorithm 

D i known only to members of A i .  Observe that this attempt has a number 

of drawbacks: 

(1) Each user who belongs to r authorization classes has to know r 

d i f fe ren t  decryption algorithms. 

(2) Any user who wants to deposit information of type i has to know 

the encryptionalgorithm E. and hence also w i l l  know D.. Thus, a 
I 1 

large number of users know the decryption algorithm D i increasing 

the security r isk.  S t i l l  worse, the system is only secure i f  a user 

en t i t l ed  to supply information of type i is also member of autho- 

r i za t ion  class A i .  (In many si tuat ions this is not a r e a l i s t i c  as- 

sumption: assume tha t  i n f o rma t i on  of  type i is i n f o rma t i on  concern- 

ing var ious departments w i t h i n  a company; A i would then t y p i c a l l y  

cons is t  of company management but should not inc lude  the heads of  

departments: such heads should be able to prov ide i n fo rma t i on  about 

t h e i r  departments but probably should not be able to access i n f o r -  

mation concerning some of  t h e i r  r i v a l  departments. )  

(3) In fo rmat ion  deposi ted in the system is not safe aga ins t  f raud com- 

mi t ted  by members of  an a u t h o r i z a t i o n  c lass.  For the sake of  two 

examples, cons ider  three users UI,U2,U 3 of some a u t h o r i z a t i o n  c lass.  

U I may depos i t  i n fo rma t i on  f o r  U 3 pre tend ing to be U 2, ~3 has no 

way of  f i n d i n g  out (w i thou t  re-check ing wi th U2). (Observe tha t  in 

o rd i na ry  "paper-based" i n fo rma t i on  systems such fraud is imposs ib le  

since U 3 presumably recognizes the s igna tu re  o f  U 2 as fake . )  A con- 
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t r a c t  (purchase agreement, cheque, e t c . )  depos i ted by U I f o r  U 3 in 

the i n f o r m a t i o n  system may be f r a u d u l e n t l y  changed by U3: in con- 

t r a s t  to a "paper-based" i n f o rma t i on  system no t races of  phys ica l  

tampering wi th  the con t rac t  would be v i s i b l e ,  

I t  is not at a l l  obv ious,  to s t a r t  w i t h ,  tha t  the d i f f i c u l t i e s  

( 1 ) -  (3) mentioned can be overcome by using only  c ryp tograph ic  methods. 

However, an ingenious idea due to D i f f i e  and Hellman [3] a l lows to over-  

come d i f f i c u l t y  (2) and (3) as exp la ined  in the next sec t i on ,  wh i le  

d i f f i c u l t y  (1) d isappears wi th  the use of safe systems of  enc ryp t ion  

t r i p l e s  of  [ i ]  as discussed in the next but one sec t i on .  

DIFFIE-  HELLMAN PAIRS 

A D i f f i e  - He l lman  p a i r ,  D H - p a i r  f o r  shor t  (a te rm ino logy  i n t r o -  

duced in [ i ] ) ,  is a complementary pa i r  (E,D) as f o l l o w s :  

( i )  E and D are e a s i l y  computable; 

( i i )  The a lgo r i t hm fo r  computing E does not giv@ a t r a c t a b l e  way of 

d e r i v i n g  the a l go r i t hm  fo r  computing D. 

The systemat ic  cons t ruc t i on  of  DH pa i rs  based on r e s u l t s  in number 

theory  was f i r s t  accomplished by R ives t ,  Shamir and Adleman in [4 ] .  

Rather then repea t ing  t h e i r  erguments, an example which shows tha t  

the ex is tence  of  DH-pairs is " p l a u s i b l e "  should s u f f i c e  here. Consider 

a phone -d i r ec to r y  of  a la rge  c i t y ,  and an " i n v e r t e d "  d i r e c t o r y  (a r -  

ranged in order of  ascending phone numbers). To encrypt  i n f o r m a t i o n ,  

encrypt  i t  l e t t e r - b y - l e t t e r  as f o l l o w s :  f o r  a given l e t t e r ,  look up a 

random name s t a r t i n g  wi th  tha t  l e t t e r  in the phone d i r e c t o r y  and w r i t e  

down the corresponding phone number. To decryp t ,  use the i nve r ted  d i -  

r ec to r y  in the obvious way. Note tha t  both encryp t ion  and decryp t ion  

are simple processes but knowledge of  the enc ryp t i on  process does not 

g ive an easy way f o r  dec ryp t ing :  w i t hou t  the " i n v e r t e d "  d i r e c t o r y ,  de- 

c r y p t i o n  remains d i f f i c u l t .  

DH-pairs can be used f o r  i n f o rma t i on  systems as f o l l o w s :  f o r  each 

a u t h o r i z a t i o n  c lass A cons ider  a DH-pair (EA,DA). For each user U con- 

s ider  a DH-pair (Eu,Du). The enc ryp t i on  a lgor i thms E A (AE~)  and E u 

(U E~) are made p u b l i c .  (E.g. by p u t t i n g  them in a u n i v e r s i a l l y  acces- 

s i b l e  par t  o f  the i n f o rma t i on  system. Hence the term "pub l i c  key sys- 

tems". For p r a c t i c a l  purposes, not a f u l l  a l go r i t hm but j us t  a key as 

in o rd i na ry  c ryp tog raph ic  systems su f f i ces ) .  The decryp t ion  a lgor i thms 
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D A are known on ly  to members of  a u t h o r i z a t i o n  class A, the decryp t ion  

a lgo r i t hm D U are known on ly  to user U. 

In fo rmat ion  I is depos i ted f o r  a u t h o r i z a t i o n  class A as EA(I ). I t  

can be accessed only  by persons knowing DA, i . e .  by users be long ing to 

A. Observe two impor tan t  advantages over the p rev i ous l y  discussed meth- 

od: f i r s t l y ,  the decryp t ion  a lgor i thms D A are not d e r i v a b l e  from the 

encryp t ion  a lgor i thms EA, hence the decryp t ion  a lgor i thms are known to 

fewer people,  decreasing the s e c u r i t y  r i s k ;  secondly,  users not belong- 

ing to a u t h o r i z a t i o n  class A may indeed supply i n fo rma t i on  f o r  author -  

i z a t i o n  class A. Thus, the d i f f i c u l t y  (2) mentioned above has d isap-  

peared. S t i l l  more s u r p r i s i n g l y ,  d i f f i c u l t y  (3) can a lso be overcome, 

as f o l l o w s :  

I n fo rma t ion  I is deposi ted by user U in a f r a u d - p r o o f  form fo r  

a u t h o r i z a t i o n  class A as EA(Du(1)). By app ly ing  DA, any member of  au- 

t h o r i z a t i o n  class A (and only  such members) can decrypt  t h i s  to DU(I ). 

Next, the p u b l i c l y  known a lgo r i t hm E U is used to ob ta in  I .  Note tha t  

the intended i n f o rma t i on  I has been r e t r i e v e d  v ia  DU(I ) which can on ly  

be computed from I using Du, the a lgo r i t hm known only  to U. Thus, U is 

c o n c l u s i v e l y  the o r i g i n a t o r  of  I .  A lso,  i t  is imposs ib le  to tamper wi th  

the i n f o rma t i on  I .  For suppose a user U' be longing to A wants to ( f r aud -  

u l e n t l y )  change I i n to  I ' .  He has to rep lace EA(Du(1)) in the in forma-  

t i o n  system by EA(Du( I ' ) ) .  This is c l e a r l y  imposs ib le ,  s ince U' does 

not know the a l go r i t hm  D U. 

Thus, DH-pairs can be used to overcome the d i f f i c u l t i e s  (2) and 

(3) mentioned in the prev ious sec t ion .  We now consider  d i f f i c u l t y  ( i )  

t ha t  every user has to know as many decryp t ion  a lgor i thms as the number 

of  a u t h o r i z a t i o n  classes he belongs to.  

ENCRYPTION TRIPLES 

For func t ions  f and g, denote by fog t h e i r  composi t ion def ined by 
fog (x )  = g ( f ( x ) ) .  

According to [ I ] ,  an enoryption t r ip le  is a t r i p l e  of  func t ions  

(E,R,D) such tha t  (EoR,D) and (E,R:D) are DH-pairs.  

Observe tha t  D ( R ( E ( 1 ) ) ) :  D(EoR(1))= I .  
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Consider an i n f o r m a t i o n  System S w i th  users ?)C and a u t h o r i z a t i o n  

c lasses ~.  A set F= {(EA,RA,u,Du) I AE~,U E A} is  c a l l e d  a safe system 
of encryption triples for S if 

( i )  (EA,RA,u,Du) is  an enc r yp t i on  t r i p l e  f o r  each A E ~  and each UE A 

and 

( i i )  the knowledge of  a l l  a lgo r i t hms  E A and RA, U f o r  a l l  A E~ and U E A 

and of  one s p e c i f i c  D u prov ides an a l go r i t hm  fo r  e a s i l y  r e t r i e v i n g  
I from EA(I ) and RA,u(EA(1))  i f f  U' = U and U' E A. 

To use a safe system of enc ryp t i on  t r i p l e s  F as descr ibed ,  a l l  en- 

c r y p t i o n  a lgo r i t hms  E A and a l l  " r e c r y p t i o n "  a lgo r i t hms  RA, u are made 

p u b l i c .  Each user keeps a s i n g l e  dec ryp t i on  a l g o r i t h m ,  the a lgo r i t hm 

Du, sec re t .  

I n f o rma t i on  I is  deposi ted f o r  a u t h o r i z a t i o n  c lass A as EA(I ) .  I f  

user U reques ts the  i n f o r m a t i o n  from the system, the r e c r y p t i o n  a lgo-  

r i thm RAp u is app l ied  f i r s t  ( p o s s i b l y  by the i n f o r m a t i o n  system i t s e l f )  

y i e l d i n g  RA,u(EA(1) ) .  From t h i s ,  I can be r e t r i e v e d  using the secre t  

dec r yp t i on  a l go r i t hm  D U, Observe tha t  each user has to know on ly  a s i n -  

gle secre t  dec ryp t i on  a l g o r i t h m ,  overcoming d i f f i c u l t y  ( I )  mentioned 

e a r l i e r .  

To see t ha t  on ly  au tho r i zed  users can access i n f o r m a t i o n ,  apply 

DU I to both s ides of  the equat ion  Du(RA,u(EA(1)) ) = I y i e l d i n g  

(~) R A , u ( E A ( 1 ) ) :  DUI(1) ,  i . e .  DU I = EAORA, U. 

Put d i f f e r e n t l y ,  we have RA,u(X)= D u I ( E A I ( x ) ) ,  i . e .  RA, u = EAIODu I .  

Thus, RAt U is the composi t ion of  a f u n c t i o n  E~ I which a l lows the de- 

c r y p t i o n  of  i n f o r m a t i o n  encrypted by E A and of a f u n c t i o n  DU I which en- 

c ryp ts  i n f o r m a t i o n  dec ryp tab le  by D U. Despi te the f a c t  D~ is e a s i l y  

computable by the p u b l i c  because of  (~ ) ,  the d e f i n i t i o n  of  enc ryp t i on  

t r i p l e  assures t ha t  n e i t h e r  D U nor RA,uODu = can be computed. Hence 

I cannot be r e t r i e v e d  based on E A and RA, u w i t h o u t  knowing D U. 

Observe tha t  c o n d i t i o n  ( i i )  assures t ha t  the o ther  enc ryp t i on  t r i -  

ples cannot be used f o r  unau tho r i zed  i n f o r m a t i o n  r e t r i e v a l ,  e i t h e r .  

A user U can s tore  f r a u d - p r o o f  ( " s igned"  and "tamper p roo f " )  i n -  

fo rmat ion  I f o r  a u t h o r i z a t i o n  c lass A by d e p o s i t i n g  EA(Du(1)) .  A user 

U' be long ing  to a u t h o r i z a t i o n  c lass A app l ies  RA, u, f o l l owed  by D u, to 

ob ta in  Du(I ) .  He now app l ies  E A fo l l owed  by RA, u y i e l d i n g  (because of 
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(~))  RA, U (EA(Du(1))) : DuI (Du(1) )=  I .  As in the preceding sec t i on ,  the 

pa i r  (Du (1 ) , I )  is conc lus ive  proof  tha t  U is o r i g i n a t o r  of  I ,  nor is 

i t  poss ib le  to tamper wi th  the i n fo rma t i on  EA(Du(1)) deposi ted by Uo 

Thus, using safe systems of  encryp t ion  t r i p l e s ,  secure i n fo rma t i on  

systems can be designed in which each user has to keep secret  a s i ng le  

dec ryp t i on  a lgo r i t hm and in which i n fo rma t i on  can be depos i ted f raud-  

proof  ( i . e .  "s igned"  and " t a m p e r - p r o o f " ) .  

Before d iscuss ing the problem of cons t ruc t i ng  safe systems of  en- 

c r y p t i o n  t r i p l e s  a s ide-remark concerning a l l  " p u b l i c  key" systems 

seems in order .  Any pub l i c  key system is safe only  i f  the i n fo rma t i on  

I is taken from a very la rge  set of  poss ib le  i n f o r m a t i o n s .  For suppose 

I is known to be one o f  a small number of  poss ib le  sequences o f  symbols, 

I E {11,1 2 . . . . .  I t } .  Then the i n fo rma t i on  EA(I ) can be decrypted w i thou t  

knowledge of  a decryp t ion  a lgo r i t hm by j us t  computing E A ( I I ) , E A ( 1 2 ) , . .  

. . , E A ( I t )  and checking fo r  which j ,  EA( I j )  = I holds.  

Extending methods of  [4] a method f o r  cons t ruc t i ng  encryp t ion  t r i -  

ples has been obta ined in [ I ] .  U n i f o r t u n a t e l y ,  the combinat ion of such 

t r i p l e s  does not y i e l d  a safe system of  enc ryp t ion  t r i p l e s :  as Rivest  

[5] has po inted out ,  cond i t i on  ( i i )  of  the d e f i n i t i o n  of  safe system 

of  enc ryp t ion  t r i p l e s  is v i o l a t e d .  I t  remains an impor tant  open problem 

to cons t ruc t  safe systems of  enc ryp t ion  t r i p l e s .  

One approach in th i s  d i r e c t i o n  is to look f o r  a l t e r n a t i v e  ways of 

cons t ruc t i ng  DH-pairs or ,  more b road ly ,  of  cons t ruc t i ng  complementary 

pa i r s .  The combinat ion of  such pa i rs  could h o p e f u l l y  lead to new ways 

of  o b t a i n i n g  DH-pairs and encryp t ion  t r i p l e s .  Since encryp t ion  and de- 

c r y p t i o n  a lgor i thms always appear to be spec ia l  cases o f  mappings de- 

f i ned  by a - t ransducers ,  a systemat ic i n v e s t i g a t i o n  o f  b i j e c t i o n s  de- 

f i ned  by such machines seems to be requ i red .  A f i r s t  step in th i s  d i -  

r e c t i o n  has been made by Nivat  and the author  in [2 ] .  A b r i e f  review 

of  some of  the resu l t s  is given in the next sec t i on .  

REGULAR BIJECTIONS 

Recall  t ha t  an a - t ransducer  is a n o n d e t e r m i n i s t i c l y  working f i n i t e  

s ta te  machine wi th accept ing s ta tes which is able to produce output  

words on both empty and nonempty inpu ts .  More p r e c i s e l y ,  an a - t r a n s -  

d u c e r  T is a s i x -  tup le  T=(~,~,&,H,qo,A ),  where ~, ~ and & are f i n i t e  
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se ts  o f  s t a t e s ,  i n p u t s  and o u t p u t s  r e s p e c t i v e l y ,  where qo E @ is  the  

s t a r t - s t a t e ,  Ac@ is  a s e t  o f  a c c e p t i n g  s t a t e s  and where H i s  a f i n i t e  

s e t  o f  t r a n s i t i o n  r u l e s ,  H c ~ x  z ~ x @x A~.For  each word y E Z" one de- 

f i n e s  T(y )  = { z l y  = y 1 . , . y n ,  z = z 1 . . . z  n , ( q i - 1 '  Y i '  q i '  z i )  E H f o r  

i = 1,2 . . . . .  n and qn E A} .  

Two se ts  o f  words R and A are in  regular bijection, s y m b o l i c a l l y  

R <f> S or  j u s t  R <---> S, i f  f :  R :- > S is  a b i j e c t i o n  o f  R onto  S such 

t h a t  t h e r e  are a - t r a n s d u c e r s  T and T - I  w i t h  T (y )  = { f ( y ) }  f o r  yE  R and 

T - 1 ( z )  = { f - i ( z ) }  f o r  zE S. The b i j ' e c t i o n  f i s  then c a l l e d  a regular 

b i j ee t i on .  

I t  i s  easy to see t h a t  < > i s  an e q u i v a l e n c e  r e l a t i o n .  

S ince comp lemen ta ry  p a i r s  (E,D) as used in  c r y p t o g r a p h y  can o f t e n  

be i n t e r p r e t e d  as p a i r s  ( f , f - 1 ) ,  where f i s  a r e g u l a r  b i j e c t i o n ,  the 

s tudy  o f  r e g u l a r  b i j e c t i o n s  seems o f  i m p o r t a n c e .  P r o b a b l y  the most b a s i c  

q u e s t i o n  is  to  d e t e r m i n e  when two r e g u l a r  se ts  are in  r e g u l a r  b i j e c t i o n .  

For i n s t a n c e ,  c o n s i d e r  the f o l l o w i n g  s i x  p a i r s  o f  r e g u l a r  s e t s :  

R I = a ~, $I = ( a 2 ) * ;  

R 2 = { a , b }  * ,  S 2 = { a b , a b 2 } ~ ;  

R3 :  { X l , X  2 . . . . .  Xn} , S3= { y l , y  2 . . . . .  yn } ,  x i , Y  i a r b i t r a r y  wo rds ;  

R4 = { x 1 ' x 2  . . . . .  Xn } '  $4 = { Y I ' Y z  . . . . .  ym } ,  n ~ m, x i , y i  a r b i t r a r y  wo rds ;  

R 5= a~-.  { ~ } ,  S 5 = { I } { 0 , I } * ;  
R6= { a 2 , a 3 }  m, $6= { a , b }  ~. 

RI <_~i_~ Sl ho lds  by choos ing  f 1 ( a ) =  a2;  

R 2 <J~-> S 2 ho lds  by choos ing  f 2 ( a ) =  ab,  f ( b ) =  ab2; 

R 3 ~ - - >  S 3 ho lds  by choos ing  f 3 ( x i )  = Y i  f o r  i = 1,2 . . . . .  n. 

However,  R 4 and S 4 are no t  in  r e g u l a r  b i j e c t i o n  ( s i n c e  they  are f i n i t e  

se ts  w i t h  d i f f e r i n g  number o f  e l e m e n t s ) .  R 5 and S 5 are  not  in  r e g u l a r  

b i j e c t i o n  ( d e s p i t e  the  f a c t  f ( a  n) = b,  b the  b i n a r y  r e p r e s e n t a t i o n  o f  n, 

i s  a b i j e c t i o n )  s i nce  ve ry  l ong  words would  have to be mapped on to  r a t h -  

e r  s h o r t  words which is  i m p o s s i b l e  f o r  an a - t r a n s d u c e r  ( t o  be made p r e -  

c i s e  b e l o w ) .  F i n a l l y ,  R 6 and S 6 are no t  in  r e g u l a r  b i j e c t i o n  f o r  a n a l -  

ogous r e a s o n s ,  R 6 be ing  " s i m i l a r "  to  R 5, R 6 be ing  " s i m i l a r "  to  S 5, 

The examples R i ,  S i f o r  i = 4 , 5 , 6  sugges t  to  c o n s i d e r  the number o f  

words up to a c e r t a i n  l e n g t h ,  l e a d i n g  to the f o l l o w i n g  n o t i o n  o f  pop- 

ulation function. 

Let R be a set of words. The population function of R, denoted by 
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PR is defined by PR(n) = card { x l x  E R, Ixl £ n}. Two languages R and S 

are equally populated i f  there ex is t  numbers Cl,C 2> 0 and an integer 

n o such that  PR(Cln)~Ps(n)~PR(C2n) for  a l l  n> n o . 

Based on t h i s  d e f i n i t i o n  o f  p o p u l a t i o n  f u n c t i o n  a f i r s t  necessary  

c o n d i t i o n  f o r  two languages to be in r e g u l a r  b i j e c t i o n  is  o b t a i n e d  in  [ 2 ] :  

I f  R < > S bo!ds, then R and S are equal ly populated. 

Since R 5 and R 6 are e q u a l l y  popu la ted  and S 5 and S 6 are e q u a l l y  

p o p u l a t e d ,  but  R 5 and S 5 are not  e q u a l l y  p o p u l a t e d ,  t h i s  r e s u l t  proves 

our  above i n t u i t i o n  concern ing  R i ,  S i ( i = 5 , 6 ) .  

I t  remains to c o n s i d e r  r e g u l a r  b i j e c t i o n s  o f  sets which are e- 

q u a l l y  p o p u l a t e d .  As a s t a r t ,  c o n s i d e r  once more an example:  

R= a ~ { b , c }  ~, S = { b , c } { a }  m. F i r s t  i n t u i t i o n  might  seem to i n d i c a t e  t h a t  

R and S are not  in  r e g u l a r  b i j e c t i o n  s ince  a l l  o f  the obv ious  b i j e c t i o n s  

such as f ( a n x )  = xa n f o r  n > O, xE { b , c }  ~ can be shown to be n o n - r e g u l a r .  

Somewhat s u r p r i s i n g l y ,  R and S are, n e v e r t h e l e s s ,  in  r a t i o n a l  b i j e c t i o n .  

This  f o l l o w s  from the main theorem of  [ 2 ] :  

Theorem: 

Let  R and S be r e g u l a r  se t s .  R < > S i f  and on l y  i f  R and S are 

e q u a l l y  p o p u l a t e d .  

For the construct ive proof,  based on a sequence of about a dozen 

lemmas, see [2 ] .  However, to give a fee l ing  for  the type of b i j e c t i o n  

o b t a i n e d ,  the b i j e c t i o n  f :  a ~ { b , c } ~  i > { b , c } { a }  ~ o b t a i n e d  by systema- 

t i c a l l y  f o l l o w i n g  the p roo f  o f  above theorem is the compos i t i on  o f  the 

b i j e c t i o n s  

g: a ~ { b , c }  m ~ { b , c }  ~ and 

h: { b , c }  ~ > {b ,c}ma m, where 

the b i j e c t i o n  h is  g iven by 

I ( b c ) i y ,  x = ( b c ) 2 i - l y ,  i ~  I ,  yE  {bc2 ,bc3 }  ~ 

h (x )  = a i g ( y ) ,  x = ( b c ) 2 i y ,  i ~  1, yE  { b c 2 , b c 3 } m , g ( b c 2 ) = b , g ( b c 3 ) = c  

x, x E {b,c}  ~ ~(bc) + {bc2,bc3} ~, 

and where g is defined s i m i l a r l y .  

Above theorem leads d i r e c t l y  to the fo l low ing  charac ter iza t ion  of 

the existence of regular b i j ec t i ons  between regular sets: 
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C o r o l l a r y :  

Every r e g u l a r  set is in r egu la r  b i j e c t i o n  w i th  e x a c t l y  one of the 

f o l l o w i n g  sets :  

{ a l , a  2 . . . . .  a n } ( n ~ l ) ,  or a1*a~ . . . a  ~ ( n ~ l ) ,  or { a l , a 2 } * .  
Fu r the r ,  the c o n s t r u c t i o n  of  the theorem y i e l d s  a r b i t r a r i l y  complex re-  

gu la r  b i j e c t i o n s  of  Z * onto i t s e l f  f o r  a r b i t r a r y  Z: 
Choose two regu la r  sets R and S which are e q u a l l y  popula ted.  Const ruc t  

r egu la r  b i j e c t i o n s  f1 :  R < > S and f2 :  Z~ TM R < > Z* ~ S and combine f l  

and f2 i n t o  a s i n g l e  r e g u l a r  b i j e c t i o n  f de f ined by: 

f 1 ( x )  f o r  xE R 
f ( x )  = 1 f2 (x )  f o r  x E Z ~ R. 

I t  remains to be seen whether r e g u l a r  b i j e c t i o n s  obta ined in  t h i s  

fash ion  can be used s u c c e s s f u l l y  f o r  c r yp tog raph i c  purposes. 
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I .  I n t r o d u c t i o n  

I I .  Searching and I n f o r m a t i o n  Theory 

We cons ide r  the r e l a t i o n s h i p  between sea rch ing ,  s o r t i n g  and i n -  

f o rma t i on  t heo ry .  In the f i r s t  sec t i on  a l go r i t hms  f o r  the c o n s t r u c t i o n  

of  op t ima l  and nea r l y  op t ima l  search t rees  and a - p r i o r i  bounds f o r  the 

cost  of  such search t rees  are p resented .  Many of these r e s u l t s  become 

r e a d i l y  a v a i l a b l e  i f  search t rees  are i n t e r p r e t e d  as a l p h a b e t i c  pre-  

f i x  codes. Next TRIES and dynamic search t rees  are b r i e f l y  d iscussed.  

In the l a s t  sec t ion  the r e s u l t s  are a p p l i e d  to s o r t i n g .  Recent deve lop-  

ments on s o r t i n g  p reso r ted  f i l e s  are desc r i bed .  

11.1 Search Trees and A lphabe t i c  Codes 

Consider the f o l l o w i n g  t e r n a r y  search t r e e .  I t  has 3 i n t e r n a l  

nodes 

SEARCHING, SORTING AND INFORMATION THEORY 

and 6 leaves.  The i n t e r n a l  nodes con ta in  the keys { 3 , 4 , 5 , 1 o , 1 2 }  in 

so r ted  o rder  and the leaves rep resen t  the open i n t e r v a l s  between keys. 
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The s tandard  s t r a t e g y  to l o c a t e  X in t h i s  t r e e  is  best  desc r i bed  by 

the f o l l o w i n g  r e c u r s i v e  procedure  SEARCH 

proc SEARCH ( i n t  X ; node v) 

i f  v is  a l e a f  

then "X is  not in  the t ree : '  

e].s e b e g i n  l e t  K1,K 2 be the keys in node v; 

i__f_f X < K I then SEARCH (X, l e f t  son o f  v) 

i f  X = K 1 then e x i t  ( f o u n d ) ;  

i f  K 2 does not  e x i s t  

then SEARCH (X, r i g h t  son o f  v) 

e l se  beg in  i f  X < K 2 then SEARCH (X, m idd le  son o f  v ) ;  

i f  X = K 2 then e x i t  ( f o u n d ) ;  

SEARCH (X, r i g h t  son o f  v) 

end 

end 

end 

A p p a r e n t l y ,  the search s t r a t e g y  is  unsymmetr ic .  I t  i s  cheaper to f o l l o w  

the p o i n t e r  to the f i r s t  sub t ree  than to f o l l o w  the p o i n t e r  to the se- 

cond sub t ree  and i t  i s  cheaper  to l o c a t e  K 1 than to l o c a t e  K 2. 

We w i l l  a l so  assume t h a t  the p r o b a b i l i t y  o f  access is  g iven  f o r  each 

key and each i n t e r v a l  between keys. More p r e c i s e l y ,  suppose we have n 

keys B I . . . . .  B n out  o f  an o rdered  un i ve rse  w i t h  B 1 < B 2 < . . . <  B n. Then 

~i denotes the p r o b a b i l i t y  o f  access ing  B i ,  i ~ i ~ n, and ~j denotes 

the p r o b a b i l i t y  o f  access ing  e lements  X w i t h  Bj < X < Bj+ I ,  0 ~ j ~ n. 

s ° and ~n have obv ious  i n t e r p r e t a t i o n s .  In our  example n = 5, ~2 is 

the p r o b a b i l i t y  o f  access ing  4 and ~4 is  the p r o b a b i l i t y  o f  access ing  

X E ( 4 , 5 ) .  We w i l l  a lways w r i t e  the d i s t r i b u t i o n  o f  access p r o b a b i l i -  

t i e s  as ~ o , ~ i , ~ 1  . . . . .  ~n,~n.  

Te rna ry  t r e e s ,  in  genera l  ( t + l ) - a r y  t r e e s ,  cor respond to  p r e f i x  codes 

in a n a t u r a l  way. We are g iven l e t t e r s  a o , a l , a  2 . . . . .  a2t  o f  cost  

Ce,Cl ,C 2 . . . . .  c2 t  r e s p e c t i v e l y ;  c~ E IR+ f o r  0 ~ ~ ~ 2 t .  Here l e t t e r  a2~ 

cor responds  to f o l l o w i n g  the p o i n t e r  to the ( C + l ) - s t  s u b t r e e ,  0 < ~< t ,  

and l e t t e r  a2~+1 cor responds to a success fu l  search t e r m i n a t i n g  in  the 
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( ~ + l ) - s t  key o f  a node, 0 < ~ < t .  

A search t ree  is  a p r e f i x  code C = {Vo,W1,V 1 . . . . .  Wn,V n} w i t h  

1) Vj E z*, W i • m*Zend 

where ~ = {ao ,a  2 . . . . .  a 2 t } '  ~end = { a l ' a 3  . . . . .  a 2 t _ l  } ,  0 < j < n, 

I ~ i ~ n. W i desc r i bes  the search process l e a d i n g  to key B i and Vj 

desc r i bes  the search process l ead ing  to i n t e r v a l  ( B j , B j + I ) .  

2 )  the o r d e r i n g  of  the keys is  r e f l e c t e d  i n  the l e x i o o g r a p h i c  

o r d e r i n g  of  the code words,  i . e .  

vj < w i v j  

f o r  j < i ~ j '  and ~ deno t i ng  the l e x i e o g r a p h i c  o r d e r i n g  of  s t r i n g s  

based on the o r d e r i n g  a 0 ~ a I ~ a 2 ~ . . .  ~ a2t  o f  the l e t t e r s .  

C o n v e r s e l y , e v e r y  p r e f i x  code f o r  ~ o , ~ i  . . . . .  ~n,~n s a t i s f y i n g  i )  and 2) 
cor responds to a search t ree  in  a n a t u r a l  way. We r e f e r  to these codes 

as a l p h a b e t i c  p r e f i x  codes. Codes, which not  n e c e s s a r i l y  s a t i s f y  i )  

and 2) w i l l  be c a l l e d  n o n - a l p h a b e t i c  p r e f i x  codes, or s imp ly  p r e f i x  

codes. In o rde r  to  s t r ess  the d i s t i n c t i o n  in  the seque l ,  we w i l l  de- 

note the p r o b a b i l i t y  d i s t r i b u t i o n  by (P l  . . . . .  pn ) ,  the l e t t e r s  by 

b I . . . . .  b s and t h e i r  cos ts  by d I . . . . .  d s in  the n o n - a l p h a b e t i c  case. 

The cos t  o f  word a i l  a12' . . .  alk. is  de f i ned  as c i l  + c i2  + . . . +  Clk. , 

i . e .  as the sum o f  the l e t t e r  cos t s .  The cost  o f  code C is  then de f i ned  
as 

n n 
Cost(C) = i=1~ ~i C°st(Wi) + j=og aj .Cost(Vj)  

The f o l l o w i n g  two problems are o f  immediate i n t e r e s t .  

1) Given l e t t e r s ,  t h e i r  cos ts  and a p r o b a b i l i t y  d i s t r i b u t i o n ,  f i n d  an 

a l p h a b e t i c  code o f  ( n e a r l y )  min imal  cos t .  

2) Give good a - p r i o r i  bounds f o r  the cos t  o f  an op t ima l  a l p h a b e t i c  

code. (an a l p h a b e t i c  " n o i s e l e s s  cod ing  t heo rem" ) .  

Table I g ives  a su rvey  of  a l g o r i t h m s  f o r  the c o n s t r u c t i o n  of  op t ima l  

codes. For the genera l  problem the i n p u t  i s  a p r o b a b i l i t y  d i s t r i b u t i o n  
and l e t t e r  cos t s .  No e f f i c i e n t  a l g o r i t h m  is  known in  the n o n - a l p h a b e t i c  

case; h o w e v e r j i t  is  a lso  not  known whether  the co r respond ing  r e c o g n i t i o n  
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gene ra l  p rob lem 

b i n a r y ,  equal  c o s t  

gene ra l  

l e a f - o r i e n t e d ,  

~i = 0 

a l p h a b e t i c  

O( t2n 2 ) 

I t a i  

O(n 2 ) 

Knuth(a)  

O(n l og  n) 

Hu /Tucke r ,  

Gars ia /Wachs 

n o n - a l p h a b e t i c  

e NP 

u n n a t u r a l  

p rob lem 

O(n l og  n) 

Huffman 

Tab le  1: A l g o r i t h m s  f o r  the c o n s t r u c t i o n  o f  o p t i m a l  codes 

p rob lem is  NP-comp le te .  I t a i ' s  a l g o r i t h m  is  a dynamic p rogramming  

approach and so is  K n u t h ' s .  In the b i n a r y  equal  cos t  case we have 

t = i and c o = c I = c 2 = i .  l h e  i n p u t  i s  a p r o b a b i l i t y  d i s t r i b u t i o n  

~ o , ~ I , ~ i  . . . . .  ~n ,~n .  In the l e a f - o r i e n t e d  case we have in  a d d i t i o n  

~i = 0 f o r  a l l  i .  Hu f fman 's  a l g o r i t h m  runs in l i n e a r  t ime  when the p r o -  

b a b i l i t i e s  are s o r t e d  [van Leeuwen(b)] and the  a l g o r i t h m s  o f  Hu/Tucker  

and Gar is /Wachs are i s o m o r p h i c  [ M e h l h o r n / T s a g a r a k i s ] .  

In summary 9 we can s t a t e  t h a t  no e f f i c i e n t  a l g o r i t h m  is  known in the 

g e n e r a l  case° Note t h a t  I t a i ' s  and Knu th ' s  a l g o r i t h m  a l s o  need space 

e ( n 2 ) .  T h e r e f o r e  a p p r o x i m a t i o n  a l g o r i t h m s  were c o n s i d e r e d  e a r l y  in  the 

game [ B r u n o / C o f f m a n ,  G o t l i e b / W a l k e r ] .  Most o f  these  a l g o r i t h m s  are 

based on an " a l p h a b e t i c  n o i s e l e s s  cod ing  t h e o r e m " .  

A p l a u s i b i l i t y  a rgumen t :  C o n s i d e r  a p r e f i x  code over  a two l e t t e r  a l=  

phabet  o f  c o s t  do ,d  I r e s p e c t i v e l y .  In the r o o t  o f  the  code t r e e  the  

se t  o f  p r o b a b i l i t i e s  is  s p l i t  i n t o  two se ts  o f  p r o b a b i l i t y  p and i - p ,  

say .  The l e t t e r  o f  c o s t  d o ( d l )  i s  a s s i g n e d  to  the  f i r s t  ( second)  s e t .  

Hence the  average  c o s t  a r i s i n g  in  the r o o t  o f  the code t r e e  i s  do.P+ 

( l - p ) ' d  I and the  ave rage  i n f o r m a t i o n  ga in  is  the b i n a r y  e n t r o p y  

H ( p , l - p )  = -p log  p - ( 1 - p ) l o g ( l - p ) .  I n f o r m a t i o n  ga in  per  u n i t  cos t  

( H ( p , l - p ) / ( d o P + d l { 1 - p ) ) )  i s  max im ized  ( e l e m e n t a r y  c a l c u l u s )  w i t h  va l ue  

d f o r  p = 2 -dd°  and 1-p = 2 - d d l  where d c IR is  such t h a t  2 "dd°  + 2 - d d l  

= i .  S ince H(p I . . . . .  Pn ) = -~Pi  l og  Pi b i t s  have to  be ga ined  in  any 

n o n - a l p h a b e t i c  p r e f i x  code f o r  d i s t r i b u t i o n  ( p l , P 2  . . . . .  pn ) the cos t  

o f  such a code has to  be a t  l e a s t  H(p I . . . .  , p n ) / d .  Th is  is  made p r e c i s e  

in Theorem 2 .1 .  Moreove r ,  the  p l a u s i b i l i t y  argument  a l s o  sugges ts  an 
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a p p r o x i m a t i o n  a l g o r i t h m .  Try to  s p l i t  the d i s t r i b u t i o n  i n t o  two se ts  

o f  p r o b a b i l i t y  about  2 -dd°  and 2 " d d l  r e s p e c t i v e l y .  Then proceed r e -  

c u r s i v e l y  on the  two s u b s e t s .  

Theorem 2 .1 :  

a )  [ K r a u s e ,  C i s z a r ] .  Le t  C = {U 1 . . . . .  U n} be a p r e f i x  code f o r  d i s t r i -  

b u t i o n  ( P l  . . . . .  Pn o v e r  a l p h a b e t  g = {b I . . . . .  b s}  w i t h  c o s t s  d 1 . . . . .  d s .  

Then 
n 

Cost (C)  = E P i . C o s t ( U i )  ~ H(p I . . . . .  p n ) / d  
=I 

where 
n _d id  

2 = 1 . 
i=1 

b) [ A l t e n k a m p / M e h l h o r n ] .  Le t  h c IR, h > o and 

L h = { i ;  d. C o s t ( U i )  < - l o g  Pi h} 

Then 

Pi -< 2-h [] 
iEL h 

Remark: P a r t  b) o f  Theorem i shows t h a t  the  i n e q u a l i t y  o f  a) i s  a lmos t  

t r u e  f o r  c o r r e s p o n d i n g  te rms o f  the two sums. P a r t  a) i s  a n o i s e l e s s  

cod ing  theorem f o r  a r b i t r a r y  l e t t e r  c o s t s .  

Of c o u r s e ,  Theorem 2.1 a l s o  g i ves  a l o w e r  bound in  the a l p h a b e t i c  case.  

However,  a b e t t e r  bound-can be proved in  t h a t  case.  

Theorem 2.2 [ A l t e n k a m p / M e h l h o r n ] .  Le t  C = {Vo,W 1 . . . . .  Wn,V n} be an a l -  

p h a b e t i c  p r e f i x  code f o r  d i s t r i b u t i o n  ( ~ o , ~ 1 , m l  . . . .  ) over  l e t t e r s  

ao ,a  I . . . . .  a2 t  w i t h  c o s t  c o . . . . .  c 2 t .  Then 

Cos t (C)  > max { H ( ~ o , ~  1 . . . .  ) / c ( x )  - ( x - 1 ) . ( z p i ) .  max Ck; i <x<~} 
k odd 

t - c ( x ) c 2 k  t - 1  - c ( x ) ' x ' c  2 
where c ( x )  i s  such t h a t  z 2 + s 2 k+ l  = 1. 

k=o k=o 

P roo f  ( s k e t c h ) :  The idea  o f  the p r o o f  i s  to  a p p r o x i m a t e  the combina-  

t o r i a l  r e s t r i c t i o n  t h a t  l e t t e r s  in  ~end can be used o n l y  a t  the  end o f  

code words by an a r t i f i c i a l  i n c r e a s e  in  the  cos t  o f  those l e t t e r s .  So 

d e f i n e  new cos ts  by ~k = Ck f o r  k even and ~k = X'Ck f o r  k odd and 

1 < x < =. Then r e l a t e  the  c o s t  o f  code C under the new and the  o l d  

c o s t  f u n c t i o n  and a p p l y  Theorem 2.1 f o r  the new c o s t  f u n c t i o n .  [] 
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C o r o l l a r y  2.3 [ A l t e n k a m p / M e h l h o r n ] :  Le t  C be an a l p h a b e t i c  p r e f i x  code 

f o r  d i s t r i b u t i o n  (Co,#1 . . . .  ) w i t h  r e s p e c t  to  cos ts  Co,C I . . . . .  c 2 t .  

Le t  c , d  be such t h a t  
2t  2 - cck  t -dC2k 

= i and z 2 = i 
k=o k=o 

Then t h e r e  are c o n s t a n t s  u ,v  ( d e p e n d i n g  on the  c ' s  bu t  no t  on Cos t (C)  

and the  m's and ~ ' s )  such t h a t  

H(mo~# I . . . .  ) ~ d ' C o s t ( C )  + 

c ' ~  i 

u 

__1 
• max C iL I+ In tu . v .Cos t£C) ) j + r , ,  , , 7  

i odd 2u 

Remark: C o r o l l a r y  2 .3 shows t h a t  the  l o w e r  bound f o r  the  a l p h a b e t i c  

code is  e s s e n t i a l l y  the  l owe r  bound (d .  Cos t (C ) )  f o r  the n o n - a l p h a b e t i c  

code ove r  ~ p lus  a sma l l  c o r r e c t i o n  o f  o r d e r  ( m # i ' I n  Cos t (C ) )  which 

r e f l e c t s  the  r e s t r i c t e d  usage o f  l e t t e r s  in  Zend" 

P roo f  ( s k e t c h ) L  Let  c ( x )  = d+6(x )  where c ( x )  i s  as in  Theorem 2.2 and 

c ,d  are  as in  Theorem 2 . 3 .  Then 0 ~ ~ ( x )  ~ c -d  and 6 ( x )  ~ v -e  - u ( x - l )  

f o r  some c o n s t a n t s  u and v. Th is  can be v e r i f i e d  by s u b s t i t u t i n g  i n t o  

the  d e f i n i t i o n s  o f  c ( x ) , c , d  and ~ ( x ) .  Next s u b s t i t u t e  the upper  bound 

f o r  c ( x )  = d+6(x )  i n t o  Theorem 2.2 and a p p l y  d i f f e r e n t i a l  c a l c u l u s  to 

f i n d  x which g i ves  the  bes t  bound• 

Tab le  2 summarizes the l o w e r  bounds f o r  the cos ts  o f  a l p h a b e t i c  and 

n o n - a l p h a b e t i c  p r e f i x  codes.  B a y e r ' s  l o w e r  bound i s  a s p e c i a l  case o f  

Theorem 2 .2 .  

a l p h a b e t i c  

2 .2 and 2.3 gene ra l  p rob lem 

b i n a r y ,  equal  c o s t  m a x { ( H - d z # i ) / l o g ( 2 + 2 - d ) ; d  E IR} 

gene ra l  Bayer 

l e a f - o r i e n t e d  

Tab le  2: Lower bound f o r  the cos ts  o f  p r e f i x  codes 

n o n - a l p h a b e t i c  

2.1 
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Next we tu rn  to the c o n s t r u c t i o n  o f  n e a r l y  op t ima l  a l p h a b e t i c  p r e f i x  

codes.  The c lue  is  the p l a u s i b i l i t y  argument p receed ing  Thereorem 2 .1 .  

We i l l u s t r a t e  the methods by way o f  example.  

Example: Let c o = c I = c 2 = I and (~o,151,~1 . . . . .  154,~4) = ( 1 / 6 , 1 / 2 4 , 0 ,  

1 / 8 , 0 , i / 8 , 1 / 8 , 0 , 5 / 1 2 ) .  Then c = 1 and d = log 3 as de f ined  in C o r o l l a r y  

2 .3 .  

F igu re  2.1 shows the p r o b a b i l i t y  d i s t r i b u t i o n  drawn on the u n i t  l i n e .  

The p l a u s i b i l i t y  argument suggests t h a t  we should  s p l i t  the d i s t r i b u -  

t i o n  i n t o  two subsets o f  p r o b a b i l i t y  about  2 - c c l  and 2 -cc2 r e s p e c t i v e l y ,  

1 151) I 1521 I I I I COO 133 I c~3 a4 

0 1/4 1/2 1 

Figure 2.1:The d is t r ibu t ion  ( i / 6 ,  1/24, O, 1/8, O, 1/8, 1/8, O, 5/12). 

here 1/2 and 1 /2 .  In our example 1/2 l i e s  in the l e f t  h a l f  o f  ~3" Hence 

we should  ass ign l e t t e r  a o to ~o,#1,m1,152,~2, l e t t e r  a I to #3 and l e t t e r  

a 2 to c3,154,m4. Next we work on the subproblem ~o,151,m1,152,~2. 

Method 1: Apply the same s t r a t e g y  r e c u r s i v e l y ,  i . e .  t r y  to s p l i t  the 

d i s t r i b u t i o n  (~o,151,~1,~2,c2)  in the r e l a t i o n  1/2 : 1 /2 .  This  would 

ass ign  l e t t e r  a o to  s o, l e t t e r  a I to 151 and l e t t e r  a 2 to ~1,152,~2. 

Theorem 2.4 [Meh lho rn (d~ .  Method 1 c o n s t r u c t s  an a l p h a b e t i c  p r e f i x  code 

w i t h  Cost(C) S H(ao,151 . . . .  ) / d  + ( g a j ) [ 1 / d +  max Ck] + z~i[ max Ck] 
k even k odd 

where d is  d e f i n e d  as in C o r o l l a r y  2.3 . 

In the b i n a r y  cases a s l i g h t l y  b e t t e r  bound is  due to Hor ibe .  

Me___thod 2; In o r d e r  to so l ve  ~he subproblem (~ . . . . . .  ~ )  method 1 s p l i t s  

t h i s  d i s t r i b u t i o n  in the r e l a t i o n  2 - c c i : 2 - c c 2 :  Method 2 s p l i t s  the 

i n t e r v a l  [0 :2  - c c l  ] in  the r e l a t i o n  2 - c c 1 : 2 - c c 2 ;  t h i s  y i e l d s  1/4 in  our  

case. Hence l e t t e r  a o is  ass igned to ~o,151,~1, l e t t e r  a I to 152 and 

l e t t e r  a 2 to ~2' Note t h a t  the two methods are i d e n t i c a l  i f  exac t  

s p l i t s  are always p o s s i b l e .  
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Theorem 2.5 [ C s i z a r ,  Krause, A l tenkamp/Meh lho rn ] :  

a) Method 2 cons t r uc t s  a p r e f i x  code C w i th  

Cost(Wi) < I - l o g  ~ i ] / d  + max c u 
- k odd ~ 

Cos t (V i )  < i - l o g  ~ j + l ] / d  + max c k 
- k even 

b) Theorem 2.4 w i t h  Method 1 rep laced  by Method 2. 

In the b i n a r y ,  equal cost  case r e s u l t s  of  type a) o f  2.5 are a lso 

known f o r  method i and f o r  op t ima l  t rees  [Katona/Nemetz,  G U t t l e r  et  

a l l .  For both methods e f f i c i e n t  imp lemen ta t i ons  are known. 

Theorem 2.6 [Fredman, A l tenkamp/Meh!horn ] .  I t  is p o s s i b l e  to c o n s t r u c t  

an a l p h a b e t i c  p r e f i x  code accord ing  to methods 1 and 2 in t ime O ( t - n ) .  

Method 3: There is  a t h i r d  way to i n t e r p r e t  the p l a u s i b i l i t y  argument.  

Try to maximize the i n f o r m a t i o n  gain per u n i t  cost  at  every s tep .  A 

p a r t i a l  ana l ys i s  of  method 3 is  a v a i l a b l e  in the b i n a r y ,  equal cost  

case [Hor ibe /Nemetz ,  G U t t l e r  e t  a l l .  Recent r e s u l t s  of  Hor ibe/Nemetz 

suggest  t h a t  a l i n e a r  average t ime imp lemen ta t i on  is  p o s s i b l e .  

F i n a l l y  we want to ment ion t h a t  ye t  another  approach was f o l l o w e d  by 

Cot.  His method is  based on K r a f t ' s  i n e q u a l i t y .  

11.2 T r ies  

In t h i s  sec t i on  we b r i e f l y  cons ide r  the case t h a t  the keys are 

t up les  over some set  A and t h a t  on ly  comparisons between components 

of  the keys are p o s s i b l e .  One popu la r  search s t r a t e g y  is to i t e r a t i v e l y  

de termine  the components o f  the keys (TRIE).  

Let S ~ A m be a set of m-tuples over A. For w e ~* l e t  Pw = l { x  e S; 

w is a p r e f i x  of x} I. Now, l e t  y = ( y l , y  2 . . . . .  ym) be an a r b i t r a r y  

element of S. In order to i d e n t i f y  y we proceed as f o l l ows .  

i ÷ 1 ; w+c 

w h i l e  i < m do 

( the  empty s t r i n g )  
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begin i den t i f y  Yi in a binary search tree for A and p robab i l i t y  d i s t r i  

bution (Pwa/Pw;a E ~); 

i + i+1; w ÷ wy i 

end 

I f  the search t rees are const ructed according to method 2 above then 

" l ° g ( P Y l  . . . .  "Y i /PYl  ° Y i - l )  ÷ 2 comparisons s u f f i c e  to i d e n t i f y  Yi 

according to theorem 2.5 a. Hence 2m + log pe/py = 2m + log ISl com- 

par isons s u f f i c e  to i d e n t i f y  y. 

Theorem 2.7 [Fredman (a),(b), v. Leeuwen (a), GUttler et al.] 

Let S E Am. Then searchingin S requires no more than 2m + log IS[ com- 

parisons between elements of ~. 

11.3 Dynamic Search Trees 

In many a p p l i c a t i o n s  the p r o b a b i l i t y  d i s t r i b u t i o n  var ies  over t ime. 

Recent ly ,  some methods were proposed to keep a search t ree  near l y  

opt imal  as p r o b a b i l i t i e s  change [A l len /Munro ,  Unterauer ,  Baer, Mehl- 

horn (a~. 

I I I .  Sor t ing  and In fo rma t ion  Theory 

In t h i s  sec t ion  we want to apply the knowledge of  the previous 

sec t ion  to s o r t i n g .  We w i l l  on ly  consider  s o r t i n g  a lgor i thms which 

so r t  by means of  comparisons wi th b inary  outcome. Such a lgor i thms 

correspond to p r e f i x  codes, usua l l y  c a l l e d  dec is ion  t rees in t h i s  con- 

t e x t ,  in a na tu ra l  way. 

Let r be a subset of  the set o f  permutat ions o f  n elements. For in -  

stance,  r could be a l l  permutat ions wi th ~ F inve rs ions  ( f o r  a d e f i n i -  

t i o n  see below).  We want to cons ider  a lgor i thms which so r t  under the 

assumption tha t  only permutat ions in r are l e g i t i m a t e  inpu t  sequences. 
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Theorem 3 .1 :  Le t  A be a s o r t i n g  a l g o r i t h m  f o r  sequences in  F. Then A 

uses a t  l e a s t  l o g i F  i compar isons  on the  ave rage .  

P r o o f :  A is  a p r e f i x  code f o r  p r o b a b i l i t y  d i s t r i b u t i o n  (P l  . . . . .  PIF[ ) 

w i t h  Pi = 1 / I F I  f o r  a l l  i .  D 

Theorem 3.1 is  u s u a l l y  r e f e r r e d  to  as the i n f o r m a t i o n  t h e o r e t i c  l o w e r  

bound in s o r t i n g .  Fredman has shown t h a t  t h i s  l o w e r  bound i s  sharp up 

to a l i n e a r  f a c t o r  o f  0 ( n ) .  Th is  is  most e a s i l y  seen be d e s c r i b i n g  a 

p e r m u t a t i o n  by i t s  i n v e r s i o n  t a b l e .  

Le t  X l X 2 . . , x  n be a sequence o f  d i s t i n c t  e lements  f rom an o r d e r e d  u n i -  

v e r s e .  For I S i ~ n l e t  f i  = l { J ; J  > i and x j  < x i }  I be the number o f  

e lemen ts  to  the r i g h t  o f  i y e t  s m a l l e r  than x i .  The t u p l e  ( f l  . . . . .  fn ) 

i s  c a l l e d  the  i n v e r s i o n  t a b l e  and Ef i is  c a l l e d  the t o t a l  number o f  i n -  

v e r s i o n s  o f  the  sequence.  Knowledge o f  the  i n v e r s i o n  t a b l e  p e r m i t s  a 

s i m p l e  i n s e r t i o n  s o r t  o f  the sequence:  S t a r t  w i t h  an empty sequence and 

then i t e r a t i v e l y  i n s e r t  x i a t  the  f i - t h  p o s i t i o n  o f  the s o r t e d  v e r s i o n  

o f  x i +  1 . . . . .  x n. Hence d e t e r m i n a t i o n  o f  the  i n v e r s i o n  t a b l e  i s  t a n t a -  

mount to  s o r t i n g .  

Theorem 3.2 [Fredman(a)4b)] .  There is  a s o r t i n g  a l g o r i t h m  A F f o r  F which 

never  uses more than l o g i r i  + 2n c o m p a r i s o n s .  

P r o o f :  Le t  ~ be the  s e t  o f  i n v e r s i o n  t a b l e s  c o r r e s p o n d i n g  to  pe rmu ta -  

t i o n s  in  ?. By theorem 2.7 s e a r c h i n g  in  ~ can be done w i t h  a t  most 
N 

l o g l F  I + 2n compa r i sons .  

Remark: An e x p l i c i t e  c o n s t r u c t i o n  o f  a l g o r i t h m  A F r e q u i r e s  comp le te  

knowledge o f  ~ which one does not  have in  g e n e r a l .  

Examples:  

a) S o r t i n g  X+Y. Le t  X and Y be se ts  o f  m d i s t i n c t  r e a l s  each. Then 
X+Y = { x + y ;  x ~ X, y e Y}. has m 2 e l e m e n t s .  Only 2 0(m l o g  m) ou t  o f  

(m2)!  p e r m u t a t i o n s  are p o s s i b l e  f o r  a s e t  o f  form X+Y [ H a r p e r  e t  a l ]  

and hence X+Y may be s o r t e d  w i t h  O(m 2) compar i sons  [ F r e d m a n ] .  Note 

t h a t  n = m 2 in  theorem 3 .2 .  

b) Le t  r be the s e t  o f  p e r m u t a t i o n s  o f  n e lemen ts  w i t h  ~ F i n v e r s i o n s .  

Then l o g l F  I = 0(n log  ~)  and hence sequences w i t h  ! F i n v e r s i o n s  can 

be s o r t e d  w i t h  O(n l og  ~)  c o m p a r i s o n s .  In o t h e r  wo rds ,  p r e s o r t e d  f i l e s  

( l o g  F/n = o ( l o g  n ) )  can be s o r t e d  w i t h  s t r i c t l y  l ess  than n log  n com- 
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p a r i s o n s .  Note however ,  t h a t  Fredman's  r e s u l t  does not  say a n y t h i n g  

about  the p o s s i b l e  r unn ing  t ime  o f  an a l g o r i t h m  f o r  s o r t i n g  p r e s o r t e d  

f i l e s .  R e c e n t l y ,  a l g o r i t h m s  w i t h  run t ime  O ( n ( l + l o g  F / n ) )  were d e s c r i b e d  

by Guibas e t  a l ,  B r o w n / T a r j a n  and Meh lhorn .  M e h l h o r n ' s  s o l u t i o n  is  the 

most e f f i c i e n t .  We d e s c r i b e  a b lend  o f  M e h l h o r n ' s  and B r o w n / T a r j a n ' s  

a l g o r i t h m  here .  

D e f i n i t i o n  ~ A d e l s o n - V e l s k i i / L a n d i s ] .  A b i n a r y  t r e e  T ( e v e r y  node o f  T 

has e i t h e r  2 or  no sons) is  an AVL- t ree  i f  f o r  eve ry  node v o f  T the 

d i f f e r e n c e  between the  h e i g h t s  o f  the l e f t  and r i g h t  s u b t r e e  o f  v i s  

a t  most one. The d i f f e r e n c e  is  denoted  h b ( v ) .  An o r d e r e d  se t  S is  

s t o r e d  in  an AVL - t r ee  by l a b e l l i n g  the nodes o f  the t r e e  f rom l e f t  to  

r i g h t  w i t h  the  e lemen ts  o f  S. ( c f .  f i g u r e  3 . 1 ) .  

Suppose now t h a t  we want to  use an AVL - t r ee  f o r  an i n s e r t i o n  s o r t .  

Say x i +  1 . . . . .  x n are s t o r e d  in  s o r t e d  o r d e r  in AVL - t r ee  T and x i i s  to  

be i n s e r t e d  n e x t .  By the d e f i n i t i o n  o f  f i '  x i  w i l l  be i n s e r t e d  a t  the 

f i - t h  p o s i t i o n  o f  the s o r t e d  v e r s i o n  o f  x i +  I . . . . .  x n. I f  the f i l e  i s  

p r e s o r t e d ,  i . e .  z f i  is  s m a l l ,  the  e lements  x i w i l l  tend  to be i n s e r t e d  

near the  b e g i n n i n g  o f  the s o r t e d  sequence.  Hence the s t a n d a r d  i n s e r t i o n  

a l g o r i t h m  w i l l  on the  average d e v i a t e  f rom the l e f t  sp ine  (= the path 

f rom the r o o t  to  the l e f t - m o s t  l e a f )  near  the l e f t - m o s t  l e a f .  Thus i t  

i s  much cheaper  to  l ook  f o r  t h a t  p o i n t  by s t a r t i n g  a t  the  l e f t - m o s t  

l e a f  Y l  and w a l k i n g  towards  the  r o o t  u n t i l  a node Yki w i th  x i < Yki 

is  f ound .  ( c f .  f i g u r e  3 . 2 ) .  Next x i i s  i n s e r t e d  i n t o  the  r i g h t  s u b t r e e  

o f  Yk-1 as u s u a l .  S ince the  h e i g h t  o f  node Yki i s  a t  mos t  2k i i t  t a k e s  

O ( k i )  u n i t s  o f  t ime to  f i n d  the  p o s i t i o n  where x i i s  to  be i n s e r t e d .  

A f t e r  the c o r r e c t  p o s i t i o n  is  found and a new l e a f  w i t h  l a b e l  x.  i s  
i 

i n s e r t e d ,  the AVL - t r ee  needs to be r e b a l a n c e d .  Reba lanc ing  is  r e s t r i c t e d  

to the path f rom the new l e a f  to  the f i r s t  node z w i t h  ba lance  hb(z)~O 

on the path f rom the new l e a f  to  the r o o t .  [see Knuth b,  pp.  451-463 

f o r  d e t a i l s ] .  Le t  h i be the  l e n g t h  o f  t h a t  p a t h .  Then r e b a l a n c i n g  a f t e r  

the i n s e r t i o n  o f  x i takes  t ime  O ( ~ i ) .  

In summary, i t  takes  O ( k i + ~ i )  u n i t s  o f  t ime  to p rocess  x i and hence 
n 

the comp le te  s o r t  takes  t ime  z O ( k i + C i ) .  
i=1 
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F igu re  3 .1 :  An AVL- t ree  f o r  

S = { 1 , 3 , 4 , 7 , 1 o , 1 1 , 1 4 , 1 7 , 2 o } .  

H e i g h t - b a l a n c e s  are shown 

above nodes. 
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F igu re  3 .2 :  The i n s e r t i o n  ( ) 

and r e b a l a n c i n g  ( . . . . . .  ) pa ths .  

Lemma 3 .3 :  

a) k i = O(!og  f i )  
g f .  

b) ~k i = O ( n ( l + l o g  ..... 1.)) 
n 

c) Z~i = 5n 

Remark: Par t  c) o f  Lemma 3.3 is  i n t e r e s t i n g  in i t s  own r i g h t .  I t  shows 

t h a t  the t o t a l  number o f  r e b a l a n c i n g  o p e r a t i o n s  (= ba lance  changes + 

r o t a t i o n s  and doub le  r o t a t i o n s )  is  l i n e a r  in  the number o f  i n s e r t i o n s .  

A more c a r e f u l  a n a l y s i s  shows EL i ~ 4n. 

P r o o f :  

a) x i is  l a r g e r  than a l l  e lements  in  the sub t ree  w i t h  r o o t  Y k . - 2 "  
I 

Since the h e i g h t  o f  Yk 2 is a t  l e a s t  k i ,  t h i s  sub t ree  c o n t a i n s  a t  
i -  

l e a s t  F i b ( k i - 2 + 2 ) - i  nodes [see Knuth,  page 453 ] ,  where Fib(m) is  the 

m-th Fibonacci  number. This  shows a) .  

b) From a) we conc lude 

sk± = ~O( iog  f i )  = O(n + log  ~ f i )  

~ f i  n E f i  
= O(n + i o g ( - - ~ - )  ) = O ( n ( l + ~ ) )  

The t h i r d  i n e q u a l i t y  f o l l o w s  from the f a c t  t h a t  n f  i is  maximal f o r  
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f i  = f j  for a l l  i , j .  

c) Rebalancing after the insertion of x i is tantamount to changing the 

balance of a l l  nodes between the new leaf and node z from 0 to +1 

followed by ei ther a change of balance at node z (from ~1 to O) or a 

rotation or double rotat ion about z. A rotation (double rotat ion) 

changes the balance of at most 3 nodes. In summary, rebalancing after 

the insertion of x i generates at most 4 nodes with balance 0 (the 

father of the new leaf and the 3 nodes affected by the rotat ion) and 

changes the balance of at least ~i-1 nodes from 0 to ±1. Hence 

z ( L i - l )  ~ 4n since only zeroes which were created before can be changed. 
[ ]  

As an immediate consequence of Lemma 3.3 we obtain 

Theorem 3.4: I t  is possible to sort sequences with < F inversions in 

time O(n(1+log F/n)) where n is the length of the sequence. 

The algorithm behind 3.4 may be dubbed an adaptive sorting method. 

Hard sorting problems (F = n2/2) are solved in time O(n log n) and 

simple sorting problems (F <<n 2) are solved in time s t r i c t l y  less than 

O(n log n). In [Mehlhorn] the algorithm is compared with Quicksort and 
1.8 i t  is shown to be superior for F < 0.25 n 
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1. Introduction 

The connection between programs and logic is now recognized as a leading topic 

of research in the theory of cc~puting. It has many different aspects. For exaniole, 

logical fo~nulae may be used to characterize the set of states attainable at a given 

program point [ is6], or the state transformation represented by a program segment E12 ]~ 

predicate calculus formulae may be regarded as programs themselves [19] ; in special 

logics, programs and declarative phrases may be intermixed with considerable freedc~, 

in making deducticns E 4,15] ; programs may be modal operators in a modal logic E14 ] ; 

this by no means exhausts the possibilities under study. Distinct from the above 

exanples is the use of programs to discover [16] or to check [5] proofs in logical 

calculi which are not in themselves particularly concerned with ccr~putation. 

The ICF system originated at Stanford University as an inlolementation of a formal 

calculus due to D. Scott, which in turn arose frc~ his work with C. Strachey E18] on 

the denotational semantics of progranming languages; Scott's fundamental contribution 

was the theory of continuous function spaces [17], which provides models for functional 

calculi. LCF (Logic for Computable Functions) , as a logic in which to discuss prog- 

ramming ~ as well as programs, plays a different r~le frcm the program-logics 

cited above. Moreover, its imple/nentation embodied yet another connection between 

progranlaing and logic; the idea was not to prove theorems autc~mtically, nor to 

check proofs, but to use a metalanguage of co,minds to generate proofs step by step. 

But even though the syste~ possessed features to allow many steps to be generated by 

a single command, and to attack goals (intended theorems) by resolving them into 

subgoals, our interest was mainly in the subject matter of the proofs: the meanings 

of progranming languages. An example was the proof of correctness of a ccmloiling 

algorithm [13] o 
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This work has continued at Edinburgh [103 with a shift of ~phasis. The meta- 

language of oc~mands has been developed into a full programming language, called 

ML [9"], in which we are experimenting with various styles of generating or perfon~ing 

proofs interactively. Since these styles are scmewhat independent of the fo~nal 

calculus itself, the acrc~ LCF is now a little misleading, though it does indicate 

that our object-language is still a Logic for Cc~utable Functions. 

For this reason, we have chosen here to illustrate our methodology~ with a simple 

exanple not primarily concerned with progr~g - but which can be treated in a 

suitable restriction of our calculus. The exanple will shc~; how the rich type 

structure of ML allows one to define procedures to represent not only derived infer- 

ence rules of the calculus (given the basic influence rules as built-in procedures) 

but also tactics or strategies fox finding proofs. 

It is worth exhibiting one simple change among those which led frcm the Stanford 

LCF metalanguage of commands to the metalanguage ML. In the cc~mand language, a 

proof consisted of a sequence of steps (theorems), indexed by the natural numbers, 

each following frcm previous steps by inference. For example, if 50 steps have been 

generated, and the 39 th step is 

39 ~ Vx.F 

(for s~me logical formula F) then the cc~mand 

SPEC "a + i" 39 

will generate, by specialization, the step 

51 ~F[a+i/x] . 

The simple change is not to index the proof by natural n~abers, but instead to bind 

theorems to metavariables of metatype thin. (Other metatypes are term and fozm(ula) 

- e.g. "a+l is a term, and "~.X+O = = X" is a form). Thus, if a metavariable th 

is currently bound to the theore~n ~ Vx.F, the specialization oc~mand can be replaced 

by the ML phrase 

let th' = SPEC"a+I" th ;; 

which binds the new step (or theor¢~n) to th'. This change is not profound, but very 

influential. For now the identifier SPEC stands for a ML procedure (representing a 

basic inference rule) whose metatype is 

term ÷ thm ÷ thin 

and it is a simple matter to define derived inference rules by ordJ_nary progran~ing. 

There is nothing new in representing inference rules as meta-procedures (see [ii] for 

exile) ; what is perhaps new - and very effective - is that the metatype discipline 

distinguishes the metatype thm frcm the metals term and foma, so that - whatever 

cc~iolex procedures are defined - all 'values' of metatype t~n must be theor~as, since 

only inferences can cfmloute such values. (We shall continue to use the word 
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'metatype' for types in ML, since we are later concerned also with types in the object 

language. ) 

This robustness released one frGm the need to preserve the whole proof as a 

sequence (though does not deny this possibility) ; a user of LCF should consider that 

he is perfoznd~ng a proof, or guiding its perfonaance, not generating it. As we shall 

see, he can program his guidance in different styles - one of which is guidance to- 

wards an explicitly stated goal. 

Our exanple concerns Boolean Algebra. Apart frcm illustrating proof guidance, 

it also illustrates how an applied theory is set up and used in LCF. Space does not 

allow us to explain how theories may be cc~nbined and extended to fozm higher theories; 

a good example may be found in [3J, where it is shown how the proof of cc~piler- 

correctness can be structured by using several theories (for exanple, separate 

theories for syntax end semantics, and a theory for the caroller itself). An obvious 

use for the theory-methodology is in proving properties of programs with abstract data 

types; the recent work of Burstall and Goguen [2 J is very relevant here, and indeed 

suggests ways in which ICF treatment of theories should be further developed. 

2. Setting up the Theor~ of Boolean Algebra 

We wish to establish the operators and axic~s [ 8 J of an arbitrary Boolean 

Algebra (with carrier set A) 

< A ; +,*,~,0,i > 

and then to do a little work in the theory. 

The normal sequence in setting up a theory falls into four parts : 

(i) Mention the parent theories, of which the new theory 

will be an extension. 

(ii) Introduce ~]~ symbols for the sets or damains of 

individuals of the theory (these are object-language types). 

(iii) Introduce symbols for the individual or function constants 

of the theory, giving their types. 

(iv) Introduce the axicrns of the theory, with names for referring 

to the~. 

Here there are no parent theories. We present the necessary sequence of ML phrases, 

interspersed with a few ccrsuents. (We shall use the above symbols for the five 

operators, though for uninportant reasons our present implementation will not allow 

all of them). 

iii 1 
The zero here indicates that A is to be a type operator with arity zero, i.e. a type 

constant. Tokens , like "A" or "+" , are used to build all new syntactic constructs 
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of the object-language. 

newconstant( "0" , ":A") ;; 

newoonstant ( "i" , ":A") ; ; 

newconstant( "~" , ":A÷A '') ;; 

newolinfix( "+" , ":A×A+A ") ;; 

newolinfix( "*" , ":A×A+A ") ;; 

All object-language cGnstructs appear in double quotation marks; in the case of type 

expressions a colon precedes the~ within the quotation marks. Infixed binary function 

constants are introduced by newolinfix, not by newccnstant. 

Each of the axic[0s which follow is introduced with its reference tokeno To 

a~id eight separate calls of the form 

newaxic~a (token, fozmula) 

we use the ML map function, which maps a function over a list (represented by [-;...;-]). 

map 

[ 

newaxign 

"orccaln" , "X + Y = = Y + X" ; 

"andccmm', "X * Y = = Y * X" ; 

"ordist', "X+ (Y* Z) == (X+Y)*(X+ Z)" ; 

"anddist', "X * (Y +Z) = = (X * Y) + (X * Z) " ; 

"oride" , "X + 0 = = X" ; 

"andide', "X * 1 = = X" ; 

"orinv" ; "X + (nx) = = 1" ; 

"andinv', "X* (nx) ==O" ] ;; 

Each axicra is placed on a file in closed form, by prefixing universal quantifiers. 

Variables of the object-language need no separate introduction. The theory is now 

detenained, and we deny the introduction of any further symbols or axicms by the 

phrase 

[ maketheory~BA" ;; l 

which also names the theory. It may now serve as a parent for fnlzTher theories, and 

we may work in the theory to prove and preserve theorems, which will also be accessible 

when working in any daughter (or deseendant) theories. 

Let us illustrate a short proof; the idespotency of the join operation + . 

The nozmal deduction is 
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X = X + O (oride) 

= X + (X * ( ~ X) ) (andinv) 

= (X + X) * (X + (~X)) (ordist) 

= (X + X) * 1 (orinv) 

: X + X (andide) 

Now the term on the second line can be reduced - or simplified - to X by using the 

axioms "andinv" and "oride" as left-to-right rewriting rules, and to (X + X) by 

similarly using "ordist" , "orinv" and "andide" . Each half of the proof can then 

be done in two stages : (i) Build a simplification set frcm an appropriate list of 

equational theorems, using a function 

ss : thm list ÷ si~oset 

which can easily be defined frc~ the basic functions provided in ML ; (ii) Use the 

ML derived inference rule 

sir~ptezm : s£mpset ÷ term ÷ term x thm 

which is such that simpterm s t yields the pair 

t" , ~t==t " 

where t" is the term gained by applying the theorems in s (as left-to-right 

rewriting rules) as often as possible to t , and the seccnd ccm~0onent is the theor~n 

which asserts the validity of the reduction. Such simplifications not only ._nerform 

term-rewriting, but also must perform the validating inference, since a theorem is to 

be ccmiouted. This inference may be quite long, involving many uses of transitivity 

and substitutivity of = = ; our aim of complete robustness forced us to inpose this 

task upon the sinplification procedure, rather than giving it special status as a 

very complex built-in inference rule. 

We now give an entire ML sequence for our proof, but c~itting the machine's 

response to each phrase (a few explanatory rer~arks follow): 

let t = "X + (X * ( ~ X))" ;; 

let sl = ss(map (AXIOM "BA')['andinv" ; 

let tl,thl = sir~pterm sl t ;; 

let s2 = ss (map(AXIOM "BA') ~ordist" ; 

let t2,th2 = s£mpterm s2 t ;; 

let th = TRANS(SYM thl, th2) ;; 

"oride" ] ) ; ; 

"orinv" ; "andide" ] ) ; ; 

The function AXIOM "BA" : token ÷ thm fetches an axic~ (which is, of course, a 

theorem). The metavariables thl,th2 are given as values the theorems 

~ t==X, ~t==X+X 
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and the last line uses symmetry and transitivity to give the metavariable th the 

value 

~X==X+X 

All that remains is to name and store away this theorem for later use: 

[ newfaet "oride~o" th ;; I 

It may later be found (in quantified form) by 

[ FACT "BA" "oridesp" ; ; 1 

The ML sequence above was not the only possible, or the most efficient. We 

wished to illustrate the s~plification mechaniem, and also that in ICF proofs need 

not be provided line-by-line for checking (a laborious task) ; rather theorems are 

ccsputed by applying basic or derived inference rules as functions. In the next 

section we illustrate how a proof procedure which may take a ve~ l large n~m~er of 

primitive inference steps - a nil~ber dependent upon the size and nature of the theorem 

required - may be invoked by a short, fixed, incantation. It is in fact a ccmlolete 

proof procedure for a class of problems. 

3. Cc~outing Normal Forms in Boolean Al~bra 

To simplify our example, we shall ass~ne in this paper that a Disjunctive Normal 

Form (DNF) is a disjunction of conjunctions of literals, and a Conjunctive Nozmal 

Form (CNF) is a conjunction of disjunctions of literals, where a literal is a possibly 

negated atcln (O,i or a variable). We therefore i~nore the removal of occurrences 

of O and i, and of duplicate or cc~iolementa~ l manbers of conjunctions or disjunctions. 

Now it is an easy matter to write, in ML, any one of a variety of procedures of 

metatyl~ team ÷ term to convert an arbitral~y Boolean expression to DNF or to CNF. 

However, to have applied this procedure to a term and obtained a term as result is 

no guarantee that the resulting term is iD~eed equivalent, by the axic~s, to the 

original term. 

A more reliable approach is to %~rite a procedure 

DNF • team ÷thm 

such that DNF(t) yields a theore~ ~ t = = dn , where dn is in DNF. Of course 

our ML programming may give us the vr~on 9 theor~n, but in our experience the confidence 

that the result is a theorem is of much greater ir~oo_ rtance. 

Again, there is no difficulty in writing a general procedure DNF to the above 

specification; it is just a little harder than a procedure which produces only the 

team dn as result, since to produce a theorem it must appeal explicitly to the 

axiccns and inference rules. 
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But we ask the reader to forget his sound knowledge of Boolean algebra, and to 

imagine that all he can see at first is (i) how to reduce the goal of converting t 

to a Nox~al Form to one or more subgoals of the same kind, and (ii) how to justify 

his reduction by axic~s and inference. We argue that this is more t~rpical of what 

happens in trying to prove interesting theorems. 

More particularly, suppose that the reader can see that to convert t to DNF 

(i) If t 

DNF's 

(ii) If t 

DNF's 

ution; 

(iii) If t 

an: 

is a disj~tnction (t I + t 2) , then it will be enough to obtain 

anl,dn2 for tl,t 2 and disjoin them; 

is a conjunction (t I * t 2) , th~n it will be enough to obtain 

anl'an2 for tl,t 2 and to obtain dn by repeated *- distrib- 

is a negation (~ tl), then it will be enough to obtain a CNF 

cn I for t, and obtain dn by repeatedly applying deMorgan's laws end 

the cancellation of double negations; 

(iv) If t is atc~ic then dn = t. 

There is an exactly dual subgoaling process for conversion to CNF. 

We may n~ see the process as a potentially interactive one. We consider that 

the reader is interested in goals of the fozm 

(t , b) 

where t is an arbitrary team, and b is a truth value true (resp. false) , and in 

which t is to be converted to DNF (resp. CNF). So he would naturally define the 

metatype goal = term × bool , and he will say that a goal (t,b) is achieved only by 

a theorem of the form 

~t==n 

where n is a DNF (resp. Ck~) if b is true (resp. false) . 

We can now view a uniform, or complete, strategy for achieving goals as a proc- 

edure of metatype ~oal ÷ theorem ~ose result always achieves its arg~nent. But 

since we are supposing that the reader cannot ~ately intuit this strategy, we 

wish to represent the above subgoaling process as a collection of tactics, which he 

can invoke repeatedly. He may see later how to build the collection into a complete 

st~gy. 

We now digress to discuss tactics in general. 

4. Goals, events, and tactics 

Let us now suppose that ~oal is a type of object whose achiev~nent is des~ed, 

and that event is a type of object which may achieve a goal. (In this section we 
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do not use the word 'metatype', since we are not here considering ML as a metalanguage.) 

We ask what the type tactic should be if a tactic is considered as a procedure for 

producing subgoals frc~ a goal, with same validation of its action. To say that it 

produces a list of subgoals frnm a goal - i.e. to define the type 

tactic = ~oal + ~oal list 

is not enough; there is no validation. ~ therefore adept the definition 

tactic = ~oal ÷ (9.oal list x validation) 

validation = event list + event 

with the following intention : if the tactic T produces, for a goal g , 

T(g) = [gl ;"" ; gn 3' v 

then the validation v should be such that for any events el '" " " 'en which achieve 

gl ..... gn respectively, the event vie I ; ... ; en3 should achieve g . 

This raises the immediate question- what is achievement? Clearly achievement 

must be a binary relation between events and goals. Moreover, in the particular case 

that events are theorems of scme theory (as in our exanple of Boolean Algebra), 

achievement is a meta-theoretic notion which cannot in general be formulated within 

the theory. It will be possible therefore in ML, our programming meta-language, to 

define objects of type tactic which do not preserve achievement in the sense defined 

above; such tactics will yield spurious validations. Those which yield correct 

validations we shall call valid tactics, and to demonstrate their validity requires 

a meta-theoretic ar~t. However, it must be noted that merely the tlq~-discipline 

of our meta-language ensures that the value produced by a validation is an event (i.e. 

is a theorem, in our example). 

Even a valid tactic can be useless. It may be that a tactic T produces, for 

any goal g , a non-empt~y sequence gl .... 'gn of subgoals which are unachievable, 

and then T is vacuously valid' We say therefore that T is strongly valid if it 

is valid and, whenever g is achievable (i.e. there exists an event which 

achieves g) and 

T(g) = Egl ;'"; gn 3' v 

then gl,... ,gn are also achievable. 

A certain rebustness of tactic-programming can be ensured if we can define 

operations for cc~bining tactics to fozm more cfm~lex tactics in such a way that both 

validity and strong validity are preserved. We then have an algebra of tactics 

which, it turns out, not only gives considerable power in building sophisticated 

tactics (some of which are even ~lete proof procedures) but is also a natural and 

appealing fo~rn of expression. Such a set of tactic-operations (which we may call 

tacticals, by analogy with f~ctionals) is as follows: 
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(i) The nullary tactical ID : tactic , given by 

r 
I let ID (g) = [g] , k[e].e ;; 

Its use is in tactic-o~nbinations; it just passes the goal on unchanged, and 

provides the identity validation (note that the ML abstraction l [e].e will 

fail when applied to an event list of length • 1 ) . 

(ii) The binary (infixed) tactical THEN : tactic2 + tactic . 

(T i THI~q T 2 )g applies T 2 to all subgoals produced by T l(g] , and the 

resulting subgoal-lists are concatenated. We cmit the definition of ~ ; 

its only slight cc~plication is that the validation produced by T 1 ~HEN T 2 

must be built from those produced by T 1 and T 9 . 

(iii) The binary (infixed) tactical OREI~E : tactic2 + tactic 

(T I OREI~E T2)g first applies T i to g , and only if this fails will it 

apply T 2 to g . It is given in ML by 

[ let (T 10RELSE T2)g = Tl(g)? T2(g) 
t-- 

(In ML, expression evaluation may fail; the value of the expression el?e 2 is 

el's value if e I does not fail, otherwise it is e2's value). 

(iv) The unary tactical REPEAT : tactic ÷ tactic ; 

(REPEAT T)g applies T to g , then again to all subgoals produced, and so 

on until T fails. It can be declared in ML by 

I letrec (REPEAT T) g = ( (T q}~IN (REPEAT T) ) OREI~E ID) g ; ; 1 
I-- I 

These tac~cals provide a pleasantly sinlole, though not always sufficient, algebra 

over tactics. (In passing, cc~ioare it with an algebra of regular sets of strings). 

One final point should be mentioned before returning to our exa~ole. If T is 

valid, and T(g) = [],v - i.e. the subgoal list is empty - then the event vii 

achieves g ° We may thus call T a complete strategy if T(g) has this form 

whenever g is achievable. 

5. Tactics for Normal Fo~m conversion 

T_et us now write some simple tactics for Normal Form conversion, asstmdng the 

metat~ypes goal = te/~n × bool and event = thin . We will follow the sinple sub- 

goaling process outlined in section 3. We assune that we have first defined sc~ne 

sinple decc~position functions over te~rns: 

orparts : team + term × term 

orparts(t) = (tl,t 2) if t is a disjunction (t I + t2) , 

otherwise it fails 
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% 

andparts : teza ÷ term × term I 

notpart : team ~ term ~ similar 

We also asst~ne that we have derived fram the logical axic~s (which characterize '= =' 

as a congruence) three inference rules 

ORCONG : thm list ÷ thm 

If th. = ~ t. = = u. (i -< i _< n) then 
l l l 

ORCONG[thl;'";thn] = ~(tl + "'" + tn) = = (ul + "'" + u) 

ANDCONG : thm list ÷ thm ~ similar 

~FIL"ONG : thin ÷ tha J 
We shall only use OF~ONG and ANDCONG on theorem lists of length 2. 

Our first tactic~ ORTACTIC, works on a goal whose teem is a disjunction (it fails 

on other goals, since 'orparts' fails) : 

let ORfI~CTIC (t,b) = 

lettl,t 2 = orparts(t) i_~n 

([ (tl,b) ; (t2,b)] , v 

where v = if b then ORCONG else (ORDIST o ORCONG)) ;; 

To understand the validation v , we must explain the derived rule ORDIST : t/am ÷ thin . 

In the case b = false , v must convert the theorenl list [~tl= = cn ; ~t 2 = = cn2] 

into a theorem b t = = cn where cn l,cn 2 and cn are CNFs . Now ORCONG will 

yield ~ t = = (cn 1 + cn 2 ) frc~ the theorem list ; all that ORDIST needs to do to 

its theore~n argument is to apply the axiom "ordist" (as a rewriting rule) repeatedly 

to its right hand side. ORDIST can be derived easily from the function simptenm, 

using a simpset containing only the axiom "ordist" . 

The tactic ANDTACTIC , for conj~uctive goals, is of course dual. 

The tactic ~CTIC, for negated goals, is defined 

let NOTIACTIC (t,b) = 

le__~t t I = notpart(t) in 

( [ (tl, b ) ] , v 

where v[th] =NOTDIST (NOTCONG(th))) ;; 

The derived rule N(YlDIST : thin ÷ thin must distribute negations in the right hand 

side of its arganent (yielding a CNF fram a DNF and conversely) . It therefore differs 

frcrn ORDIST only in the simplification set which it uses; these are of course 

deMorgan's laws and the cancellation of double negation, and we imagine that these 

have been proved and stored on the "BA" theo~j file, where they will appear in the 

form 
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"deMorgan " "VX.VY. ~ (X + Y) = = (7 X) * (~ Y)" 

"deW,organ " "VX.VY. ~ (X * Y) = = (~ X) + (gY)" 

"doubleneg" "VX. ~ (~ X) = = X " 

Now from these tactics we can define 

RESOL~TIC = REPEAT(ORTACTIC OREI~E AhKYfACTIC OREISE NOT~ACTIC) 

whose effect will be to reduce any goal to a list of subgoals with atc~ic terms. 

But atcms are both CNF and DNF, and if we define 

let ATOMI~CTIC(t,b) = ([ 3, v 

where vE ]= REFLt ) ;; 

(REFL is the reflexi~plty axic~ schema) then the tactic 

RESOLVEq~CTIC ~ ATOMEACTIC 

is a ccr~lete strategy for normal form reduction. Applied to any goal, whose term 

is a Boolean form t , it will yield an e~oty subgoal list, with a validation v 

such that 

v[ ] 

will evaluate to the theorem which states the equivalence between t and its No~mal 

Form. (The discerning reader may have noticed that ATC~D~CTIC is not a valid 

tactic; consider its application to a non-atc~ic goal. But RESOLVEI~CTIC THEN 

ATOMEACrIC is valid, since it will only invoke A ~ I C  on atcmic goals. It 

may be preferable for ATC~CTIC to fail on non-atQmic goals; then it also is 

valid). 

6. Other interpretations of goal and event 

In most of our work with LCF we have used a different metatype @oal (though with 

event = thin as before). This arises partly frcm a fact which we concealed in our 

example; a theorem of IC2 is actually of the sequent form 

H ~F 

where F is a formula, and H is a list of formulae (the hypotheses of the theorem). 

The sort of goal we have used is a triple (F,s,A) where F is a fozrmAla to be proved, 

s is a simpset which may be used in proof, and A is a list of assumptions (fonuulae) 

which may be used as hypotheses. So we have the metatype 

goal = form x simpset × form list . 

The achievement relation is as follows. The theorem H ~ F' achieves the goal 

(F,s,A) iff, up to re, naming of bound variables, 

(i) F = F' 
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(ii) H cA u UH. , where H. is the hypothesis list of the i th simplific- 
i i l 

ation rule in s . 

We have provided in the system several simple tactics which are all valid (and mostly 

strcngly valid). Our choice of the metatype ~cal may be sufficiently justified by 

considering a very simple tactic which, frcm a goal 

(F I ~ F 2 , s, A) 

(where F I is an equation we would like to use as a simplification rule) generates 

the single subgoal 

(F 2 , s' , A') 

where A' results frQm A by inclusion of F 1 , and s' results frc~ s by the 

addition of the theore~ F I ~ F I (a tautology) . The validaticn produced by the 

tactic is essentially the rule of Inlolication Introduction (i.e. discharge of assump- 

tion). Indeed, many of our tactics are in a similar sense just inverses of basic 

inference rules. (In same cases asstmptions may be added, without inclusion in the 

siapset. ) 

To sea that goals, events and achieve~mt have wide application, consider a 

totally different case. Let goals be natural nim~ers, let events be lists of natural 

ni~bers, and let the achievement relation be : 

[ml ; .... ; m k] achieves n iff the m i 

are all prime, and their product is n . 

The reader may like to experiment with various tactics, or complete strategies, for 

prime factorization, and to ask whether they are valid or strcngly valid. 

It is easy to thi~ of applications in Artificial Intelligence, though space 

prevents us frQm givin 9 examples. It may be that goals, events, achi~t, tactics 

and validity provide a s~ple but useful tool to assist understanding and programming 

in such applications, but we have not pursued the question. 

7. Discussion 

In much of our current research we seek tactics which abbreviate the labour of 

proof for particular problems, and ask how widely applicable they are over problems 

in the same area. Two case studies are reported [3,73 , and others are forthccming. 

The first of these is a final year undergraduate project, and illustrates how general 

strategies may be found for proofs about data structures. It ccncerns proofs of 

properties of linear lists; the outcQme is that once a rule (and oorresponding tactic) 

for structural induction has been derived, a standard combination of this tactic with 

tactics for case analysis and simplification give a strategy for proving a fairly wide 

class of theorems. The second of the case studies, which we have mentioned already, 

concerns the ccspiler-oorrectness problem; though this is a larger single problem, 
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it was found that many parts of the proof yield to rather general tactics. We 

believe that much more can be done along these lines in ccnstructing tactic-kits for 

proof in widely different problem areas, and we hope by our example to encourage 

others to apply our methods to different proof calculi. 

The question of the meta-theoretic justification (proof of validity) of tactics 

and of derived inference rules is an important one. It is well known that such 

justification reduces the work of proof (even if only the work done by the machine), 

since the application of a cc~plex inference rule which has been so justified need no 

longer ir6K)Ive a long sequence of primitive inferences. We hope that the work of 

Weyhrauch [ 20 3 on reflexion principles may be applied to this problem. 
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AXIOMS OR ALGORITHMS 
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ABSTRACT 

Traditional formal proof systems have been found unusable by those working on 

such applications of logic as program verificatiorL They demand too much from the proof  

generator and too little from the proof checker. The notion of proof sketch or informal 

proof is an unsatisfactory substitute both because it is imprecise and because it treats the 
symptom rather than the disease. We propose to replace axiomatic proof systems by 

algorithmic proof systems, which explicitly incorporate a quantitative notion o f  
computational complexity. This proposal depends on the existence of tractable decision 

procedures for many substantial fragments of logic, the "easy fragment~" 

INTRODUCTION 

Logic supplies the mechanics of reasoning. With the advent of powerful 
computers logicians have hoped to be able to implement logical machinery and so automate 

mathematic~ 

The initial attempts dealt with automatic theorem proving. Based on progress 

over the past two decades, mathematicians need not suffer automation anxiety; their job* 

will remain secure for the remainder of this century. 

But mathematicians do not only prove theorems, they also check the proofs of 

other mathematicians. In fact if we assume that most published theorems are new and 
are checked by at least two readers (~b the referees), the average mathematician does more 
checking than proving. Theorems that survive the transition to the pedagogical arena and 

are taught to students undergo an even greater ratio of checking to proving. 

The essence of proving is creativity, that of checking, accuracy. While 
creativity does not come easily to computers, accuracy is their forte. Thus for the 
immediate future it would seem more appropriate to automate the checking process and 

leave the proving to humans 
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With this division of labor comes a division of responsibility: the human bears 

the responsibility for quantity, the computer for quality. The human no longer need 

entertain thoughts of abandoning his career because a substantial fraction of his output is 

flawed; in fact he may produce more incorrect proofs than correct ones with impunity. 

The computer as quality controller will filter out the former. The only proviso is that his 

output remain at a useful level as measured at the output of the filter. 

Unlike humans, computers call for extreme formality in the specification of their 

tasks, especially when they are expected to perform those tasks reliably. Fortunately this 

need has been anticipated by the development of formal logic, which spells out mechanical 

rules of reasoning with the necessary precision. 

The problem with this picture of human-machine symbiosis is that the extant 

formal criteria for correct proofs are not well matched to the abilities of either humans or 

machine~ These criteria call for a level of detail in proofs not exceeded by the most 

pedantic of human proof checker~ Thus a human may spend a week, at a cost of $1000 

in salary and support, producing a proof that is checked by a computer in five seconds at a 

cost of $0.50. 

Not only are formal proofs long, they are difficult to produce. Mathematicians 

who have no difficulty proving informally that the volume of a sphere is 4~r3/3 may 

experience considerable difficulty proving P=P in some formal systems of logic. The 
problem is thai they do not necessarily know how to translate their way of seeing the 
validi ty of P~P into a form acceptable in some formal system in which they lack 
experience 

Not surprisingly therefore, formal proofs have not been the medium of exchange 
between humans and computer~ Instead attempts have been made to find some sort of 

middle position between automatic theorem proving and formal proof checking. However 
no middle position has been identified to date that lessens the complexity of traditional 

proofs while meeting the following criteria. 

(i) There should be a formal specification of which user-supplied inputs will be 
accepted as sound argument~ 

(ii) The set of such acceptable arguments should be recursive (and preferably 

checkable at a cost comparable to that of generating them manually). 

Without criterion (i) the user is left to guess at what the system will accept. 
The unfortunate thing is that system designers generally have difficulty appreciating the 
need for such a specification, since they are sufficiently familiar with the features and 
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limitations of their system themselves that it seems to them obvious what the system will 

handle They seem to feel that this obviousness will become apparent as soon as the user 

has seen a few examples of the use of the system 

Without criterion (ii) there is of course no algorithm to back up the definition of  

acceptable input given in (i). This is the situation confronted by those in the automatic 

theorem proving busines~ There is a perfectly good definition of theoremhcod, what is 

lacking is an algorithm to back up the definition. 

We propose a new definition of proof that meets these criteria while addressing 

the problem of eliminating some of the detail from formal proof~ 

THE NATURE OF PROOF 

Proofs are generally thought of as syntactic in nature, dealing with formulas  

rather than with their meanings. The notion of proof we wish to advocate cannot 

conveniently be thought of in syntactic terms alone, having a strong semantic component  

Thus it is tempting to say that we are replacing syntactic proofs with semantic o n ~  

The difficulty here is that there r.eally is a semantic element even in traditional 

proofs, wi thout  which proofs would amount to meaningless and hence wor th less  

computation~ We shall begin therefore by considering traditional proofs from a viewpoint 

that emphasizes their semantic nature By so doing we hope to focus attention on the 

t ru ly  novel aspects of our proposed notion of proof, which have more to do with  

computational complexity than with the distinction between syntax and semantics. 

SYNTAX OF PROOFS 

There is a tradition of viewing a proof as a series of lines that is gradually giving 

way to viewing it as a dag (directed acyclic graph) with one output vertex (the root). 

(Viewing proofs as trees, while not uncommon, seems to have little intrinsic merit beyond 

permitting proofs to be written as expressiona) Such a dag may be viewed as a circuit 

through which flow formula~ The inputs are axioms, the formulas are acted on by gates 

(functional or relational elements) drawn from a supply of inference rules, and the output  of  

the circuit is the theorem of which the computation as a whole is the proof. 

A simple example of a proof system is given by the axioms K- p m q~p (we rely 

on spaces to indicate which way ~ associates) and ~ p~(qar) a (p~q m p~r) together with 

the single inference rule MP(paq, p) -- q. Then MP(S,K) = (p~q) ~ (pap). Since MP is 

the only  rule, we can abbreviate MP(p,q) to pq, so we have SK = (p~q) ~ (pap) .  

Similarly (SK)K (or SKK, letting MP associate to the left) proves pap, and S(KS)K proves 

(q~r) m (pmq) ~ (p~r). 
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SEMANTICS OF PROOFS 

It is as reasonable to consider proofs as circuits working with formulas as it is to 

consider arithmetic circuits (with gates • - * / etc) working with bit vector~ In the ease 

of arithmetic one prefers to think of the arithmetic functions as acting on abstract numbers, 

only contemplating the bit vector representation when comidering implementation issues. 

By the same token it would seem reasonable to consider inference rules to act on the 
abstract predicates denoted by the formulas rather than on the formulas themselve~ 

We can imagine stepping back far enough from the proof that we can only 

resolve what each formula denotes and not be able to distinguish representational details. 

From this distance the action of each gate in a proof is to output 1 (the unit of whatever 

Boolean algebra the predicates form, corresponding the the notion of validity) whenever all 

its inputs are 1. What it does with other than 1 is not specified; in fact, it may not even 

be determinate.  For example, 0~q is 1 independent of q, yet MP(0,0=q) = q, 

demonstrating that the output of MP may vary as q varies even though the input appears 

from a distance to be constant. Looking more closely of course reveals that the variation 

is a t t r ibu tab le  to variations in the representation of 1, namely as 0~q. This  

nondeterminacy of MP is of no concern as it only appears outside the intended domain of  

operation of MP (both inputs equal to 1). 

We thus have two views of a proof, a distant view and a close-up. Both view, 

perceive the proof as a circuit with data flowing through it  When the proof is sound the 

distant view reveals only l 's everywhere in the circuit. The close-up view reveals the 
various representations of 1, along with the rules used in performing each inference at each 

gate The close-up view is necessary both to support the distant view (by calculation) and 

to extract the theorem that has been proved. 

We shall refer to an uninterpreted gate (one not distinguished as to whether it  

employs Modus Ponens or some other rule) together with the formulas at its inputs and 
output as an inference 

ADDING NEW RULES 

We diagnose our complaint with the traditional approach to formal proofs in 

terms of the supply of rules, which are simply inadequate for constructing reasonably 

succinct proofs. How does one go about enlarging the set of rules? 

Ignoring for the moment the question of effectiveness, the only property we need 

for correctness of proofs is that the output of each inference in the proof be valid. Thus 

a rule should preserve validity. In this way, if the inputs to the proof are axionm, and 
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hence valid, all formulas in the proof will be valid. 

However, a rule should also be effectively checkable. 

main contribution of this paper. 

This brings us to the 

SOUNDNESS AND TRACTABILITY 

The central idea of our approach is to make use of two orthogonal predicates on 

inferences, one natural, one artificial. The natural one is that of soundness: if the  

premises of the inference are valid, so is the conclusion. The artificial one is that of  

tractability. A set of tractable inferences has two properties Membership in the set is 

easily determined by inspection, and soundness of inferences in the set is easily determined 

by computer. 

A proof is lhen a circuit whose inputs are axioms and whose gates are sound 

tractable inferences. 

The most obvious source of tractable sets of inferences is the large collection of 

decision methods available for various fragments of logic. A fragment is usually defined 

in terms of the permissible constructs of the fragment. Such a characterization of a 

fragment makes it possible to tell by inspection whether an inference belongs to a given 

fragment. The complexity of these decision methods ranges from polynomial time (~g for 

the conjunctive quantifier-free theories of equality, or of successor and inequality) through 

non-elementary recursive time (e.g. Rabin's algorithm for weak second order theory of n 

successors) to remarkably large bounds for problems involving polymorphic funct ional  

languages. 

The tractable part of such a recursive set depends on its complexity. If it is 

polynomial, say 20n 2 microseconds for a given implementation where n is some measure of 

the size of the input, the tractable part would extend to n = 1000 if the user were willing 

to spend 20 seconds of computer time for testing soundness. If it were 20.2 n 

microseconds, the tractable part would only extend to n = 20 for the same out lay of  
2 n compute r  time. For 20.2 , the bound becomes n = 4, with n = 5 being t o t a l l y  

inaccessible, 

Those methods permitting n > 5 or so represent a substantial improvement over 

offering a fixed set of inference rules for testing soundness of an inference, There are 

roughly K n inferences of length n where K is the alphabet size (some allowance should be 

made for syntactically ill-formed inferences). A fixed fraction of these must be sound, as 

can be seen by taking the shortest sound inference in the language, say of size a, and 

padding it with any of roughly K n-a irrelevancies to yield a sound inference of size tu 

(Almost any language will permit such soundness-preserving padding.) The fraction of 
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sound inferences of length n is then at least roughly K -a. Hence the availability of a 

reasonably fast decision method, even one taking time 2 n, offers the user a flexibility 

comparable to having a large collection of sound inference rules, 

While short inferences padded with irrelevancies may seem uninteresting objects 

to count, they nevertheless are the bane of automatic theorem provers. A nice, albei t  

extreme, example of how irrelevancies ("dead rats," as they are sometimes called) can slow 

things down is provided by the problem of testing existence of feasible solutions in linear 

programming, i.e. testing rational satisfiability of conjunctions of linear inequation~ A 

"minimally infeasible" system (one in which the removal of any inequality would lead to 

existence of a solution, corresponding to the negation of a theorem containing no dead rats) 

can be tested for infeasibility by treating the inequations as equations and solving by 

Gaussian elimination to demonstrate infeasibility in polynomial time. A non-minimal 

system cannot be treated in this way because the spurious inequations interfere with the 

elimination process; indeed, no polynomial-time decision method is known for the non- 

minimal case. The simplex method for this problem can be viewed as eliminating 

irrelevant inequations as it moves from vertex to verte~ 

In fact, without an automatic decision method, the elimination of dead rats  

becomes one of the duties of the writer of the proof. Even so, provision of decision 

methods only lessens this obligation. 

It is important to realize that, while soundness inheres in an inference by 

definition, tractability does not, being an artifact. There is no universal set of tractable 

inference~ Rather, tractability is determined by the current availability of fast decision 

methods for language fragments, availability of fast computers to run those methods on, and 

the user's patience with the computer. 

USER'S VIEW OF THE SYSTEM 

The user views a system of the kind we have described via the user manua l  

This manual would enumerate language fragments for which decision methods were offered 

by the system, and for each would supply a method of estimating the running time of the 
method. 

The user would use this information as follows, First he would prepare his 

proof as though explaining it to a human. Next he would take each inference of this 

proof and refine it as necessary to a series of inferences each of which are handled by one 

of the decision methods of the system and each of which are of a length guaranteeing 

efficient solution by the implementation. Then he would submit his proof for machine 

verification of soundness of its inferences Presumably he would then enter a "debug 

cycle" in which inferences found to be unsound were repaired and resubmitted. 
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FEATURES OF ALGORITHMIC PROOF SYSTEMS 

One appealing feature of this approach to proof systems is that it makes effective 

use of many of the decision methods that have been developed in the past half-century. 

There is a tendency to think of these methods as being of academic interest, both because 

most of them are of exponential complexity or more and because none of them by 

themselves offer general-purpose problem solving ability. However, in a verification 

context exponential complexity is not as damaging as in autonomous processing, as the user 

has control over the length of each inference. Moreover, each inference need not invoke 

a general problem solver, mere!y a specialist for the particular inference- Again the user 

has control over the scope of the specialization of the inference; if a single inference deals 

with too broad a topic it to be broken down into inferences of narrower scop~ 

Another appealing feature is that essentially all the technology to build a proof 

system is already developed. This is because there is little more to the system than a 

collection of independent decision methods. About the only component needed for the 
system would be an algorithm for detecting cycles in proofs, which as we have defined 
things are clearly vndesirable. This degree of independence of the system components 

represents an extreme in system modularity that permits fast implementation (each decision 

method can be implemented by a small team of programmers, independently of other 
methods which can be being implemented at the same time) and straightforward extensibility 

(each newly discovered decision method can he implemented by itself and then added to the 
system with no additional need to interface it to anything). 

Recent work by Nelson and Oppen [6] shows how to combine quantif ier-free 

decision methods for independent fragments to yield a decision method of comparable 

complexity to the slowest method (assuming that the slowest method requires exponential 

time) for the combination of the languages. (The language of addition and that  of  

multiplication would not be independent because of the distribution of over +. However 

the languages of addition and of pairing functions are independent.) This work promises 
to increase considerably the variety of possible inferences that systems will be able to check 

efficiently. Their result is particularly significant as concerns modularity, as their procedure 

for combining decision methods is automatic. Thus it will not be necessary to implement 

separate methods for the individual fragments and for their various combinations; this will 

be taken care of by the system. 

A brief survey of extant decision methods is in order here. We cover only 

those with at most exponential time. The methods we survey presently fall into three 

classes: those dealing with fragments of predicate calculus, for which H. Lewis [4] has 
developed provably optimal exponential time decision methods; those dealing with 
quantifier-free theories of various data types (numbers, lists, arrays, in combination with 
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equality and functional application), for which Nelson-Oppen [61 Shostak [9], Downey-Sethi 

[3] and others have developed exponential time or better decision methods; and those 
dealing with iterative program constructs and notions of partial correctness, termination~ and 

equivalence, for which the author has developed provably optimal exponential time decision 

methods [8]~ 

A question arises as to whether there are situations where the user loses 
something by giving up traditional formal proof rule~ There is an easy answer to thi~ 

any single proof rule can be considered to constitute an "easy" (indeed trivial) fragment of  

logic, and as such could have an associated decision method. In fact one can expect that  

all rules the user may have ever had access to will have been replaced by considerably 

more general decision method~ 

Consider for example first order logic. The propositional axioms and rules of 

any known finite axiomatization of this language would be subsumed by a deterministic 

exponential time decision method for propositional calculu~ An axiom such as Vx(p~q) 

(Vxp=Vxq) or a rule such as p/Vxp (Generalization) would be subsumed by a deterministic 

exponential time decision for modal logic, both of these really being modal properties if we 

treat Vx as a modality. And calculations involving instantiation of a universally quantified 

variable, or elimination of a quantifier that binds no free occurrences of its variable, can be 

provided by a modified version of a deterministic exponential time method for one of the 
decidable fragments of first order logic such as Hilbert-Ackermann's or Goedel's, cf. [41 

Our approach to defining proofs might be considered equivalent to an approach 

where one retained the traditional notion of formal proof but offering a facility for 
automatically deriving new inference rules as needed. From this point of view derivability 

of an inference rule is defined in terms of the basic axiom system. 

This does not exactly characterize our approach, as it does not eliminate the 
basic axiom system, the disease of which long proofs are only a symptom. In the derived- 

rule account t~ere are two things being defined: derivability of a rule in terms of  the 
axiom sytem, and soundness of the axiom system in terms of the semantic~ The disease 

remains, and the derived rules treat only the symptoms. Our approach sidesteps the 
detour through axiom systems by eliminating them altogether and so curing the diseas~ 

Our approach formalizes an informal trend in modern verification systems 

towards the incorporation of powerful decision methods. The systems of Oppen, 

Constable [3], and the author [5] exhibit this trend. None of these systems have yet made 

the complete break with traditional axiom systems that we have advocated in this paper. 

We believe that such a break with tradition would be of substantial benefit to those 
implementing verifier~ 
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PERSONAL NOTE 

My five-year-old daughter Jennifer asked me what I was doing. I said I was 

writing a paper on proving things. She asked me what it meant to prove something, so I 

said it meant to argue with somebody to make them believe something. I asked her how 

she would prove to me that our pond was full of water and she said she would take me to 

see it. I asked her how she would prove that 2 and 2 made 5, and she said it wasn't 

even true. I asked her how she would prove that 2 and 2 was 4, and to my surprise she 

said to use the  calculator. 

I infer that as calculating tools become more readily available to people who 

need to prove things to others, this answer will be heard more and more often, and 

traditional axiom systems will go the way of tables of logarithms as a usable but inefficient 

relic of the pre-computer era. 
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Arto Salomaa 

Mathematics Department 

University of Turku, Finland 

I. Introduction. The purpose of this paper is to discuss some recent 

results in the area of formal nower series in noncommuting variables. 

As with most mathematical formalisms, the formalism of power series is 

capable of unifying and generalizing known results. However, it is also 

capable of establishing specific results which are difficult if not 

impossible to establish by other means. Examples of such specific re- 

sults are given also below. 

For the sake of completeness, we give here the most important de- 

finitions. The reader is referred to [12] for a more detailed discus- 

sion. For unexplained notions in language theory, we refer to [11]. 

Consider a monoid M and a semiring A. Mappings r of M into 

A are called formal power series. The values of r are denoted by 

(r,w)~ where w EM, and r itself is written as a formal sum 

r = Z (r,w)w . 
wEM 

The values (r,w) are also referred to as the coefficients of the se- 

ries. We shall be interested in this paper in the case where M is 

the free monoid X ~ generated by an alphabet X. Then we also say 

that r is a series with (noncommuting) variables in X. The identity 

of X ~ (i.e., the empty word) is denoted by I. 

The collection of all formal power series in this set-up is de- 

noted by A <<M >> or A <<X ~ >> . Given r, the subset of M defined 
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by 

supp (r) = {w I (r,w) # 0} 

is termed the support of r. The subset of A <<M >> consisting of 

ail series with a finite support is denoted by A <M >. Elements of 

A <M> are referred to as polynomials. 

In most applications to automata and formal languages, the semi- 

ring A will be either N (the semiring of nonnegative integers) or 

Z (the semiring, in fact a ring, of all integers). For simplicity, we 

shall assume below that M : X *, although some of the results are valid 

also in the more general case. However, observe that for instance nei- 

ther the definition of product given below nor SchOtzenberger's Repre- 

sentation Theorem is valid for arbitrary monoids. 

The sum and product of two series r and s are defined by 

r + s : KX ((r,w) + (s,w))w 
wE 

and 

rs = K ( K (r,wl)(S,W2)) w 
w £ x * WlW2:W 

Sum, product and the quasi-inverse defined below are referred to as 

rational operations. 

Quasi-inverse 

ries r satisfying 

÷ 
r is defined for quasi-regular series, i.e. se- 

(r,l) = 0, by 

k 
+ i r = lim Z r 

k~ i:1 

(We say that a sequence of series r I, r 2, ... converges to a limit 

r, in symbols lim r. = r. if for all n there exists an m such 
j~ 

that the conditions ig(w) ,< n and j > m imply the condition 

(rj, w) : (r, w). ) 

The family of A-rational series, in symbols A rat <<X ~ >> , is the 

collection of series obtained from polynomials by (finitely many appli- 

cations of) rational operations. 
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For a semiring S, we denote by S mxm the collection (in fact, 

a semiring) of m x m matrices with entries in S. A series r of 

A <<X ~ >> is termed A-recognizable (in symbols r EA ree <<X ~ >> ) if 

r = (r~l)l + % (~h(w)q) w , 

where h : X ~ ~A mxm , m ~ I~ is a homomorphism and ~ (resp. q) is an 

m-dimensioned row (resp. column) vector. (Instead of ~ and q , more 

general projections can be considered.) 

By Sch~tzenberger's Representation Theorem, the families 

A rat <<X ~ >> and A ree <<X ~ >> coincide. For a proof, we refer to 

[ 12 ] .  

Consider an alphabet Z = {ZI~ ..., Z n} disjoint with X. A prop- 

er algebraic system (with respect to the pair (A~X) and with variables 

in Z) is a set of equations of the form 

(1) Zi = Pi ' i = I, ..., n, 

where each n. is in A < (X U Z) ~ > and, for each i and j, 
-i 

(Pi' X) = (Pi' Zj) = 0 . 

An n-tuple (@I' ..., ~n ) of quasiregular series in A <<X ~ >> is 

solution of (I) if (1) is satisfied when Z i is replaced by @i' for 

i = I, ...~ n . 

It is shown in [12] that every proper algebraic system (1) pos- 

sesses a unique solution. A quasiregular series in A <<X ~ >> ms 

termed A-algebraic if it appears as a component of the solution of a 

proper algebraic system. The family of A-algebraic series is denoted 

by A alg <<X ~ >>. 

Shamir's Theorem (cf. [12]) gives a representation result for al- 

gebraic series, analogous to Sehqtzenberger's Representation Theorem. 

There is a natural correspondence between context-free grammars 

(having no chain rules and no h-rules) and proper algebraic systems of 

equations :the variables Z i correspond to nonterminals. In this cor- 

respondence~ only the supports of the polynomials Pi are significant. 
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(The coeffieients oorrespond to weights in a weighted eontext-free 

grammar.) If we begin with a context-free grammar G, write the pro- 

ductions as a proper algebraic system of equations (with coefficients 

equal to I), and consider the series r in the solution corresponding 

to the initial letter of G, then supp (r) = L(G) and, moreover, the 

coefficient of an arbitrary word w in r equals the ambiguity of r 

according to G. (It is assumed that the basic semiring is N.) 

The family of supports of N-rational (resp. N-algebraic) series 

equals the family of regular (resp. l-free context-free) languages. 

The families of supports of Z-rational and Z-algebraic series (refer~- 

ed to as families of Z-rational and Z-algebraic languages) are strict- 

ly larger. Indeed, there are non-context-free Z-rational languages, 

for instance the language 

{a mb n I m, n ~ I and n ~ m 2] 

We would like to emphasize that very little is known about Z-rational 

and Z-algebraic languages although , at least from the mathematical 

point of view, these families are very natural in formal language 

theory. 

2. On algebraic series. We shall establish first a "super normal form" 

result for the generation of algebraic series, analogous to a result 

concerning context-free grammars, [6]. 

Definition. Assume that u ~ 3 and t1~ ..., t u are nonnegative 

integers. We say that a proper algebraic system (I) is in the (tl, 

..., t ) normal form if u 

t 
supp (pi) ~X+ uxtl zxt2 Z... xtU-Iz X u , 

for every i =I, .... ,n. (Cf. the equation (1) in the Introduction. 

The notations Pi' X, Z are the same as there.) 

Thus, (tl, ...~t u) normal form means that the right sides of the 

equations contain only (i) words over the "terminal" alphabet, and (ii) 
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words involving exactly u -I variables, separated by terminal words 

of fixed lengths determined by the tuple (tl, ...~tu). 

Theorem 2.1. For every u ~ 3 and nonnegative integers t1~ ..., 

tu, every A-algebraic series can be generated by a proper algebraic 

system in the (t!, ...,t u) normal form. 

Proof. Let r be generated by the system (I), i.e., r is a 

component in the solution, say, the component corresponding to Z I. To 

get the required normal form, we make a sequence of transformations to 

(1) preserving r (i.e., r will always equal the first component in 

the solution). Such a transformation may alter the set of variables Z: 

in general, the new set of variables Z' is bigger than the original 

one. For simplicity~ we will denote the set of variables always by Z. 

It is shown in [12] that r is generated by a proper algebraic 

system in which the supports of the right sides are included in the 

set 

( 2 )  X U X 2 U X Z X U X ZX ZX . 

Our  f i r s t  t r a n s f o r m a t i o n  c o n s i s t s  i n  b r i n g i n g  t h e  g i v e n  s y s t e m  i n t o  

this form. 

Thus, we may assume that ~he supports of the right sides are in- 

cluded in the set (2). Our next step is to show that, given an integer 

i ~0, we may assume that the supports of the right sides are included 

in the set 

(3 )  X + UX i ZX i UX i ZX i ZX i 

( T h u s ,  t h e r e  may b e  l o n g e r  t e r m i n a l  w o r d s  i n  t h e  t w o  l a s t  t e r m s  o f  t h e  

u n i o n  b u t  t h e n  a l s o  X U X 2 m i g h t  n o t  be  s u f f i c i e n t . )  The s t e p  f r o m  

( 2 )  t o  ( 3 )  i s  a c c o m p l i s h e d  e x a c t l y  a s  t h e  c o r r e s p o n d i n g  s t e p  f o P  g r a m -  

m a r s  i n  [ 6 ] .  ( I n  [ 6 ] ,  t h i s  i s  c a l l e d  T r r e d u e t i o n  o f  s u b g o a l  2 t o  s u b g o a l  

I " . )  The o n l y  a d d i t i o n a l  o b s e r v a t i o n s  n e e d e d  a r e  t h e  f o l l o w i n g .  ( T h e s e  

o b s e r v a t i o n s  a p e  n e e d e d  a l s o  i n  t h e  r e m a i n i n g  t w o  r e d u c t i o n  s t e p s . )  

( i )  W h e n e v e r  a s u b s t i t u t i o n  p r e s e r v i n g  a l a n g u a g e  i s  p e r f o r m e d ,  we h a -  

ve  t o  make s u r e  t h a t  t h e  s ame  s u b s t i t u t i o n  p r e s e r v e s  a l s o  t h e  e o e f f i -  
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cient of each word in the language. But this is easily taken care of 

by preserving the original coefficient at the starting stage and mak- 

ing the coefficients all equal to I at other stages. (As customary 

when dealing with albegraic series, we assume that A is a semiring 

with identity.) (ii) Taking the union of languages corresponds to 

summing up the series. 

In the last two reduction steps we first go from (3) to the set 

(4) X + U X j Z X k Z X I 

for an arbitrary triple (j, k, i) 

ly, from (4) to the set 

X + U X tl Z 

determined by the given tuple 

of nonnegative integers and, final- 

t 
ZX u • o • 

(tl, ...,tu). These two reduction steps 

are established exactly as "reduction of subgoal 3 to subgoal 2" and 

"reduction of subgoal 4 to subgoal 3" in [6]. This completes the proof 

of Theorem 2.1. 

The set X + 

finite set 

in the statement of Theorem 2.1 can be replaced by a 

X UX 2 U ...U X i , 

where i depends on the tuple (tl, ..., tu). An explicit upper bound 

for i, in terms of the tuple, can be given• The whole research area 

concerning trade-offs between the number of variables in the systems 

and the numbers u, tl, ... , t u is open. 

As the second topic in this section, we consider a typical result 

justifying the title of this paper. The result is originally due to 

Semenov, [13], and a proof is given also in [12]. This proof uses facts 

concerning sums of infinite series, viewed as Taylor expansions, which 

is a rather unusual approach in the theory of formal power series. We 

give below a different proof. 

The main result we are aiming at is that it is decidable whether 

a given unambiguous context-free language L and a given regular 
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language R are equal. Several other results similar to this one can 

also be formulated. Observe the following two facts. (i) When a con- 

text-free grammar for L is given, an oracle has to tell it is unam- 

biguous because this property is undecidable for context-free grammars. 

(ii) The result is a considerable generalization of the easily estab- 

lished fact that equality between deterministic and regular languages 

is decidable. The proof method of this fact is not applicable for the 

generalization because unambiguous context-free languages are not 

closed under eomplementation. 

The following lemma is our crucial tool. 

Lemma 2.2. It is decidable whether or not a given series 

r CZ alg << {x} * >> is identically 0. 

Proof. Observe first that, from the system of equations defining 

r, we may compute arbitrarily many first terms in r. The question is: 

how long must we continue if we encounter only O's ? 

Using elimination techniques (cf. [3]), we can effectively con- 

struet an equation 

(5) a 0 (x) z m +a I (x)z m-1 +... +a m (x) = O, a 0 (x)# 0 , 

where each a~(x) is a polynomial in Z < {x} * > , such that r satis- 
i 

fies (5). Essential for this transition from many variables Z i to 

one variable z is that the alphabet X consists of one letter x 

only. (5) can have solutions other than r, but r is certainly among 

the solutions, 

Let now K be the maximum among the degrees of ai(x) , for 

i = 0, ..o, m. We claim that if r is not identically 0 then 

(6) (r, x J) # 0 , for some j ~ K . 

To prove this claim, assume first that am(X) is not identically 

0. Then if r satisfies (5), we must have (r, x j) # 0, where j is 

less than or equal to the degree of am(X). (Otherwise, the necessary 

cancellation cannot take place. Recall also that r is quasiregular.) 
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Consequently, (6) holds. 

If am(X) :0, we divide (5) by z and proceed as above, provided 

am_1(x) # 0. We verify that (6) is also now satisfied. If am_1(x) = 0, 

we divide (5) again by z. Continuing in this way, we see that (6) is 

always satisfied. 

Lemma 2.2 now follows because we have seen that it suffices to 

test K +I first coefficients of r. 

Since Z-algebraic series are closed under difference, the follow- 

ing result is an immediate consequenc e of Lemma 2.2. 

Lemma 2.3. It is decidable whether or not two given series r I 

and r 2 in Z alg < {x} ~ > are identical. 

Theorem 2.4. It is decidable whether or not a given unambiguous 

context-free language L and a given regular language R coincide. 

Proof. We construct an unambiguous grammar for the language 

L I = L 0 R and decide whether or not 

(7) L I : L and L I = R . 

Let r(L1) , r(L), r(R) be the series obtained from the characteris- 

tic series of LI, L, R by identifying all variables : x I = x2 = ... = 

x k =x . Then (7) holds if and only if 

(8) r(L I) =r(L) and r(L I) =r(R) 

But the decisions (8) can be made by Lemma 2.3. This comnletes the 

proof. 

The reader is referred to [12] for several other related decida- 

bility results for context-free and weighted context-free grammars. In 

all cases some oracular information is needed about the unambiguity or 

the degree of ambiguity. 

3. An important open problem. We have already encountered in the pre- 

vious section series over an alphabet (x} with only one letter. The 

coefficients of such a series constitute a sequence in the natural way. 
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Thus, we can speak Qf Z-rational and N-algebraic sequences. 

A very intriguing, still open, decision problem is the following. 

Is it decidable whether or not the number 0 appears in a given Z-ra- 

tional sequence? By Sch~tzenberger's Representation Theorem, this prob- 

lem can also be formulated in the following very simple way. Consider 

square matrices M with integral entries. Is it decidable whether or 

not, given such an M, the number 0 appears in the upper ri~ht-hand 

corner of some power M i, for i = I, 2, ... ? 

Still an equivalent version of this problem is the following. Is 

it decidable whether or not a given D0L length sequence contains two 

consecutive equal numbers? (For this and other related equivalent ver- 

sions of the problem, the reader is referred to E12].) 

Further importance to the problem is brought about by the fact 

that many other, even purely language-theoretic, problems have been 

reduced to it. Typical examples are given in [10]. It is shown that 

the decidability of the problem we are considering implies the decida- 

bility of many language-theoretic problems (whose decidability status 
I 

is unknown at present). Morewer, it wou~d give new proofs for the deci- 
J 

dability of some celebrated problems such as the D0L sequence equi- 

valence problem. 

Intuitively, the problem we are consider{ng seems to be "very de- 

cidable": only one variable is involved and the process is very deter- 

ministic. It seems that the known undecidability tools, such as the 

Post Correspondence Problem, are just impossible to encode into this 

problem. We would like to conjecture that even the following much more 

general problem is decidable: Does the number O occur in a given Z- 

algebraic sequence? 

4. Recent results on rational series. In this final section of the 

paper we give a brief survey of some recent results concerning rational 

series. For further such results the reader is referred to [11, [4], 
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[ 5 3 ,  [ 7 ]  - [ 9 ] .  

The DTOL transformation introduced by Reutenauer, [7], combines 

ideas of L systems with ideas of power series, and the approach 

seems to be very promising in many respects. 

By definition, a DTOL system is a tuple G = (X, hl, ..., hm, W0) , 

where X is an alphabet, m 91 and h i : X ~ ~X ~ are homomorphisms 

for i : I, ..., m, and w 0 £X ~. 

Consider also the alphabet Y = {I, ..., m } . Then G transforms 

a series r in A <<X ~ >> into the series G(r) = s in A<< Y~ >>, 

defined as follows. Let i I ... i t be an arbitrary nonempty word over 

Y (each i. is a letter). Then 

(s, i I .., i t ) = (r, (w 0) hi1 ... hit ) . 

Moreover, (S, l)= (r, w 0 ). 

A series r in Z <<X ~ >> is polynomially bounded (resp. line- 

arly bounded) if there is a polynomial (resp. linear polynomial) P 

such that 

I (r,w) ] ~ P (ig (w)) 

It is shown in [7] that if r is a polynomially bounded N-ration- 

al series and G is a DTOL system (with the same alphabet) then 

G (r) is also N-rational (but not necessarily polynomially bounded). 

The same holds true with "N-rational" replaced by "Z-rational". 

This result shows that the equation G (r)= G' (r') is decidable 

for arbitrary given polynomially bounded Z-rational series r and r', 

and DTOL systems G and G'. In particular, ff G = (X, h,w 0) is a 

DOL system (i.e., m : I) and u 6X ~, then the series 

(9) E (hn(w0)] x n 

n 

(~] is the Eilenberg binomial coefficient, cf." [2]~ is N-ra- where 

tional. Consequently, the equality of two series (9), possibly coming 

from different DOL systems, is decidable. 

Every linearly bounded Z-rational series can be expressed as a 
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polynomial of degree at most 2 in terms of characteristic series of 

regular languages. It is shown in [8] that, for two given linearly 

bounded Z-rational series r and r' expressed in this way, it is 

decidable whether or not (i) all coefficients of r are nonnegative~ 

(it) supp (r) = supp (rY). Problem (i) is undecidable for arbitrary 

Z-rational series, of. [12]. Further results established in [8] con- 

cerning linearly bounded Z-rational series are the following. (iii) A 

linearly bounded Z-rational series with nonnegative coefficients in 

N-rational. (This result is not valid any more if the growth order of 

the Z-rational series is quadratic.) (iv) The support of a linearly 

bounded Z-rational series is an unambiguous context-free language. 

The result (iv) gives some information concerning the charac- 

terization nroblem of Z-rational languages, mentioned in the Intro- 

duction. Again, supports of quadratic Z-rational series can be non- 

context-free. 

Let us call an iteration every language of the form u v w~ where 

u, v,w are words and v is not empty. A language over X is dense 

if it intersects every iteration over X. Let L be dense over X 

and r £Z rat <<X ~ >> • Then the set of (distinct) coefficients of r 

is finite if the set of coefficients of the form (r, w) , where w is 

in L ~ is finite. Morewer~ the set of coefficients of r is finite if 

and only if, for every iteration LI~ the set of coefficients (r, w) 

with w in L I is finite. For these results, cf, [9]. 

Finally, [5] contains interesting applications of rational series 

to the computation of the height and average height of certain deriva- 

tion trees. 
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COMPUTATIONAL COMPLEXITY OF STRING AND GRAPH 

IDENT IF ICAT ION 

A.O.Slisenko 

LOMI,Fontanka 27 

Leningrad, 191Oll,USSR 

The main aim of my report is to draw attention to some ideas 

which were successi"ully exploited for constructing fast algorithms 

for string-matching and related problems, and to discuss ways of ma- 

king use of these ideas in more complicated identification problems. 

The ideas to be discussed are the idea of identifier and the idea of 

substructure automorphism. They may prove to lead to essential dec - 

reasing of upper bounds on the computational complexity of the prob- 

lems. Lower bounds remain outside the discussion. The recent progress 

in investigating lower bounds on the complexity of concrete problems 

is at best implicit. My exposition pursues purely theoretical objectives 

and the choice of problems for discussion is entailed by theoretical 

considerations and not by applications. 

By the complexity I mean the (worst-case) time complexity for 

address machines ~t~duoed by Slisenko [I]-[2] (in A~gluin and ~ali- 

ant [3]a similar model is named RAC)~ i.e. random access machines 

with relatively bounded registers - the length of computer words is 

not greater than the binary logarithm of the time (plus some functi- 

on of lower order, if necessary). More or less detailed description 

of address machines can be found in Slisenko [2]. The choice of com- 

putational model is essential for "low-level" complexity. If we Wish 

to stay on the firm ground of practicalness then this area of compu- 

tational complexity becomes one of the most important. And the add - 

tess machine model seems to be the most adequate model (among those 

~sed in computational complexity) for computations by one processor 

in homogeneous random access memory. The place of address machines 

among such models as Turing machines and Kolmogorov algorithms ( or 

their slight generalization named "storage modification machines" by 



183 

SchSnhage ~] ) is as follows. Let AM(~) be the class of functions 

(or predicates) computable by address machines with the time comple- 

xity not greater than ~ , TMt~(~a] _ the similar class for Turing ma- 
chines with n-dimensional tapes kone can take either the class of 

one-head machines or of multi-head ones), /(A (~a) - the similar class 

for Kolmogorov algorithms or storage modification machines. Within 

thee e notations: TPI~ (~0] _c KA (C~" ~e) ~- AM(g~" ~J ~- TM t (Cj ,f~ ~O~ 3~a) 

7"M,t(~)G~ltl(~, '~.(~o~) -~a ) , where CZ'$ are constants (hhei~rst 

inclusion is due to SchSahage C¢~ , the last is virtually some gene- 

ralization of a theorem from Hopcroft, Patll and Valiant C5]). 

As a starting point for the discussion I take the following "em- 

bedding framework" for representation of the problems to be conside- 

red. This framework is wider than I really need but it can play a 

certain organizing role. Let ~i = (Ni , el), i = 1,2 ~be two "graph-like" 

structures, where N i is a finite set of nodes, and ~L' is a finite 

set of links (i.e. partial mappings gl-~Si ) and functions (i.e.par- 

tial mappings ~i -* some set of words, e.g.integers). "Straight" 

embedding problem looks as follows. There are given mappings (or em- 

beddings) f~; N,-*Hf , lak.<~ , which are injectlve as a rule.And 

we have some "global" criterion ~ of the quality of a set of em- 

beddings. The problem consists in computing ~t(~f, G~, ~kJT) • Sure- 
ly, the particular ~'s below will be rather easy to compute. Seve- 

ral "inverse" problems correspond to a given "straight" problem, e.g. 

for a given ~t and a valme of ~ (or some its property, such as "to 

be maximal") we are to find G~ and fk of a certain type. 

One of the simpliest embedding problems, namely, string-matching, 

will illustrate the main ideas discussed in this report. We consider 

strings i~ some alphabet ~= {af, .... 6p} and are interested in re - 

cognizing the set 

I~: Zr is a substring of ~ t  (1) 

In an input Ua~ ,~A , we discern the text ~ and the pattern ~. 

Now we represent the problem within the embedding framework. The 

length of ~ is denoted by It~l and the i-th letter (character) in 

uZ by ~(;]. Let  /Vz={£,* , .... I~1]~ I]a----[£,.$, .... I~1] and $ t , ~  , 
describe the string structure on N~ and A/~ (in fact, S~ and ~,will 

be incorporated in /k ), and I~(/]= ]~÷#'-~ . Then 

~/'( ~, ~ ~/k ] ) = ~ff ~ [ * ( ~, ~, /~ ] f ~ where 

• = 
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(Generally speaking, to find ~(~,~, E~k]) is a more difficult prc- 

blem than to recognize the set (1), but this will prove to be unes - 

sential.) A linear-time algorithm for computing ~ was devised by 

several authors about l0 years ago (for references see Slisenko~l], 

C6]; formally the shortest description is due to SlisenkoE2]). But 

this algorithm neither is real-time nor solves interesting inverse 

problems, e.g. finding the longest repetitions in a string. Neverthe- 

less, the algorithm can be regarded as based on a particular case of 

the identifier approach. In itself the notion of identifier is very 

simple. A segmerlt ~i,j'3 is a repetition in ~ if ~tr~i,jJ=~r(i)~/~'~lJ... 
,.. t~(d/ has two different occurrences in ~/~j'J. A segment Ci,j'J 

is an identifier in ~r if it is not a repetition in ~/, and ~i,j'-l~ 

is a repetition unextendible to the left, i.e. [i-l,j'-~is not a re- 

petition in ~r . A compact representation of identifiers as a tree 

was firstly devised by Weiner [7] ; more simple forms are due to 

Pratt [8] and Slisenko [6]. These methods gave linear-time (even on- 

line) procedures for string-matching, for finding the longest repeti- 

tions and several other problems. However, the algorithms were not 

real-time. The first real-time algorithms for these problems sketched 

by Slisenko ~6] exploited essentially a new idea - they used some 

s~ccinct representation of the periodical s~bstructure of an input 

text-string. Moreover, the problem of finding all the periodicities 

also proved to be solvable in real-time --see Slisenko [6]. I accen- 

tuate the latter result because of the following reasons. It is of 

a theoretical interest by itself. Though in the case of the particu- 

lar problem, i.e. string-matching, making use of periodicities now 

seems to be almost redundant, in some other situations (see Slisenko 

[9]) it remains a necessary instrument of fast algorithms. The peri- 

odicities as a gear for speeding up computations and "physical" pe- 

riodicities have different origins. In the case of exact string-mat- 

ching they coincide. Later we shall see (e.g. in the case of approxi- 

mate string-matching) that they can be diverse. In computations pe- 

riodicities appear as a method for regulating overlappings of equal 

strings. We can look at a periodicity as at au appropriate substruc- 

ture of a string with nontrivial automorphism group which is conve- 

nient for fast computations. In the case of strings s~ch substructu- 

res and their automorphism groups are rather poor. Surely, both ide- 

as - that of identifier and of substructure automorphisms, are ra - 

ther simple when taken for themselves, and, moreover, are often used, 

for example, in pattern classification and recognition. So while 

speaking about any of them I shall tacitly assume that they are sue- 
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rained by appropriate algorA~mic constructions or presumably can be 

sustained. I conclude this part of the exposition by an example of a 

data structure which can be used for realization of the identifier 

approach; an input text-string is OZ01102Z01 . 

For the further discussion I make explicit 3 features of the pro- 

blem considered above (i.e. string-matching): (a) the input text- 

structure is 1-dimensional; (b) patterns standing for identification 

are connected; (c) identification (matching) is exact (not apprcxi - 

mate). I shall try to describe difficulties that arise in attempts to 

apply the ideas mentioned above to more complicated str~ctures. Pre- 

serving (a) in full and (b) as much as possible, I loosen (c) and con- 

sider one kind of approximate identification in a metric space. Given 

~>.. ¢/141 and two string ~ and ~ , find k such that / ~ k ~  
~< /~/- /~'/+.f. and 

I-~L-~ I~1 

where j o (~ , . ,~ j )=  l i - j l "  141 -z . The l e f t  pa r t  of the i n e q u a l i t y  (2 )de-  
fines some metric on strings of equal lengths; I shall denote it al- 

so by p . If we replace string equality by "E-equality" (that me- 

ans pCz,yJ~ for strings ~ and ~ ), the general framework of iden- 

tifier approach preserves its main outward features:if we have an 

E-identifier tree~ it will work. But the methods of constructing 
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identifier trees used in the case of exact string-matching do not fit 

here, since the E-equality is nontransitive. Different classes of 

g-equal strings can overlap. A class of E-identifiers whose prefi- 

xes up to the last character (excluding it) are ~-eq~al, can be ra- 

ther large. However we need nat to represent all the strings in smch 

a class. If such classes are too large then some £-eq~al strings 

must considerably overlap, and we have though not "physical" ~-peri- 

odicity b~t some kind of structure which admits of a reduction to lo- 

wer dimensions (i.e. to shorter substrings). Unfortunately, little is 

known about properties of E-identifiers, and it is not clear whether 

various ideas of sticking together E-equal strin~will work. Howe- 

ver I try to illustrate some of s~ch ideas by the following figure, 

where a part of some k~nd of ~-identifier tree is built for the 

string O1212323~9, ~ = ~/I~I, ~=~0,~, .,., #J . The asterisks shows the 

way of establishing #55 being not an ~-s~bstring of the text- 

string. 

As for searching "physical" E-perioaicities, the situation is more 

complicated. A string ~ is an ~-pericdicity if ~--~ ~.o, ~, where 

k~$, l~.l=l~.J>1~ p(~.,~)~ for l~ij'-~. In the case of exact striog- 

-matching, periodicities can be characterized as overlapping occur - 

fences of two equal strings.Now two overlapping E-equal strings do 

not necessarily give an ~-periodicity. So we are to find some other 
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easily tested characterization of ~-periodicities. It may prove 

that a fast algorithm for pure ~-string-matching will give some key 

for operating with £-periodicities. Thus the main difficulty in the 

~-matching described above is entailed by nontransitivity of ~- 

equality. If we direct our attention to 6-matching in some integral 

metric, e.g. that of ~P, p~ , we stumble on one more obstacle, that 

is singularities in "local" behavio~r of differences between two ~- 

equal strings. And here it is not clear whether to try to overcome 

these difficulties by straight-forward developing of the idea of 

identifier or to try methods based on other principles. There is one 

more way to simplify the problem. A random string (with respect to 

uniform distribution) has rather a poor and easily computed structu- 

re of s ubstrings. Thas~ in practical situations we are interested not 

in random strings. Analysing difficulties arising on the way of deve- 

loping identifier approach, we can try to exclude some types of unma- 

nageable strings by physical considerations. So, an identifier appro- 

ach may be an instrument for seeking for such simplifying reformulati- 

ons of identification problems. 

I classify the two types of identification discussed above (i.e. 

exact and approximate) as combinatorial and analytical. And now I go 

on to arithmetical identification, which is characterized by essenti- 

al loosening of (b) - we identify disconnected structures. 

By arithmetical identification I mean such problems as string- 

matching with don't cares, convolution, integer multiplication. From 

now on I assume that our input alphabet A consists of integers, in- 

cluding zero. As it was recently shown by SchSnhage ~4] integer mul- 

tiplication (and, apparently, integer convolution) has linear time 

complexity even for storage modification machines, and the more so, 

address machines. Thus by Fischer and Paterson ~lO~ , matching with 

cares has quasilinear complexity OC~eO#~. Though arithmeti - don't 

cal identification seems to be the most universal with respect to 

identification of ~he other types, I do not know good reduction of, 

say, analytical problems to arithmetical ones. For further discussi- 

on I take the following example. Let ~--{O,L~ ; for given ~ and zr 

find r~Z ~(k) , where ~(~]=~i~ l~(~÷~-f]~(~'] . Suppose we are 

seeking for a linear time on-line algorithm solving the problem, the 

input being of the form ~ .  Is it possible to find an acceptable 

realization for the idea of identifier in this case? I am unable to 

give a definite answer to the question. To illustrate difficulties 

arising here let us replace ~ by ~---&,i I .... ,/k , where i~---~ and 

iI,", 4 is the list of distances between consecutive units in 
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° Let ~ be the set of all lists which can be derived from ~with 

the help of the productions of the form: i,/:-i~j" . We need iden- 

tifiers for the whole set ~ (we treat lists as strings). Whether it 

is possible to compactify these identifiers or not, not speaking abo- 

ut ways of fast constructing them, is an open question. More attrac- 

tive (at the first glance) approach may be based on the idea of using 

substructures with easily computed a~tomorphisms. Grids of units 

are substructures of this type. (A slight analogy with the discrete 

Fourier transform, where some other grids are formed by powers of 

roots of unity.) Strictly speaking, usual grids, i.e. arithmetical 

progressions, do not work in the case of sparse numbers, but we put 

aside such numbers. One can devise a representation of ~ as some hi- 

erarchical, tree-like data structure of grids. But we need a represen- 

tation which gives a fast procedure for comparing ~ and ~, and this 

is one of the most obscure points in this approach. The problem of 

computing ~az ~(~ when ~ and v go to the input in parallel may 

prove to be a more workable problem for analysis of the ideas under 

discussion. 

The difficulties we met in treating arithmetical identification 

have some features common to the difficulties we meet when the dimen- 

sion of patterns under consideration rises; the reason is the same 

--the growth of degree of freedem. Let us throw a glance on 2-dimen- 

sional (combinatorial) pattern matching. The pure idea of identifier 

though it works in principal, gives no advantages as one can easily see 

on :~-square filled with the same character --the total volume 

of identifiers is ~ in order,that is equal to the complexity of 

the most trivial algorithm (the role of strings is played by connec- 

ted configurations with fixed starting points; we are seeking for 

connected neighborhoods separating all the points of the square).He- 

re the situation seems to be simpler than in the case of arithmetical 

identification. One of the ideas of representing a given text-struc- 

tare is illustrated by the figure: 

o o oio o olo o o 
0 00iO 0 0:o 0 0 

.0.0..~.;9. 9.9. 0..0 :: 
0 0 0~0 o 0 o 0 0 
0 0 010 0 0 0 0 0 
.0_.0. o:o.o o.:. o.~ /I/ 

o o o!0 o o:o o o /)y)~,,,_/~. 
/~/~/~/ 
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Here we construct the "identifier tree" starting from the centre.The 

resulting tree depends on the starting point, generally speaking.But 

it remains sufficiently flexible for testing matching. 

The problem becomes essentially more arduous if we permit rota- 

tions (in Euclidean plane). Then we come to some sort of analytical 

identification (approximate matching concerns only the boundary of a 

pattern). New difficulties may be clarified by the following questi- 

on. Let a string ~ be ascribed to some circle, i.e. ~ forms a cycle. 

We wish to construct an identifier tree for ordinary string-matching 

(a pattern is a usual string) in some more or less symmetric fashion, 

not breaking the circle. How to do it? 

The described way of representing 2-dimensional patterns is ra- 

ther inviting for studying graph isomorphism. An example of complete 

graph shows that the straight-forward idea of identifier does not 

work here. Nevertheless all known to me algorithms for graph isomor- 

phism (many of them are surveyed by Read and Corneil Jill)try to ma- 

nage only with identifieres. This is done by embedding a given graph 

into more rich structures which are used for constructing appropriate 

identifiers. And if a graph is '~ery regular" such approaches fail, 

i.e. they, virtually, turn into an exhaustive search. I would like to 

draw attention to the fact that while treating graph automorphisms we 

are not to solve difficult classical problems concerning structure 

and properties of the automorphism groups. All we need is a represen- 

tation of these groups which is convenient for fast computations. 

To conclude the discussion I shall try to discribe structures 

which arise when attempting to apply the identifier approach to a 

N#-complete problem. I consider the problem of existence of a Ha- 

miltonian cycle in a plane graph. As substructures of a given graph 

we can take connected subgraphs with cyclic boundaries (an analogue 

of spheres) 
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Let ~ be a given plane graph, ~L - its subgraph with the boundary 

.A Hamiltonian partition of ~i is a partition of ~f into simple 

paths and simple cycles ~1,~z~ ".-~ ~* , such that ~n~ ~, ~'~'=~" 

if #; is a path then its end points belong to ~ ~ /.<~'~/.~ . The pro- 

blem is to represent the set of all Hamiltonian partitions of vario- 

us ~i's to gain fast updating of these representations when these 

~i's merge (or extend themselves). 
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A SURVEY OF GRAMMAR AND L FORMS-1978 
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ABSTRACT 

The present paper gives an overview of grammar and L form theory as of 

January 31, 1979. I t  is intended to complement Ginsburg's 1977 survey of grammar 

forms [G]. Hence although we present some new results on grammar forms the main 

thrust of the paper is to survey L forms. 

The number of papers in this area is now over 65, see [Wl] hence i t  may be ob- 

served that this is indeed a fast developing area, as is claimed in [M]. A more 

detailed exposition of the area can be found in [W2]. 

Because of this many open problems are stated in the hope that our own [G and 

MSW] excitement with this new area of formal language theory wi l l  be catching. 

INTRODUCTION 

In [CG] the notions of a grammar form and i ts interpretation grammars were f i r s t  

introduced. A grammar form can be considered to be a "master grammar" and i ts in- 

terpretation grammars can s imi lar ly  be considered to be those grammars which "look 

l ike"  the master grammar. Therefore each grammar form gives rise to a family of 

interpretat ion grammars and also to a family of languages. In a similar way a master 

L grammar gives rise to a family of interpretat ion L grammars and a family of L 

languages; these were f i r s t  introduced in [MSWI]. 

In Section 2 the basic definit ions and some examples are given, while Section 3 

deals with grammar forms and Section 4 with L forms. 

2. PRELIMINARIES 

I n t u i t i v e l y  the two notions of  " looks l i k e "  can be motivated by considering the 

fo l l ow ing  contex t - f ree  product ions: 

( I )  S ÷ aAbB; 

(we use the convention tha t  ea r l y  lower case roman l e t t e r s  denote terminals and ear l y  

upper case nonterminals) .  

(2) D ÷ abbEF; 
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(3) S' ÷ a 'A'b 'B~; 

(4) D' + E 'E 'a ' ;  and 

(5) S -~ aACbB. 

We say (2) looks l i ke  ( I )  since the nonterminals D, E, F correspond to nonterminals 

S, A, B, respect ive ly ,  whi le abb corresponds to a and ~ (the empty word) to b. This 

corresponds to the notion of g - i n te rp re ta t i on .  S im i la r l y  (3) looks even more l i ke  

( i ) ,  th is  corresponds to s - i n te rp re ta t i on .  However (4) does not look l i ke  ( I )  on 

two counts, f i r s t l y  that  E' corresponds to both A and B, which we do not a l low,  and 

secondly a' corresponds to ~ in ( I )  which we also do not a l low. I f  we do al low (4) 

to look l i ke  (1) then i t  impl ies that  l i nea r  grammars look l i k e  regular grammars and 

expansive grammars look l i ke  non-expansive ones. S im i la r l y  we say (5) does not look 

l i ke  ( I )  since the number of  nonterminals has increased. 

We now formal ize these notions. 

Def in i t ion :  Let G i = (V i ,E i ,P i ,S i )  i = I ,  2, be two (context - f ree)  grammars and 

a f i n i t e  subst i tu t ion  on V~. We say Gl is a g - i n te rp re ta t i on  of  G 2 modulo ~, 

denoted GI '~G2(~ ) (or simply GI" ~ G 2 i f  ~ is understood), i f  ~ sa t i s f i es  the 

fo l lowing condi t ions:  

(i) 
( i i )  

( i i i )  
(iv) 

!~(a) is a f i n i t e  subset of S T, fo r  a l l  a in Z 2, 

I~(A) i f  a f i n i t e  subset of  V 1 - E l ,  for  a l l  A in V 2 - S2' 

I~(A) ~I~(B) = B, for  a l l  A, B in V 2 - ~2' A # B 

P I ~ ( P  2) = L . ] ~(A-~), where ~(A-~) : { A ' ÷ m ' :  A' in ~(A) and m' in u (~)}, 
A÷m in P2 

(V) S 1 is in ~ (S2). 

We say that  G 1 i s a  (g-) i n t e r p r e t a t i o n  grammar. The (context - f ree)  grammar G 2 is 

cal led a (context - f ree)  grammar form when used in th is  way. 

We say Gl is an s - i n te rp re ta t i on  of  G2 modulo ~, denoted G I 4  s G2(~) (or simply 

Gl'~s G 2 i f  G I~G2(~)  and ~ also f u l f i l l s :  

( i ) '  ~(a) is a f i n i t e  subset of  E l ,  fo r  a l l  a in S 2. 

( i i i ) '  ~(X) CI ~(Y) = ~, fo r  a l l  X, Y in V2,X ~ Y. 

Note espec ia l ly  that  in s - i n te rp re ta t i on  terminals and nonterminals are t reated 

in a consistent manner. 

In the case that  G is an EOL grammar we only define s - in te rp re ta t ions  of G. 

The reasons fo r  th is  are simply that  EOL grammars have terminal rewr i t i ng  ru les,  

which ( i )  under g - in te rp re ta t ion  could give r ise  to productions of  the form: X ÷ 



193 

and ab ÷m neither of which are EOL productions, and ( i i )  al low derivat ions in the 

in terpretat ion grammar which are not images of derivat ions in the master grammar. 

An EOL form is simply an EOL grammar. 

For e i ther a grammar or an EOL form G we define the s-grammar family of G by: 

~s(G) = {G': G' I G}, while for  a grammar form G the g-grammar fami ly is defined by 
~_(G) = {G': G' ~ G}. S im i la r l y  we can def ine~s(G ) and,~'g(G), the s- and g- 

grammatical famil ies of G bY~'s(G) = {L(G'): G ' ? G }  and,~g(G) = {L(G'):  G '~  G}o 

Whether G in~,s(G) is a grammar or L form is usual ly clear from the context. 

Consider the fo l lowing examples. 

(a) Let G 1 be defined by: 

S ÷ aSa; S + a 

then O~'g (GI) =~(L IN) ,  

while~s(G I) ~(LIN). 
(b) Let G 2 be defined by: 

S ÷S; S÷a; S +SS; a÷S 

then ~'s (G2) = ~(EOL). 
(c) Let G 4 be defined by: 

S+a; S÷SS 

then ;~g(G4) = ~(CF) : Xs(G4). 

In the fo l lowing we also mention various other rewr i t ing systems, for  example, 

non-context free grammars, matrix grammars, EIL grammars, OL and DOL grammars, etc. 

Their de f in i t ions  can be found in [S],  while the extension of s- and/or g- 

in terpretat ions to these cases essent ia l ly  fol lows the de f in i t ions  given above. 

Def in i t ion :  Two languages are equal i f  they d i f f e r  by at most X. Two language 

fami l ies are equal i f  for  every language in one there is an equal language in the 

other and vice versa. 

We say two forms (both grammar or both EOL) G 1 and G 2 are strongly s-form 

equivalent i f  ~s(Gl) = ~s(G2) and s-form equivalent i f ~ ' s ( G l )  : ~s (g2 ) .  Define 
(strongly) g-form equivalent s im i la r l y .  

3. GRAMMAR FORMS 

Since the survey in [G] treats the grammar form case more f u l l y ,  we r es t r i c t  
at tent ion to some problem areas. There are at least three major problem areas for  
grammars. 

3.1 The RE-CF 9ap conjecture: I t  has been conjectured that for  a l l  non-context- 

free grammar froms G,,~g(G)TZ(CF ) imp l ies~g(G)=~(RE) .  
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I t  has been shown in [MPSW] that under s- i .nterpretat ion there 

are non-context-free grammar forms G with the property that :  

 (CF) 7 

Also in [MPSW] i t  has been shown that for  a non-context-free grammar form G 

with a single nonterminal 

(CF)~ ~'g(G) implies~Y'g(G) : ~(RE). 

Although this can be extended to the case of two nonterminals the problem is ,  

in general, s t i l l  open. 

However there is a matrix form G with~B(G) in the gap, in fact  G given by: 

[S 1 ÷aS la ;  S 2 ÷ aS2a], IS 1 ÷ a; S 2 ÷ a] ,  [S ~ SIS2], [S ÷ S3], IS 3 ÷ a] ,  

[S 3 + $3S3], has this property. 

3.2. Form equivalence: Remarkably i t  has recent ly been shown to be decidable 

whether~'g(Gl) :~g(G2) ,  for  two arb i t ra ry  grammar forms G 1 and G 2. This resul t  is 

reported in two papers [GSl] and [GS2]. 

is s t i l l  not known whether.~ms(Gl ) :~'s(G2) is or is not decidable, However i t  

for  two grammar forms G 1 and G 2, 

3.3. Completeness: Le t t ing~be a family of languages, we say a grammar form G is 

complete, for x = g or s, i f~ ' x (G)  

I t  has been shown in [CG] to be decidable whether a reduced grammar G is 

f i n i t e - ,  regular- or context-free- g-complete, since in this case~.-g-completeness 

reduces to the question of whether G is f i n i t e ,  non-self-embedding or expansive, 

respectively. 

However in the case of s-interpretationsX-s-completeness is far from t r i v i a l .  

In [MWSIO] regular- and linear-s=completeness are characterized. Hence i t  is shown 

in [MWSIO] that GI: S ÷ aSa; S ÷ a; S ÷ aa does not generate~(LIN), while 

G2: S ÷ aS; S ÷ Sa; S ÷ a does. 

The major open problem here [MSW9] is the characterization of context-free-s- 

completeness. 

4. L FORMS 

We w i l l  provide in th is section a rapid survey of the highl ights of EOL form 

theory and also pose some open problems. Since only s- in terpretat ions are con- 

sidered we omit the pre f ix  or subscript "s".  
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4.1 Normal Forms: Most of the normal form transformations which preserve the 

language of an EOL or ETOL grammar also carry over to the form situation. For 

example, we obtain: 

Theorem l :  For each ETOL form G there exists a form equivalent ETOL form H which 

is reduced, binary and has only two tables. 

However form equivalence is not preserved under synchronization or under 

X-removal. 

Theorem 2: Let G: S ÷ a; a ÷ b; b ÷ b be an EOL form. 

EOL form H, 

.~(H) ~(G). 
We have a second exception in the case of propagation. 

Then for each synchronized 

Theorem 3: Let G: S ÷ abba; b ÷ ~; a ÷ c; c ÷ c. Then for each propagating EOL 

form H,W~(H) f~(G).  

In [Sk] i t  is shown how G of Theorem 2 can be synchronized by using 2 tables, 

that is: 

Theorem 4: Let G: S ÷ a; a÷  b; b÷ b and 

H: {S ÷ a; a ÷ b; b ÷ b; a ÷ N; b ÷ N; N ÷ N}, 

{S ÷ N; a ÷  a; b ÷  b; a ÷ N; b ÷ N; N ÷N} ,  

where a, b and N are new nonterminals. 

Then~(G) =~(H). 

Open problem: What is the relationship of the classes of language families obtained 

from EOL forms, synchronized EOL forms and synchz~nized ETOL forms? 

For EIL forms the normal form results are closest to those for DIL grammars 

EMSW6]. An EIL grammar has, for some fixed integers m and n, m, n ~ O, a set of 

productions, with context, of the type (B,A,y) ÷ ~, where IBI~ m, {YI ~ n. This is 

read as: A is replaced by ~ i f  i ts l e f t  context is B and i ts r ight  context is ¥. 

The set o f  productions includes at least one production for a l l  symbols in a l l  con- 

texts f u l f i l l i n g  the above conditions. 

Although EOL-like reduction results can be obtained the main interest for EIL 

forms is the reduction of context. 

Theorem 5: Let m, n > O, then for each E(m,n)L form G an E(I, I )L form H can be 

constructed such tha t ' (G)  =~(H). 
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Theorem 6: Let m, n be such tha t  m > O, then fo r  each synchro- E(m,n)L form G a 

synchro- E(l ,O) form H can be constructed such that~/'(G) =~ (H) .  

That Theorem 5 is the best possible fo l lows from: 

Theorem 7: There is an E ( l , l ) L  form which has no form equ iva len t  E(I,O)L or 

E(O,I)L form. 

4.2 C_ompleteness and yompleteness: An EOL form G is said to be,K~-vomplete (very 

complete) i f  f o r  a l l  EOL forms F with,~(F):__~, there ex is ts  G"~ G such tha t  

~ (F )  =~(G'  ).  

In [CMO] the problem of  EOL-completeness is tack led fo r  shor t  ( t ha t  i s ,  the 

r i g h t  sides of  product ions have length at  most two) {S,a}-forms ( tha t  i s ,  EOL forms 

whose only nonterminal is  S and only  terminal is a).  Even in th is  r e s t r i c t i v e  

s i t ua t i on  a complete c l a s s i f i c a t i o n  is not forthcoming. For example, 

GI: S ÷ a; S ÷ aS; a ÷ a ;  a ÷ S is EOL-complete v ia the chain- f ree normal form 

theorem o f  [CM], whi le  G2: S ÷ a; S ÷ aS; a ÷ a; a ÷ SS is not EOL-complete. I t  

is not known whether G3: S ÷ a; S ÷ S; S ÷ Sa; S ÷ aS; a ÷ a; a ÷ aS is EOL-complete 

Or not.  

Open problem: C lass i fy  a l l  {S,a}-forms wi th respect to EOL-completeness. 

A synchro-EOL form G is always assumed to have the product ion N ÷ N fo r  the 

universal  b locking symbol and the productions a ÷ N fo r  a l l  terminals in G. 

In [MSW I I ]  i t  has been shown tha t  i t  is decidable whether an {S,a}-synchro-EOL 

form is EOL-completeo 

Open problem: I f  F is an a r b i t r a r y  EOL-complete EOL form does th is  imply there is 

an a - r e s t r i c t i o n  of  F which is EOL-complete? Cf. [MSWIO]. 

The d e c i d a b i l i t y  o f  EOL-completeness fo r  unary syncnro-EOL forms ( tha t  i s ,  one 

terminal symbol) depends upon the fo l l ow ing :  

Open problem: I f  F is an a r b i t r a r y  unary EOL grammar, is i t  decidable whether 

L(F) = a* or not? 

Turning to EOL-vompleteness we have 

HI: S + a; S ÷ SS; S ÷ S; a ÷ S 

is not EOL-vomplete, because of  Theorem 3 whi le  H2: S ÷ X; S ÷ a; S ÷ SS; S ÷ S; 

a ÷ S is EOL-vomplete. Recently i t  has been shown [AIM] tha t  any EOL-vomplete form 

F = (V,S,P,S) must contain a product ion A÷~ ,  where A is in V - ~. Hence, in con- 

t r a s t  to H 2, 

H3: S ~ a; S ÷ S; S ÷ SS; a ÷ S; a ÷ 
is not EOL-vomplete. 
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4.3 Generative capacity: 

ated by particular forms. 

non-tr ivial, are: 

Here we are concerned with the language families gener- 

Two of the most interesting results, both of which are 

Theorem 8: There are no context-free-complete EOL forms [AM]. 

Theorem 9: There are context-free-complete EIL forms [MSW6] under 

CC-interpretations. 

Recently in [MSWII] i t  has been shown that 

Theorem I0: For a l l  context-free grammar forms G such that~'s(G)~X~(LIN),  there 

is an~s(G)-complete EOL form. 

In other words, every sublinear s-grammati~cal family can be generated by an 

EOL form. 

Open problems: (I)  Is the converse true? (2) I f  G is a context-free grammar form 

such that~s(G) ~ ( L I N )  then is i t  true that there is nO~'s(G)- complete EOk-form? 

[MR] have shown this to be the case for OL forms and the so-called clean EOL forms. 

For a language f a m i l y , ,  we say that an EOL form G is~ ' -su f f i c ien t  i f  

~(G) ~,~. Similarly we say G is,~'-bounded i f~ (G)C-_~.  [AMR] investigate this 

notion f o r ~ = ~ ( C F )  under a restricted form of interpretat ion, the uniform 

interpretat ion. They succeed in classifying {S,a}-EOL forms completely, hence for 
example; both 

GI: S ÷a ;  S ÷ SS; a ÷ a and G2: S ÷a ;  S ÷ SS; a ÷ 
are context-free bounded, while 

G3: S ÷ a; S ÷ SS; a ÷ a; a + 

is not. Recently [AMO] have shown that i t  is decidable whether an OL form is 

regular-bounded. 

Open problems: Investigate ,~'-sufficiency and~-boundedness. 

Let L be an EOL language and~a language family, ,~ '~(EOL).  We say L is a 

generator f o r ~ i f  for al l  synchro-EOL forms F such that L = L(F), F is~,-suf~cient, 

i.e. ~c_~(F). L is a proper generator i f  L is i n K .  

I t  has been shown in [MSW7] that a* is a proper generator of~#(REG) and a 

generator o f~(FIN) .  I t  has also been shown that there is no generator for~(EOL). 

Open problem: I t  is conjectured there is no generator for o~'(LIN). Prove or 
disprove this. 
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4.4 Decision problems: The major decidabi l i ty result is: 

Theorem I,I [CMORS]: Given two PDOL forms G 1 

• ~(81) = ~ ( 8 2 ) .  

The major undecidabil ity results are: 

and G 2 i t  is decidable whether or not 

Theorem!2 [MSW2]: Under uniform interpretations form-equivalence of EOL forms is 

undecidable. 

Theorem 13 [MSW6]: For EIL forms, form-equivalence, CC-form-equivalence, complete- 

ness and CC~completeness are undecidable. 

Open problems: (I) Is EOL-completeness for EOL forms decidable? (2) Is form- 

equivalence of EOL forms undecidable? (3) Is the equation L(F) = a* decidable 

for an arbitrary synchronized EOL grammar F? (4) Is i t  decidable whether an EOL 

form F is context-free-bounded (in the case of uniform interpretations i t  is)? 
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O. Introduction 

Meyer and Ritchie [1][2] introduced the notion of loop programs and classified 

the primitive recursive functions syntactically with the help of loop programs into 

the hierarchy LocLICL2c... by restricting the depth of loop nesting, i.e., L n 

is the class of functions computed by loop programs whose depth of loop nesting is 

not greater than n. They also showed that each class L can be characterized by 
n 

computational complexity, measured by the amount of time required on loop programs 

to compute the functions. In particular, a function is elementary in the sense of 

Kalm~r [3], i.e., belongs to L 2 if and only if it can be computed by a loop program 

whose computing time is bounded by a k-fold exponential function of its inputs for 

some k, while there is general agreement that those computations which are exponen- 

tially difficult in time are practically intractable. In this respect, many people 

feel that even the class L 2 is still too inclusive in the sense of "practical compu- 

tation". 

In the earlier paper [4] the authors attempted an investigation to 

obtain a substantial subclass of L 2 reflecting p~actical computation, where the 

notion of loop programs is extended so as to include additional types of primitive 

statements such as x ÷ x~l and IF-THEN-ELSE, and the use of arrays is allowed as 

well. It is proved that if such an extended loop program satisfies a certain syn- 

tactical restriction called "simpleness", then the computing time of the program is 

bounded by a polynomial of its inputs whose degree can be effectively determined 

only by the depth of loop nesting. This is worthy of notice, since it says that we 

can know syntactically a practical estimation of the time required to execute a 
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given "simple loop program" before execution. 

Here in this paper, on the basis of our earlier work [4], we make a rather pre- 

cise analysis of time complexity of simple loop programs. We present an algorithm 

which gives an accurate upper bound of the computing time of any given simple loop 

program; a slight modification of the algorithm gives a lower bound. 

i. Simple Loop Programs 

First we review a basic result from Kasai & Adachi [4], being the starting 

point of our investigation. 

Definition. Let C, S and A be fixed mutually disjoint countable sets of 

symbols. An element of C, S or A is called a control variable, aimple variable 

or array name, respectively. Let Vat denote the set of all variables, that is, 

Var = C u S u { a[i] I a£A, icN }, 

where N = { 0, i, 2, °o. }. A loop program is a statement over Vat defined ree- 

ursively as follows, where 

= { a[i] I acA, iEOUS }, 

u c CUSOA, v ~ SUA, c ~ N and Wl,W 2 e COSUAUN : 

<atomic statement> :: = u ÷ u+l I v ÷ vtl I v ÷ u I u ÷ c 

<loop statement> ::= LOOP x DO <statement> END 

<condition> ::= w I = w 2 I w I # w 2 

<statement> ::= <atomic statement> I <loop statement> I 

IF <condition> THEN <statement> ELSE <statement> END 1 

<statement>;<statement> 

Definition. A function d: Var + N is called a memory. We denote the set of 

memories by D. Let P be a loop program, then P realizes the partial function 

P: D + N. The time complexity of P is the function timep: D + N such that 

timep(d) is the number of atomic statements executed by P under an initial memory 

d. The definition of P and timep is straightforward so that we omit the details. 

Definition° For each loop program P, we define the relation >p on Cp as 

follows, where Cp denotes the set of control variables appearing in P. 

We write x >p y if and only if the program P includes a statement of the 

form LOOP x DO Q END, and Q includes y ÷ y+l. 

We say that P is simple if there is no sequence of control variables x I, 

x2, .°., Xk, k > i, such that 
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and x I = x k. 

Thus, if P 

Cp. 

x I >p x 2 >p ... >p x k 

is simple, then the transitive closure of >p is a partial order on 

Definition. Let P be a loop program. Let s be an occurrence of an atomic 

statement in P. Then the depth of s, denoted by ~(s), is the number of loop 

statements which include s. Let Sl, s2, ..., s k be the occurrences of the atomic 

statements in P such that ~(si) ~ i, i ~i ~k. Then the loop complexity of P is 

~(Sl)'~(s2)'....6(Sk) and is denoted by %c(P). If P contains no atomic state- 

ments whose depth ~ l, then ~c(P) = 0. 

Exile I. Consider the program P defined as follows: 

z÷O; 

LOOP x DO 

LOOP y DO z ÷ z+l END; 

LOOP x DO 

LOOP x DO y + y+l END 

END 

END 

Obviously x >p y >p z so that P is simple, and %c(P) = 2×3 = 6. If d is the 

memory defined by d(x) = c and d(w) = 0 for each w other than x, then 

P(d)(x) = c, P(d)(y) = c 3, P(d)(z) = c3(c-i)/2 

and 

timee(d) = c3(e+i)/2 + i. 

Theorem I. (Kasai and Adachi [4] ) Let P be a simple loop program. Then there 

exist constants c and c' such that 

timep(d) < c.(max d(x)) %c(P) + c' 
= x~6'e 

for all d in D. 

2. A Precise Analysis 

By Theorem i, we can get a rough upper bound of the time complexity of any 

given simple loop program. For example, 

timep(d) ~ c'n 6 + c' 

for the program P in Example i, where d ~ D and n = max d(z). However, as 
z~Cp 



204 

will be shown in this section, we can construct an algorithm which gives a more pre- 

cise upper bound: 

timep(d) -~ d(x) 4 + d(x) 3 + d(x).d(y) + i. 

By an analogous algorithm, it is also possible to get a lower bound: 

m(m 3 + m 2 + d(y) -" i) + 1 <__ timep(d), 

where m = d(x) -" i. 

Definition. Let P be a loop program. We define a term as follows, where 

c c N and x ~ C: 

<term> ::= c I x i <term> + <term> I <term> : <ter~ I 

<term>'<term> I max{<term>, <term>} 1 

min{<term>, <term>} 

For all terms t, t I and t2, and each d in D, we define d(t) as follows: 

d(c) = c, c ~ N, 

d(t I + t 2) = d(tl) + d(t2); d(t I ~ t2) = d(tl) 2 d(t2) , 

d(max{t I, t2}) = max{d(tl) , d(t2)}, 

d(min{t I, t2}) = min{d(tl) , d(t2)}. 

Let P be a simple 

each z ~ Cp, a term t z 

(2.1) ~(d)(z) 

loop program. Here we consider an algorithm to obtain, for 

which satisfies 

d(tz) for all d ~ D. 

Definition. Let P be a simple loop program, and let s be a control ~ari- 

able not appearing in P. Then the step counting version, P, of P is defined by 

s+0; Q 

where Q is the loop program obtained from P by inserting s ÷ s+l immediately 

after each occurrence of atomic statements of P. The variable is called the step 

counting variable. 
x 

Since timep(d) = P(d)(s), in order to obtain an upper bound of the time comp- 

lexity of P, it suffices to apply the following algorithm to its step counting ver- 

sion P with s as the step counting variable. Note that ~ is simple whenever 

"P is simple. 

Algorithm 1. 
Input: A simple loop program P and a control variable 

Output: A term t z which satisfies (2.1). 

z ~c e 
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Method: Let Cp = {x I, x 2, ..., Xn}. For each suhstatement Q of P, we con- 

struct an n-tuple of terms T(Q) = (t I, t 2, ..., t n) which satisfies the following 

three conditions: 

(2.2) Q(d)(x i) ~ d(ti) for all d c D and i ~n. 

(2.3) t i is a term of the form max{u, x i + v}, where u and v are terms 

(possibly empty) which contain no occurrence of x.. 
1 

(2.4) If t i contains an occurrence of x~ (i # j), then x, 
>e x i • 3 3 

If t. is of the form max{w}, then we simply write w instead of max{w}. 
1 

Case 1: Suppose that Q is an atomic statement. Then T(Q) = (tl, ..., tn) 

is defined as follows: 

Case 1.1: If Q is x% ÷ x i + i, then let 

if i# ~ 

+ 1 if i = £. 

x% ÷ c, c • N, then let 

if i # 

x i 

ti = x% 

Case 1.2: If Q is 

ti = I c xi 
if i = £. 

Case 1.3: If Q is an atomic statement other than above, then let 

t i = xi, i <i <n. 

Case 2: Suppose that Q is IF q THEN Q1 ELSE Q2 END. Assuming that 

T(Q l) = (tll, ..., tin) and T(Q2) = (t21 , ..., t2n) have already been obtained, 

define T(Q) = (t I .... , tn) by 

t i = max{max{uli , u2i} , x i + max{vii , V2i}}, i ~i ~n, 

where t..31 = max{uji' xi + vji} for j = i, 2. 

Case 3: Suppose that Q is QI;Q2. Assume that T(QI) = (tll, ..., tln) and 

T(Q2) = (t21 , ..., t2n) , then t i (1 ~i ~n) is obtained from t2i by replacing 

each occurrence of xj, 1 ~j ~n, in t2i by tlj. 

v Case 4: Suppose that Q is LOOP x% DO Q1 END. Let T(QI) = (tl, ..., t~). 

We calculate ti, 1 ~i ~n, in the descending order with respect to >p, that is, we 

calculate t. before t i if x. >p x i. Assume that t. has been obtained for 
3 3 J 

all j such that x. >p x i. Let 
3 

t~ = max{u, x. + v}. 
i l 

Then t. is defined by 
i 

t i = max{~ + x~'v, x i + x%'v}, 

where w denotes the term obtained from w by replacing the variables x., l!j!n, ] - _ 
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appearing in w by tjo (Note that if t~ contains xj, then xj >p x.1 from 

(2.4), and thus to must have been obtained.) 
J 

Example 2. Consider the following program P: 

y ÷ 0; v ÷ 0; w + 0; 

LOOP x DO 

IF A[y] = 0 THEN 

w + i00; 

LOOP y DO v ÷ v+l END 

EL SE 

LOOP v DO w ÷ w+l END 

END; 

LOOP w DO B[w] ÷ w END; 

y ÷ y+l; v + v+l 

END 

Then x >p y >p v >p w. Clearly P is simple. Insert the statement s ÷ s+l imme- 

diately after each occurrence of the atomic statements in P to calculate T(P) 

according to Algorithm I. We obtain 

T(P) = (t x, ty, tv, t w, ts), where 

t x = t = x, t v = x(x+l), t w = 100+x2(x+l), 
Y 

and the desired term t is x(x(x+l)+(100+x2(xq-l)+x(x+l))+2)+3. Thus we have 
s 

timep(d) < d(x 4 + 3x 3 + 2x 2 + 102x +3). 

The correctness of the algorithm is stated in the following theorem, the proof 

of which is by induction on the syntactical structure of input program P. It is 

enough to prove that each substatement Q of P satisfies the conditions (2.2) io 

(2.4). 

Theorem 2. For any simple loop program P, Algorithm 1 terminates and satis- 

fies (2.1). Thus we can obtain an upper bound of the time complexity of P. 

To obtain a lower bound of the time complexity of P, in the description of 

Algorithm i, replace every occurrence of the word "max" by "min", and, in addition, 

modify Case 4 as follows: 

Define t i by 

t i = min{u, x i + (x%-l)'v } 

Then we have Algorithm 2 for which we have 
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Theorem 3. Algorithm 2 terminates and satisfies 

d(t z) ~ P(d)(z) f o r  a l l  d c D 

if P is a simple loop program. 

3. Concluding Remarks 

We described algorithms which calculate syntactically an upper and a lower 

bound of the time complexity of programs in a restricted class. Note that, in addi- 

tion, it is possible to test if a subscripted variable is beyond the scope of an 

array. For example, by using T(P) = (tl, ..., tn) obtained by Algorithm i, we 

have 

d'(x i) ~ d(t i) 

for any memory d' at any arbitrary instance in the computation of P under an 

initial memory d. In other words, the content of the variable x. does not exceed 
i 

the value of t. during the computation. 
i 

We think it valuable to apply this theory to practical programming languages. 

Them, for example, it should be necessary to extend the condition for simpleness, 

and the syntax must be loosened enough to be of practical use. 
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Abstract: Thm 1 states a negative result about the classical se- 

manZics ~ of program schemes. Yam 2 investigates the reason for 

this. We conclude that Thm 2 justifies the Senkin-type semantics 

for which the opposite of the present Thm 1 was proved in Andr4ka- 

-N~meti[~ ,[2],[3] and also in a different fo~m in part III of Gergely- 

-ury[8]. The strongest positive result on ~ is Corollary 6 in 

Andr~ka-N4meti[3]. 

B~sic concepts 

First we recall some basic notions and notations from textbooks on 

Logic Monk[lO] , Chang-Keisler[~] and from Program Schemes Theory ~ e.g. 

Karma[9], Andr~ka-N~meti[l],[2],[3] , Gergely-Ury[8]. 

denotes the set of natural numbers. 

d denotes an arbitrary similarity type. I.e.: d correlates arities 

~o some fixed function symbols and relation symbols. See Sacks[12], 

p.ll. 

Y = { Yz : z E co ~ denotes the set of variable symbols. 
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F d is the set of all classical first order formulas of type d with 

variables in Y . See Chang-Keisler[5], p.22. 

Hd is the class of all classical first order models of t~pe d . See 

5Vnang-Keisler[5] or Monk[lO],Def.ll.l. or Sacks[12], p. ll. 

~= G FdXM d is the usual validity relation. See Chang-Keisler[5] or 

Sacks[12S, p.21. 

denotes a term of type d in the usual sense of first order logic, 

see Chang-Keisler[SS, p.22 or Monk[10],p.166.Def.10.8.(i~ . 

and E denote elements of M d , the universes of which are D and 

E respectively. 

Pd ~enotes the set of program schemes of type d . Pd is defined as 

in lanna[9~, Andr4ka-N4meti[l],[2], Gergely-Ury[8],p.72. E.g., let 

t be the similarity type of arithmetic. Then the following se- 

quence 

< (o: 
(i: 
¢2: 
(5: 

(4: 

is in Pt' i.e. it is a program scheme of type 

yo -~- 0 ) 

IF yo=Yl THEN 4) , 

Yo -<- Yo +I) 

IF yl=Yl THEN i] , 

HALT ) > . 

t : 

Pd ~ F d is the set of output statements about programs. An output state- 

ment (~,~) ~ PdXFd means intuitively that the program scheme p 

is partially correct w.r.t, output condition ~ . 

~ (p,v/) is meaningful if D Ds M d and (p,~) 6 Pd~Fd . Now 

~ (p,~) holds if %he program scheme p is partially correct 

w.r.t. %u in the model N . l.e. : If p is started in ~ with 

any fnput q:co ---*D then whenever p halts with some output 

k:co---~I~ , the formula ~ will be true in ~ under the valu- 

ation k of its free variables~ i.e. D ~ T[k] . See Manna 

[9],Chapter 4 • ~[ote that a precise definition of ~ would 

strongly use the structure <o~,~> of natural numbers. See[4$], 

Gergely-[[ry[8],p.78, Andr4ka-N~meti[l],p.ll6,[2],[3]. The letter 

co above the sign ~ serves to remind us of this fact. 

For any set Th~ F d of formulas, " Th ~ (p,~) " is defined in the 
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PROPOSITION 0 : 

Let the type d 

<~,s,o>. ~t 
contain the similarity type of successor arithmetic 

Th~F d be such that 

Th ~- { szo # sro r_ z<r6oO] =d Th' 

where sO0 =d 0 and sr+?0 d ssr0 for r ~ '~ . 

Let Eel[ d be an arbitrary but fixed model of Th' 

= <oo,s,O, ... >. 

Suppose H is an arbitrary set such that 

such that E = 

[(p,y) : Th ~ (p,~) and p terminates in ~ for every input 

and ~ is quantifier-free 3 • 

~en H is no__! recursively enumerable. 

Proof: The present proposition is a special case of 

mulated later. 

Thm I to be for- 

Now we turn to relax the conditions made on d and Th in the 

above proposition. I.e. we are going to generalize Proposition 0 . 

From now on c and ~ denote arbitrar 2 terms of type d such that 

c contains no variable and T contains one variable Yo " To make 

this explicit, we write ~(yo ) • 

and Tz+[ ~ ~(z) for every od 
Notation: ~ = c , zeoo . 

Note the% the terms 

able. 

1 z , ~ , ... , ~ , ... contain no vari- 
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DEFINITION I : 

Th ----- F d is said to be ~ood if there exist terms c and "~(yo ) 

such that 

Th ~_ { z~ ~r : z<r~ -~ Th' . 

Let E6M d be an arbitrary model of Th' such that 

(Vb~E) (SZ600) [ ~z denotes b in EL ] . Then we define 

May(Th) ~ [ (p,~) £ Pd×Fd : Th ~ (p,~) ~ . 

Kust(Th) ~ [ (p,~> E ~[sy(Th) : p terminates in E for every input; 

and ~ is an atomic formula or the 

negation of an atomic formula such 

that Th ~- ~Yo ~ ~ " 

Remark: To a fixed Th , lust(Th) is not unique since it may de- 

pend on the choice of c , ~(y~ , and E . This makes the following 

theorem even stronger since it will hold for any choice of c , Z , 

and E . Observe that Must(Th) is a reasonably small set of output 

statements since ~ contains no quantifiers, no "V " or "A " and 

at the same time p is such that it terminates in E for every input. 

Thus Must(Th) contains no tricky statement about the "halting prob- 

lem" (since p has to terminate) and no "strange sentence" since 

has to be simple~ moreover, 3y 0 ~ is provable from Th . 

THEOREM i : 

Let d be arbitrary 

and consistent. Let 

May(Th~ ~ H ~ Must(Th) . 

Then H is not recursively enumerable. 

and let Th~ F d be good (in sense of Def.l.) 

H be an arbitrary set such that 

Proof: we shall treat the constant-term "c" as zero and T(yo~ as 

the successor function. E.g. ~z will be considered to be the name of 

the natural number z6oO . By using successor ~ and zero c we 

can write programs "add"6 Pd and "mult" e Pd for addition and mul- 
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tiplication~ By using these programs, for an arbitrary Diophantine equa- 

tion e(Y2,..,ym ) we can write a program ~ ePd such that after 

having executed ~ we Shall have yo=Yl iff e(Y2,...,y m) was true be- 

fore starting ~ . 

Let p be an m-variable version of the program scheme given as an 

example at the beginning of this paper. Namely, p starts with 

[0: Ym+l -~- c) , (~: IF y2=Ym+l THEN 4 ), (2: Ym+l --<-- Ym+l ) ' 

(3: IF TRUE THEN ~) , (4: Ym+l < c) , (5: IF y3=Ym+l THEN 8), .... 

This program p terminates iff all the initial values of y2,...,y m 

can be reached from "c" by finitely many applications of ~ . Now, by 

writing ~ after p we obtain a program p~ ePd which first checks 

whether y2~...,y m can be reached from "c" by applications of T and 

if yes then results yo=Yl if e(Y2,..,ym~ was true, yo#Yl if 

e(Y2,..,ym ) was false for the initial values. Now to each Diophantine 

equation e(~) correlate ~ = [p~, yo#Yl ) • 

Clearly ~ e PdXFd . Also Th~ ~ iff e has no solution in 

the standard model <oo,+,.,0,I > of arithmetic. If there were a re- 

cursively enumerable H as in the statement of the present theorem then 

Eq ~ { e ~"Diophantine equations" : Th ~ ~ } 

would be recursively enumereble since the construction of ~ from e 

was "constructive" . But, since Hilbert's tenthproblem is unsolvable 

(Davis[6] or Monk[lO]), this is impossible. 

The following theorem says that if one "avoids Logic" and proves 

properties of programs by using "Mathematics in general" then this will 

not help one to avoid the "shortcoming" formulated in Thm 1 . 

THEOREM 2 : 

Let the reel world <V,E> ~ ZFC of Set Theory (see Devlin[7], p. 3, 

line 4 from below or Chang-Keisler[5]~ P.476) be fixed. I.e.: V is 

the class of all sets and e is the "element of" relation between 

them. 

Then the following is true: 
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There exist 

- a similarity type d , and 

- a model <W,E> ~ ZFC of Set Theory 

<W,E > is an element of V and <W,E> 

of <V,&} , see Devlin[7], p.14, line 6) 

such that (i) and (ii) below hold. 

(i) There a~ a finite set Th~ F d of axioms 

(p,~) such that 

Th ~ (p,~) is true, but inside of 

Th ~ (p,~) . 

More precisely: 

inside of <V,e> (i.e. 

ZFC is true inside 

and an output statement 

<W,E> we have 

<v,~> ~ "~h ~(p,~) - but 

<%V,E > ~ " Th ~ (p,~) " 

(Observe that " Th ~ (p,~)) 

of ZFC .) 

(ii~ There is an output statement (p,%u) such that 

<V,6 > ~ " M d ~ (p,q)) " while 

<W,E> ~ " M d ~ (p,%U) " . 

" is a statement of the language 

As a contrast we note that: 

For all ~EF d and for every model <W,E> E V of ZFC , 

<V,£ > ~ " M d ~ q " implies <W,E> ~ " M d 

Proof: 

(i) 

Let d d { <0,0>, <s,~> } • 

Let Th consist of the following two axioms: 

¥y ( sy~O ) 
Vy I Vy 2 ( Syl=sy 2 -- yl=Y2) . 

We know that Hilbert's tenth problem is unsolvable. This implies the 

existence of a Diophantine equation e[y) such that the set theoretic 

formula 

is false in <V,~> but is true in <W,E> for some model 

<W,E> e V of Z~FC . 
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Now let the output statement ~ = (p~ , yo#Yl ) be the one defined 

in the proof of Thm I . There it was observed that 

Th ~ ~ iff 4co,+,.,o,I> ~ 3y e(~ . 

(Note that the present Th satisfies the conditions of Thm i .) 

Thus <V,E) ~ " Th ~ ~ " and <W,E> ~ " Th ~-~ " 

The proof of (ii~ is an easy modification of the proof of (i) above. 

Namely, let us choose the above e , < W,E >, and ~ = (p~, yoCy~ 

Let ~ be the conjunction of all elements of Th . (Note that Th 

finite and therefore ~eF d .) Let ~ ~ (~ --->yo#Yl ) . Now, 

<V,e > ~ " M d ~ (p~,~) " while 

<W,E ~ ~ " M d ~ (P~,~) " • 

QED Thm 2 < For a more detailed proof cf. Andr~ka-N~meti-Sain[4].) 

is 

The above Thm 2 says that something is wrong with the classical 

semantics (or model theory) ~ of program schemes. Namely: There 

exists a good program (p,~) which is not provable by mathematics, i.e. 

the goodness of (p,~) is not "a mathematical truth" i.e. it is not 

implied by ZFC despite of the fact that i% happens to be the case that 

(p,~] is good. See N4meti-Sain[ll]Def.2 and Andr4ka-N4meti-Sain[4] 

about " Th ~ (p,~) " -s being a formula of Set Theory. This way 

Thm 2 supports the Henkln-type semantics introduced in Andr4ka-N~meti 

[1]-[~], the consequence concept ( Th ~ (p,~)) of which does not 

have the above shortcoming. 

By T~hm 2 above there exists an output statement (p,~) which is 

valid, i.e. " ~ (p,~)"~ but the validity of which is not a math- 

ematical truth~ i.e. ZFC ~ " ~ (p,~) " • A semantics with this 

paradoxical property was called instable in Andr4ka-N4meti-Sain[4]. 

I% was proved in [4] that any "reasonable" semantics has to be stable. 

Indeed, the Henkin-Zype semantics introduced in Andr4ka-N4meti[1]-[5] 

was proved to be stable there. 

On basis of Thm 21 above an effective inference system for program 

correctness was given in Andr4ka-N4meti-Sain[4] such that if (p,~) 

cannot be proved then there exists a model of ZFC Set Theory in which 
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the program p i s actually not correct w.r.t. ~ . 

too. 

Cf. Andr4ka-N4meti 

A HENKIN TYPE SEMANTICS FOR PROGRAM SCHEMES 

Now to every classical (one-sorted) similarity type d we define 

an associated 3-sorted similarity type td . About many-sorted logic 

and its model theory see Monk[lO], p.4~3. 

As before, d is an arbitrary type. Let t denote the similarity 

type of Pean0 Arithmetic and let t be disjoint from d . The type 

td is defined as follows: 

There are ~ sorts of td : ~ , S , [ called "time , "data ~ , and 

"intensions" respectively. 

The operation s.vmbols of td are the following: The operation symbols 

of t , the operation symbols of d , and an additional operation sym- 

bol "ext" . 

The sorts (or "arities") of the operation s.Tmbols of td : The oper- 

ation symbols of t go from sort ~ to sort ~ . The operation symbols 

of d go from sort ~ to sort ~ . The operation symbol "ext" goes 

from sort ([,~) %0 sort d .: I.e. "ext" has two arguments, the 

first is of sort [ , the~second is of sort ~ s and the result or value 

of "ext ~ is of sort S . Now the definition of the 3-sorted type td 

is completed. 

t,ype 

(i) 

TL d = < TF d , TM d , ~ ~ denotes the 3-sorted language of 

td , see ~Tonk[lO], p.483. In more detail: 

I.e. a model ~6TM d has 

~. three universes throughout denoted by T , D , and 

, S , and T respectively. 

2. Operations "T n ---~ T" originating from the type 

operations "D n --~ D" originating from the type 

an operation extr IxT --~D . 

is the class of all models of t.ype td , see Monk [i0], Def.29.27. 

I, of sort 

t 

d , and 

Roughly speaking, we could say that ~I consists of structures 

TsK t , ~M d , and an additional operation ext: ~ I~T-->E . 
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(iii) 

Therefore we shall use the sloppy notation: 

~ < ~ ' 2 ' I , ex$ > f o r  e l e m e n t s  of TM d . 

(ii) TF d is the so% of first order (3-sorted) formulas of type td . 

Eoughly speaking, we can say that F t and F d are contained in 

T9 d , and there are additional terms of the form "ext(y,T) "~ where 

is a term of type t and y is a variable of sort T . FUrther, 

"ext(y,T) ~ is defined to be a term of sort d . 

~ (TM d × TF d) is the usual, see Monk[10], p.484. 

Now we define the meanings of program schemes p 6P d in the 3- 

-sorted models ~eTM d . Let p ePd be a fixed program scheme. 

Let yl,..,y m be the variables occurring in p . Let ~eTM d be 

fixed. Hecall that I is the universe of sort T of T~ . 

A trace of p in ~ is a sequence <So,.-,Sm> 6 (m+i)I of 

elements of I satisfying (~) below. (Y.e. a trace of p in T6L 

is a sequence of i-sorted elements of q~l .) To formulate (~), ob- 

serve that if s ~ Y then "ext(s,-) w is a function 

<ext(s,z) : zeT) from T into D • We shall use Yo as "the 

control-variable" of p . I.e. ext(so,Z) is considered to be the 

"Value of the control or execution" at time point z . Thus "ext(So,Z)" 

is supposed to be a "label" in the program scheme p . 

(~ The sequence <ext(So,-) ,..., ext(Sm,-) ~ of functions should be 

a histor~of an execution of p in ~ along the "time axis" T . 

The only difference from the classical definition (cf. Manna[9], Andr4ka- 

-N4meti[1]-[5], Gergely[14]~[8])ef a trace of p in ~ is that now the 

"time-axis" of execution is not necessarily <oO,s,+,.,O,l> but, 

instead, it is T . 

Condition (~) above can be made precise by replacing cO with T in 
, r8 the classical definition, see Andr4ka-N@meti[1]-[3] Gergely-~ryL ]° 

The trace <So,...ism~ of p in ~ tel~inates if ext(so,z) 

is the label of the HALT statement, for some z e T • If the trace 

<So,...,s m~ terminates at time z e T then its output is 
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~I D (p,w) holds i f f  
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• Now we define for ~aF d : 

For an arbitrary theory Th-CTF d 

Th ~ (p,~ 

is defined in the usual way. 

for every terminatin~ trace of p 

in ~ the output satisfies 

in ~ . Cf. Def.8 of SraSts-Gergely 

[14], Andr@ka-N~meti[l]-[3], and 

def. of ~ in the present paper. 

the consequence relation 

THEOREM 3 (Completeness of Programverification) : 

Let Th~TF d be recursively enumerable. Then the set 

{ (P,~) ~ PdXFd : Th ~ (P,~) 

of all its consequences is also recursively enumerable. 

Proof: The proof can be found in Andr~ka-Ndmeti-Sain[4]. l~oreovsr, a 

complete inference system is explicitly given there, with decidable 

proof concept. 

QED 

To execute programs in arbitrary elements of T~ d might look counter- 

-intuitive. However, we may require Th to contain the Peano Axioms 

for the sort ~ and some Induction Axioms for the sort ~ o The set 

of these axioms was denoted by Ax in Andr~ka-N@meti[3]. The induction 

axioms for ~ are of the kind: 

for every ~) 6F d . Now the models ~TM d of Ax 

all the intuitive requirements about time and about processes 

in time" . 

do satisfy 

"happening 
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PROPQSITION 4 : 

Let Th~Ax be a subset of 

-H0are provable from Th . 

Then Th ~ (p,~J . 

TF d . Suppose that (p,~) is Floyd- 

Proof is in Andr4ka-N4meti[3]. 
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Introduction 

One of the most studied problem in languages theory is the problem of generating 

fami~ie~of languages from reduced sets of languages in the concerned families with 

only a few operations. We can part this problem in two : find a reasonable set of 

operations E for which the families of languages we want to study are closed, and 

for every family Z closed under the operations of E, find a subset ~ of Z , 

as small as possible (best if composed of one element only), such that every language 

in 2 can be obtained from languages in ~ through operations of E. Call ~ an 

E-base of Z ; if ~ can he reduced to one language only : ~ ={to}, we will say 

that Z is E-principal and that L is an E-generator of Z 
o 

In particular, the most classical cases are : the set E of operations contains 

only rational transduction, a family closed under rational transduction being a ra- 

tional cone [6, 9, 10, 18] or the set E of operations of union, product, star, 

homomorphism, inverse homomorphism and intersection with regular sets, a family 

closed under these operations being an AFL []2, ]3, 14, 15]. These two notions have 

closed connections studied in [5, 14]. But, in both cases, they do not allow to 

describe yet classical families of languages such as the nonambiguous languages 

or the C.F. deterministic languages . To study this last family, W.J. Chandler 

has introduced the notion of AFDL, family closed under inverse gsmmappings (abbre- 

viated as gsm-]), marked union and marked star, and removal of ~ndmarkers. Among 

these opera£ions, inverse gsm mapping is the most powerfull one, and S. Greibaeh has 

studied the ~gsm-]} - principality of some families of languages : She proves that 
-] 

Det, the family of deterministic context-free languagestis not {gsm }-princlpal [17], 

and that Alg, the family of all context-free languages~is [16]. But, when looking 

at the proof of this last proposition, one can notice that all the power of inverse 

gsm mappings is not operating, since only inverse homomorphisms are used. This leads 

to introduce the notion of cylinder, family closed under inverse homomorphlsm and 

interseetion with regular sets : to solve positively the question of principality 

of a family of languages as a cylinder (or C-principality) solves the question of 

principality of this family as an AFDL (or D-principality) - this was done in the 
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case of deterministic realtime C.F. languages [4]-, and a negative answer gives a 

first step towards the solution of this question - L. Boasson and M. Nivat have pro- 

ved that the family of linear C.F. languages is not C-principal [7], and we proved 

that the family of one counter languages is not either [l]. The two notions of AFDL 

and cylinder seem very close to each other and the question arises whether their 

relations are as tight as those between the notions of AFL and of rational cone. 

We study here how the D-principality of a family of languages may reflect its 

C-principality. For that purpose, we introduce, in addition to the usual [ll]notion 
-7 

of gsm ~, the operation of agsm -I (inverse "gsm with accepting states" mapping, as 

defined in []9]), as an intermediate between the set D of operations of AFDL and 

the set C of operations of cylinder. Thus we have : 

D 

1 
{agsm -I} 

{gsm-]}/~C 

We first prove that if ~ is an AFDL which is D-principal with L as D-genera- 
-! 

tot, then ~ is {agsm }-principal and (Ld)* is an {agsm-l}-generator of Z . This 

relation is exactly the same as the one relating the generators of an AFL and its 

generators as a rational cone. We then prove that a family of languages Z closed 
-1% 

under agsm -l is {agsm .-principal if and only if it is (gsm-l} - principal, and 

that it may he {agsm-I}-principal, and not C-principal. 

We give an additional condition for ~ which is sufficient to get this converse. 

We conjecture that this condition is necessary. 

1. Preliminaries 

We assume that the reader is familiar with the classical definitions of languag~ 

theory, as exposed in [I]]. 

Definition ] [I]] : 

A gsm is a 6-uple <X,Y,Q, qo,~,h>j where X and Y are respectively the input 

and the output alphabets, Q is a finite set of states, go ~ Q is the initial 

state, t is a mapping from Q x X in Q called transition function and h is a 

mapping from Q x Y in Y* called output function. 

Definition 2 [19] : 

~agsm is a 7-up!e <X,Y,Q,qo,Q',t jh~ where all the symbols have the same meaning 

as in definition ] and Q' is a subset of Q called set of final states. 

If one forgets the outputs, one has got exactly a deterministic finite automaton 

which will be called the automaton associated to the agsm. 
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and h can be extended to Q x X* in the usual way : 
, 

¥ q ~ Q, ¥x ~ X, Yw ~ X : 

t(q,~ ) = q and t (q, wx) = t (t(q,w),x) 

h(q,c) = e and h lq, wx) = h (q,w) h ~t(q,w),x) . 

A gsm is an agsm in which Q'=Q. 

Definition 3 : 

Given an agsm (resp~ ~. a gsm), we define for all W E X* : 

gCw) =lh(qo "w) if t (qo,W) • Q' 

[@ otherwise 

(resp. g(w) = h(qo, w)), and for all f E Y* : 

-1  X* g (f) -- {w ~ ] g~) =f}. 

We then extend these operations (g and g-|) to operations on languages by : 

¥ e c X* : g(L) = {g(w) I w E L} ! 

¥ M Y* c : g-](M) = {W I g(wJ ~ M} . 

In the following we allways denote by g as well the 7-uple (resp. the 

6-uple) as the operation on languages for anagsm (resp. a gsm), and g-I will 

denote the operation of inverse agsm (resp. inverse gsm). 

Definition 4 [ 8] : 

An AFDL is a family of languages closed under the set D of operations composed 
-! 

of gsm , marked union, marked star, and removal of endmarkers. 

Lemma I [8] : 

An AFDL is closed under intersection with regular sets. 

Definition 5 [ 2] : 

A cylinder is a family of languages closed under the set C of operations 

composed of inverse homomorphism and intersection with regular sets. 

Lemma 2 : 

The sets of operations {agsm -I} and {gsm-l~ intersection with regular sets} 

have exactly the same power. 

Lemma 3 : 

The powers of the sets of operations {gsm -I } and C are incomparable. 

So we have 
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Proposition ! : 

The diagram in the introduction represents the relative power of the sets of 

operations involved. 

Definition 6 : 

Let E be a set of operations on languages, and let ~ ~e a family of langua- 

ges closed under the operations of E. A subset ~ of £ will be called an E-base 

of £ if every language in £ can be obtained from elements of ~ with the opera- 

tions in E. 

Definition 7 : 

In the same conditions, £ will be said E-principal if there exists an E-base 

of ~ reduced to one element only, called an E-generator of £ . 

2. D-principality and {agsm-l~principality 

In this section we state : 

Theorem I : 

Let £ be an AFDL. £ is D-principal if an only if £ is {agsm-1}-principal. 

The sufficient condition is obvious. One has only to prove the necessary condi- 

tion. Amore precise result is : 

Proposition 2 : 

If ~ is a D-principal AFDL with D-generator L, then ~ is [agsm-l}-prineipal 

with {agsm-l}-generator (Ld)* , d being a marker. 

The proof [2] rests on two remarks : 
Remark I : 

If £ is a D-principal AFDL with D-generator L, then (Ld)* is also a D-genera- 

tor of £ 

Remark 2 : 
-I 

The least family of languages closed under agsm and containing the language 

(Ld)* is an AFDL. 
-I -I 

3. {agsm }-principality and {gsm }-principality 

-I In the following, we will allways consider families £ closed under agsm 

The next step in this study is to prove : 

Theorem 2 : 

Let £ be a family of languages closed under agsm -I ~ is {gsm-l}-principal 
-i 

if and only if £ is {gsm }-~rincipal. 

Together with theorem I we get as corollary : 

Theorem 3 : 

f -I . . Let ~ be an AFDL. ~ is D-principal if and only if £ is ~gsm }-prlnclpal. 

To establish theorem 2, as the sufficient condition is trivial, one only has to 

prove : 
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Proposition 3 : 

--] 

If £ is a family of languages ~ich is {agsm }-principal then £ 

-principal. 

is {gsm-1} - 

Corollary : 

If £ ~s a family of languages closed under agsm -! (resp. is an AFDL) which is 

C-principal, then £ is {gsm }-prlnclpal. 
-I 

The idea of the proof is to construct~from an{agsm }-generator of £ , a {gsm -I} 
-l 

-generator using a parity argument : from the {agsm }-generator we derive a new 
-I 

{agsm }-generator in which the length of every word is even, and from any agsm h, 

we define a gsm h' such that the length of the output word is even if and only if 

the corresponding state in the agsm h is a final state. This proof, rather techni- 

cal too, is developed in [3]. 

4. {gsm-1}-principality and C-principality 

The question left is : £ being an{agsm-]}-principal family of languages, is £ 

C-principal ? The answer, negative, is given by : 

Proposition 4 : 

-! 
The least family of languages closed under agsm and containing the language 

{ n yn in > O} is not C-principal. 

From a {gsm-~ -generator L of £ we derive a C-base of £ leading to an 

infinite hierarchy of nested principal cylinders; the problem of proving ~ to be 

C-principal or not becomes proving this hierarchy to be strict or not : 

Let ~ be a family of languages~ closed under agsm -I, {agsm-|}-principal. Let 

L be then a {gsm-]} - generator of £ over an alphabet X, and let a, c and d be 

three symbols not in X. Let Y = X u {a,c,d}and e be the homomorphism from Y* to 

X* that eras~thes~three letters. 

We now consider the following regular sets : 
k+l . y* y* 

¥ k > 0 Sk={f ~ Y*] c is not a subword of f} = \Y*c k+l 

¥ k > 0 T k Y*\ Y* d(X*a) k+l y* = 3 

and R = (d(~X*c+)+) * . 

A word f in R can be decomposed in a product f = gl g2 .... gn where 

gi ~ d(a x'c+) +. Such a subword gi of f will be called a bloc (gi is the bloc of 

rank i). A bloc can be decomposed itself in a product d h I h 2 .... h where 
P 

h.z ~ a X* c ÷. Such a subword h.z of a bloc will he called an elementary factor 

(h i is the ith elementary factor of the bloc). 
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For a word f in R we will call path in f, and denote ~f), the word obtai- 

ned as product of one elementary factor in each bloc of f, if there exists one, 

satisfying the two conditions : 

]. In the first bloc the first elementary factor is chosen • 

2. If the elementary factor chosen in the k th bloc is a w c r with w ~ X*, 

the elementary factor chosen in the ]+k th bloc is the r th elementary 

factor of this bloc. 

We define the families of languages : 

= V k > 0 H k {f ~ R n Skn T k [ e(p(f)) ~ L}, 

¥ k > 0 Hk = {f ~ R n S k I e(p(f)) ~ L} . 

We can state the following proposition : 

Proprosition 5 : 

The family {H k I k > O}(resp. {H~I k > O}) is a C-base of 

As H k = Hk n T k for all k, one has to prove that for every k > O 

H i belongs to ~ and that for every language M in ~ , one can find a language H k 

such that M can be obtained from H k by means of operations of C. 

Now, if we call H= = {f ~ R I e (ply)) ~ L}, we have for all k :H'k=H oS k, 

so if H belongs to £ , ~ is C-principal with H as C-generator. 

Such a language H can be defined in the same way starting from any language 

L, so we will call it H= (L) in the following. 

We get the sufficient condition : 

Theorem 4 : 

Let £ be a family of language~ closed under agsm -] which is {agsm-l}-principal 

with {agsm-]}-generator L. If H (L) E £ , then 2 is C-principal with H (L) as 

C-generator. 

As a corollary, we have : 

Theorem 5 : 

Let £ be a D-principal AFDL with D-generator L. If H ((Ld)*) ~ £ , then 

is C-principal with H ((Ld)*) as C-generator. 

5. Conclusions and open problem 

Let y, y and z be three new symbols not in X, 

be the bijection between X'* and Y* defined by : 

x ~ X:~Cx) = x, b~) = a, b(y) = a, b(z) = d • 

Let b = b -I . b and b are homomorphisms. 

and X' = X u {y,y,z}.Let b 
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We consider the context-free language A generated by the grammar : 

V 0 ~ UX + e 

~ E X U {y} ~2 + U2 ~ + Ul 

vx ~x u {y,~} v3 + v 3  ~ + 

and the regular set B = y +~ X* y ) .+ * 

We define a tranformation which is a kind of substitution : 

For any language L ever an alphabet X, T(L) is defined by : 

T(L) = {z y fl A f2 A f3 ..... Afn_ | Af n B I fl f2 ..... fn e L} . 

Clearly T(L) = b -I (H (L)) and H=(L) = b-| (T(L)) . 

So we can state theorems 4 and 5 with T(L) instead of H (L). 

The following theorem makes it more convenient. 

Theorem 6 a : 

-I 
Let Z he an {agsm }-principal family of languages with {agsm-l}-generator L. 

Then T(L) • £ if and only if Z is closed under the transformation T. 

Theorem 6 b : 

Let Z be a D-principal AFDL with D-generator L. Then T((Ld)*) • £ if and 

only if 2 is closed under the transformation T. 

So the next two theorems are equivalent respectively to theorems 4 and 5. 

Theorem 7 : 

If Z is a family of languages which is {agsm-l}-principal and is closed under 

the transformation T, then 2 is C-principal. 

Theorem 8 : 

If £ is a D-principal AFDL closed under the transformation T, then Z is 

C-principal. 

Alg, the family of all context-free languages, Nge, the largest rational cone 

strictly included in Alg, Det~ the family of deterministic context free languages, 

as well as Psi, the family of realtime deterministic context-free languages, are 

families which are closed under the transformation T. 

Lin, the family of linear languages, and Oel, the family of one-counter langua- 

ges, are not closed under this transformation. 

The former are D-principal (resp. {agsm-]}-principal, or {gsm-I}-principal) if 

and only if they are C-principal. So it is not so surprising if the two proofs of 

D-principality (for Alg []6] and for Psi [2,4)) are in fact proofs of C-princlpali- 
ty of these families. 
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On the other side, though Lin and Ocl are not C-principal [7,]] they may be 

{agsm-]}-principal. We conjecture however, after S.A. Greibach []6], that they 

are not, and also : 

Conjecture I : 

Let Z be an {agsm-l}-principal family of languages with {agsm-]}-generator 

Z is C-principal if and only if T ( £ ) c £ . 

This conjecture can be stated equivalently as : 

Conjecture 2 : 

-I 
Among the families of languages closed under agsm 

transformation T may be C-principal. 

L. 

, only the ones closed under 
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I. INTRODUCTION 

Data types have been introduced in programming as a unifying concept in the defi- 

nition of machine independent constructs. Traditionally, several particular aspects 

of such constructs are used for their definition, emphasizing seemingly independent 

principles of classification : 

- data types as sets of values, such as the integers, the reals, binary trees, ete; 

- data types determined by an access function or, more generally, some scheme if im- 

plementation; for example, Random Access Memory, arrays, lists or files with a par- 

ticular mechanism for their access and updating, etc... (note that these data types 

may be quite arbitrary when considered as a value-set); 

- data types considered as a set of functions or operations on an appropriate, but 

variable value-set; e.g. procedures with parameters of variable type. 

Recent research in the theory of data types has been highly influenced by the 

work of D. Scott [~,2] and by the (related) category-theoretic definitions of data- 

types (e.g. [3,4]). In this theory, effective computability has been introduced by 

the a-posteriori restriction to computable subcategories or to finitary categories, 

see [4]. Another problem - as pointed out by ADJ [5] - is the derivation of appro- 

priate domain equations for the data types we want to define. 

The solution which we are p~oposing here is quite close to Scott's theory since 

it is essentially based on a model for the (typed) lambda-calculus, due to Ju. L. 

Ershov [6,7], who develops this model in the framework of the general theory (cate- 

gory) of numbered sets. Computable data types may then be defined as computably num- 

bered families of computabl~ objects, forming a sub-category closed in particular 

under exponentiation (function space). 

We feel that the above mentioned kinds of data types have different roles ~hlch 

should be distinguishable within a general unifying theory. 

In the first place, each data type (data set or function) has a variety of dif- 

ferent implementations. Addressing schemes and thereby implementations are closely 

related to the numberings of the elements of data, therefore we believe that our m~- 

del well suits the definition of data types together (or without ~ a specific addres- 

sing or implementation - at least to some extent. 
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Secondly, we think that finite data types have a special significance. Their 

structures, mathematical as well as computational, have often been extensively stu- 

died and the more general types should he definable from them. Therefore our defini- 

tion is based on the numbered sets of objects which have a reeursive basis, i.e., 

which may be computed with any desired degree of approximation from strongly computa- 

ble families of finite data objects whose inclusion relation is a recursive partial 

order. 

The basic notions of Ershov's theory and the definition of computable domains on 

a rectursive basis are briefly stated in the first section. Next we give formal defini- 

tions of two well-known syntactic data types. These definitions are based on closure 

operations : the third section contains some basic facts and relations concerning re- 

tracts, domains over a reeursive basis, effective closure and contraction-operators. 

Our data types are not closed under union or intersection, but both union and in- 

tersection may be embedded in some data type. 

Notations : N the integers, ~ the class of recursive functions, ~ the class of 

{x I ,x n} Xl Xn r.e. sets; D x is the finite set ,... with canonical index x = 2 +...+2 

D is a canonically r.e. class of finite sets iff D = {Df(x) IX~N} for some f~ . 

2. EFFECTIVELY COMPUTABLE DOMAINS 

We consider numbered sets or, more generally, numbered families of objects : 

(A,~) is a numbered set if ~: N+A is onto (Ershov [6,73). 

Let~ he any class of functions and let @ be a mapping from (A,a) to (B,~). Then 

is an]F-morphlsm iff there is an fe~ , f : N÷ N, such that ~o~ = fo~ . Let 

Mor((A,~),(B,8)) stand for the class of all~-morphisms from (A,a) to (B,~). 

The class of all numbered sets together with their morphisms forms a category N; 

effectively computable data-types are to be defined as a sub-category closed under 

product and exponentiation (function-space). 

Let (A,a} and (A,a') be two different numberlngs of A. Then f~]R reduces ~ to G' 

~' , iff ~ = fo~'. 

Let R = ~E~w) be the family of r.e. sets numbered by ~, the standard numbering 

of Post. A numbered set (of sets) S = (~,~) is an R-f~y (S,~), if ~ : S+R is a 

monomorphism. Such a family corresponds (up to an equi~alence) to a subset ~ ~I~E, 

numbered by ~ such that ~ with B the identity-mapping from ~ to l~E. 

An R-family S such that for some g , g e~, 

~O~ O M = 7[ 

i s  an £f~e~v~.~£y principal R - f a m i l y  i f f  : 

N <  N 
g 

(i) ~ is principal i.e., every numbering ~' of S is such that [~' ~w=>~'~ 9], 

(ii) a GSdel number for g may be effectively determined from a GSdel number for a 

numbering of W(S). 
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For any numbered set A = (A~a), the numbering a induces a quasi-ordering : 

Ya0, oi£~ A, a ° ~ a I <=>¥A o, A ° _c A(~-I(Ao) r.e. & ao~ Ao => al¢ Ao) 

Let S = (S,~) be an effectively principal R-family (S,~). Then the following 

properties may hold for ~ ~ ~ and g : 

(a) Vxxc~-]o~(S) ~g(x) = ~(x) , 

(b) Vx x ~ N ~Vg(x) ~ ~(x), 

(c) ~ ~ ~ Mor(R,S) such that ~oW is the identity morphism on S. 

An R-f@mily satisfying (a) and (b) above is a special standard class (S-class, 

Lach!an) or sn-family (Ershov). An R-family satisfying (a) and (c) is a R-retract 

(Ershov). 

It can be shown (Lachlan,Ershov) that if (S,p) is an S-class, then there is a ca- 

nonically r.e, class of finite sets ~ such that : 

(i) Cs ¢ , 

(ii) R~ <=>REIKE & there is a monotone sequence of sets from ¢, 

F ° ~ F I c ... c F. c . ~. such that R = U{F. Ji c N}, 
- -  --i-- i l 

(iii) VReS ~ ~F _oN (F_c R & F finite=>(~F o~ ¢) (F _~ Fo --c R)). 

(iv) for each computable chain (Rili ~ N) of elements from $ such that 

R i ! Ri+ I for all ie N, R = U{Rili eN} belongs to S . 
1 . . 

It follows that the S-classes are partlally ordered (p.o.) families of r.e. sets 

and that they are complete for the lub's of computable chains. 

Among the effectively principal S-families we want to distinguish those which 

have a recursive basis : Let (D,~) be a po-set; B ! D is a basis for (D,~) if ¥x , 

x e D , ~C ! B, C an m-chain of B such that x = lub C ; (D,~) is ~-chain-cQmplete 

if every denumerable chain has its lub in D . Call an m-chain a e-chain iff it is 

computable. 

Let S = (S,v) be an S-class. If @ is the system of finite sets of S, numbered 

by @ so that @ ~fin" then ¢ is a po-set with smallest element ¢ : (¢,~,¢). 

Definition I. $ is a recursive basis of S iff (¢,!,¢) is a recursive upper semi- 

lattice (partial) iff 

(i) the boundedness-predicate U¢(@(x),¢(y)) <-->~z[¢(x) ! ¢(z) & @(y) ! ¢(z)]is a 

recursive predicate over NwN , 

(ii) Vx Vy[U¢(@(x),¢(y~] =>lub(@(x),@(y)) is defined and {<x,y,z>l¢(z)=lub(¢(x),¢(y))} 

is recursive. Then we have the following : 

Definition 2. A po-domain • is effectively computable if : 

(i) • has a recursive basis ¢ , 

(ii) • is c-chain complete , 

(iii) there is a numbering ~ of~ and a morphism ~ such that ((D,6),~) is an S-class. 

The retracts of computable domains (according to Definition 2) form a sub-catego- 

ry of N c!osed t under product and exponentiation : let S O and S I be retracts of effec- 

tively computable domains with recursive basis (¢o,@o) and (¢i,@i) resrectively and 
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let Mor(So,S I) be the set of all~-morphisms from S ° to S~ - Then Ershov's theorem 

[7] states that the numbered set (Mor(So,S]),v) is a retract of an effective computa- 

ble domain generated by a reeursive basis (a recursive partial ~pper semi-lattice). 

3. DEFINITION AND SPECIFICATION OF COMPUTABLE DATA TYPES 

We now turn to the definition of a certain class of computable data types which 

have been called syntactic by Mayoh [8] , since there is a set of formal expressions E 

(and a grammar for E) such that the data type is generated by E. 

We first state our main definition, which is based on the effectively computable 

domains of the preceding section, then we discuss two examples of syntactic data types 

and make more precise our definition of computable data types. 

Let @ be some canonically r.e. class of finite sets such that (¢,~,~) is a re- 

cursive upper semi-lattice (partial) and let ~ stand for an effectively computable 

domain on basis @. 

Delian 3. An effectively computable data type is a retract of some effectively 

computable domain ~. 

In particular, any retract of ~,w) having a recursive basis ¢ is a computable 

data type. 

The first example are the binary trees. Viewed as a numbered set of objects, bi- 

nary trees are closed subsets of a po-set; the set Af of finite trees form their re- 

cursive basis. The numberings of the nodes and of the trees have respectively to be 

compatible with the basic partial order. 

Let DY denote the set of dyadic numerals (integers on the alphabet (],2)); 

d : N ÷DY is the lexicographical numbering of the dyadic numerals (which is one-one 

and onto, i.e., a bijection). 

Define the inclusion ordering in DY by : x ~ y<=>~z xz = y for all x,y c DY 

and accordingly x ay = glb(x,y). 

Then a binary tree (of dyadic numbers) is a set of dyadic numbers closed down- 

ward under the inclusion ordering : d(Dx) is a binary tree <=>Vu Vv u ~ d(Dx) & 

vsd(D x) ~>uAv~ d(Dx) & Vu ¥v Vp u~ d(Dx) & vc d(D x) & UAvcp ~ u or 

u^vcp ~ v ~>p~ d(Dx)- 

Therefore, finite trees may be defined by an effective closure operation 

CI(D x) := {d-](u) IVp Yq, p,q~ d(D x) [pA q ~ U ~ p O~ p^ q ~ U ~ q]}. 

I D x if d(Dx) is a binary tree 
Define Df(x) := 

CI(D x) otherwise 

Then (Af,~) is a recursive upper semi-lattice of dyadic trees (as closure over P0(N) 

it is even a lattice) and ({Df(x) IX E N},~) is a recursive upper semi-lattice of inte- 

ger trees, ~ and @ being defined so that the following diagram commutes : 
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% <- % .... Cl(~(~)) <, gl ~(~) }(x) = ~l(~finf(X)) 

N id N ~ N f > N e = ~ o d 

Finite binary trees of S , where Sis any numbered set ~ may be defined in a similar 

manner; infinite trees can be obtained by the lub's of c-chains of finite trees. 

It should be interesting that a syntactic definition of the finite dyadic trees 

may be obtained from a recursive form of the closure operator : Let u =p,q(~mi (Dx) p^q 

and let L{Dx)(R(Dx) ) be the set of left (right) sons of u in d(Dx); 

put Dxl := d,1(L(Dx)) and Dx2 := d-1(R(Dx)) and define : 

i¢ if Dx= ¢ 
CI(D x) :: d-1(u) UCl(if D x = ¢ then ¢ else d-1(ul) uD x ) 

UCI(if D I ¢ then ¢ e2~e d-1(u2) UDx 1) 
x 2 2 

where u~ and u2 designate the immediate successors of u in the dyadic tree of root u. 

This (bottom-up) definition of a closure can he used to write down a grammar 

(with parallel rewriting rules !) for the (top-down) generation of the dyadic trees : 

A ::=AIDY(A,A)IDY(DYI(A,A),A)IDY(A,DY2(A,A)) 

A ::=DY(DYI(A,A),DY2(A,A)) 

where A denotes the empty tree and DY some dyadic numeral. 

This grammar produces the usual parenthesized form of binary trees. Note the dif- 

ference with the grammar : A ::= AIDY{A,A) which corresponds to the equation for bi- 

nary trees of [23 or [3] : A ~ ~ + DY × A x A . 

The solution of this equation is the set of all trees with their nodes numbered 

in all possible ways. This is not our data type "binary tree", since it lacks the un- 

derlying partial order. 

Our next example is the usual test-case for syntactic data types, namely the 

type Stack (S). Consider Staek(DY); let Sf be the set of finite sequences of dyadic 

numerals which are the values of this type. At each moment, the stack may be descri- 

bed by a stack-configuration which is ~A or ~X, X e DY whenever it is defined and is 

else. 

Then the type Stack (DY) (or Stack (D) if D = {1,2}) is an algebra of finite 

functions from DY to DY, generated from the basic functions by composition : 

Stack(D) = (DY;New,Fush,Pop,Top). 

These basic functions are defined as usually; Push and Top are considered as the in- 

put - and output ikmetions, respectively. 

Let now SF be a set of formal expressions defined by the grammar : 

SF ::= Push(SF,D)IPop(SF)ITop(SF)INew 

D ::~ ~12 

where SF stands for "stack-function". If we define the functions Push,Pop and New by : 

Push(New,d) = ~d ~d cD 
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Pop(Push(x,d)) = x Yd ~ D , Yx ~ Cf (the set of configurations) 

Pop(S) = 

then a relation < is induced in the set of stack-configurations by Yx ¥y 
s 

x <s y <=>Y = Push(x,1) Or y = Push(x,2) O& y = Pop(x). Each formal expression f ~ SF 

now determines a unique stack-sequence y ~ Sf i.e., a finite sequence of stack-confi- 

• such that x 0 = New and ¥i, O~i<n, x. ~ x. gurations Xo,Xl,.. ,x n l s i+I" 

The set of configurations Cf can be taken as the labels of the nodes of a terna- 

ry tree (with repetitions) whose branches are the stack-sequences. Let V be a numbe- 

ring of this tree• 

Each formal expression f ~ SF defines an input-sequence xf in an obvious way. 

A finite (stack-computable) function F is simply a finite set of formal expres- 

sions and (equivalently) the finite set of corresponding stack-sequences, subject to 

the following compatibillty-condition : 

Yf Yg f ~F & g ~F & f # g--~xf ~ Xg . 

Let D x be a finite set of indexes of nodes in the tree of stack-configurations; 

let c denote the inclusion-ordering of the ternary numerals. Then the set : --t 

Cl(Dx) = <~-1(p)[p ~ q for some q~(D )} = Dr(x) 
is an index-set for a set of stack-sequences. 

Then define ~ Df(x) if the corresponding stack-sequences are compatible 

Dgf(x)= I the smallest compatible extension of Df(x) ~ otherwise 

Zt can be shown that (~Dgf(x) IX c N},~,~) forms a recursive partial upper semi- 

lattice of (indexes for) finite stack functions- we omit technical details. 

4. COMPUTABLE DOMAINS AND RETRACTS 

The preceding examples show that effective closure operations are likely to be a 

very useful tool for the definition of retracts. Each of these example-types was defi- 

ned by a closure and also had a recursive basis of finite sets. Do these properties 

hold for all retracts ? 

We investigate here relations between computable domains over a recursive basis 

and retracts. 

Let F be an effective closure operator, i.e., F is extensive, monotone and idem- 

potent and there is a recursiv~ g~l~ such that F(wx) = Wg(x ) for all x . 

Let (Q,~) he the set {F(Wx)IX~N} numbered by ~, V_<w by f, let I~ be the iden- 

tity morphism on ~• 

W if W is a closed set 
x x 

Put Wf(x) := CI(W x) = Wg(x ) otherwise . Then we have : 

PJtopos~n I. a) There is a closure F such that ((~,V),I~/ is not an S-class 
P 

b) If Yx [F(Wx)-W ] is r.e. then ((~,v),1~) is a retract of (~,w) . 

Corollary : In general, (@,v) does not have a recursive basis (of finite setS) . 
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P~oof ; 

a) ~, 
<. F -I 
------y~ pvg(x) = ~(x) for xc~ (~(~)) 

P=]~ t and ~Vg(x) ~ W(x) otherwise for an S-class; 

i ~g(x) = ~f~(x), so Wfg(x ) = Wg(x ) = w x for x ¢ -1(p(~)), 

<- g which contradicts the above condition. 
N - - >  N 

f 

b) To show : f is a recursive function if F(W ) - W is r.e. for all x . 
x x 

Let C = - W be r.e., ( x Wg(x) x W if C = 
x x 

put Wf(x) = Wg(x ) if C x # ¢ 

which reads : enumerate all of W x in Wf(x) as long as C x = ~, then, if some y appears 

in C x , enumerate all of Wg(x ) in Wf(x). Hence f is recursive. [] 

Now let (¢,c ~) be the recursive basis of some computable domain and let F be a 

closure operator mapping finite sets to finite sets. Then, by we~ll-known properties 

of closure operators : 

Fact : An effective closure F of a reeursive upper semi-lattice is a recursive upper 

semi-lattice. 

If @ is a numbering of ¢, then 

Sup¢(@(x),¢(y)) =@(x) U¢(y) c@ => SuPF(@)(F(¢(x)),F(¢(y))):F(F(¢(x)) uF(@(y))) sF(@). 

We are now able to state a necessary and sufficient condition such that the re- 

tract of some computable domain ]D is also a computable domain : 

ProposxJJ~on 2. A retract Q of some computable domain D has a recursive basis (of fini- 

te sets) iff there is some idempotent contraction-morphism D such that ~D) = Q. 

Proof: Suppose ~ has a recursive basis (¢,@) ; let ~ be I~. 

For all x ~ define a recursive g clq by the following effective procedure : Enume- 

rate W x in steps and thereby enumerate Wg(x ) in steps; at step n we have ~ ~(x) and 

x Wn - gWn(x); at step n+1 enumerate a new yeW ; if ~¢(i) c¢,@(i) _c (W~--U {Y} & 
x + wn+1 +I 

@(i) ~ W~ then enumerate @(1)" n(~ - ~g(x) U{y})in" ~g(x)1 else put y in ~ - ~g(x)" 

This defines Wg(x ) as 
i W if W = D{@(i)Ji~w n} fo~ some n 

Wg(x)= x x l 
U. ¢(i)Ii6 W } otherwise. 
l n 

Note that WB(x) c_ W x ; now let P(Wx) = Wg(_x). p is a contraction and 

~(~(Wx) ) = P(Wx) by definition. Take ¢ = {B(Dx)IX£ N}. 

Conversely, let p(W x) = W be a contraction morphism (so that g represents ~) 
g(x) 

such that ~p(W x) = ~(Wx). Then, for all x, w~g(x) c ~(x), since ITfg(~) = wg(x), 

Wg(x ) ~ W x and ~vg(x) = ~(x) for all x such that Wx = ~g(x); f being defined as in 

Proposition I. 

Hence Q is ~ S-class. ~ is also a computable domain, since p maps all finite 

sets to finite sets and preserves the recursive order relations. [] 

5. UNION AND INTERSECTION OF COMPUTABLE DATA TYPES 

The definitio~of polymorphic functions, of parametrized types and procedures 
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require some rule how data types should be compared, how sub-types, union-types and 

intersection-types are to be defined. We show that computable data types are not clo- 

sed under union or intersection. 

Let D = 0D,~/) be an effectively computable data type and (~,~) its recursive 

basis. By definition, D is the closure of ¢ under c-chains; D is c-chain complete and 

- inductive. 

For some R s~ , define cR by cR = {¢(i)[¢(i) _c R}. Then we have: 

i~ : #R is a directed set and is an order-ideal in ~. 

Consider two computable data types 9 0 = (~90,~0) and (]31 '~)I ) with recursive basis 

(@0,@0) and ($i,~i ~ respectively. Suppose that the intersection ~ON])I contains some 
R R 

infinite set R. The sets ~0 and ~I generated by R in ~0 and in @I respectively are 

ideals and if 

R = ~{~0(x)IC0(x)~¢0 R & x EWn0} and R = V{C1(x)l~1(X)l ¢~I & XeWn I } ' 

then ¥ ¢0(x) , xsW n , ~¢i(u) ,ueW n [¢0(x) c__ @1(u)] , 

and V ¢i(y) , Y~Wn0 , ~¢0(v) , v~W I [¢4(y) c ¢0(v)]. 
• 1 n i : 

This relatlon may be extended to the i~eals of ~0 and of ¢I 

D~6i~itg0n 4. Let A and B be order ideals of @0 and @I respectively, then ~ and 

are cofinal iff ¥ @0(x) ~¢i(u) [#0(x) eA & @1(u) eB ~ @0(x) ~_ ¢i(u)] , 

¥ ~1(x) ~¢0(u) [~0(u) ~ ~ ¢i(x) ~ ~ ¢i(x) _~ Co(U)]. 

P/tOpOSi/JiOn 5. The computable data types are not closed under union or intersection. 

Proof; The intersection P0 n D I does not contain finite sets if P0 nD1 has incomparable, 

but cofinal basis in ~0 and ¢I " 

Clearly, each R~D0nD I is generated by some cofinal A c ~0 ' ]~c¢I , but the 

closures with respect to c-chains of A and B respectively are not identical in general 

if C is a c-chain of& and lub C = R 0oR then R 0 is the lub of some e-chain ofB iff 

there are cofinal ideals A' cA and B'c ]B generated by i~ 0 in @0 and in ¢I respectively. 

Let ~0' --c ~0 and @I' ,c ~I be the greatest eofinal subsets of ~0 and ¢1 respectively. 

The union ¢ = ¢~ U@~ is still a poser with a recursive boundedness-predicate if each 

of ~ and ~ is, but it is not any longer an upper semi-lattice, since 

U¢(¢o(X),@1(y)) =~>~$1(v)[¢0(X) _c @1(v)] & U~ (@](v),$1(y)) ~and 

U@(@o(X),¢1(y)) =>~¢o(U)[¢1(y) c ~)o(U)] & U¢1(@o(X), @ (u)), 
-- 0 0 

so that there were two different lub's : lub@ ($1[v),¢1(y)) and lub¢ (~0(x),$o(U)) , 
• . I . 0 a eontrad~etlon. Hence the non-closure for the un~on. [] 

In order to obtain an upper send-lattice ¢ has to be completed by lub's for all 

(~0(x),$1(y)) belonging to eofinal sets. Different completions can be obtained; 

the problem if there exists a least completion # of # or, more generally, a least com- 

putable data type P containing the intersection P0 nD1 (or the union P0WP]) seems 

to be an open problem. 



236 

REFERENCES 

I .  SCOTT D.,  O~line of a mathematical theory of comp~gation. Proc,  4th Ann. 
Princeton Conf. on Information Sciences and Systems, pp. 169-176. 

2. SCOTT D.~ Data type as £~ttie~. SIAM J. Computing, Vol. 5 Nr 3, September 1976. 

3. LEHMANE D.J., SMYTH M.B., D~t~ type6. 18th Ann. Syrup. Fondations of Computer 
Science, 1977, pp. 7-12. 

4. SMYTH M.B., PLOTKIN G.D., The Category-Theor~c Solutions of Reeu~sive Domain 
Equations. 18th Ann. Sym, p. Foundations of Computer Science, 1977, pp. 13-17. 

5- THATCHER J.W., WAGNER E.G., WRIGHT J.B., Data Type Specification; P~m~t~za- 
Zion and the Power of Specification Technique6. Proceedings of the Tenth Ann. 
ACM Syrup. on Theory Computing 1978, pp. I]9-132. 

6. ERSNOV Ju.L., Theorie der Num~erungen I., Zeitschr. f. math. Logik und 
Grundlagen d. Math. Rd. 19 (1973), pp. 289-388. 

7. ERSNOV Ju.L~, Theo~e d~% Num~erungen If, same Zeitschr. Bd 21 (1975), 
pp. 473-584. 

8. MAYOH B.H.~ Data Type6 ~ Fun~t6ons, Proceedings MFCS'78, Springer Lecture Notes 
in Computer Science pp. 56-70. 



PROGRAM EQUIVALENCE AND PROVABILITY 

G. COUSlNEAU 

L . I . T . P .  

Un ivers i t~  PARIS VI 

75221 - PARIS 5 - FRANCE 

P. ENJALBERT 

THOMSON-CSF/LCR 

Domaine de Co rbev i l l e ,  B.P.IO 

91401 - ORSAY - FRANCE 

SUMMARY 

Given a Hoare-like deduction system in which can be proved partial correctness 

assertions of the form [P] S [Q],where S is a program and P, Q are first-order for- 

mulas, we are interested in the following question : "If |~-[P] S] [Q]([P] S] [Q] is 

provabl~ and S 2 is equivalent to $I, does it imply that|~'[P] S 2 [Q] ?" we prove 

here that the answer is yes for syntactic or lanov equivalence although it is no 

for Paterson equivalence or any semantical equivalence. The proofs are based on a 

syntactic tree formalism for program semantics (COUSINEAU-NIVAT [5], COUSINEAU [6]) 

and the existence of a complete proof system for these trees. 

INTRODUCTION 

Most of the papers published in the last three years concerning Hoare Logic 

have concentrated on the problem of completeness. Following COOK [3], most of the 

authors have assumed that the expressivity of the assertion language was a reasona- 

ble requirement and studied whether or not it implied completeness in different sen- 

ses for various classes of programs (see for instance CLARKE [2], HAREL, MEYER, 

PRATT [10], GORELICK [9]). On the other hand, very little attention has been paid to 

the cases where the assertion language is not necessarily expressive and consequently 

incompleteness occurs even in the simple case of flowcharts. Yet many interesting 

computation domains such as trees, lists etc.., have no expressive language. It seems 

to us that lack of interest comes from the fact that people had no tool to compare 

different kinds of incompletness. A Hoare like system can be incomplete for some 

stupid reason (one has forgotten to put a rule for concatenation into it) or for some 

much deeper one (see : APT, BERGSTRA, MEERTENS [i], WAND [14]).Here we propose the 

following method : any Hoare like system induces an equivalence between programs in 

which two programs are equivalent iff one can prove the same thing about them. (Let 
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us call it equiprovability). The classification of these equivalences will give in- 

formation about the power of the proof system. In this paper, we begin with comparing 

this new equivalence with more traditional ones. For the purpose, the syntactic tree 

formalism that we use seems much more appropriate than the language theory formalism 

used so far by dynamic logic, as it will appear in the following. 

I - PROGRAMS AND PROGRAM TREES 

Given a first-order language L defined on sets P, F, V respectively of predicate 

symbols, function symbols and variables, we denote by Form (L) and Term (L) the for- 

mulas and terms of L. We call test any atomic formula and assignment any pair x÷u 

where xEV and u~Term(L) 

We denote by Te and As the sets of tests and assignments. Given a set 

Ex={~i/i~ N} of exit instructions, the programs we consider are expressions built 

according to the following rules : 

- An assignment or an exit instruction is a program • 

- If S I, S 2, S are programs and r is a test, then 

S l ; $2, if r then S] else S 2 fi~ and do Sod are programs. 

The instruction do od is to be interpreted as a doforever and ~i as instructions 

that cause an exit of i embedded do loops if i>0. ~0 is introduced for homogeneity 

and just passes control to the next instruction. The use of this kind of loop causes 

some modification in the rule of our proof system compared to that of Hoare but is 

very rewarding in defining semantics of programs. 

Giving respectively arity 0, I and 2 to symbols of Ex, As and Te, we call tree 

program (MANNA [13~ any finite or infinite tree built from these alphabets. 

The set of tree programs would be denoted M (Te D As D Ex) in the notations of 

COURCELLE-NIVAT [4]. To any program S is associated a tree program t(S) called its 

syntactic tree which is intuitively the tree obtained by splitting all its junctions 

and unwinding all its loops. Formally, the syntactic tree t(S) associated to a pro- 

gram S is defined by COUSINEAU-NIVAT [5] in the present symposium. 

For our purpose it is convenient to define the semantics of programs via their 

syntactic tree~.To do that we use the Doner formalism [7] in which a tree program is 

a partial mapping t:{l,2}**Te U As D Ex satisfying the following conditions : 

(i) Vm,m'~{l,2}* m E dom(t) and m' is a left factor of m imply m' e dom(t), 

(ii) Vm e dom(t) t(m) belongs to Te, As or Ex according to the fact that the 

number of i e {1,2} such that mi e dom(t) is 2, I or 0. 

(mi denotes the concatenation of the word m and the number i considered 

as a symbol.) 
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we shall denote by t/m the subtree of root m in t defined by (a/m)(m')=a(m m'). 

Let I be an interpretation of the language L, D I the domain of I and {fl/fCF} and 

{pl/peP} the interpretation of function and predicate symbols as partial functions 

and predicates over D I. To every term u e Term(L) corresponds some partial function 

u I and to every formula w E Form(L) corresponds some partial predicate w I. If a pro- 

gram or a tree program uses k variables x],...,Xk, for any u or atomic w appearing in 

it, we consider u I and w I as k-ary. Given a data (an element ~ E D~) a tree-program 

k defined as follows : t performs a computation {(ei,Si )} ~i ~ dom(t), 8 i e D I 

- ~o=C ~o=~ 
- if t(~i)='x.+u' ~ As,then if Ul(~i) is undefined, the computation stops and 

3 
its result is undefined;otherwlse ~i+]=~i ] and 81+| is 81 in which the jth 

element has been replaced by nl(~ i) 

- if t(ei)=w E Te, then if Wl(Si) is undefined, the computation stops and its re- 

suit is undefined;otherwise 8i+i=8i and ei+l=ei I or e. 2 depending on whether 
i 

Wl(Si) is true or false. 

- if t(ei)%, the computation stops and its result is tl(d)=(Si,J).If a program 

S has been correctly written, t(S) contains only ~0 but the trees associated 

to its parts can contain ~i for i>0. That is why the result of a computation 

is both a value and a level of exit. 

So to every tree program using k variables and every interpretation I is asso- 

ciated a k-ary partial function t I. To every program S and interpretation I is asso- 

ciated SI=t(S) I. 

Now, we can define between programs the following equivalences : 

(1) Syntactic equivalence : SIES 2 iff t(Sl)=t(S2) 

(2) Semantic equivalences : SIEoS 2 iff $11=$21 for all I belonging 

to some class P of interpretations. 

Syntactic equivalence is stronger than any semantic equivalence. Moreover, bet- 

ween semantic equivalences we distinguish Paterson equivalence which is stronger than 

all the others : S]EpS 2 iff S]I=S21 for all interpretatiorsl. 

It is well known (see : LUCKHAM, PARCK, PATERSON E~2]) that in this definition 

"for all interpretation" can be replaced by "for all free interpretation". A free 

(or Herbrand) interpretation H is an interpretation in which the domain is Term(L), 
+ 

the functions fH are symbolic and the data is always taken to be x=(xl,...,Xk). To 

every program tree t we associate functions Cond t and F t which, given any point 

m E dom(t)) give Condt(m)=a finite conjunction of atomic formulas such that for any 

interpretation I satisfying it the computation of t for I will reach the point m 

and Ft(m)~the value of the variables at point m in any free interpretation. We shall 

also w6te Condt(m,m' ) and Pt(m,m') for Condt/m(m' ) and Ft/m(m' ). 
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Finally, for F ~ Form(L), u ¢ Term(L), x a variable, F u is the result of substi- 
x 

tuting u for every free occurrence of x in F. 

I I  - DEDUCTIVE SYSTEMS FOR PROGRAMS AND PROGRAM TREES 

A general study of such deductive systems can be found in ENJALBERT [8]. Here we 

introduce a new one, for so-called "Program trees with assertions"~and give some 

results needed to prove the announced theorems. 

PROGRAM TREES WITH ASSERTIONS (p.t.w.a.) 

Let L I E L 2 be two first order languages. A p.t.w.a.on (L],L2) is a couple 

T=<t,a> where : 

- t is a program tree on L I 

- a is a mapping : dom(t) + Form(L2)u{U} 

(U=Undefined ; that is : a is a partial mapping : dom(t) + Form(L2)) 

Set dom(T)=dom(t). There is an immediate extension of the magma operations for 

pot.w.a. : <r,F>(T],T2) and <x-eu,F>(T]), for r a test, x+u an assignment, 

F E Form(L2)u{U} , and T], T 2 two p.t.w.a. . Same remark for the syntactic order. 

THE DEDUCTIVE SYSTEM FOR p.t.w.a. 

In a program tree many exit symbols mi may occur. To define partial correct- 

ness of program trees we shall not consider a single exit condition but associate 

one condition to every ~i" 

A set of exit assertions in L is a sequence of formulae in Form(L) : Q=(Qi)ie N, 

a finite number of which are different from True. 

Let L I E L 2 be two languages. We are interested in triples [P] T [Q] where T is 

a p.t.w.a, on(L|,L2), P s Form(L2), and Q is a set of exit assertions in L 2. 

The next step is to define two functions Wp (Weakest precondition) and Pr 

(Premisses) in the following recursive way : 

For T, Q as above, T finite, Wp(T,Q) e Form(L 2) and Pr(T,Q) is a finite set 

of triples [P'] T' [Q] . 

I st case : T=<t,a> with K(E)~U 

- Wp(T,Q)=a(e) 

- Pr(T,Q)={[a(£)]<t,a'>[Q]}, with a'(e)=U and Vm~e a'(m)=a(m) 

2 nd case : T=<t,a> with a(e)=U 

If t(e)=~ i - Wp(T,Q)=Q i 

- Pr(T,Q)=~ 
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If t(g)=x~-u, then T=<x~u,U>(T I) 

- Wp(T,Q)=[Wp(TI,Q)] ~ 

- Pr(T,Q)-Pr(TI,Q) 

If t(g)=r, then T=<r,U>(TI,T 2) 

- Wp(T,Q)=(r-~Wp(T|,Q))A(~r*Wp(T2,Q) ) 

- Pr(T,Q)=Pr(TI,Q) u Pr(T2,Q) 

The deductive system r provides proofs for formulae which are either triples 

[P] T [Q] or formulae in Form(L2), relatively to any first order theory T written 

in L 2 . 

Axioms : 

R u l e  l : 

T I~I T F if F E Form(L2) and T I'-- g 

If T is finite : 

T ~-- P+Wp(T,Q) T ~ Pr(T,Q) 

T IL~-EP] T Eq] 

Rule 2 : If (Tk)k¢ K is a directed family of p.t.w.a. : 

VkEK T [T~-[P] T k [Q] 

T l~ [P ]  ~uh(~ k) Eq] 
kcK 

The meaning of assertions in p.t.w.a, should be clear from the following Path 

Theorem. In particular, the reader can convince himself that T~-~T [P]<t,a>[Q] iff 

in any model of T, t is partially correct with respect to P, Q and the intermediate 

assertions in a. 

The Path Theorem 

T IT~-[P] T [q] (T=<t,a>) 

<--> Vm~m'~m" ~ dom(T), a(m) and a(m')~U, t(m")~ i : 

(I) T ~- (P^Condt(m)) ÷ a(m)(Ft(m)) 

(2) T ~- (a(m)ACondt(m,m')) ÷ a(m')(Ft(m,m')) 

(3) T ~- (a(m')ACondt(m',m")) ÷ Qi(Ft(m',m")) 

THE DEDUCTIVE SYSTEM ~ FOR PROGRAMS 

We consider triples [P] S [Q] as before, except that S is now a program. The 

system ~ is quite classical but for rule 7-3 which is an extension of the usual 

while-rule. 

Axioms : T IT~[P]  ~i [Q] if T ~I~i. 
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T ]~=-[P]S[Q] 11-2 

T [~--[P~]x÷u;S[Q] 

~-3 T I~[P]S[(P,Q0,QI .... )] ~-4 T ~[P]S[Q] 

T l~-[P] do s od [(Q0,QI .... )-7 T ~--[P']S[Q] 

~-5 _.T I~[P]SI[Q] T [~[Q0]S2[Q'] if vim0 Q'i:Qi 
T [~.-[P]S I ; s 2 [ q ' ]  

T I~-[P^rlSlEQ] T [~-[P^~r]S2EQ] 

T I~-- [P]  I f  r then S] else S 2 f i [Q] 

if T~-P'÷P 

has the usual properties (see ENJALBERT [8]).For instance, validity is a 

consequence of the lemma ] in section III and the Path Theorem. 

I11 - PROGRAM EQUIVALENCE AND PROVABILITY 

PATERSON E~UIVALENCE 

Theorem I : There are two programs S]E p S 2 , and (P,Q) 

~uch that : I~[P]SI[ Q] but Not ~[P]S2[Q] 

For any assignment A, the trivial program Sl=do A ; m0 o d never halts in any 

interpretation, and ~ l~--[True]S1[False]. But {S/[Trne]S[False] is valid} is not r.e. 

(LUCKHAM, PARK, PATERSON [12]). Thus there is a S 2 which never halts, and therefore 

S 2 ~ p S  1 , while Not ~[True]S2[False]. 

Of course, theorem ; is valid replacing Paterson Equivalence by any semantic 

equivalence. 

SYNTACTIC EQUIVALENCE 

Theorem 2 : SI~S 2 

T I~[P]SI[Q]] => r [~EPlSm[Q] 

Sketch of proof : in 3 lemmas. 

Definitions : 

- T = <t,a> is saturated iff a is total. 

- T = <t,a> is unified iff : Vm,m' ~ dom(T), t/m=t/m'm>a(m)=a(m ') 

(two identical subtrees of t have identical top-assertions). 

- T = <t~a> has property U iff T is saturated and : 

Vm ~ dom(T), {a(m')/a/m'=a/m} is finite. 
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Le~m~a ! : If S is a program and TI~[P]SEQ], there is a p.t.w°a. T(S)=<t(S),a> such 

that : (I) T I~--TEP]T(S)EQ] , (2) T(S) has property U. 

Given a proof ~ of [P]SEQ] and the triples [P~]S'[Q'] proved at each stage of 

(the S's are subformulae of S), we bull& an assertions tree a that keeps memory of 

the P's. 

Lemma 2 : If T = <t,a> has property U, there is an a u such that <t,aU> is unified 

and TI cPI EQJ -> Tl~-EP]<t,aU>Eq]. 
By U, Vm c dom(T) V a(m) is equivalent to a finite formula. Take aU(m) to be 

a/m 
=a/m' 

that formula. We can verify that the three conditions of the Path Theorem are 

satisfied. 

Lemma 3 : If S is a program and T=<t(S),a> is a saturated, unified p.t.w.aj i~en 

T IT~--[P]T[Q]--> T ~-~ [P]S[Q] ° 

Suppose for instance that S=d_~o S' od, t(S)=*(t(S')). Since T is saturated, a(g) 

exists (~U). Now, if m e {1,2}* is any occurrence o~ t(S) in t(S), a(m)=a(c) because 

T is unified, a(g) will be a loop invariant we can use to apply rule ~-3.D 

IANOV EQUIVALENCE 

An intermediate level of equivalence can be defined between syntactic and 

Paterson equivalence by associating to any program S (or tree program t) a one- 

variable program S (or tree program ~) (IANOV [Ii]). 

For example, if S = z+l ; do if p(x) then z+f(y,z) ; x+g(x) else ~1 fi od i~en 

= X+A(X) ; do if P(X) then X÷F(X) ; X+G(X) else ~I fi od . 

S| and S 2 are said to be lanov-equivalent (S]~ I $2) iff SIEp ~% . 

It is possible to define canonical tree-programs in such a way that two canoni- 

cal tree-programs are lanov-equivalent iff they are identical. This enables us to 

prove the following. 

Theorem 3 : T[~[P]SI[ Q] and S]E I S 2 imply T [~[P]S2[ Q] Q 

WEAK EQUIVALENCE 

Finally, we can study the converse problem : given a class C of formulae, sup- 

pose one can prove in ~ the same specifications (P,Q) in C for two programs S I and $2; 

what can we say about S 1 and S 2 ? Our last theorem is a first answer to that kind of 

problem. Let us recall that two programs in L SI and S 2 are weakly equivalent 

(SIE w $2) iff for any interpretation of S! and S 2 (structure for L + input), if S] 

and S 2 halt, they compute the same output. 
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Theorem 4 : Let S 1 and S 2 be two programs in L suoh that, for every (P,Q) in L without 

quantifiers, T[~[P]SI[ q] => T[~-[P]S2[Q]. Then SIE w S 2. 

Sketch of proof : Let I be any interpretation for S] and S 2. Suppose S I halts 

in I ; the computation follows a (finite) path in t(Sl), leading to an occurrence m 

of an mi, and :[~[Condt!s1 ) (m)Ax=y] S 1 [x--=Ft(s] ) (m)(~)] (x--=(x I ..... x k) are the 

variables of S I and S 2 ; y=(yl,...yk) are new variables). 

Thus if S 2 halts for I and the hypothesis of theorem 4 is satisfied, S 2 cer- 

tainly computes the same output. That is exactly S2E w SI.Q 

CONCLUSION. 

In fact, different notions of equiprovabilit~ between programs can be defined, 

according to the power of the assertion language and the theories T considered. One 

can try to compare the usual syntactic or semantic equivalences with these new ones, 

and eventualy find equiprovability relations equivalent to them. Research in that 

direction, prolonging the present paper, is being performed. 
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ABSTRACT 

A res t r i c ted  version of i n te rac t i ve  L systems is introduced. A P2L system 

is cal led an essent ia l l y  growing 2L system (e-G2L system) i f  every length-preserving 

production is in terac t ion less  (contex t - f ree) .  I t  is shown that  the determin is t ic  

e-G2L systems can be simulated by codings of propagating in terac t ion less  systems, and 

that  th is  is not possible fo r  the nondeterminist ic version. Some in teres t ing  proper- 

t ies  of e-GD2L systems are establ ished,  the main resu l t  being the dec i dab i l i t y  of the 

sequence equivalence problem for  them. 

I .  In t roduct ion 

The area of L systems has had a rapid growth, see [5 ] ,  however th is  is mainly 

due to t he i r  mathematical invest igat ion rather  than t h e i r  b io log ica l  app l ica t ion.  

For a b i o l og i s t  the determin is t ic  models are fo r  the most relevant as emphasized by 

A. Lindenmayer [4 ] .  For th is  reason and also for  t he i r  mathematical s imp l i c i t y  the 

DOL and DIL systems, the determin is t ic  versions of  the basic in terac t ion less  and 

in te rac t i ve  systems, are of special importance. 

f This research was supported by the National Sciences and Engineering Council of 
Canada, Grant No. A 7403. 
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Since the l a t t e r  are much more powerful than the former i t  seems to us important 

to invest igate systems of intermediate capab i l i t y .  One way to get such systems is i f  

we al low in terac t ion  only when ce l ls  are d iv id ing but not when they are merely chang- 

ing states. Quite surpr is ing ly  in the case of propagating systems (no ce l ls  dying) 

the behaviour of such systems w i l l  be shown to be closer to the in terac t ion less  

systems rather than to the in te rac t ive  ones. 

Our resul ts seem to be well motivated mathematically, too. I t  is well known, 

see Baker's Theorem in [ 3 ] , t h a t  certain res t r i c t i ons  on the form of productions of  a 

context -sensi t ive grammar make the grammar essent ia l l y  lose i t s  "context -sens i t ive-  

ness'!, i . e .  to generate a context- f ree language. We w i l l  introduce a d i f f e ren t  kind 

of r e s t r i c t i o n  on the form of productions of a determin is t ic  context -sensi t ive 

para l le l  rewr i t ing  system (D2L system) which has essent ia l l y  the same e f fec t ,  that  i s ,  

i t  makes an in te rac t i ve  (context -sens i t ive)  system behave in an almost in teract ion less 

(context - f ree)  manner. S im i la r l y ,  as in the case of sequential context -sens i t ive 

grammars, the r e s t r i c t i o n  seems to be a mild one, and therefore the obtained resul ts 

are rather surpr is ing.  We say that  a D2L system is essent ia l l y  growing (an e-GD2L 

system) i f  the system is propagating (nonerasing) and each of i t s  productions which 

is ac tua l ly  context -sensi t ive is s t r i c t l y  growing. In other words an e-GD2L system 

is a P~2L system such that  each of i t s  nongrowing productions is ac tua l ly  context 

independent. 

As our basic resu l t  we show that  every e-GD2L system can be simulated by a cod- 

ing of a propagating DOL system (CPDOL system). Then i t  is easy to show that both 

the languages and the sequences generated by e-GD2L systems are properly between 

those generated by PDOL and CPDOL systems. Hence each e-GD2L language can be 

generated by a nondeterminist ic context- f ree system with nonterminals (EOL system). 

In Section 4 we obtain several appl icat ions of the basic simulat ion resu l t  and 

the method of i t s  proof. F i rs t  we observe that  the length sequence equivalence 

problem for  e-GD2L systems i s  decidable. Then we demonstrate that  despite the fact  

that  e-GD2L growth functions are the same as the PDOL growth funct ions, i t  is 

possible to rea l ize  some growth functions with a considerably smaller number of 

symbols by e-GD2L systems than by PDOL systems. 

We show that the "ce l l  number minimization problem", see [7, page 116], is 

decidable fo r  e-GD2L systems. 

We conclude Section 4 with the main resu l t  of th is  paper, namely, the decidabi-  

l i t y  of the sequence equivalence problem for  e-GD2L systems. Hence e-GD2L systems 

are the most complicated type of L systems known for  which th is  important problem 
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is  dec idable.  Our r esu l t  is  somewhat su rp r i s ing  in the view tha t  t h i s  problem is 

undecidable f o r  PDIL systems [ 8 ] .  

In the l a s t  sect ion we show tha t  Theorem 1 cannot be extended to nondetermin is t i c  

e-G2L systems. This extension would mean tha t  e~G2L languages were included in CPOL 

languages, there fore  also in EOL languages, see [5 ] .  However, t h i s  is impossible 

since we w i l l  show tha t  each ETOL language can be expressed as h(L) n R fo r  some 

homomorphism h , e-G2L language L and regu la r  set R . 

In th i s  paper we omit most proofs ,  only  some ou t l i nes  w i l l  be given.  For 

d e t a i l e d  proofs see [ 2 ] .  

2. Pre l im inar ies  and Basic De f i n i t i ons  

A 2L system is a t r i p l e  G = <S,P,w> where Z is  a non-empty a lphabet ,  w is  

an element of  ~* and P is  a f i n i t e  r e l a t i o n  from 

V = {$} x ~ × {$} u {$} x S 2 u E 2 x {$} u S 3 in to  Z* s a t i s f y i n g  the fo l l ow ing  

completeness cond i t i on :  For each u c V there ex i s t s  at  l eas t  one v in E* such 

tha t  (u ,v )  ~ P . An element (u ,v)  o f  P is  ca l l ed  a product ion and usua l ly  

w r i t t e n  u ÷ v ; the l e t t e r  $ not in V is  ca l l ed  the environmental symbol. The 

r e l a t i o n  =>G (or => in shor t )  on Z* is  def ined as fo l lows .  For words x and y 

x => y holds t rue i f  and o n l ~ i f  one of  the fo l l ow ing  cond i t ions  is s a t i s f i e d :  

( i )  x ~ S and ($ ,x ,$ )  ÷ y c P , ( i i )  x = XlX 2, y : ylY2 , wi th Xl,X 2 ~ ~ , 

y l , y  2 ~ ~* , and ($ 'X l 'X2)  ÷ Yl ' (X l 'X2 '$ )  ÷ Y2 ~ P ' ( i i i )  x = X l . . . x  n , 

y = y l . . . y n  , wi th n m 3 , x I . . . . .  x n ~ Z , Yl . . . . .  Yn ~ ~* and ($ 'X l 'X2 )  ~ Yl ' 

(Xl~X2'X3) ÷Y2  . . . . .  (Xn-2 'Xn- l 'Xn)  ÷ y n - I  ' (Xn- l 'Xn '$ )  ÷ Yn ~ P " Let =>* be 
the t r a n s i t i v e  and r e f l e x i v e  c losure o f  => . The language generated by G is 

L(G) = {x I w =>* x}  

In t h i s  paper propagat ing systems, i . e .  systems where erasing product ions are 

not a l lowed,  are considered. Moreover, in most cases systems are assumed to be 

d e t e r m i n i s t i c  in the f o l l ow ing  sense. A 2L system G = <Z,P,w> is  d e t e r m i n i s t i c  

(abbrev ia ted a D2L system) i f  the r e l a t i o n  P is a funct ion from V in to  ~* . 

For a D2L system G the cond i t ions  x =>G y and x =>G y '  imply y = y '  , and 

hence G def ines the sequence 

s(G) = Wo,W 1 . . . .  

where w 0 = w and wi =>G Wi+l f o r  i = 0, I  . . . . . .  Such sequences are ca l l ed  D2L 
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sequences. In the d e t e r m i n i s t i c  case we w i l l  a lso w r i t e  6 (a ,b , c )  = d when 

(a ,b , c )  ÷ d . 

Let  G = <Z,P,w> be a 2L system. A product ion  ( x , a , y )  ÷ ~ , w i th  

x , y  E S u {$}  , is  ca l l ed  c o n t e x t - f r e e  i f  { ( z , a , v )  ÷ ~ I z , v  E Z u {$ } }  2 P • So 

the a b b r e v i a t i o n  a + ~ f o r  the c o n t e x t - f r e e  product ion  ( x , a , y )  ÷ ~ can be used. 

The product ions o f  G , which are not c o n t e x t - f r e e ,  are ca l l ed  c o n t e x t - s e n s i t i v e .  In 

the d e t e r m i n i s t i c  case we may a lso t a l k  about c o n t e x t - f r e e  and c o n t e x t - s e n s i t i v e  

l e t t e r s .  

For w E Z* , ]w I denotes the length  o f  w , f o r  a set  S ISI denotes the 

c a r d i n a l i t y  o f  S . Now we in t roduce  the basic not ions  o f  t h i s  paper. 

D e f i n i t i o n  A 2L system G = <S,P,w> is s t r i c t l y  growin 9 (an s-G2L system) i f f  

Iv[ z 2 f o r  each u ÷ v in P . System G is e s s e n t i a l l y  growing 2L system 

(e-G2L system) i f f  i t  is  propagat ing and Iv l  ~ 2 f o r  each c o n t e x t - s e n s i t i v e  produc- 

t i on  u ÷ v in P . (We w i l l  be main ly  i n t e res ted  in d e t e r m i n i s t i c  e-GL2 systems 

(e-GD2L systems).)  

Every product ion  o f  an s-G2L system must be l e n g t h - i n c r e a s i n g ,  wh i l e  an e-G2L 

system may have l eng th -p rese rv ing  p roduc t ions ,  i f  they are c o n t e x t - f r e e .  There fore ,  

any propagat ing c o n t e x t - f r e e  product ions are a l lowed in e-G2L systems and thus the 

e-GD2L systems inc lude  a l l  PDOL systems. Also the s-GD2L systems are a specia l  

case of  the e-GD2L systems and we in t roduce them main ly  to  f a c i l i t a t e  the exp lana t i on  

o f  some proo f  techniques in a simple s e t t i n g  before a general p roof .  However, a l l  

the resu l t s  concerning d e t e r m i n i s t i c  systems w i l l  be proved f o r  the more general case 

o f  e-GD2L systems. 

Throughout t h i s  paper we use the basic not ions and resu l t s  o f  formal language 

theory  and L systems, we r e f e r  the reader ,  e . g . ,  to  [6 ]  and [ 5 ] .  In p a r t i c u l a r ,  

by a coding we mean a l e t t e r - t o - l e t t e r  homomorphism. Moreover,  the maximal p r e f i x  

( resp.  s u f f i x )  o f  a s t r i n g  x not  longer  than k is denoted by p re f k ( x )  (resp. 

s u f f k ( x ) ) .  

3. The I n t e r a c t i o n l e s s  S imu la t ion  o f  Res t r i c ted  I n t e r a c t i o n  

In t h i s  sec t ion  we cons ider  e s s e n t i a l l y  ( s t r i c t l y )  growing D2L systems. We 

f i r s t  observe t ha t  s-GD2L systems can be s imulated by CPDOL systems in the sense 
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tha t  any s-GD2L sequence is  obtained as a coding o f  a PDOL sequence. The resu l t  

is  seen as fo l l ows .  Let G = <~o~,w> be an s-GD2L system and l e t  (b , c ,d )  ÷ y be 

one o f  i t s  product ions.  Now, we consider the l e t t e r  c in the context  . . . a b c d e . . .  

f o r  some l e t t e r s  a ,b ,d  and e . We know how to rewr i te  c in tha t  context  ( fo r  

t h i s  purpose the context  . . . b c d . . .  is s u f f i c i e n t )  but we also know what are the 

neighbours of  the r esu l t  ( i . e .  y) o f  the length two. This fo l lows since they are 

determined by words 6 (a ,b ,c )  and 6 (c ,d ,e ) .  So the use o f  qu in tup les ( a , b , c , d , e )  

makes i t  poss ib le  to s imulate the de r i va t i ons  o f  G by a PDOL system. We omit the 

d e t a i l s  since the r e s u l t  is  only  a specia l  case of  the fo l l ow ing  s t ronger  theorem. 

Theorem 1 For any e-GD2L system G = <Z,6,w> there e x i s t  a PDOL system G' 

and a coding c such tha t  s(G) = c (s (G ' ) )  and hence also L(G) = c (L(G ' ) )  . 

We po in t  out the basic idea of  a proof .  For d e t a i l s  see [2 ] .  Essent ia l  is the 

fac t  tha t  not only the in termedia te  but a l l  the descendants o f  a word in a given 

context  are determined by a f i xed  amount of  context .  More p r e c i s e l y ,  one can show 

the f o l l ow ing .  Given a in Z and x ,y  ~ % 21Zj Define r ecu rs i ve l y  the sequence 

(*)  XnmnY n , n m 0 , 

by se t t i ng  

x 0 = x , mO = a , YO = y 

and 

= s u f f 2 1 ~ l ( ~ ( ? , x i , p r e f l ( m i ) ) )  , x i÷  ] 
m 4 

~i+ l  = ~ ( s u f f l ( x i ) ' ~ i ' p r e f l ( Y i ) )  ' 

= p r e f 2 ] s j ( ~ ( s u f f l ( m i ) , Y i , ? ) )  , Yi+! 

where ~ (? ,z ,c )  (resp. ~ ( c , z , ? ) )  denotes the word which is  obtained from z w i thout  

knowing i t s  l e f t  (resp. r i g h t )  neighbour. Then (* )  is  i n f i n i t e ,  i . e .  the r ewr i t i ng  

does not terminate because o f  the lack of in format ion about neighbours. 

To c l a r i f y  the above idea l e t  us consider an e-GD2L system wi th the axiom 

I011110 and the product ions 

l ÷ 0 

(0,0,0)  ÷ I0 , 

(b,O,c) ÷ 01 , i f  b ~ 0 or c ~ 0 . 
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Now the sequence (*)  s ta r t ing  from the th i rd  l e t t e r  of the axiom and using context 

of length 4 is as fo l lows:  

$$I0, 1 , I I00 

$001, 0 ,000 

I010, Ol ,I010 

I001, 010 ,0010 

I010, 01001 ,I001 

lO01,OlO0]OlO,OOlO 

where we use commas "to separate words from the i r  neighbours". I t  is not d i f f i c u l t  

to see that  the sequence does not terminate. The fact  that  the l e f t  neighbour of  

length 4 is always obtained fol lows since the rewr i t ings of Ol and I0 are independent 

of  t he i r  r i gh t  neighbours and since only the three r ightmost l e t t e rs  are needed to 

generate words I010 and I001. I t  is a l i t t l e  more complicated to see that  also the 

r i gh t  neighbours, i . e .  Y i 'S ,  are defined fo r  a l l  n . This i s ,  however, c lear a f te r  

the observation that  the rewr i t ing  of suff2(~ i )  is context-independent. 

Constructing the beginnings of a l l  the (necessary) sequences (*)  the productions 

for  the simulat ing system can be defined. For instance in our example 

( $$ lO , l , ] ] lO )  + ($001,0,000), 

($001,0,000) ÷ (lO]O,O,1lO1)(OlO0,1,lOlO) 

Of course, a coding c takes a t r i p l e  in to i t s  middle component. I t  is important 

to note tha t ,  unl ike in the case of s-GD2L systems, the neighbouring words, i . e .  

x i ' s  and Yi 'S , are not a l l  of the same length. 

Above we used context of length 4, i . e .  of length 21Z I . I t  can be shown that  

th is  amount is always enough. On the other hand th is  amount is also needed, in 

general. This fo l lows since i f  we use in our example only context of length 3 then 

the sequence ( , )  w i l l  terminate: 

$i0, l , l ]0  
010, 0 ,00 

001, Ol , I0 

010, 010 ,0 

001,01001,? 

Later on in (Theorem 7) i t  w i l l  be shown that the determinism is an essential 

assumption for  Theorem 1 to hold. Also Theorem 1 cannot be generalized fo r  D2L 
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systems with s t r i c t l y  growing context -sens i t ive productions and a rb i t r a ry  (possibly 

erasing) context- f ree productions. This is seen as fo l lows.  Let G be any PD2L 

system. We show that i t  can be simulated, in a sense, by a D2L system with 

s t r i c t l y  growing context -sens i t ive  productions and a rb i t r a r y  context- f ree productions. 

Such a system G' is defined in the fo l lowing way. For any length-preserving 

production (a,b,c)  ÷ d in G G' contains productions 

(a,b,c)  ÷ d a x  , d +  d and ax ÷ 

where d denotes the "barred copy" of d . Further fo r  any production 

(a,b,c)  ÷ b lo . .b  n in G , with n ~ 2 , 

G' contains productions 

(a,b,c)  + b-].,.5- n and ~ + b i for  i = 1 . . . . .  n . 

Then c lear l y  

L(G) : L(G') n E* 

where ~ denotes the alphabet of G . Since we may choose L(G) not to be an EOL 

language we may also choose L(G ~) not to be an EOL language. Hence G' cannot 

be simulated by any DOL system in the sense of Theorem I .  

Let us denote by J~e-GD2L (resp. Se_GD2L) the fami ly of languages (resp. 

sequences) generated by e-GD2L systems. Then using Theorem 1 we get 

Theorem 2 ~PDOL ~ ~e-GD2L ~ ~CPDOL 

and %PDOL $ Se-GD2L ~ SCPDOL 

All  inclusions above fo l low from Theorem 1 and the de f i n i t i on  of the e-GD2L 

system. That the f i r s t  inclusions are proper fol lows from Example in the next 

sect ion. The st r ic tness of the second inclusions,  in turn,  are seen by considering 

a su i tab le language over a* . 
0 

4. Appl icat ions of  the Simulation Result 

Af ter  demonstrating the posi t ion of our language fami ly  ~e-GD2L wi th in  the 

hierarchy of L fami l ies  we now derive some in te res t ing  propert ies of our systems. 
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From Theorem 1 and the f a c t  t ha t  the length  sequence equiva lence problem is  dec idable  

f o r  PDOL systems, see [ 7 ] ,  i t  f o l l ows :  

Theorem 3 The length  sequence equiva lence problem f o r  e-GD2L systems is  dec idab le .  

One o f  the consequences o f  Theorem 1 is  t ha t  any e-GD2L growth func t i on  is  a 

PDOL growth f unc t i on ,  too .  Hoever, as i t  is  seen in the next  example, the number o f  

l e t t e r s  needed to r e a l i z e  a given func t ion  by an e-GD2L system may be much smal le r  

than t h a t  needed to  r e a l i z e  the same func t ion  by a PDOL system. 

Example Let  us de f ine  an e-GD2L system (or  in f ac t  an s-GD2L) G as f o l l ows .  

I t s  a lphabet  equals {I  . . . . .  k} and i t s  axiom is  I I .  To de f ine  the product ions l e t  

y be the func t ion  which gives the l ex i cog raph i c  o rder  o f  the set  

{ ( i , j )  I i , j  = 1 . . . . .  k , i < j }  , i . e .  ~ (1 ,2 )  = 1 , y ( l , 3 )  = 2 . . . . .  

y ( k - l , k )  = k ( k - l ) / 2  . Now the product ions o f  G are as fo l l ows  

( $ , 1 , I )  ->'- 12 , 

( I , I , $ )  -',- 13 . . .  I k 2 3 . . . 2 k . . . ( k - l ) k  , 

( - , i , j )  ÷ i j  , f o r  i < j 

( i , j , - )  ÷ ( i j )  Y ( i ' j )  , f o r  i > j 

where - denotes t ha t  the element there  is a r b i t r a r y .  So the d e r i v a t i o n  s t a r t s  as 

fo l l ows  

i l l  

12 1 3 . . . I k  2 3 . . . 2 k 3 4 . . . 3 k . . . ( k - l ) k  

12121al313...lk...lk...  ik-1)k...(k-1)~ 

k times (k2-k+2)/2 times 

I f  we denote by f the growth func t ion  j u s t  def ined we get 

(k2-k)12 
f ( n )  = 2 ~ ( j + l )  n f o r  n > 1 

j : l  

Th is  formula impl ies  t ha t  any PDOL (o r  DOL) system genera t ing  the growth func t ion  

o f  G must conta in  a t  l eas t  ( k2 -k ) /2  l e t t e r s .  However, f is  r e a l i z e d  by an 
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e-GD2L system wi th k l e t t e r s  onlyo 

The above example gives the mot iva t ion  fo r  the fo l low ing  d e f i n i t i o n .  Let C be 

a class of  de te rmin is t i c  L systems. The ce l l  number min imizat ion  problem fo r  C 

is the fo l l ow ing :  Given an a r b i t r a r y  funct ion f rea l i zed  by a system in C . Is 

there an a lgor i thm to f ind  a system from O wi th an alphabet o f  the minimal 

c a r d i n a l i t y  such tha t  i t s  growth funct ion equals f ? 

The fo l low ing  theorem has been proved in [ 2 ] .  

Theorem 4 The ce l l  number min imizat ion problem fo r  e-GD2L systems is decidable. 

Now, we turn to consider the sequence equivalence problem fo r  e-GD2L systems. 

In a subcase, i . e .  in the case of  s-GD2L systems, the d e c i d a b i l i t y  of  th is  problem 

is a consequence of  the s imulat ion of these systems by PDOL systems and the decid- 

a b i l i t y  of  the problem fo r  PDOL systems. Indeed, two s-GD2L sequences s(G) and 

s(H) are equ iva len t  i f  and only i f  the PDOL sequences s(G') and s(H')  , where 

G' and H' are the "quintuple PDOL systems" s imulat ing G and H , are 

equ iva len t .  

For e-GD2L systems the s i t ua t i on  is more complicated, mainly due to the fac t  

tha t  the l e t t e r s  o f  G' in the proof  of Theorem l are not o f  uniform length as words 

of  Z* . Hence, two e-GD2L systems may be equ iva len t  although the corresponding 

s imulat ing systems of  Theorem 1 are not. Moreover, i t  seems to be impossible to 

simulate an a r b i t r a r y  e-GD2L system by a PDOL system wi th a uniform " length of  

l e t t e r s " ,  i . e .  wi th n- tuples fo r  a f i xed  n . 

Nevertheless, the fo l low ing  theorem has been proved in [2 ]  using a somewhat 

d i f f e r e n t  type of  s imulat ions.  

Theorem 5 The sequence equivalence problem fo r  e-GD2L systems is decidable. 

The de ta i led  proof (see [2 ] )  is ra ther  long;we describe here only the basic 

idea behind i t .  To do so we must introduce some no ta t ion .  Given an e-GD2L system 

G : <E,a,w> , l e t  

Z l = {a ~ Z I a is con tex t - f ree }  , 

m s = {a ~ Zl [ there ex is ts  t > 0 such tha t  ~t (a)  = a} 

Further a suba!phabet A of  G is ca l led  unbounded i f  A C_Zs and fo r  each natural  

n and each a in A there ex is ts  a subword x e A* of  a word in L(G) such tha t  
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#a(X) ~ n where #a(X) denotes the number of  a 's in x . The maximal unbounded 

subalphabet of  G is c l e a r l y  unique and i t  is denoted by A G . 

Now l e t  G = <Z,~,w> and H = <Z,v,w> be e-GD2L systems. I t  can be shown tha t  

i f  s(G) = s(H) then G and H are " s t r u c t u r a l l y  s im i l a r "  in the sense tha t  t h e i r  

maximal unbounded subalphabets coinc ide,  i . e .  A G = A H . Let us re fe r  to th is  

alphabet as the common subalphabet of the pa i r  (G,H) and l e t  us denote i t  by AG, H. 

I t  is  not d i f f i c u l t  to show tha t  the maximal unbounded subalphabets o f  G and 

H can be e f f e c t i v e l y  found. I f  they are d i f f e r e n t  then the systems are nonequiva- 

l en t .  I f  they coincide then the pa i r  (G,H) has a common subalphabet and we 

continue as fo l lows.  We def ine PDOL systems G' and H' (or ,  in f ac t ,  we must 

decompose G and H in to  several such systems) s imulat ing G and H in the sense 

of  Theorem 1 (cf .  also example there) .  So each occurrence of  a l e t t e r  in s(G) has 

as a symbol of  G' two-sided context  of  f i n i t e  length.  Moreover, th is  context  is 

always e i t h e r  of  a f i xed  length N or of the form ax or xa where ]x l  ~ N-I , 

x ~ (Z\AG,H)* and a ~ AG, H (of  course, modi f icat ions are needed near the edges of  

the words). So i t  fo l lows tha t  

s(G) = s(H) i f f  s(G') : s(H')  

and hence the resu l t  fo l lows from the d e c i d a b i l i t y  of  the equivalence problem fo r  

PDOL systems, see [ I ] .  

By Theorems 3, 4 and 5 e-GD2L systems have many favourable proper t ies  which 

general D2L systems do not have. Indeed, the decision problems in Theorems 3 and 

5 are undecidable f o r  PDIL systems, see [8 ] .  We also want to po in t  out tha t  e-GD2L 

systems form the most complicated class of  de te rmin is t i c  L systems known to have 

the decidable equivalence problem. For CPDOL systems the problem is s t i l l  open. 

5. Nondeterminist ic Case 

In th is  f i na l  sect ion we show that  Theorem 1 cannot be extended to nondetermini-  

s t i c  systems. This is somewhat surpr is ing since one might expect ( a f t e r  Theorem I )  

that  the s t r i c t  growth in connection with con tex t -sens i t i ve  rules e s s e n t i a l l y  

"blocks" the i n te rac t i on  here, too. However, because of  the pa ra l l e l i sm in the 

rewr i t i ng  process, i t  is possible to use nondetermin is t ic  s t r i c t l y  growing context -  

sens i t i ve  rules to contro l  the de r i va t i on .  
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Theorem 6 For any ETOL language L there e x i s t  an s-G2L system G , homomor- 

phism h an<i a regu la r  set R such tha t  

L = h(L(G)) n R . 

We show the general const ruc t ion  used in [2 ]  on an example. Consider the TOL 

system H = < Z , t l , t 2 , a >  where Z = {a ,b }  and the " tab les "  t I and t 2 are as 

fo l l ows :  

t I : a ÷ aa t 2 : a ~ ab I ba I a 

b ÷ b b ÷ b I b b  

I t  is  wel l  known tha t  L(H) = {w e E* : #a(W) = 2 n , n m O} and tha t  L(H) is  not  

an EOL language. We now give an s-G2L system G , a homomorphism (coding) h and 

a regu lar  set  R so tha t  L(H) = h(L(G)) n R . The alphabet  of  G is  

A = { a , b , a , # }  wi th a being the axiom. The product ions are 

($ ,a ,$)  ~ aa I aa (a ,a ,a )  + aa ] aa 
($,a,T)  ÷ aa  ] aa ($ ,a ,a)  + ## 

(T,a,$)  ÷ aa  I aa (a ,T,a)  ÷ ## 
(T,~,a)  + ## (a,T,$)  ÷ ## 

(a ,a ,a )  + ## a + ab I ba I a 

# + ## b ÷ b I bb 

Homomorphism h : A* ÷ { a , b , # } *  is  def ined by h(a) = a and h(~) = ~ f o r  

e A - {a} , and R = { a ,b } *  . I t  is  easy to v e r i f y  tha t  L(H) = h(L(G)) n R . 

As a consequence we can demonstrate the i m p o s s i b i l i t y  of a s imula t ion  s i m i l a r  

l i k e  in Theorem 1 fo r  the nondete rmin is t i c  e-G2L systems. Consider any language L 

in ~ETOL - J~EOL " By Theorem 6 we can w r i t e  L = h(L O) n R where h is  a homomor- 

phism, L 0 an e-G2L language and R a regu lar  set .  Then, the c losure p roper t ies  

of  ~EOL imply the f o l l ow ing :  

Theorem 7 There are s-G2L languages, and there fore  also e-G2L languages, which 

are not in ~EOL (= ~-COL ) " 
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ON THE SIMPLIFICATION OF CONSTRUCTIONS IN DEGREES OF 

UNSOLVABILITY VIA COMPUTATIONAL COMPLEXITY 

Robert P. Daley 

University of Pittsburgh 

Pittsburgh, Pa. 15260, USA 

§i. INTRODUCTION: 

In this paper we show how some of the infinite injury priority 

arguments can be simplified by making explicit use of the primitive 

notions of axiomatic computational complexity theory. An important 

factor in the simplification is the use of busy beaver sets (see [2]) 

to provide the basis for the required diagonalizations thereby permit- 

ting rather simple and explicit descriptions of the sets constructed. 

Another is the replacement of the characteristic function x A of a set 

A with the next-element function v A. 

We devote the remainder of this section to the requisite defini- 

tions and notions as well as some preliminary lemmas. A more 

comprehensive discussion of many of the notions in this section can be 

found in [21. Proofs of the lemmas presented here can be found in 

[3]. 

For any set X of natural numbers we use Xl s to denote the set 

{rlr~X and ~ ~ s}. We will assume that {~} is a (relativized) 

acceptable Godel numbering (see Rogers [5]) and that {¥~} is a (rela- 

tivized) computational complexity measure for {@~} (see Blum [i], 

Lynch [4], Symes [8]) such that for all X, I , p, and s, 

(Q2) S ~ '~(p) ==> [ . X i S ( p ) =  ,X(p] and '~  S(P)=  '~ (P ) ] ,  and 

(~3) yXis ~ s _--.> [#X,S(p) = ,X(p) and ¥~ls(p) = '~ (P) ] .  

i) This research was supported by NSF Grant MCS 76-00102 
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The latter two conditions insure that the computational complex- 

ity measure takes into account the members of X "used" in a computa- 

tion, which is an essential notion of relative computations (see 

Shoenfield [7]). 

For any set X of natural numbers the next element function of X, 

v x is defined by vx(p) = mln{q[q > p and qEX}. We use deg X to 

denote the degree of unsolvability of the set X, and clearly 

(I.I) deg X s deg Y ~ (~i)[~ = 9X].  ] 

We begin by constructing for each recursively enumerable set W a 
e 

set B e such that deg W e = deg B e as follows: 

be(n) = maX{Ye (p) ]p < n and @e(p)~}, 

=rmaX{~e(P)~ IP <-- n and ¥e(p) ~ s}, 

be(n's) L n, if no such p exists. 

=Cmin{qlq~ ~ p and Ye(q) = p}, 

ge(P) ~p, if no such q exists. 

B e = [b e (n) }, 

s _- 
B e ~be(n,s) fn ~ s}, 

Ae = Be " 

It should be clear that be(n,s ) and ge(p) are total recursive func, 

tions and that be(n ) ~ be(n+1 ). The following lemma gives the most 

important properties of the set B e . 

Lemma I.I: (a) A e is recursively enumerable. 

(b) B is retraceable. e 
(c) deg B e = deg A e = deg W . 

Bbe (n) e 
(d) (Vn) [BeJbe(n) = e J" 

s 
(e) (Vs) [BelS = B e ~ SEBe] . 

(f) (re) (Vi) [# i total and W e non-recursive ~ (~) [~i (be(n))<be(n+1)]]. 

§ 2. SACKS ' DENSITY THEOREM 

We illustrate the simplification techniques on the following 

theorem. 
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Theorem 2.1: {Sacks) If C and D are recursively enumerable sets such 

that deg D < deg C, then there exists a recursively enumerable set 

A such that deg D < deg A < deg C. 

In constructing such a set A we will find it more convenient to 

work with its complement B. Let C and D satisfy the hypotheses of the 

Theorem 2.1, and let C = W c and D = W d. The first step of the sim- 

plification is to replace the sets C and D by their busy beaver 

equivalents. We define, 

b (n) = b d(b c ( n ) ) ,  

b (n , s )  = b d ( b c { n , s ) w s ) ,  

g: = gc (gd (p)) ' 

B = {b= (n ) } ,  

B s = {b ( n , s )  In <- s } ,  

A = ~ 

The following is a direct consequence of the above definitions and 

Lemma 1.2. 

Lemma 2.1: (a) A is recursively enumerable. 

(b) deg A = deg B = deg C. 
b (n) 

(c) (Vn) [B dlb (n) = B d ]. 

B d B d 
(d) (V i )  [@ i t o t a l  ----~ ( ~ )  [~ i  (b (n ) )  < b ( n + 1 ) ] ] .  

From the construction given below for A the following will be 

quite evident. 

Lemma 2.2: Ca) A is reeursively enumerable. 
b (n) 

(b) (Vn) [ B i b  in) = B } .  

(c) B c_. B c__ Bd , 

Since A is recursively enumerable the stage s approximations A s 

and B s will be recursive set functions. The conditions of Theorem 2.1 

can be split into the following four conditions: (I) deg B ~ deg B ; 

(2) deg B d ~ deg B; (3) deg B ~ deg B; (4) 'deg B ~ deg B d. We con- 

sider each of these conditions in turn. Condition (I) follows from 



261 

Lemma 2.2(b), and condition (2) follows from Lemma 2.2(c) and the 

retraceability of B d (Semma l.l(b)). In view of (i.i) condition (3) 

can be replaced by 

B 
(R?) ¢i ~ VC 

,B is defined by A recursive transformation • for ~'i 

~X Bs 
~ ( i )  (p) = m in {scX ls  > p and (Vq ~ p) [~ (q) ~ s ] } .  

B s B d d B s If ~ (i) (p) = s and s(B d ,then clearly ~T(i) (p) = s. If Bls = in 

addition, then by (nl) and (R3) we have 
s 

T h e r e f o r e ,  

(2.1) 
s Bd 

$Bd B s sB(p) < $ ( i )  (p) s ~ ( i )  (p) = s and seB d and Bls = ----9 = . 

During the construction, therefore, stages s~B d are sought for which 

B s 
d 

~T(i) (b=(n)) = s < b=(n+1), which by Lemma 2.1(d) are known to exist 

B d 
whenever Qi is total, and then an attempt is made to arrange that 

Bls = B s by restraining these elements from A. For this reason (R?) 

is known as a negative requirement. 

Similarly, condition (4) can be replaced by 

B d 
(RT) ~i z v B t 

B d 
and a recursive transformation o for ~i defined by 

#a(i) (p) = min{s~Xls > p and (¥q ~ p) [¥ (q) -< s]}. 

In an analagous manner to (2.1) it can be shown that 

B S 
d Bd Bd 

(2.2) Qa(i) (p) ~ s and sEB d -----> ~i (P) < Q~(i) (p) ~ s. 

Thus to satisfy (RT) it suffices to find stages scB d such that 
B s 
d 

#a(i) (b=(n)) ~ s < b=(n+1), which by Lemma 2.1(d) are known to exist 
B d 

whenever Qi is total, and then arrange that ~B(b=(n)) = b=(n+1) by 

putting into the set A all integers in the interval (b=(n),b=(n+l)). 

For this reason (RT) is known as a positive requirement. 
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However the act of satisfying the positive requirement (RT) may 

invalidate (injure) some negative requirement (Rj) because some 

integer previously restrained" from A on behalf of (Rj) was put into A 

to satisfy (RT). In finite injury priority constructions such con- 

flicts are resolved by assigning prioritites to the requirements, and 

then showing that each negative requirement can be injured only fin- 

itely many times and so will eventually be satisfied. Unfortunately, 

here the situation is further complicated when B d is not recursive and 
B d B d 

~a(i) is not total, because it is possible that ~a(i) (p)÷ and at the 
S 

B d 
same time ~a(i) (p)~ for infinitely many s~B d. Moreover, since B d is 

not recursive one cannot identify stages s(B d. Therefore it is possi- 

ble for a positive requirement to injure a negative requirement of 

lower priority infinitely many times and possibly prevent the satis- 

faction of that negative requirement altogether. 

Fortunately, such infinite injury can be avoided by searching for 

B s 
such that #a~i) (r)~ ~ s < b (n+1), where reB~ and stages sEB d 

BSd Bd 
r = ~s~i) (b ( n ) ) , ~  which again are known to ex is t  i f  ~i is t o t a l ,  and 

B s 
= b (n+1), where r = @a~i) (b ( n ) ) , ~  in order to sa t i s fy  setting vB(r) 

B d + + 

(Ri). If ~a(i) is not total, then the only way that (R i) can injure a 

legitimately established negative requirement (R~) (i.e., one where 
t 

B d 
V~(j) (b (n)) = t, with t(B d and B t =Blt) is for r < t < s. Since 

t(B d and rcB~ it follows that rcB d, and therefore by (2.2) we have 

B d 
that b (n)(dom ~a(i)" But it is c}ear from the definition of a that 

B d 
if ~a(i) is not total, then it has finite domain. Therefore, each 

positive requirement can cause only finitely many injuries to legiti- 

mately established requirements. 

We now present an enumeration procedure for the set A. The pro- 

cedure proceeds in stages and uses two types of markers. The markers 

of the form ~ are associated with the enumeration procedure for B e , 

and the position of marker [~ at stage s is be(n,s), and its final 

resting place is be(n). The markers of the form ~ are used to 
B ,s 
d 

preserve the computations ~(k) (b,(m)) = s, where s = bd(U ) . The con- 

struction also employs two functions a and B, and as(i) (Bs(i)) speci- 

fies the stage s witness hypothesized for (R?) ((RT)). The functions 

and ~ indicate midstage values of a and B. 
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Stage s: 

(i) Place marker [~ on integer s. 

(2) Let m = g=(s) and u = gd(s). 

For each i < s set 

~s(i) = if as_1(i) > m-1 then 0 else ~s_1(i), 

~s(i) = if 8s_ 1 (i) >_ m-1 then 0 else Bs_ I (i), 

and set ~s(S) = ~s(S) = 0. 

(a) Move all markers [~, [m-~i~, [] onto integer s. 

(b) Remove all markers ~ for which n >- m or v >- u, and 

set ~s(k) = 0. 

(c) For each i -< s, if i satisfies 

(i) ~s(i) = 0, 
$ 

(ii) $ Bd (b=(m-l,s)) < s 
o( i )  
B s 

(iii) $o~i)(r). < St 

(iv) no marker ~ for any k < i is on any integer in 

B s 
J 

the interval (r,s), where r = Semi). (b= (m-1 , s ) ,  

then remove all markers in the interval (r,s) and set 

{=s(i) = m-l, 

otherwise set ~s(i) = ~s(i). 

(d) Define B s to be the set of all marked integers, and A s to 

be the set of all unmarked integers -< s. 

(3) (a) For each i <_ s, if i satisfies 

(i) ~s(i) = O, 
B s 

(ii) $T~i) (b= (m-l ,s) < s, 

(iii) r~B~, 

( i v )  BSl r = Br ,  
B s 

,4 

where r = $ ~ i ) .  (b= ( m - l , s ) ) ,  

then set B s(i) = m-l, 

otherwise set Bs(i) = ~s(i). 

(b) For each i < s and each n _< s for which 

( i )  ~s ( i )  = O, 

B s 
q '~ i )  (b=(n,s)) = s, (ii) 

place a marker II-i~-~ on each member of B s in the inter- 

val (b (n,s),s]. 
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It should be observed that only during step 2, where markers are 

B s 

removed are integers enumerated into A, and that ~ d s)) s , ~ ( i ) ( b e (  n , = 
can be effectively decided from B t for t ~ s, and so involves no cir- 

cularity. Also, B S (A S ) consists of all integers ~ s which are marked 

(unmarked). 

The correctness of Lemma 2.2 should now be apparent from the 

above construction. Tracing the computation of es(i), ~s(i), Bs(i), 

and ~s(i) we see that 

~ s ( i )  s a s ( i )  < ge(S) and ~s ( i )  ~ Bs( i  ) < ge(S)-  

The following lemma is an easy consequence of this and Lemma l.l(d). 

Lemma 2.3: (a) For each i, a(i) = ~i~ as(i) exists, and if a(i) z 0, 

then a(i) = lira as(i) and (¥s -> b (a(i)+1)) [~s(i ) = as(i) = a(i)]. 

(b) For each i~ B(i) = ~i~ Bs(i) exists, and if B(i) ~ 0, then 

B ( i )  = lira Bs( i )  and (¥s -> b ( B ( i ) + 1 ) ) [ ~ s ( i )  = Ss{ i )  = 6 ( i ) ] .  
S÷¢m 

The following lemma is proved by induction using Lemma 2.3 and 

the ideas given preceding the enumeration procedure. 

Lemma 2.4 : 
B d B d 

(a) (¥i) [a(i) z 0 -----> [Qa(i) (~a(i) (b (o(i)))) < b (~(i)+I), and 

B d 
VB(Q (i) (b (o(i)))) = b=(~(i)+1)]]o 

Bd B r (b) (¥ i )  [B ( i )  ~ 0 ~ [~ ( i )  (b ( B ( i ) ) )  < b= (B ( i )+1 )  , and B l r  = , 

B d 
where r = ¢ ( i )  (b (B ( i ) ) ) ] ] .  

B d 
(c) (¥i) [a(i) = 0 ----~ ~a(i) is not total], 

B d 
(@i) [B(i) = 0 ----> ~(i) is not total]. 

We can now complete the proof of Theorem 2.1. The proofs of con- 

ditions (i) and (2) have already been indicated, so that it remains to 
B d B d 

verify only conditions (3) and (4). Suppose ~i is total. Then ~a(i) 

is total and by Lemma 2.4 e(i) z 0. By Lemma 2.4(a), (£I), and (2.2), 

B d B d B d 
~i (r) < ~i (r) ~ ~a(i) (r) < vB(r), 
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Bd B 
where r = # (i)(b (~(i))). Therefore, deg B ~ deg B d. Suppose #i is 

total. Given p, let s(B be such that s ~ max{I~(q)lq ~ p}. Then by 

(n2) and Lemma 2.2(b), 

BS Sls B 
¥ (q) = ¥i (q) = ~' ( q ) '  

B d B d 
for all q <- P. Since B ~_ B d, ~T(i) (p)+ , and therefore ~(i) is 

total. By Lemma 2.4(d) B (i) x 0 and by Lemma 2.4(b) we have Ba r = B r 

B d B d 
and ~ (i) (b (B(i))) < ~B(b (B(i))), where r = ~T(i) (b (B(i))), and 

then by (n2) we have, 

r 
~BJr(b ( B ( i ) ) )  = V B ( ( B ( i ) ) )  < r i b =  

Therefore, by (~3), and (QI) and by combining the above inequalities 

we have, 

~B(b ( s ( i ) ) )  < ~B ~BIr ~ (b ( B ( i ) ) )  = i (b ( B ( i ) ) )  < ~B (b ( B ( i ) ) ) .  

Therefore, deg B { deg B, and Theorem 2.1 is proved. 
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AN ALGEBRAIC EXTENSION OF THE 

CHOMSKY - HIERARCHY 

W. Damm 

Lehrstuhl f~r Informatik II, RWTH Aachen 

i. Introduction 

This paper describes the proof of strictness of the OI-hierarchy of languages, 

which has been introduced in [2,7,12,17] . One way of defining this hierarchy is to 

generalize the fixed point characterizations of regular, context-free, and macro 

languages. Taking left concatenation with a 6 V and a constant e denoting the emp- 

ty word as algebraic structure on PV ~ , the above characterizations involve taking 

fixed points over domains of level 0 - PV ~ -, level I - PV ~ ~ PV ~ - , and level 2 - 

(PV ~ ~ PV ~) ~ (PV ~ ~ PV~), respectively. Level-n (OI-) languages, the~will be de- 

fined by taking fixed points on the n-th function space over PV ~. Strictness of 

this hierarchy has remained an open problem since conjectured by Wand [17]. 

The solution of this problem involved two different formalizations of the above 

intuitive idea. A more algebraic definition is given within a combinatorial framework 

(see e.g. [3,2]), while the proof of (size-)closure under intersection with regular 

sets, which is given in this paper, requires a h-calculus oriented model. As the 

following example illustrates the definition of level-n languages involving the 

l-calculus also gives a link between proeedures in ALGOL 68 and the OI-hierarchy. 

Consider the program 

begin int input i, input 2, output; 

proc EXP = (proe(int) int f, intn, int k) in__~t: 

begin intresult; 

if n = o then result := f(k) else result := 2 t EXP(f,n-l,k) fi; 

result 

end of EXP; 

output := EXP(square, input i, input 2) 

end of MAIN. 

A denotational semantics of this program would involve operations 

{O,i,2,-~+, square} dealing with integers, predicates as =, a conditional if, locations 

{loc, loc I, loc 2, loc 3} and store-primitives as {content, assign, eval} in a set ~. 

Translating to h-terms gives 

assign(loc 3, Y2 (~ EXP. h(f,n,k), body-EXP)(square, content(locl~content(loc 2))) 

where 

body-EXP = evai(if(=(n~o),assign(loc,f(k)), assign(loc,t(2,EXP(f,-(n,l),k)))),loc). 

The above translation isolates two features of ALGOL 68 procedures: 
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-non-recursive procedures with finite modes induce l-terms with typed abstraction 

and typed application only; 

-recursive procedures with at most n nested occurences of the proc-declarator in 

the mode specification part are translated into l-terms augmented by an atom Yn for 

the fixed-point operation on the n-th function space. 

To come from ALGOL 68 procedures to language theory, simply view the elements 

of ~ as na~nes for the respective operations, i.e. as operation symbols. Then the 

above h-term essentially describes a fixed-point on level 2 over the domain of (tree-) 

languages over the (many-sorted) alphabet ~ , which, by application to arguments of 

appropriate type, yields a language over ~ . Thus, at least on this abstract level, the 

hierarchy result indicates that the power of ALGOL 68 procedures increases with 

their mode depth. 

1. Mathematical background 

Let I be a set of bass types. An I-Set A is a family (A i] i 6 I). For I sets 

A,B we define union A U B := (A i U B i [ i £ I), inclusion A c__ B iff Vi6I A i c_ B i, 

I-mappi~s f : A -~ B iff f = (fi : A i ~ B i [ i 6 I) pointwise. 

We denote by I ~ the set of words over I. If l(w) = r 6 03 , we write 

w = w(1)....-w(r). For k 6 ~ we let [k] := {i .... k}. 

The set D~(I) of derived types over I is defined inductively by 

D°(I) := I, Dn+1(I) := Dn(I) ~ x Dn(I), D~(I) := n6U£0 Dn(I). 

We assume that the reader is familiar with the notions complete partial order 

(cpo) - each directed subset T has least upper bound U T - and ~ontinuous functions 

- preserves lubs of nonempty directed sets. Any I-cpo A induces canonically the 

D~(i)-cpo A ~ defined by Ae: = {()} , (a,~)6 D n+l(I) ~ A ~ := A ~ x A ~, 

A (S'~) := A S ~ A ~, the cpo of all continuous functions from A S to A 9. 

Let ~ be a D(I)-set of operations symbols. A continuous ~-algebra A is 

a pair (A,£0A) 6 A-al__~g(~) consisting of an I-cpo A and a D(I)-mapping 

£0 A : ~ ~ (A (w'i) ] (w,i) 6 D(I)). 

An ~-homomorphism f : A ~ B is a structurepreserving I-mapping f : A ~ B. 

It is well known [iO] that the ~-algebra CT~ of infinite trees over ~ is initial 

in A-al~ (~), i.e. for all A £ A-al_gg(~) there exists a unique continuous l-pre- 

serving ~-homomorphism h A : CT~ -~ A (l= H ~). we denote by ~T~ (T~) the 

restriction of CT~ to finite trees (without minim~n symbol8 ( I i ] i £ I) ) , hence 

FT~ denotes the subset-algebra of tree languages over ~ . 

With ~ we associate the D(I)-set ~+ := ~ U ({ +i }[ (ii,i) 6 D(I)). 

The unique continuous k-preserving ~+-homomorphism CT~ ~ ~r[Q 
+ 

(with "+" denoting union) will be called set. 

2. Applicative terms 

In this paper we will define level-n languages by a generalization of macro 

gra~ars [ 9 ]. As rigth hand sides of a production we will allow typed applicative 
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terms over the D(I)-set ~ of te~ninal symbols, and D~(I)-sets of no~tez~ina~8 and 

pc~c~tersj denoted X and Y ~ respectively. 

For O 6 (X U y) T with T 6 Dn(I) we set type(O):= Y , level(O) := n. 

The D~(I)-set AT~uxU Y of applicative term8 over ~,x, and Y is the smallest 

_ , 6 T ~(j) ,i(~) = r ~ t(tl,..rtr)6 T~ D~(I)-set T s.t. ~UxUY c T and t 6 T (~'V) tj 

Consider a nonterminal x of type T = (~n,...,(ao,i)...)6 Dn+l(I). 

Then the right hand side of an x-production will only contain parameters "fitting" 

to T in a set yT. Let, for ~ 6 Dn(I) ~, Y := { yj,~(j) I j 6 [i(~)]}, thus 

U 
Ye = ~' and let y~ := (yl,~(1),...,yr,~(r)). Then yT := o ~ j ~ n Y~." 

] 

£ ATe. ~ we denote by sub T(s)(tn)...(t O) the term For s £ AT~uxUYT and tj ~UX U Y 

obtained by simultaneously substituting tj for y~. in s. 
] 

In case T = (w,i)6 D(I) and s contains exactly Dne occurence of Yj,w(j) we. 

abbreviate subvy(s) (t O) by s ÷ t O. 

Y 
Let T 6 Dn+l(I) be as above. For t 6 AT~uxUY, we denote by t+ the term obtained by 

giving t all parameters down to level O (for m £{o,...,n+l} tin+ 1 := t, 

ti m := tim+ 1 (Y~m) , + := +o ) • 

We conclude this section by recalling the semantics of applicative terms. 

Let A 6 ~-al___gg(~), and let Q : X ~ A ~ be a D~(I)-mapping (called en~iro~ent). 
V 

For t 6 AT~uxUYT , the semantics of t over A with respect to the environment Q is 

the continuous mapping ~t,A~ Q : A dn ~ (A ~n-I ~ ..o(A ~O ~ A~)...) given by 

~t, A~ p (fn)...(f o) := t £ ~ ~ ~A(t),t6X ~ Q(t),t = yj,~r(j) ~ prj(fr), 

t = to(t I ..... t r) ~ ~to,A~ Q(fn ) ...(fo ) (~tl,A~ P (fn) -.-(fo ) ..... ~tr,A~ P (fn) --(fo ))- 

3. Level-n schemes 

In this section we define syntax and semantics and state two theorems for a 

class of already "normalized" l-schemes. By a process similar to the elimination of 

nested procedure declarations any typed l-term with fixed point operators can be 

transformed into a set of equations with typed applicative terms as right hand sides 

(see [8]). To simplify notation we assume I = {i}. 

Definition 1 

Let X = {x ° .... ,XN}. A level-n 8oheme oNer ~ is a system of equations 
i 

xj+ = __rhs(xj) (j = o,..,N) with type(x o) = i s.t. for all j __rhs(x )3 6AT~uxuytype(Xj ) 

and max { level(x .) I j 6 {o,... ,N}} = n. The class of all level-n schemes 
3 

over ~ will be denoted n-l(~). [] 

In this context, X corresponds to a set of procedure names. The body of x. is just ] 

rhs(xj) and Y type(xj) contains the formal parameters of x.. 
_ _  t ] 
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Example I 

The following level-2 scheme corresponds to the sample program of the intro- 

duction. Let i := int 6 I. 

MAIN = assign(loc 3, EXP(square)(content(loc i), content(ioc 2)) 

EX'P(Yl ,(i,i) ) (Yl,i'Y2,i) = eval(if(=(Yl,i, °) 'assign(l°e'Yl, (i,i) (Y2,i)) ' 

assign(loc, + (2,EXP(yl,(i,i)) (-(yl,i,l) ,Y2,i ) ) ,loc) 

[] 

As suggested by the notation, the denotational semantics of S will be ob- 

tained by solving the set of mutually recursive procedure declarations, i.e. by taking 

the least fixed point of a functional canonically induced by S over A. 

Note that ~rhs(x) ,A~p £ A type(x). 

Definition 2 

Let A 6 A-al_~g(~), and let S be as above. S induces a functional 

S A : Atype(Xo ) x...x Atype(xN ) ~ Atype(Xo ) x...x A type(xN ) 

(ao ..... a N ) ~ (~rhs(Xo),A~ (x.3 ~ aj), .... ~rhS(XN),A ~ (x.3 ~ a.))3 

The semantics of S over the interpretation A is defined by 

~s,A~ := pr I (Y(SA)) [] 

It should be clear that the semantics of the sample scheme over the particu- 

lar interpretation described in the introduction coincides with the standard (call by 

value) denotational semantics of the sample program. 

By definition, O- l(Q) equals the class R(~) of rational schemes over 

[10,16] , and l-l(~) equals RPS(~), the class of reaursive progr~ sch~ses over 

[13] . From the equivalence of n,l-schemes and n-rational schemes Rn(~) shown in 

[4] we obtain the following Mezei-Wright-like result. 

Theorem I [2] 

Let T(S) := [s,CT~ be the infinite tree of S. Th~ 

V A 6 A-alg (~) ~S,A~ = h A (T(S)) . [] 

By the same equivalence we inherit the following normal form theorem from 

rational schemes [16]. 

Theorem 2 [4] 

For any S £ n-l(~) we can effectively find an equivalent n-l-scheme S' over 

s.t. all right hand sides of S' are of one of the following forms: 

(i) f+ for f 6 ~ ~(2) x+ for x 6 X, (3) y+ for y 6 Y, 

(4) yo(yl(y~),...,yr(ya))+ for yj,yj,~(j)6 Y of appropriate type 3 

(5) Xo(Xl (y0,),...,Xr(Y~))+ for xj 6X,yj,~(j)£ Y of appropriate type 

and size(S') ~< p(size(S) ) for some polynomial p. 
[] 
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We now indicate how to operationally generate approximations of the infinite tree of 

S, by viewing a level-n sche/ne as a schematic tree grammar. In this context the x 6 X 

correspond to nonterminals, which are rewritten according to their right hand side 

using the copy-rule. For our purposes it will be sufficient to consider outermost- 

innermost derivations. 

Definition 3 

T i Let S b e  a s  a b o v e ,  a n d  l e t  t , t '  • A ~UXUY 

t' is derivable from t in S± (t ~I t') iff 3 S 6 FT~uy. 3 So 6 AT~uxU Y 
lw 

H s' 6AT~uxuy. W. s O = xj(t n) . ~ . (to) A t = S + (So,S') A (t' = S + (li,s') 

V t' = S ÷ (su_~bytype (xj) (rh.s (xj)) (t n) ~ . . (t o) ,s') ) . 

The schematic language generated by S is defined by 

L(S I) := (t E FT~ I x O ~ t} 
S i  D 

Example 2 

Define the integer-types n E Dn(I) by ~ := i,n+l := (~,2) • 

Let ~ = {e,a,b} with types o,I,i, and let X = {Xo,Xl,X2,X3,A,B} 

o,~,2,3,3~2, respectively. Let S 3 6 3-~(~+) be given by 

x = x3(x 2) (b) (e) Xl+ = y2(Y2(yl))% x2+ = yl(yl(Yo)) o 

x3% = +(x3(xl(Y2)) (B(Yl)) (A+)r A+ ) A+ = Y2(a)+ B+ = b(y1(Yo)). 

Then 
X ~ x3(x2) (b) ~ s ,/ + " x3(xl(x2)) (B(b)) 
o i A(X 2) (b) with s' = I 

| A (X 2) (b) e e 

I 
e 

I +~ + 
s' ~2(a) ~ s '/ ~ a! 2 

a 
b I 
I b 

e I 
e 

+ 
/ ~" a2b 

+ "~e =~ 

± x I (x 2) (a) 

i 
B(b) 

l 
A (x ~ (b) 

L 
e 

+~ + / a2b 

/ ~ e 
1 

A(X l(x 2)) (B(b)) 

I 

A(x 2) (b) 

I 
e 

+ 
/ "~a2b 

+ ~e 
/\ 

I x 2 (X 2 (a)) 

T 
B(b) 

[ 
A(x 2) (b) 

i 
e 

/ 
+ 

/ \ 
± 

+ 
~a2b 

~e 

x2(a) 
I 

~2 (a) 
I 

B(b) 
I 

A(x2) (b) 

l 

with types 

1 
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+ +'~ 2 / " a2b / a b 

+ "~ ~ + ~" e ~ + / ~ 4 e / ,~a4 

1 a ~ B(b) ± ~ b 2 1/ 

I i 

A(x2) (b) A(x 2) (b) 

t I 
e e 

+ + 
/ ~a2b / "~a2b 

"~e ~/ +--4b2a2b~a ~ e ~. a4b 2 
± 

~x 2 (a) "~ e 

l 
b 

l 

2 k 
a 2 b k+l Let w ° := e, Wk+ I := w k. it should be clear that 

k 

L(SI) = {+ ( .... ( + (l, Wk) ..... wl) I k 6 ~0} . [] 

Theorem 3 [4] 

L(S I) is directed, and U L(S±) = T(S) . 

Sketch of proof: 

From rational schemes we inherit the property T(S) = d K(S), where 
• 

K(S) : ~ ~ FT~ 1 is the Kleene-sec[~ence of s. We then prove x ° ~ K(S) (n) 

x ° ~ t ~ l(t) ~ K(S)(n) by induction on n 6 ~ o 

and 

In connection with theorem I this qives an operational semantics for level-n 

schemes over discrete interpretations. 

4. Level-n lanquages 

Consider a string alphabet V. We define ~ as the monadic alphabet which 

contains a zero-ary symbol e denoting the empty word , and unary symbols a denoting 

left concatenation with a 6 V. In order to generate languages over V we generalize to 

level-n grGl~nGfPs, where each nonterminal may be rewritten according to a finite number 

of definitions. Under the isomorphism between FV ~ (with the above algebraic struc- 

ture) and ~r[~V concatenation is mapped onto functional composition in PT~v ~PT~T'v 

hence level-O,±,2 grammars correspond to right-linear, context-free, and macro grammars 

[9], respectively. Rather than formally introducing level-n grammars we will take the 

generalization of the fixed point characterizations of the above language classes as 

the definition of level-n languages. 

Definition 4 

Let ~ = {e,al,...,a r} be a monadic alphabet, and let S £ n-~(~+). 

The level-n language generated by S, L(S), is defined as the interpretation of S 

over ~r[~ . The class of level-n languages over ~ will be denoted i~i(~). [] 

The equivalence to the expected definition by rewriting is an easy consequence of theo- 

rems i and 3. Since "+" denotes finite union in PT~ it simulates nondeterministic choice. 

By theorem i, L(S) = se___~t(T(S)), hence the scheme S 3 of example 2 generates 

the language {Wk...wil k 6 ~} . An obvious generalization of the construction of 
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S 3 shows 

Lemma I n-l~. "2k n-11~2 Z~20." 
Vn6~+3 L := { a 2" bk+l...a b I k60~}6 i n 

n Ol (~) 
o 

The next result gives an algorithm to test decidability of emptiness of level-n 

languages. The proof is based on the algebraic definition of level-n languages and thus 

out of the scope of this paper~ 

Theorem 4 [3] 

n/..2si~ ze(S) 
Let S 6 n-~(~+). Then ~2"'" 

L(S) # @ iff Hw6L(S) l(w) 
D 

A crucial result in the proof of the hierarchy is to show size-closure of 

level-n languages under intersection with regular sets. In a first step, we lift this 

problem via set. 

Let R be any language over ~. With R we associate the tree language R + 

over ~+ by R+ := {t6FT~ I set(t) C R}. 
+ 

L := {t 6 R I B s 6 L t < s} , where t < s iff s is For L c FT~ ~ let R+ + 
+ 

obtained from t by replacing some occurences of ± in t by e 6 ~ . It can easily be 

R n U set(L) = U set(R+ ~ L), hence by theorem 3 we have 

L(S) N R = U set(R+ ~ L(SI)) . 
[] 

Now assume R = L(Q) for some finite deterministic automaton with states [k]. 

proved that 

Lemma 2 

Then it remains to construct some level-n scheme ~ with L (SI) = R+ ~ L (SI). Let S 

be in normalform. It can easily be seen that x ° ~ t ~ t 6 FT~+uN , where 

N := A~ . To motivate the construction of S, consider the automaton Q working in 

a top-down fashion on a path of t, and assume Q reaches a leave 16 {e,l} U N. Then 

should 

(i) memorize the current state of Q in the top nonterminal of 1 

if 1 6 N; 

(ii) simulate S I in case 1 = I , since the corresponding path defines 

c R; 

(iii) substitute e by I in case e is reached in a nonfinal state; 

(iv) simulate S I in case e is reached in a final state. 

By (i), S should have [k] x X as nonterminals. Since we do not have any informa- 

tion about the states to be attached to xl,...x r while simulating a rule 

x+ = Xo(Xl(Y~),..osXr(Y~))+ t we allow all possible states as arguments, and 

"later on" choose the appropriate state through projections. This implies that the 

type of nonterminals has to be extended. 



273  

Definition 5 

(a) Extension of types : for 

:= i, ( ~ (1) ... ~(r),~) := 

and yT with T = (~n_l,...,(~o,i)..) under the bijection 

(q,yj,~r(j)) ~ Yl+j,~rr(l+j) where 1 := l(~rr-l). 

T 
(b) Extension of terms: for t 6 ATxu Y we define 

:= (ix ..... kx), ~ := (ly .... ,ky), t(tl, .... t r) := 

(pr i (~) (t I ..... t-) ..... prk(t) (t i ..... tr)). 

T 6 Dn(I) we define ? £ Dn(I) by 

(~ ~).k ....~)k,~ ) . We will identify [k] x yT 

6 AT T-~ 

xUY 
by 

(c) Let N := {prj(~) I t 6 N Aj 6 [k]} . We define (the inverse of -- on trees) 

_ : FT~+uN ~ FT~+uN to be the unique ~+-homomorphism generated by prj(~) ~ t . 

[] 

Construction of 

Let S with nonterminals X = {Xo,...,x N} be iN normalform, and let 

Q = ([k], 6,I,F) be a Rabin-Scott automaton with transition function 6, starting 

state i, and final states F. 

has nonterminals X := [k] x X with type(qx) := t3qpe(x ) , 

axiom iXo, and equations 

(i) if rhs(xj) = e then Vq 6 F qxj = e ) 

(ii) if rhs(xj) = ++ then Vq6 [k] qx9+ = +(qyl,i,qy2,i) 

(iii) if rhs(x.) = a + then Vq6 [k] qxj# = ap(~(q,ap)Yl,i) 
- -  3 P 

(iv) if rhs(x.) is of the form (2),(3),(4), or (5) then x.+ = 
- -  3 3 

Theorem 5 

rhs (xj) . 

L(S I) = L(Q)+ ~ L(S±) , 

Proof: 

The proof is based on the following three lemmata which follow by induction 

on the length of the derivation and case-splitting according to the right-hand-side. 

(i) S simulates S : ix ~ -- t ~ x ° ~ 
o S I q 

(2) S simulates Q : Let ix 
o tqFT~+U~ , and let n be the number of 

leaves of t, hence t = s ÷ (sl, .... s n) for some sj 6NU{e,I},SqT~+uYin 

Let pathj(s) denote the string in {al,...,ar}* leading to sj. For t £ N, 

let state(t) denote the state of the top nonterminal. Then 

VjE[n] ((s. = e ~ ~*(~athj(s)) £ F) A (s. 6 N ~ ~*(~athj(s)) = state(s.))) 
3 3 J ' 
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(3) " D '~ We use the notation of (2). (x ° 

A qj = ~(pathj(s))) ~ ix 

sj 6 N ~ sj = prqj (~j), sj = e ~ sj 6 {if qj 

• ±  ~ s ÷ (s I ..... s n) A sj 6 {e,±} UN 

s ~ (s I ..... ~n ) ^ (s. = ± ~  = 1, 
3 3 

6F then e else l,±} . 
Q 

This proves the conjecture in [14] that level-n languages are size-closed 

under intersection with regular sets. Let REG (~) denote the class of languages 
m 

accepted by m-state Rabin-Scott automata. 

Corollary 1 

VR£REGm(~) VS 6 n-~(~+) 

L(~) = L(S) 0 

In [4] we prove 

A size(S) ~ p(size(S),m) 

for some polynomial p 6 POL . 

that .n LOI forms a substitution closed AFL. 

5. Hierarchies 

The results of the previous section are taylored to derive upper bounds for 

the complexity of level-n languages in terms of the rational index as introduced 

in [i] . 

Definition 6 

For R,L C T~ with R n L # @, let d(R,L) := min { l(w) I w 6 R A L}. 

The ~t~o~x~ ~nd~ of L is the function gL : ~ ~ ~ given by 

gn(m) := max{d(R,L) l R6REGm(~) A RAL # @} 

Let F := {f : ~ ~ ~ } . For f,g 6 F, define + 

• n 6~ ~m~m f(m) ~ g(m). The class of languages over 
o o 

by some f 6 F is denoted i(F,~). For F' c F, 

let EXP(F ~) := { f 6 FI Bg £ F' f = m~ 2 g(m)} . 

R 6 REG (~) we have 
m 

gL ~ Expn(POL)" 

Theorem 6 

i~i(~) ~ L(EXpn(POL),~) • 

Proof: 

Let L = L(S)E [~i(~). For any 

hence by theorem 4 and corollary i 

/~2P(size(S),m) 

n~. o .. 

d(R,L) ~ , thus 

f ~ g iff 

with rational index bounded 

size(S R) ~< p(size(S) ,m)) 

It should be obvious that the rational index of Ln+ 1 cannot be bounded by 

a function in Expn-I(POL). The last exponential increase is due to a trick taken from 

[15] ~ by considering intersections with a+(bP)+a+(bP+l)+...a+(b2P-l)+(a V b) ~ 
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Lamina 3 

Vn6[0+3 L ~ [(EXpn-I(PoL) ; { a,b,e }) . 
n 

This proves the OI-hierarchy of languages strict. 

Since the emptiness-problem for level-n languages is decidable and they are 

closed under intersection with regular sets,we have strict inclusion in the clan REC of 

recursive languages. Together with the relation to regular, context-free, and macro 

languages sketched in section 4 we obtain 

Theorem 7 

Let ~ be a monadic alphabet containing two unary symbols. Them 

Vn6~+3 REG(~) ~CF(~) ~ MAC(~) ~ i n i n+l OI (~) ~ OI (~) ~ REC(~). Q 

Since the above language classes (except for REC) are defined as interpretations 

of corresponding classes of schemes, the OI-hierarchy induces a hierarchy of program 

schemes. 

Let ~(~) denote the class of (untyped) ~-schemes [6]. 

By results in [5,8] , level-n schemes are translatable into l-schemes, but not 

vice versa. 

Theorem 8 

Let ~ contain one constant, one binary and two monadic symbols. Then 

Vn6~+2 R(~) < RPS(~) < n-l(~) < n+l- ~(~) < ~(~) . 
[] 

This verifies the conjecture by Indermark [11] that the auxiliary use of 

higher type procedures augments the power of a programming language. 
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BOUNDS ON CO~/FUTATIONAL C0~LFT,~YITY AND APPROXIMABILITY 

OF INITIAL SEGMENTS OF RECURSIVE SETS 

M,I. DekhtJar 

Institute of Mathematics, Novosibirsk, 630090, USSR 

1. Introduction 

In this paper we study the relationship between beunds of the 

computational complexity of recursive sets and the minimal length of 

programs which compute initial segments of these sets (complexity in 

the sense of Kolmogorov-Markov). 

If some recursive set (r.s.) A has a great lower bound g of 

the computational complexity, then there seems to be natural an at- 

tempt to find such programs that recognize initial segments of A with- 

in complexity f ~ g. The growth of the length of these programs (as 

function of the initial segments length) characterizes the difficulty 

of approximation of set A by sets whose computational complexity 

doesn't exceed f. 

In Section 3 we establish the lower bound on this function which 

depends on the "distance" between the upper and the lower bounds of 

computational complexity of A ( Theorems 1,2 ). This bound "exponen- 

tially" improves the bound obtained by the author in [1]. It follows 

from the speed-up Lemma which shows that any computation of a set 

which is easy to approximate can be sped up on infinitely many argu- 

ments. In Section % the examples of the sets which are easy to appro- 

ximate are presented ( Theorem 3). They show that lower bounds obtained 

in Theorems 1 and 2 can't be essentially improved. 

8, Notations and definitions 

We denote by the same letter an infinite binary sequence A = 

= A(O)A(1)...A(x).., (A(x) E {O,1} ) and a set A={ x l A(x) = 1}. A x 

denotes the initial segment of sequence (set) A • Ax= A(O)A(fl)...A(X)o 

We fix a standard G~del numbering of the one-tape one-head Turing 
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machines (I~) ~ (e.g. as in [2]) and the corresponding numbering 

of the partial recursive functions ~ . As a basic measure of com- 

putational complexity we consider the space complexity ~sL} ( as usu- 

al s~(x) is the number of tape squares that are required for ~ to 

compute ~(2) ). A total recursive function f is said to be tape-con- 

structible if for some i f = s L. 

|xl is used to denote the length of the binary representation of 

number x. We suppose that there exists a universal TM ~ such that 

for any pair (i,x) ~ computes~m(i,x)=~(x ) and sm(i,x)~< lilsL(x ). 

For any set A, number x and total recursive function (t.r.f.) f, 

f(Y)~ lY~ we define the complexity of f-approximation of the initial 

segment A x as the number 

~(A x) = min(|ill~y~x[~(y)=A(y) ~ s~(y) ~< f(y)]} . 

This definition can be naturally extended on any other complexity mea- 

sure. The basic properties of the functions ~x.~f(A x) and related re- 

sults may be found in ~3J • 

We shall also use the next notations and abbreviations : 

U =~f ~f is unbounded non-decreasing t.r.f.} ! 

f~g <=> !img(x)/f(x) > o 

igx stands for log2x ; 

LaJ - the whole part of real a ! 

Comp.A~< h <---> ~i [ (~= A ) ~ ~ (s£(x) ~< h(x) )3 ! 

Comp.A> g <-~---> ~i [ (~£= A )~ ~ (s~(x) > g(x) )] . 

For a pair of t.r.f, h and g such that h(x) > g(x) for al- 

most all x we define an auxiliary function 

uh, S(x) = max{ y I ( y=O ) V ~z~< y (h(z) ~ g(x) ) } 

and let ~h,$ (x)=x, ..., uk, ~ (x)=u~,~ ~uh. $ (x)) . "Distance" between the 

functions h and g will be characterized by a function 

the(x) =max(~l(n=O) v (u~(x)> o)} . 

It follows from the definition that rk,~(x) ~< x for all x and if 

g(x)~Ix1, then r~.~ is unbounded t.r.f.. If hEU and g~U, then 

rk, ~ ~ U. In this case r~.$ (x) is equal to the number of steps of the 

staircase placed between the graphs of h and ~ with the top at 
the point (x,g(x)). 

~. Lower bounds of a~proximability 

Let t.r.f, g be almost everywhere a lower bound of the compu- 

tational complexity of A, i.e. Comp.A ) g. It follows from the re- 
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sults of [q,a] that there doesn't exist an increasing lower bound of 

f-approximability of A which only depends on g : for every e 6 U 

there exists such r.s. A that Coup.A> g and ~[Mf(A x) ~< e(x)] 

for every f(x)~>Ixl • In case when some upper bound of the computational 

complexity of A is also known, i.e. g < Comp.A ~< h , it is establish- 

ed in [1] that ]~ [Mf(A x) >_, [iglgr~,l(x)J ] (for f(x) ~ g(x)/Ixl). 

This hound can be increased exponentially. 

THEOREM I. Let h and g be tape-constructible functions, A be 

a r.s. and g< Comp.A~ h. Then for every tape-constructible fEU 

such that Izlf(z) < g(z) for all z, and for infinitely many x 

Mf(A x) ~> Llgrh.~(x)J . 

The proof of t h i s  theorem fo l l ows  immediately from the next Lem- 

ma on speed up computations of sets that are easy to approximate. 

I~. Let for tape-constructible h,g and f6 U and for r.s. A 

the next conditions hold : 

i) ~ [h(x) > g(x) > Ixlf(x)] 
ii) Comp.A ~< h ! 

iii) ~r~x [Mf(A x) < Llgr~a(x) ] ]. 
Then there exists a program i such that ~i = A and~x[si(x) ~ g(x)] 

( i.e. computation A(x) can be sped up in infinitely many arguments x 

from h(x) to g(x) ). 

Sketch of the proof. We fix at first programs i I and i 2 and ar- 

gument ~ such that ~/x [ (~i~(X) = A(x) ~ eli(X) ~ h(x) ) &(~i(x) = 

= r~,~(x) ~ si~x) ~< g(x) ) & ( x~ ~ Mf(Ax)~<[lgrh,~(x)] - I )] . 

Program i contains as subprograms i I and i 2 and on input x computes 

as fallows : 

a) if x, ~ then write output A(x) using the inner memory! 

b) if x~ then compute the numberk(x) =[r&~(x)/2] ! 

c) find such minimal ~<k(x) that ~z~< x[ s~(z)~< f(z)] and for 

every j~ k(x) if T = rain{ z I sj(z) ~< f(z) ~ ~(z) ~ ~(z)}, then 

~(~) = ~ii(z) = A(~)I compute ~(x) and write it as output. 

It follows immediately from ill)and the choice of k(x) in b) 

that ~i(x) = A(x) for all x. Introduce an auxiliary notation : 

Vy(X) = max{~l (~ ~ x)~S~,~ [(~ k(y))~(j%~(y))~ ~ = min{z l(s~(z)~ 

.~ f(z) ) ~ (sj(z) ~ f(z) ) • (~(z) ~ ~j(z) ~] } 
Then by the definitions and the construction of i the next claims 

hold. 
Claim I_. For every y ~Vy(X)~ x~ y}~ k(y) ~ rh.~(y)/2 • 
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Claim 2. There exist infinitely many x such that Vx(X) < u~$(x). 

Claim ~. For evez~j x si(x)~ max{g(x),|k(x)If(x),max{h(z)~ z 

vx(x>} }o 
Now the definition of u~g(x)~ condition i) and claims 2 and 3 imply 
that 3x [si(x) ~ g(x)]'" • 

COROLLARY 1.1 Let h be an optimal (up to a constant factor) 

Space complexity of A ( i,e. Comp.A ~ h and for any g if ComDA~ g 

then g~h ) and let there exist c such that lim h(x)/h(x+c) = 0 
X-~ 

Then,fo2 f(x) = h(x)/Ixl ,  Sd Sx[Mf(A x) ~ igx - d ] .  

COR0~Y 1.2 For any f6U, HeU there exists g6U such that 

for any A if g < Comp.A~ Hog, then ~c ~ [Mf(A x) ~ Igx - c~ . 

Below we present some more examples of lower bounds of f-appro- 

ximability obtained by Theorem 1. 

f (x) ~ g(x) h(x) lgrh~%(x) 

x/Ixl x Ixl x ig Ixl 

x/Ixl x x 2 igig Ixl 

Ixl k Ixl k+l Ixlk+l+p,p > 0 Iglglg |xl 

2XAx| 2 x 22x ig Ix I 

22x/I xl 22x 22x+1 |x I 

~NMARK 1. Theorem 1 can't be improved by changing quantifica- 

tion ~ into V~ • This is due to the results of [5] where "sparse" 

sets with optimal computations have been constructed. The results im- 

ply that for s(x) =Ixl, every tape-constructible h and every ( arbi- 

trarily slowly increasing ) e ~U ~here exists a r.s. A such that 

i) h is an optimal space complexity of A ! 

ii) [MS(A x> 

REMARK 2. In conditions of Theorem 1 the "honesty" requirements 

on complexity bounds h and g can be omitted.Then the assertion of 

Theorem 1 will hold after the change of rh,~(x)into any t°r°f, r(x) 

such that r(x) is computable within space g(x) and r(x) ~ r~,~(x) 

for almost all x. 

REMARK ~. Theorem I with slight changes remains valid for the time 

and other "natural" complexity measures." Fo~ instanc'e, it will hold 
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for the time if we change u~,~ in the definition of r&.$ into function 

~h,g(x) = max{yl (Y = O) V ~V~z~y ( x . h ( z )  < g(x) ) ~ and choose f 
such that g(x) > x2f(x) Igf(x) for all x. 

We supposed above that the complexity of any computation of A 

is greater than g(x)for almost all x. There are a lot of natural prob- 

lems A that have not great enough lower bounds of complexity on al- 

most all arguments but, nevertheless, for any TM ~i computing A 

max ~ si(x) I Ix# = n} increases quickly as function of n. Theorem 2 be- 

low generalizes Theorem 1 and allows us to obtain lower bounds of f- 

-approximability for such kind of problems. 

THEOP~ 2. Let b(n) be any tape-constructible function such that 

b(0) = 0 and b(n)< b(n+1) for all n. Let for tape-constructible func- 

tions h, g, f~U and for r.s. A the following conditions hold: 

( i )  ~ T  [h (n )  > g(n) > I b (n+l ) -  1 I f ( b ( n + l ) -  1) 
(ii) ~i[(~ i = A) ~ Vn~(max{si(x) I b(n)~ x< b(n+1)} ~ h(n) ) ] ! 

(iii) Vj[(~j = A)~V~'(max{sj(x) ~b(n)~ x < b(n+l)~ > g(n) )] 

Then 

The proof of this theorem is similar to the proof of Theorem I 

and therefore is omitted. 

Note that Theorem 1 follows from Theorem 2 under b(n) = n. Under 

b(n) = 2 n-1 the next analogy of Corollary I•1 may be obtained. 

COROLLARY 2.1 Let h be a tape-constructible function such that 

for some c lim h(n)/h(n+c) = 0 and A be a r.s. such that 

(i)3i[(~ i = A)~ V~ ( max{ si(x)l ~xl = n} & h(n) )] ! 

(ii)~j[( ~j = A ) ~( max {sj(x)~ ~I = n}~ph(n) )] . 

Then for f(x) = h(Ixl)/Ixl there exists such constant d that 

Z(A x) i> lglgx- d ) 

REMARK ~. Theorem 2 may be applied, for example, to complete in 

~PACE problems to obtain lower bound 0(lglgn) on their polyno- 

mial approximability. But for such kind of problems exponential lower 

bounds on their polynomial approximability were established in [6]. 

On the other hand, Theorems 1 and 2 are applicable to any set within 

given bounds of computational complexity, not only to a complete one. 
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#. Sets that are easy to approximate 

In this section we establish the upper bounds of f-approximabi- 

lity for sets with fixed bounds of the computational complexity. They 

show that the lower bounds of f-approximability obtained by Theorem fl 

and 2 are exact enough and can't be essentially increased. The next 

theorem provides examples of easy to approximate sets within any quick- 

ly enough increasing bounds of computational complexity. 

THEOREM ~. Let h, g and f be tape-constructible functions from U 

such that g(x) = o(g(x+l)), h(x) = o(h(x+l)), h(x)> g(x+l) for all x 

and rh,9(x ) is computable within space f(x). Then for any (arbitrarily 

slowly increasing) e ~ U there exists a r.s. A such that 

(i) g ~ Comp.A ~ h 

Sketch of the proof. At first we define a sequence {Yk} : Yo = 0, 

Y2n = min{z I rh,~(z) = n} , Y2a+l =[(Y2n + Y2n+2 )/2] ,and an auxiliary 
function ~: E(x) = h(y n) for xE[yn,Yn+l). Let bEU be such compu- 

table in linear space function that b(x) ~< ~ for all x. A set 

A will be defined by ~, b and {Yn~ with the help of a standard diagona- 

lization. After stage n of construction A(x) will be defined for all 

x~ K0,Yn+l). In addition some finite set L n of programs "cancelled" 

after stage n will be defined. 

Stage O. Pat A(x) = 0 for xE~O,y 1) , L o = ~ • 

Stage n+l. Let i = min{jl(j =~)V [ (J~Ln)&(j~b(Yn)) 

If i =~ then put A(x) = 0 for x~[Yn+fl,Yn+2 )~ and Ln+fl = L n . 

If i<~ then find~ = min{z~z~[Yn+l,Yn+ 2) & (lilsi(z) S ~(z) )} 

and put _- 1 - -  f o r  and I = rn,., { i } .  

It is not difficult to verify that A(x) can be computed within 

space g(x)° Therefore Comp.A..< ~ ~ h. By the standard arguments it 

may also be established that for every i if ~i = A, then ~si(x)> 

g(x)/lil ). The conditions on the growth of h and g and the de- 

finition of ~ imply that g(x) = o(~(x)). Hence, Comp. A > g a~d as- 

set, ion (i) holds. 

To prove (if) we note that a sequence A x, xe [Yn' Yn+fl )' can be 

restored by a set I n ={kl k~n ~ A(Yk) = 1~. It follows from the 

construction of A that Ini~ lgrh. ~ (x) + I ~d I I I ~ b(y a) ~ b(x). 

Therefore 2 the length of the program recognizing A xn within space f 

doesn't exceed~for some constant c • c b(x) Igr~ (x) ~ e(x) lgr&,~(x) 
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for almost all x. 

COROLLARY 2.1. Let rE U range over all numbers. Then there 

exist f~ U and such arbitrarily great t.r.f, h and g that ra,~ = r 

and for every e ~ U there exists r.s. A such that 

(i) g <Comp. A.< h! 

(ii) ~x [ ~(A x) ~ e(x) lgr(x)] 

It is unknown whether unbounded function e(x) may be avoided in 

statement(ii) of Theorem 3 (and Corollary 3.1) or at least be decreased 

to a constant. 
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ON THE WEIGHTED PATH lENGTH OF BINARY SEARCH TREES 

FOR UNKNOWN ACCESS PROBABILITIES 

Thomas Pisoher 

Technical University of Dresden 

Department of Mathematics 

DDR - 8027 Dresden 

German Democratic Republic 

INTRODUCTION 

Given a set of m records with an ordering on their keys, and given 

a fixed distribution p of their access probabilities, it is well known 

that a binary search tree can then be constructed such that its weigh- 

ted path length is less than H(p) + 2, where H(p) is the Shannon en- 

tropy of the distribution pc Algorithms for constructing search trees 

according to given underlying access probabilities have been proposed 

in a large number of papers, see e.~o Gilbert and Moore CIJ, Knuth 

~2, 3~ l~redman E4~, and Mehlhorn LS~. One of the major shortcomings 

of the theory, however, is that in practice access probabilities are 

often not known precisely. Moreover, it may be possible that the true 

access probabilities are not only unknown in advance but also varying 

over time. The construction of an optimal search tree, however, and 

the calculation of its weighted path length require precise knowledge 

of the actual distribution p. Optimal or nearly optimal binary search 

trees designed for a given known probability distribution are there- 

fore not applicable to such cases. Three questions thus naturally 

arise: 

(i) If a binary search tree is designed for an access probability 

distribution q, but the actual distribution is p, how much perform- 

ance might be lost due to this mismatch? 

(ii) What is the minimum attainable weighted path length if we must 

design a tree for an unknown member of a given class P of distribu- 
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tions? 

(iii) Is there an algorithm for constructing a binary search tree 

that is in some sense well suited for any member of P? 

These three questions are answered in Theorem 1 and 2 and in the 

Corollary below. 

A similar problem has previously been attacked in papers by Allan 

and Munro [6] and Mehlhorn [7] by investigating techniques for adap- 

ting the search tree to the unknown or time varying access probabil- 

ities (self-organizing and dynamic binary search trees, respectively). 

The idea of the present paper is to design a static tree that performs 

well for any member of a whole class of probability distributions. It 

is shown that under certain conditions there is always a single tree 

such that, for each particular probability distribution peP, its 

weighted path length does not exceed the bound sup H(p) + 2. Binary 
p~P 

search trees of such a kind are called universal with respect to P. 

An universal binary search tree could thus be used without specific 

knowledge of which distribution was given. 

WEIGHTED PATH I~NGTHAND INACCURACY 

Suppose we are given m records represented by their names (keys) 

N 1 , N2, ... , N m in lexicographical order and a probability vector 

i. e. Pi ~ O, i = I, m, P = (Pl, "'" , Pm' P~' P~ ' ""m' p~)' . . . .  ' 
p~_~ o, j: o, . , m, and Fi:1 Pi ÷ ~j:0m pj, : I. Set PI' "" 
Pm be the probabilities of a successful search for the records N 1 , 

... , Nm, while p~ denotes the probability of requesting for a name 

that belongs to the interval (Nj, Nj+q), j = I, ... , m-1. Conse- 

quently, the probabilities of searching for names less than N 1 and 

' and Pm' respectively. An important method for greater than N m are Pc 

retrieving information by its name is to store the names in a binary 

tree. Zet I i denote the path length from the root of the tree to the 

internal node representing the name Ni, l~ denotes the corresponding 

path length of the external node labelled with (Nj, Nj+ 1). Then the 

weighted path length of such a binary search tree T is defined by 

m m 

~p(T) : ~i:IPi(li +1) + ~p31~, 

oZ. with ~th [3]. 
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Now suppose we are given another probability distribution q = 

qm) (q1' "'' ' £m ~ qo ~ q ~ "'~ ' , where qi > O, i = I, ... , m, qj > O, 

j = O, ... , m , which may be interpreted as a hypothesis on the true 

but ;~nknown distribution p. It is well known that it is possible to 

construct a binary search tree such that 

i i ~ - Id qi ' i = I, ... , m, 

and 

I~ ~ - Id q~ + 2 , j = O, ..., m, 

cf. with ~redman [4], Mehlhorn [5], or for a special case see Knuth[3], 

pp. 445 - 446. Zet us denote such a tree by T(q) and consider its 

weighted path length with regard to the actual distribution p. Thus 

we have established the following result: 

Theorem I. 
m m 

where 

H(p,q) : - = Pi id qi j=O p~ Id qi" 

The latter function, which is usually called inaccuracy, is well 

established in information theoretic literature, see Kerridge [8]. It 

is easy to see that this function is a simple generalization of the 

usual Shannon entropy H(p), which can be obtained from inaccuracy by 

setting q = p. Some important properties of inaccuracy are listed in 

the lemma below. Here and in the following the convention O.ld 0 = 0 

is used. 

~e~ma. 

For any pair of probability vectors p = (Pl' "'" ,pn) and q = 

(q1' °°" , qn ) the function 
v l  

H(p,q) = ~ Pi id qi 
i=1 

is nonnegative, greater than or equal to Shannon's entropy K(p), and 

unbounded to above. Furthermore, H(p,q) is continuous and linear in p 

and convex in q° If qi • O~or qi = 0 implies Pi = O, i = 1, .°° , n, 

it is also continuous in q and always finite. 
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BINARY SEARCH TREES BASED ON ~REQUENCY DISTRIBUTIONS AND UNIVERSAZ 

BINARY SEARCH TREES 

At first consider the case in which the actual distribution of 

access probabilities, p, is unknown in advance but not varying over 

time. Then it might be possible to observe the frequency of requests 

for the particular records before designing the final search tree. 

Suppose Pn is such a frequency distribution based on a sample of size 

n. Then the weighted path length of a tree T n designed according to Pn 

is upperbounded by H(p,pn) + 2, cf. with Theorem I. Since Pn is a con- 

sistent estimate of p, for sufficiently large samples, H(p,pn ) con- 

verges to the optimum value, H(p), with probability 1. 

Next consider the case that the actual access probabilities are 

not observable, perhaps because they are varying over time. If thus 

the true distribution p is completely unknown, the only we can do is 

to use the uniform probability distribution for constructing the tree. 

If q is the uniform distribution, i. e. qi = qi = I/(2m+I), i = 1, 

... , m, j = O, ... , m, we get H(p,q) = ld (2m+1). Hence, when 

using the uniform probability distribution we get a binary search 

tree having a weighted path length less than Id (2m+I) + 2. If, in 

the opposite case, the actual distribution p is completely known and 

the tree constructing algorithm is applied to p, we have the well 

known upper bound H(p) + 2. 

In the following the situation between these two extreme cases 

is investigated. Suppose it is known that the true access probability 

distribution belongs to a certain class P of probability distributions 

corresponding to a fixed set of names, N = _INI' ..o , Nm~.~ Zet T N de- 

note the set of all possible binary search trees for N and consider 

the minimum attainable weighted path length of trees T E T N for the 

worst distribution p (P, 

ZN(P ) = min sup Lp(T). 
T G T N p~P 

It is well known that for any particular distribution p the weighted 

path length of an optimal binary search tree T O satisfies 

Zp(T o) = min Zp(T) ~" H(p) + 2, 
T GT N 
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cf. with Theorem I for q = p. Now we are interested in a corresponding 

upper bound for ZN(P). 

Theorem 2. 

If P is convex and compact, then 

~(P) ~ supH(p) + 2. 
p~P 

Proof: 

Zet P be compact and convex and consider the minimum weighted 

path length of a tree T = T(q) related to the worst distribution p g P, 

~(P) = i~f sup ~(T(q)). 
q pgP 

From Theorem I it immediately follows that 

~(~) ~ inf sup H(p,q) + 
q P~P 

and since H(p,q) is linear in p and convex in q, we get 

inf sup H(p,q) = sup inf H(p,q) 
q P~P p~P q 

2 , 

= sup H(p) , 
p~P 

see Golstein ~9], Theorem I. Therefore 

~(P) < sup H(p) + 
pep 

and since ZN(2) ~ L~(P), the theorem is proved. 

2, 

It should be pointed out that the bound of Theorem 2 could be 

sharpened by using the value sup H(p) + sup =0 PJ + I, of. with 

the bound of Theorem I. However, we prefer the weaker bound used above 

since it is easier to work with it. Thus the result of Theorem 2 leads 

to the following definition: 

A binary search tree T is called universal for P, if for each 

particular probability distribution p E P its weighted path length 

satisfies 

~p(T) ~ sup H(p) + 2 
p~P 
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In the proof of Theorem 2 it is also shown that for convex and 

compact classes P a universal binary search tree can be found by 

applying the usual tree constructing algorithm to a suitable distri- 

bution q. Hence, for any such convex and compact class P we have to 

find this best distribution. A simple solution for this problem can 

be derived from the following lemma proved in a previous paper [10]: 

~emma. 

let P be a convex and compact class of probability distributions 

and let Pc be such that H(Po) = sup H(p). Then, for each pe P, 
pep 

H(p,p o) ~ H(Po). 

Now let T(Po) be a binary search tree constructed in accordance 

to the entropy maximizing distribution Pc" Then, from Theorem I, it 

follows that 

~p(T(Po)) ~ ~(P'Po) + 2, 

for each p ~ P, and the Zemma above yields 

lp(T(Po)) ~ SUp H(p) + 2. 
~P 

Thus we have derived the following result: 

Corollary. 

The tree T(p o) is universal for P° 

This result is illustrated in the following example, in which 

the special ease Pl = "'" = Pm = 0 is considered. The corresponding 

binary search trees can therefore be obtained by the use of the Gil- 

bert - Moore algorithm, of. with Knuth [ 3], P. 445. Furthermore, for 

any real numbers a and b the class P[a;b] is defined as the set of all 

i) ' i probability vectors (p , ... , p with Pc = ~ and p ..... Pm = 

(1-~)/m where ~ is a real number such that a ~ ~ 4 b. The entropy of 

such probability vectors, H(p~,...,p~), can then be written as a 

function of the real parameter ~ only, 

H(p$,...,p~) = H(~) 

= Id m - ~ id ~ - 

The graphical representation of H($) is given below. 

(1- ~,).l d (1-?) .  
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ld(m+1) 

id m 
~__ _ sup H(~) f - - ' - ' - " ~ ~  ,~4o;o,5] 

"~ sup H(~) 
9e[o,5;I ] 

\,, 
",\ 

\\, 

0 m+l ~ 12 1 

P[o;o,5~ ~[o,5~I] 

\\\k___. 

From the shape of the H(~) curve it can be easily seen that for 

the class P[O;0,5] as well as for P[O;1] the entropy maximizing dis- 

tribution is the uniform one, which leads to a tree having a weighted 

path length between Id(m+1) and ld(m+1) + 2, whereas for the class 

P[0,5;1] a considerable reduction of weighted path length would be 

possible by using the distribution obtained by setting !7 = 0,5. 

CONCLUDING REMARKS 

The algorithm for the construction of universal binary search 

trees can therefore be described as follows: 

(1) Given a convex and compact class P of access probability distri- 

butions choose a distribution Pc that maximizes the Shannon en- 

tropy in P. 

(ii) Construct a binary search tree by applying the usual algorithms 

mentioned above to Pc" Then the tree obtained is universal for 

in the sense of the definition above. 

Thus the problem of constructing a universal binary search tree has 
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been reduced to the problem of finding a probability distribution 

that maximizes the Shannon entropy within a convex and compact set 

of distributions. Note that, since the Shannon entropy H(p) is a con- 

cave function of the probability vector p, a solution may be found 

by using the methods of convex optimization theory. 

Clearly, if P is the class of all probability distributions on 

some ordered set of names, the entropy maximizing distribution is 

always the uniform one. Moreover, the uniform probability distribution 

is the maximizing one whenever it belongs to P. This is the worst ease 

of our considerations. Thus the efficiency of the method presented 

here essentially depends on the nature of the given class P. 
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I. INTRODUCTION 

Combinatorial optimization problems such as allocation, traveling 

salesman and knapsack have obvious applications in computer systems, 

for example in efficient organization of data processing, assignment 

of computer information to physical blocks of storage, resource allo- 

cation in multiprocessor systems. The apparent computational intra- 

ctability of these problems has stimulated research into the possibi- 

lities of designing efficient approximation algorithms which, while 

not always finding optimal solutions, do guarantee solutions that are 

close to the optimal. 

In this paper for the allocation and traveling salesman problems 

it is shown that to find approximate solutions with guaranteed accu- 

racy is, in a sense, as difficult as to find optimal ones. Various 

forms of the knapsack problem are considered and fast approximation 

algorithms with the guaranteed accuracy are obtained for them. 

The knapsack problems considered in the paper are formulated as 

follows. 

Problem PI (min-knapsack) 

Minimize i=1 cixi , 

subject toZn=1 aix i >/ b, xi~ {0, l~ci~O, ai~O(i--1, 

Problem P2 (sum of subset) Ma~.mize~. 
subject to~n=1 aixi~b, xi~IO, 11 

n 

a i x i , 
i=I 

,ai~0(i=l,...,n) . 

oQo,n) 
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Problem P (min-tria ular-kna~sack, or min-Job-sequencing-with- 
I 3 ~ ~ w I ~ . . . . .  " 

due-dates) 

E Minimize i=I cixi J 

subject to ~iJl aix i~bj (j=1,...,n), 

xi{~0,1 } , Cl iO, ai>.-O(i=l,...,n) . 
Problem P4 (max-multiple-choice-knapsack) 

2_ 
j=1 cij Xij ' 

su~jec~ to ~ m 7 k  f ~jx~j.<b,~ x,j~, 
i--tz-'- j=l j=l 
xijE{O,1 }, cijP/-O, aij>~O(j--"l,...,ki; i= t , . . . ,m).  

Problem P4 (min-multiple-choice-knapsack) 
m k " 

Minimize ~i=I~I cijxij • 

~- m ~k i ki 
subject to Z__.i=IZ_~= I aijxij> # b, Zj=1 xlj%1' 

xij~{0,1}, cij >.,0, alj~O (j=1,...,ki ' i=l,...,m) o 

Problem P5 .(min-obligatory-multiple-choice-kna~sack) 

Minimize (Maximize)21m Ejki =I =1 cij xij J 

subject to ~-- m vki aijxijc~)b ' ~jki 
~--.i=i~-- j=1 xij=1 

xi j  ~ {0, 1), Cij>/O , ai j~O ( j= l , . . . , k i ,  i=l , . . . ,m). 
Problem P6 (continuous fixed-charge-knapsack) 

)~i n Minimize (Maximize =1 (cix i + d i sgn x i ) , 

n xi)>~b subject to i_1(aixl + b i sgn 

n xi).< ( Li=1(alxi + b i sgn b ) 

O~<xi~<1 , ai,di~O, ci, bi~O , i--1,...,n 

Table I summarizes the 6-approximation algorithms which 
have recently been devised for the problems PI - P6' N standing for 
~m ki, logarithm considered ba~e 2. 

i=I 
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Table I. Complexity of Approximation Alsorithms. 

Problem : Time : Space : Reference 
: Complexity : Complexity : 

0(n4/6 ) 
P1 O(n3/g ) 

;I:;%' 
0(n+l/ g 3 ) 

P2 0(n/g ) or 0(n+I/g2) 
O(n~ +1/ ~ 3) 

oCn31~ ) 
P3 0(n21og n+n}g ) 

0(Nm2/~ ) 
24 O(Nml~ ) 

P4 0(Nlogm+Nmlogm+Nm/£ 

P5 (max) 0 (Nm/E ) 
Ps(zin) O(Nlogm+~o~Jm/~ ) 

0(n4/£ ) Babat [I] 
0(n3/6 ) Gens and Levner[8] 
O(nY/~ ) h.~. 
0(n+I/ 6 3) Ibarra and Kimi5 ] 

O(n+l/ 6 '2) Lawler [7] 
0(n/E)or 0(n+I/62) Oens an~l Levner 

o(n+~% ) [4, 8] 
hole h.l. 

0(n3/g ) Gens and Levner 
8] O(n2/~ ) ~'.~. 

0(Nm2/g ) Lawler [7] 

0 (Nm/6 ) h.I. 

0 (N+m2/~ ) h.I. 

o(N+m 2/¢ ) h.1. 
0 (N+m2/6 ) h.~l. 

P~in) 0(n4/6 +n/~*(~inllog(1+ci/a-)~) 0(~£ ) Babat [2] 
p6(n%ax) 0(n3/£ ] ~i0(n2/g ) h.~. 

o(n2/£ ) O(n2/g ) h.1. 

2. ANALYSIS 0F APPROXIZATION AL~0RITHMS 

Formally we define approximation algorithms with guaranteed ac- 

curacy as follows. 

Definition I. An algorithm will be said to be an 6- approxima- 
tion one for a problem P if for every instance I of P and for a 

given 6 >0 we have If(Ip, ~) - f (Ip)l ~g.f (Ip), where f* (Ip) 

is the optimum value of %he object function f(Ip,x) in the problem Ip, 
f(Ip,~) is the approximate solution value obtained. The solution 
will be said to be 6 - approximate. 
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Definition 2. An algorithm will be said to be (?) - approxima- 

tion algorithm for a problem P, if for every instance I p of P and for 

a giveng>O If(Ip,x)-f(Ip)I~(maXx~xf(Ip,x)-mlnx~xf(Ip,x)) , X being the 

set of feasible solutions of Ip. The solution ~ will be said to be 

( 9 ) - approximate. 

In the definition I the guaranteed upper bound on possible error 

is measured in terms of the desired optimum, while in the definition 

2 this bound is measured in terms of the maximum possible error. 

Another approach to measuring the accuracy in discrete optimiza- 

tion may be as follows. Let P be a combinatorial problem, say, a ma- 

ximization problem with f(x) being an object function. Let all the 

feasible solutions of the problem P be arranged according to nonin- 

creasing value of f(x): 

f(xl)~f(x2)~f(x3)~... (I) 
All the x's which have the same value of f(x) are assumed to be 

of the same group. Thus, the sequence (I) gives us a sequence of groups 

BI,B2,B3..., such that 

f(x Ix~B1)>f(xlxEB2)>f(xlxEB3)>... (2) 

Definition 3. The k th solution in the sequence (I) is called 

the kth best solution. An approximate solution is called a k - so- 

lution if it belongs to any of the first k groups in the sequence (2). 

It is clear that the k th best solution is, also, a k - solution; 

in this sense, to find a k- solution is easier than to find the kth 

best solution. 

Definition 4. An ~ - approximation (respectively, (~) - appro- 

ximation) algorithm will be said to be fast if it has time and space 

bounded byfSaPOl~m~tlin ~Otah pr~bl~ib~uad~d1~y(Oor( 13~9n~/6 For 
example, p e n ) 

then it is fast; if the bound is O(n I/g ) , it is not fast. 

Theorem I. For the knapsack problem to find a k -solution is a 

NP-hard problem for any k being bounded by a polynomial function of m. 

To prove this fact we consider the following problem G: 

Maximize g(x)=2k'~ 'n i=I PiXi + Xn+l+.-.+Xn+k-1, 

subject to g(x) ~ ko~i Pi + k - i, x i e ~0,i~. 
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Let A be a polynomial in time algorithm which gives a k - solu- 

tion of the knapsack problem, and, hence, of the problem G. Then we 

that either A gives a solution x such that g(x)~k~Pi__ and then see 

the sum of subset problem F, stated in terms of recognition, has a 

solution, or A gives a solution x such that g(x)<kTiPi__ and then 

the problem F has no solution. Since F is the well-known NP - complete 

problem, it follows that to find A is a NP- hard problem in the sense 

of Karp [6 ]. 

A similar fact is valid for many other combinatorial problems 

such as traveling salesman, clique cover, set cover, graph coloring, 

etc. 

Now consider the allocation problem A, in the formulation given 

by Cornuejols, Fisher and Nemhauser L3] , and the sum of subset prob- 

lem S, formulated in terms of the absolute value of a difference 

between two disjoint sets: 

Problem A. ~Iaximize Z~=1~=I cij xij- ~j=1 dj yj 

2 5- subject to j=1 xij=1' i=1,...,m, I ~ j Yj~K, 0~xij~yj~1 , 

xij, o, i } . 
n n 

Problem So M i n i m i z e l Z i = l P i X  i - Z i=1 P i (1-x i  ) 1 '  ,}. 
Theorem 2. To find ~ - approximate solutions of the problems A 

and S is NP - hard. 

This fact is proved by reducing the well-known NP - complete 

problems such as allocation and sum of subset in terms of recognition, 

to finding E - approximate solutions of the problems A and S. Thus, 

Theorem 2 extends the list of such problems originally presented by 

Sahni and Gonzales [10] . 

Note that if a problem P has the optimum value fp equal to 0, it 

implies that to find its ~ - approximate solution is equivalent to 

finding the optimal one; however, it does sot imply yet the NP - har- 

dness of finding g - approximate solutions since the zero fp value 

in the problem P might be found in polynomial time. 

Theorem 3. For the traveling salesman problem to find the fast 

( V ) - approximation or g- approximation algorithms is NP - hard, 

even if the distances obey the "triangle inequality". 
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In order to prove Theorem 3 it is sufficient to show that the 

existence of the fast (~) - approximation or ~ - approximation al- 

gorithm implies the existence of a polynomial in time algorithm for 

the NP - complete Hamiltonian cycle problem. 

It is easy to show that a similar fact is valid for many other 

combinatorial problems, in particular, for graph problems with the 

object function being bounded by a polynomial in the problem size. 

3. FAST ~- APPROXI~ATION ALGORITH~S 

We suggest a fast algorithm A(22) for the sum of subset prob- 

lem P2 which is a modified version of our earlier algorithm E(P2), 

described in ~,8] . The main idea here is to improve the space bo- 

unds using the trade-off between the running time and the space. 

In the preliminary step of A(P 2) we use the algorithm E(P 2) 

which in O(n÷~ time computes an ~ -approximate solution value 

f(x). However in this step We do not try to obtain the solution 

x=(x1' .... , ~n ) itself, so the space needed is O(n+I/~ ). The compo- 

nents of solution x are determined successively, in s steps, where 

s is a number of variables not belonging to the list Small in the 

algorithm E(P2). 

In the first step of A(P 2) we set some xi=I (x I ~ Small) and 

run the algorithm E(P 2) once more With the x I value fixed. If it 

yields a solution value not worse than the f(~) obtained we can fix 

~I = I in the solution ~ we are seeking for. Otherwise, we can fix 

31=0. Then we set in turn x2=I, x3=I,..., xs=1, run E(P 2) each time 

and fix the values ~2' £3'''''~s successively. Next we determine the 

rest Xs+1' '''' Xn values in just the same way as in the algorithm 

E(P2). In the latter s~ 2/g , thus we obtain the bounds stated in 

the Table I. 

This technique easily generalizes to other knapsack type prob- 

lems. However, we shall not consider it here. 

The techniques we suggest to obtain fast algorithms for the pro- 

blems PI' P3-P6 consist of using the digit truncation, similar to that 

described by Sahni E 9], and constructing bounds ~, satisfying ~ f~ 

~cf, where f'is the optimal solution and c is a constant, usu- 
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ally, 2 -< c g 8. 

We present two methods for obtaining the bounds f: (i) sophistica- 

ted "greedy" procedures, and (ii) an iterative dichotomous search. 

The first method may be illustrated on the problem PI" An algo- 

rithm yielding in O(n log 2 n) time the ~ value such that I/2 ~ 

~f(p1 ) 4 ~ takes the following form: 

Steo I ~ Sort S= { i ,2, ... ,n} according to nondecresing outlay 

density,-Oi/ai o Set ~=ZiEs ai' 

Step 2. Fill the knapsack by the elements of S in the order ob- 

talned untillZi aix i ~ b. (We assume thatZl=l - aix i ~b, otherwise 

the problem has no solutions). Find k=min(jl~ i~ja i~b). Set 

L=g---i~ k ci' 4-min 

Step 3. Set S~--S\k. If ~iES ai >b' then go to step 2 else 

stop. 

We illustrate the second method of finding f on the problem P3' 

Begin by constructing an algorithm 

fo such that f°/n ~ f~ (P3) ~f°: 

o 

v(f) which finds a value 

Step I. Sort S=<1,2,...,n}accordi~gto~nondecreasing outlay, c i. 

Denote the elements x i entering the j th constraint in P3' i.e. 

aj(x)~bj, by Jj. 

Z Step 2. Select k smallest elements such that a i ~ bj 
i E Jj i=I 

for any j= 1,...~n and ~ k-1 ai<bj for some j° 
i£ Jj i=i 

o 

It is clear that the value k. aik is the desired f . 

Let p be a positive number. We next devise a fast algorithm A(p) 

f~(p3) ~ f~(F3) which for every p and finds that either f(P3 ) ~ p or 
~3/4.p. The algorithm A(p) consists of n steps, its construction being 

similar to that described by the authors in [8] , its running time 

being O(n2). 
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So the algorithm for finding the ~ value for the problem P3 such 
A @ 

that 1/2.f~f (P3) $ ~ takes the following form: 

o 
Q St___ep_~1. Usir~g the algorithm V(f°), find the f value, such that 

fO/n ~ f~ (p3) ~ fo. Set f=aik. 

Step 2. Set p=2f and run the above algorithm A(p). If f~(P3) ~ p, 

set ~q-p; the ~ desired is found. If f*(P3 ) ~3/4.p, set 3/4°p=3/2-~ ~ 

-~f and go to Step 2. 

o f O  o Since f /n ~ (P3)~f , Step 2 is to be executed no more then 

log3/2 n times. Thus, the running time to obtain the ~ value is 

O(n2 log3/2n)= O(n 2 log n)° 

The technique for obtaining £ -approximate solution of the prob- 

lem P3' the ~ value being found, is similar to that of Sahni [9land 

demands o(n2/~)-- time and space. 

Note that if we have already devised a fast £ -approximation 

algorithm, it easily yield~ the bound ~. For example, consider 0(n3~ ) 

algorithm developed by the authors for the min - job - sequencing 

problem P~ (without using a bound ~) ~4,8~ • If we put ~ =~= I/2, 

then in O(n3/~" )=0(n 3) time we obtain ( g =I/2 ) - approximate so- 

lution value, f(x), which, evidently,satisfies f(x) ~ f ~ 2f(~). Thus, 
^ 2 using the f=f(~)value and O(nT~ ) digit truncation technique, we 

n~ obtain an O(n~+ /~ ) algorithm for the said problem.(Above we sug- 

gest a better algorithm for this problem). 

Now consider the second method solving the problem P4.It is evident 

that the optimal value,  f (P4) , in  the problem P4 s a t i s f i e s :  

max cij ~f (P4) ~ m max cij (3) 
• j ij 

Let p be a positive number. We firstly present an algorithm B(p) 

~ f~ which for every p and f finds that either f(P4) ~ p or (P4) >P/4. 

In each of the groups I ,2, .... , m we choose the xij with maximal cij 
i c 

value among those elements of a group which have fij~ ij/a ~ p/2b. 

In those groups where maxj fij ~p/2b we do not choose ~e xij. 

It can be shown that either ~i ciJi>P/2 and then f (P4) < P/4, 
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or ~icij~p/2 and then f*(P4) >p. 

A l g o r i t h m  f o r  f i n d i n g  t h e  f v a l u e  i n  t h e  p r o b l e m  P4 '  such  t h a t  

I/8 ~f ~ (P4) ~, takes the following form: 
A 

S t e p  1. r i n d  r=  m a x i j c i j  and  Remr. S e t  f~--R. 

Step 2. Set p--~/2. Using the algorithm B(p), we find that either 

f*(P4) > f/8, or f~(P4) < f/2. In the former case we have ~/8 < f (P4)<f 

( t h e  d e s i r e d  ~ v a l u e  i s  f o u n d ) .  I n  t h e  l a t t e r  c a s e  go t o  S t e p  3. 

Step 3. Set f~-p and go to Step 2. 

Using the techniques described above we can obtain 6 - approxima- 

tion algorithms for the problems P4-P6~thsirtime and space being as 

shown in the Table q. 
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By a graph we understand a pair (V,E) , where V is a finite 

set of vertices and EcV×V i~ a set of edges. A directed path p:x~ 

-*y of length llPJl = k in (V,E) is a sequence of vertices x--v0, 

Vl,...,vk=yeV such that (vi.l,vi)~E for i = l,...,k . 

The transitive closure of (V,E) is the graph Clos(V,E) = (V,C) 

where (x,y) £C iff there is a path p:x-~y in (V,E) with ILpil>0. 

The transitive reduct Red(V,E) of an acyclic graph (V,E) is 

the least graph (V,R) with Clos(V,R) = Clos(V,E) . 

The number o f  e l emen t s  o f  a f i n i t e  s e t  X w i l l  be denoted  t h r o u -  

ghout by IX1 . 
If Alg is an algorithm processing graphs, Time (Alg(V,E)) 

denotes the number of steps taken by Alg to process (V,E) . We write 

Time(Alg(V,E)) ~ 0(f(V,E)) , for a function f:K -~ N from some class 

of graphs to the non-negative integers N , if there exists ceN such 

that the inequality Time(Alg(V,E)) ~ c.f(V,E) holds for all (V,E)~ K . 

We then also say that Alg needs O(f(V,E)) time to process a member 

(V,E) of K , or that Alg has the time complexity O(f) on K . 

The main objective of the present note is to describe an algorithm 

Recl computing simultaneously both Red(V,E) and Clos(V,E) , for 

(V,E) acyclic, with the time complexity Time(Recl(V,E)) ~ O(IV I .~R~+ 

+lE l )  comparing f a v o r a b l y  wi th  the  a l g o r i t h m s  d e s c r i b e d  i n  [1~ , [2J , [ 5S ,  
[6]. We also describe some useful modifications of this basic algorithm. 

An essential preliminary part of the algorithms we are going te 

present here is the computation of a suitable height function on an 

acyclic graph (a notion adopted from [JJ ). 

A homomorphism h of (V,E) onto ([s~, ~) , the set of integers 

Is] = ~O,1,...,s~ naturally ordered by ~ , is a height function if 

h(x) ~ h(y) for every (x,y) &E with x ~ y , and is a Jordan-Dedeklnd 

height function, shortly JD-functionp if it is also a homomorphism 
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of Red(V,E) onto Red([sJ, ~) . 

For a given height function h:(V,E) ~ ([s],~) the integer 

h(x) , xaV , is called the height of x relative to h , the set 

L(i) =~x&V ; h(x) = i} , i&[s] , is called the i-th h-level of 

(V,E) . 
We first give a simple algorithm Lev constructing recursively 

a particular height function h for an acyclic graph (V,E) . The idea 

is that L(O) = Min(V,E) =~x&V ; (y,x)6E-~y = x} while L(i) = 

= Min(V(i),E(i)) , where V(i) = V -~x~V ; h(x)<i} , E(i) = E~(V(i)x 

~V(i)) . The graph (V,E) will always be assumed, for the algorith- 

mic purposes, to be given in the form of a list of two families of sets 

yGv), where 
= IX ; (x,y)6E ~. The algorithm Lev will be simultaneously listing 

both h-levels and heights of vertices of (V,E). 

Initialize L(i) = ~ for all ~ . 

Procedure Lev(V,E) 

Ll: for each x~V do 

if Exd~x~ then ~ 

L(o):= ~(o)uLx~ , hCx): 0 end 
end 

i:= 0 

L2: while L(i) # % do 

for each xaL(i) do 

for each y6xE do 

~y:-- Ey-Lx] 
if Eye,y) then 

begin ~.(i,l):= ~(i+l) ~x} , h(x):= i+l end 
end 

end 

i: = i+l 

end 

s:= i-1 

return ~L(i) ~ i=O,i,...,s),~h(x) ~ x6V~ 

end Lev 

It is easy to see that Lev constructs a height function as in- 

dicated. As for the time complexity, step L1 is repeated IV~ times. 

Since each step in the innermost cycle of L2 corresponds to a single 

edge (x,y) e E and uses at most six operations, we conclude that 

Time(Lev(V,E)) = O(~V I+IE~) ° 
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In the sequel we shall always assume that the representation 

of a graph (V,E) in the form of the families {xE ; x e V} and 

{Ey ; y E V } has been completed by list of h-levels and heights of 

elements of (V,E) (for example furnished by Lev ). 

Our algorithm Reel will be based on the following easy 

Lemma 1 • Let (V,E) be an acyclic graph and let h:(V,E) --~(~s~, 

) be the height function computed by Lev . Then for all x e V , 

Ca) L(hCx)+l)nxR = L(hCx)+l)~xO = LChCx)+l)nxE , 

and for all J >h(x)+l , 

(b) LCJ)nxR = LCJ)~xE - ACx,J) , 

(c) L(J)~xC ~, (LCJ)nxR)UA(x,J) , 

where A(x,J) =[~[L(J)~yC ; y~L(k)~xR , h(x)~k<j}. 

Here i s  a d e s c r i p t i o n  o f  R e c l :  

Procedure RecI(V,E) 

i:= 1 

while i~s do 

fo__r~ each j~s-i do 

for each x~L(J) do 

A:= U ~L(J+i)QyC ; y~L(k)nxR , j<k<j+i} 

L(j+i)nxR = L(j+i)~xE - A 

LCj+i)nxC = (L(J+i)~xR)UA 
end 

end 

i:= i+l 

end 

retu~r~ {L(J)axR ; h(x)<J<s , x6v 3 
~T, Cj)nxc ; hCx)<j<s , x~v} 

end Reel 

If the sets L(j)NxE and L(j)~xR are given by the singly 

linked lists, while the sets L(J)~xC and the auxiliary sets A are 

determined by their characteristic functions on L(J) , then the inner- 

most cycle of Reel requires O(IL(j+i)~xE~) time for L(j+i)~xR , 

o(ILCj+i)nxRI) t ime f o r  L ( j + i ) n x C  , and o(IT(i+J)l.~l~Ck)n~l, 
i<k<j+i~) time for A . Since for a given vertex x~V these com- 

putations repeat for each k , h(x)<k~s , the constructions of the 

z~illss {T, Ck)nxR ; hCx)~k.'s 3 and ~T.(k)nxC ; h(x)<k~s~ requi- 
re O(~IL(k)axEJ ; h(x)~kgs ) = O(IxE I ) time, while the construct- 
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ions of the sets A require O(2~L(h(x)+j)l.~L~L(k)~xR 1 ; h(x)< 

< k~h(x)+j~ ~ 0<j~s-hCx)~)~0C2~IL(h(x)+j)].2~L(k)~xRl ; h(x)< 

< k ~ s ) ,  oLj~  s-hCx) 3) - OCZ~lL(h(x)+j)l.~m\ , O<j~s-h(x)~ )~ 
0([xR~.2~IL(k) ] ; 0~k-~s~) = 0(]XRI.IVI) time • Thus the whole 

algorithm requires at most 0(~xE~+]xRI.IV~ ; x@V 3) = 0([R].~V[+ 

I E]) time. We have proved 

Theorem i . For the class of acyclic graphs, 

Time(Recl(V,E)) % 0(IRl. IVl + IE]) • 

Remark. The most time consuming in Recl are the constructions 

of the sets A . The other operations require 0~EI+|V[) time and it 

is clear that this estimate cannot be improved. Unfortunately, A is 

generally not a disjoint union, so we cannot use here any of the fast 

set-union algorithms (see[2]). For this reason it seems not to be an 

easy task to lower the estimate of the time complexity attained by 

Recl. 

The transitive closure Clos(V,E) has been defined for an arbit- 

rary (not only acyclic) graph (V,E) . We claim that it is possible 

to construct Clos(V,E) with aid of Recl , however, Reol c~nnot 

be applied directly to (V,E) but to the factorgraph (W,P) of (V,E) 

by the strong connectedness of (V,E) . (A pair (x,y) 6V~V is 

strongly connected iff there exist directed paths both from x to 

and from y to x . Strong connectedness is an equivalence on V 

partitioning V into the strong components of (V,E) and yielding 

the biggest acyclic factorgraph (W,F) of (V,E) .) If f:(V,E)--~ 

--~(W,F) is the canonical projection, then clearly (x,y) 6 Clos(V,E) 

iff (f(x),f(y)) ~Clos(W,F) . We can use the algorithm described in 

~73 to find the strong components of (V,E) in 0(IVI+[E[) time. 

It is then easy to pass to (W,F) also in 0(IV[+IE [) time. We con- 

tinue by Recl and get Clos(W,F) in 0([W] .[SI+[FI ) time, where 

S are the edges in (W,S) = Red(W,F) . 

Putting all the pieces together we get 

Theorem 2 . There exists an algorithm, on the class of all graphs 

(V,E) , computing the transitive closure Clos(V,E) of (V,E) with 

the time complexity 0([V[.[S[+[EI) , where S is the set of edges 

in the transitive reduct of the biggest aoyclic factorgraph of (V,E) . 

The usefulness of a height function h" (V,E)--~ (~s~,~) for al- 
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gorlthms computing the transitive reduct Red(V,E) = (V,R) of an acyc- 

lic graph (V,E) is rooted in the simple observation that if h(y) = 

= h(x) + 1 for (x,y)~E then (x,y)aR . In this regar~ the best 

possible height function is the Jordan-Dedekind one, since then (x,y)e 

R iff (x,y)6E and h(y) = h(x)+l . 

If a graph (V,E) has a JD-function h , then it satisfies the 

Jordan-Dedekind chain condition (also a notion adopted for graphs from 

[3~): any two paths p,q:x--~y in Red(V,E) with the same endpoints 

have the same length ~p|i = |qn • (Note that this condition is general- 

ly not sufficient for the existence of a JD-function.) 

Let JDH denote the class of acyclic graphs (V,E) possessing 

a Jordan-Dedekind height function h:(V,E) --~ (Is], ~ ). 

Lemma 2 . If (V,E)~JDH then for any four paths in Red(V,E) = 

= (V,R) of the form p:z-~x , q:z--~y , r:v--~x , s:v--~y it holds 

Ilpll - I lrll -Ilql]- Ilsll 
P r o o f .  I l p l l -  a l r l l  = h ( x )  - h ( z )  - ( h ( y )  - h ( z ) )  = h ( x )  - h ( y )  , 

I l q l | -  I l s u  = h ( x )  - h ( v )  - ( h ( y )  - h ( v ) )  = h ( x )  - h ( y )  . 

This lemma provides a justification for the following algorithm 

Jodeh operating on JDH and computing a JD-function for (V,E) ~JDH . 

Jl: 

J2: 

Procedure Jodeh(V,E) 

for each xeV do 

i f  Ex C[x~ the___~n 
begin M(O):= M(O)u[x] , H:= Hu[x~ , k(x) = (x,O) end 

end 

i:= 0 

while M(i) # ~ d l 
for each x aM(i) d_o_o 

for each y axE do 

Ey,~ ~y - ~x3 

if k(x) = (t,n) then 

if (t,m) @K(y) for some m then 

replace (t,m) by (t,max[m,n+l~) in K(y) 

else add (t,n+l) to K(y) 

if Eye[y) then 

begin M(i+l):= M(i+l)u~y] , choose any (t,n)6K(y) 

such that t@H , k(y):= (t,n) , 

for each (u,m)~K(y) , ugH , u ~ t 

insert (t,n) = (u,m) into the stack S 
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J3: 

J4: 

end 

end 

end 

end 

i:= i÷l 

end 

s:= 0 ~ v: = 0 

for each x~H do 
- -  

end  

while S J fl do 

if (t,n) = (u,m) e S then 

delete (t,n) = (u,m) from S , H:= H~u~, 

h ( u ) : =  h ( t ) ÷ n - m  , v : =  m i n f v , h ( u )  ) , s : =  m a x ~ s , h ( u ) }  

end 

end  

for each x &V-H do 

if k(x) = (t,n) then 

h(x):= h(t)+n , s:= max~s,h(x)) end 

end 

r e t u a m  ~ L ( i )  ; v _ ~ i g s  , L ( i )  = ~ x  ; h ( x )  = i } ]  

end  J o d e h  

Clearly Jodeh stops. If (x,y)6E and k(x) = (t,n) then 

(t,p) ~K(y) for some p~n+l such that (u,m) = (t,p) is in S 

for k(y) = (u,m) , hence h(t)+p = h(u)+m = h(y)>/h(t)+n+l>h(t)÷n = 

= h(x) . Since (u,m) = (t,p) had been in S , there are paths r-t-~ 

--~x and s : t - - ~ y  i n  R e d ( V , E ) =  (V,R) w i t h  I l r l l =n ,  Ilsll= p .  I f  
( x , y )  ~ R  we g e t  a p a t h  q : t - - ~  y i n  Red(V,E)  w i t h  ~ q 11 = n , 1  , h e n c e  

p = n ÷ l  . Thus  h ( y )  = h (u )+m = h ( t ) + n + l  = h ( x ) ÷ l  , wh ich  p r o v e s  h 

t o  be a J D - f u n c t i o n .  

As for the time complexity, Jl requires 0(~V 1 ) time, by a si- 

milar argument as for LI in Lay . If we use a structure on K(x) 

enabling us to find an element (t,n) of K(x) by its first compo- 

nent, then K(x) is actualized in a constant time, thus J2 requires 

0(~V~+~E~) time, by the same reason as L2 in Lev . Since there is 

a one-to-one correspondence between the data in S and the elements 

of M(0) , established by the assignment (t,n) = (u,m)~-~u , J3 re- 

quires 0(IV ~) time. Since J4 requires 0(~V~) time, too, we get 

Theorem 3 • There exists an algol~_thm on the class JDH of graphs 
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computing Red(V,E) with the time complexity 0(IVI÷IEl) • 

Remark . If we write to the stack all the data from K(y) then 

we can  e a s i l y  modi fy  Jodeh  so as  t o  d e c i d e  w h e t h e r  a g r a p h  (V,E) 

f u l f i l l i n g  t he  J o r d a n - D e d e k i n d  c h a i n  c o n d i t i o n  b e l o n g s  to  JDH . 

The height function h computed earlier by Lay proves helpful 

also in the task of finding infima xA y for couples of points of a 

finite poser (P,~) . An algorithm inf computing infima is based 

on the easy observation that h(xAy)~h(z) for any z6 P with z~x , 

z~y . Since the computation of a single infimum can be done in O(IPl) 

time, we can easily obtain an algorithm deciding whether a given poser 

(P,~) is a lattice in O(~PI 3) time . 

The algorithms described in this paper have found their applicat- 

ions in [42 * 
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Some authors looked for universal Turing machines with the smallest 

possible state-symbol product, i. eo consisting of the smallest possible 

of instructions. By Minsky [6], for example, Ikeno exhibited a number 

six-symbol, ten-state universal Turing machine and Watanabe a five-sym- 

bol~ eight-state machine. The best result, proved by Minsky, was a four- 

symbol, seven-state universal Turing machine. On the other hand, it was 

proved that no two-symbol, two-state Turing machine can be universal. 

We solve analogical problem for the Minsky machines, However, the 

activity of a Minsky machine in one step is simpler than that of a Taring 

machine. Therefore greater numbers of instructions would be expected° 

For example~ no Minsky machine consisting of at most eight instructions 

is universal (see Korec [4]). M. Gregu~ovl constructed universal Minsky 

machines consisting of 85 and 76 instructions (see LI], [2]>. Here we 

present the universal Minsky machine U consisting of 37 instructions; 

U uses no artificial input and output coding. If we code x by 2 x then 

we can obtain a universal Minsky machine consisting of 32 instructions° 

N denotes the set of nonnegative integers, Under a /partial/ func- 

tion we always mean a /partial/ function on the set N. We recall some 

notions and notations of Minsky maehines~ 
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Definition 1o a) Ordered quadruples of the forms 

(i) (qiSjPqk) , (qiSjMqk) , (qiSjqmqn) 

where i, 5, k, m, n ~ N, will be called Minsky instructions ( briefly: 

M-instructions ). 

b) A Minsky machine ( briefly: M-machine ) is a finite set of M- 

instructions which does not contain two different M-instructions with 

the same first elements. 

The symbols SO, $I, $2, ... denote counters. Each of them can con- 

tain an arbitrarily large nonnegative integer. The content of S. is deno- 
J 

ted ~j>° The symbols q0' q1' q2' "'° are states, ql is the initial state 

and q0 the final state. The symbol P, M in (I) means +I and ~I ( with 

respect to<Sj>). The last N-instruction in (I) means jump to qm if 

<s~>~ 0 and jump to % if <S j> = 0. 

The n-ary partial function computed by an M-machine Z is denoted ~;° 

If Z computes ~;( ..... x n "" n x I ) then Z starts with the numbers Xl, ., x 

stored in $I, ..., Sn; other counters contain zero° The value 

y ~;( ..... x n = x I ) is defined if and only if Z halts in the final state 

q0; then y = <So>. 

Let S be a set of unary partial functions and F be a binary partial 

function° F is said to be a universal partial function for the set S if 

a) for every a 6 N the unary partial function g, g(x) = F(a,x) 

belongs to S,and 

b) for every partial function g C S there is a C N such that 

g(x) = F(a,x) for all x ~ N. 

Definition 2. An M-machine Z will be called universal if the partial 

function ~ is universal for the set of all partial unary recursive 

functions° 

The universal M-machine U, which is constructed in this paper, simu- 

lates the so-called modified Minsky machines. They are defined as follows. 

Definition 3. a) Ordered triples of the forms 
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(2)  (qiPqj), (qiSoqj), (qiS2qj)' (qiS3qj) 

where i, J C N, will be called modified Minsky instructions ( briefly: 

M3-instructions ). 

b) A modified Minsky machine ( briefly: M3-machine ) is a finite 

set of M3-instructions which does not contain two different M3-instrue- 

tions with the same first element. 

The denotation M3 indicates that only three counters are used : SO, 

S 2 and S 3. The M3-instruction (qiPqj) means addition of I to <SO> , <$2> 

and <S3>o The M3-instruetion (qiSnqj) means subtraction of I from <Sn> 

and jump to qj if <Sn> ~ O; otherwise it means jump to qj+1" The counter 

S I is left for the first argument of the universal partial function ~ 

i. eo for the number of a simulated machine. Ordered quadruples 

(qi;ao,a2,a3) where i, aO, a2, a 3 E N are called M3-configurations; qi 

is a state and aO, a2, a 3 are interpreted as contents of registers SO, 

$2~ $3, respectively. 

Definition 4. Let V be an M3-machine. We shall write 

( q i ~ a o , a 2 , a 3 )  - *  (q j~bo ,b2 ,b3 )  (v) 

if there is an m ~ <0,2,3} such that one of the following conditions holds: 

( q i S m q j  = ~ I a n d  b = a f o r  n ~ < 0 , 2 , 3 }  - m; (i) ) E V, b m a m n n 

(ii) (q±Smqj_1) ~ V, bm= am = 0 and bn = an for n ~ <0,2,3} - m; 

(qi qj : a + f o r  n C (0  ( i i i )  ) ~ v and b n ' 

If V is an M3-machine and X, Y are M3-configurations then we write 

X ~==~Y (V) if and only if there are M3-configurations X = X O, X I , ..., 

X = Y such that Xi, I ---*X i (V) for all i = I, .... n , and there is no 
n 

M3-configuration Xn+ I such that Xn ---) Xn+1 (V). The smallest non-zero 

index of the first elements of the M3-instructions of V will be denoted 

init(V). The state qinit(V) will be the initial state of V. 

Definition 5. Let V be an M3-machine and let f be a unary partial 
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function. We shall say that V computes f, and write f = ~ I V' if for every 

x, y 6 N f(x) = y if and only if there are b, c ~ N such that 

(qinitCv);O,x,O) ~=>(qO;Y,b,c) ( V ) .  

 see e . g .  M loe  [511 t h a t  e ery a n a r y  p a r t i a l  r e c u r -  I t  i s  k n o w n  

sive function is computable by an M-machine which uses only three coun- 

ters. This result easily implies 

Theorem. For every unary partial function f there is an M3-machine 

V such that f = ~IV . 

We may assume that the state qinit(V) does not occur at the third 

place of any M3-instruction of V and that V never halts when v(X) is 

not defined. 

Now we show how to associate a number y to any M3-machine V in such 

a way that x) = U(Y,x) for all x ~ N. Let v be the maximal index 

of the states of V. Denote by Pr the r-th prime, i. e. P0 = 2, Pl = 3 

etc. By Sierpir~ski [7] there is a positive integer r such that 

P r  > 4v + 3 a n d  P r + v  < 2 P r "  

Let us choose such an r, e.g. the least one. To each M3-instruction 

(qiXqj) of V we associate the congruence 

( 3 )  y = 4 j  + I X [  (mod Pr+w ) , 

where ]X[ = 0,1,2,3 if X = S0,S2,S3,P, respectively, and w = I if 

i = init(V), w = i otherwise. To every prime Pr+u' I <u ~__v, which is 

not used as a modul in (3) we associate the congruence 

( 4 )  y ~ 4u  (mod P r + u  ) . 

Finally, to every prime Pk' k <___r, we associate the congruence 

( 5 )  y ~ o (mod p~)  , 

n n + l  
where Pk ~ Pr+v ~ Pk " The Chinese remainder theorem implies that the 



312 

system of congruences (3), (4), (5) is solvable. Every its positive solu- 

tion y (e. g. the least one) can be used as a number of the M3-machine V. 

Notice that y is divisible by all composed numbers less than Pr+v" 

Let y be a number of V and X be an M3-instruction of V with the first 

element qi" If we want to know the second and the third element of X, we 

divide the number y by the numbers I, 2, 3 etc., and we find the i-th (if 

i = init(V) then the first) non-zero remainder in these divisions. This 

remainder can be uniquely represented in the form 4j + k, 0 <k <3, 

j, k ~ N. Then the third element of X is qj and the second one is SO, $2, 

$3, P if k = 0,1,2,3, respectively. The same principle is used in the 

universal H-machine U. 

The M-machine U uses the counters SO, $I, ..., S 7. Their role is 

shown in Figure I. 

--_~S~__ S 3 S 4 ~ [ S 6 S 7 

the counters of the simulated M3-machine auxiliary counters 

Figure I. 

The auxiliary counter S 4 helps to store y; y will be preserved as the 

sum <$I> + <$4>. Analogously, the latest divisor will be preserved as 

<s~> + <s6>. 
The M-machine U will consist of a decoder D, a working block W and 

three further instructions: 

= D u w U~q2oSTq21qo),(q21S6q22q23),(q22S6Mq21 ~ .  

It is illustrated in Figure 2. The decoder 

D = {(q23S1q24q26),(q24SIMq25),(q25S4Pq23),(q26SsPq27),(q27S6q28q29)' 

(q28S6Mq26),(q29S6Pq30)'(q30SsMqD1)'(q31S4Mq32)'(qD2SIPq33)' 

(q33S@q34q35)'(q34Ssq29q27)'(q35Ssq36q23)'(q36S7Mq37)'(q37STq23 ql)} 

finds the number 4j + k from the number i by a sequence of suceesive 



o~
 

r-
- 

~Q
 

O
o 

".,
,.I

 

I 1' t~
 

~Q
 0 

".
0 

G
O

 
'-.

.3
 

2 ~Q
 

L
- 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 < E 2 

,, I
!1 II

 ~Q
 

-< E !--1
 

Z
 

O
 ~o

 

i 

I--
4 o p~
 



314 

division~deseribed above. More exactly, if (qiXqj) e V and k = ] X I then 

there is e 6 N such that 

(q23;-,y,-,-,O,O,O,i) ~=>(ql~-,y,-,-,O,4j+k,c,O) (D). 

( Notice that 4j + k + c is the latest divisor. ) The hyphens in the 

formula mean that the counters SO, $2, S 3 are not used by the decoder. 

The working block 

W = ~q1S5q2q10),(q2S5Mq3),(q3S5q4q12),(q4S5Mqs),(q5S5q6q14),(q6S5Mq7 ), 

(q7S5q8q16),(q8SsMq9)'(q9STPql)'(q10S0qllq19)'(q11SoMq20)' 

(q12S2q13 q19 )' (q13S2Mq20)' (q14S3q15q19)' (q15S3Mq20)' (q16SOPq17)' 
(q17S2Pq18),(q18S3Pq20)'(q19S7Pq20~ 

finds j and k from 4j + k; the number j is stored in S 7 and k determines 

the simulated activity of Vo To be more exact, for j ~ N - {0} we have 

(ql;aO,-,a2,a3,-,4J,-,O) ~=:~(q20;ao - 1,-,a2,a3,-,O,-,j ) 

if a 0 ~ 0 and 

(ql;O,-,a2,a3~-,4j,-,O) ~==>(q20;O,-,a2,a3,-,O,-,j +t) (W) 

(w) 

if a 0 = 0. These formulas correspond to an M3-instruction (qiSoqj)o Ana- 

logous formulas correspond also to M3-instructions (qiS2qj), (qiS3qj). 

The formula corresponding to an M3-instruction (qiPqj) is 

(ql;aO,_ a2,a3,_,4j+3,-,O ) ~=~(q20;ao+l,-,a2+1,a3+l,-,O,-,j ) (W). 

Moreover, it holds 

(ql;O,-,x,O,-,O,-,O) ~=>(q20;O,-,x,O,-,O,-,1) (w) 

at the beginning This formula shows that U does not have to have I in S 7 

of the simulation. 

The M-instruction (q20STq21qo) causes halting of U whenever the 

simulated machine V reaches the final state q0" The M-instructions 

(q21S6q22q33), (q22S6Mq21) arrange that the new series of division 

starts again with the divisor I o 

So the M-machine U simulates the computation of V. More exactly, if 
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y is a number of an M3-machine V then for every x ~ N there are m, n, 

c C N such that 

I (ql;O'y'x'OsO'O'O'O) ~ (q0; ~V (x)'y'm'n'O'0'c'O) (U) 

if v(X) is defined. If x) is not defined then the simulation is 

infinite. Hence for every unary partial recursive function f there is 

y ~ N such that f(x) = u(Y,X) for all x E N. All the partial functions 

~2 g(x) = u(a,x), a ~ N, are obviously partial reeursive, hence U is a 

universal Minsky machine. It consist of 37 instructions. 

Until now we have not used any special input and output coding. 

However, such coding is usually permitted in the definition of universal 

Turing machines (see Malcev LS] ). If we would similarly change the defi- 

nition of universal M-machines we could reduce the attained number of 37 

instructions by: 

I) coding the input x by 2 x and the output y by 2Y; 

2) using only SO, S 2 instead of SO, $2~ $3; 

instead of M3-machines we consider M2-machines with the ins- 

tructions of the forms 

(6) (qiSoqj),(qiS2qj),(qiPqj); 

3) saving 5 instructions in the working block; to each M2-instruc- 

tion of the form (6) we attach the remainder 3j + k, k = 0, 1, 2. 

So we would get a Minsky machine, universal in the sense of Malcev [~ 

and consisting of 32 instructions. 
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I .  Int roduct ion.  

F in i te  state automata operating on trees in pa ra l l e l  fashion have been studied 

extensively both as recognit ion devices and as transformation devices [1,3,4,5,11,12,  

15]. On the other hand, 2-way tree walking automata operating sequent ia l ly  were t rea t -  

ed in [1 ,5]  only as transducers. The connections between these two types of automata 

w i t h  respect to t he i r  transformation power were f i r s t  studied in [ I ]  and then very 

systemat ical ly  in [5 ] .  

In th is  paper we extend both kinds of automata to operate as recognizers on more 

general graphs, cal led dags. Dags are special d__irected ordered acyc l ic  ~raph~which 

model der ivat ions of phrase-structure grammars analogously to the way that  trees model 

der ivat ions of context- f ree grammars. A rather  complete character izat ion of the re la-  

t i ve  power of the fo l lowing features is obtained (when re levant ) :  pa ra l l e l  versus 

sequential ,  determin is t ic  versus nondeterminist ic and f i n i t e  state ( i . e .  bounded memory) 

versus a ( res t r i c ted  type of) push-down store, see Fig. 6. In terest ing and new resul ts  

concerning trees fo l low as special cases. 

Some resul ts about dags and (only pa ra l l e l )  dag automata ( in s l i g h t l y  less general 

form) were reported in [2 ,6 ] ;  however these papers focused on der ivat ion structures 

of phrase-structure grammars (which are dags) and the i r  recogni t ion.  

The paper is organized as fo l lows. Section 2 gives the formal de f i n i t i on  of 

dags. Section 3 introduces the top-down and the bottom-up var ie t ies  of para l le l  auto- 

mata and the i r  determin is t ic  and nondeterminist ic versions. Although these de f in i t ions  

were already given in [ I 0 ] ,  they are repeated for  completeness. The resul ts are sum- 

marized in Fig. 4. I t  is rather in teres t ing to note that  nondeterminism buys us no 
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addit ional power in the bottom-up case. In Section 4 we define two-way dag walking 

automata: with and without the push-down f a c i l i t y .  Here determinism and nondeter- 

minism turn out to be equivalent in the presence of the push-down, but nonequivalent 

without i t .  The resul ts are shown in Fig. 5. The last  section compares the para l le l  

automata with the 2-way machines, see Fig. 6, and b r i e f l y  summarizes some properties 

of the classes of dag languages definable by our automata. 

2. Dags. 

For basic graph terminology the reader is referred to [16]. 

Dags are graphs having the fo l lowing propert ies: they are labeled, directed, 

acyc l ic ,  ordered, planar and connected. The labels are symbols out of a doubly ranked 

alphabet which is a set s=.U. z i j  where each z i j  is a f i n i t e  set and only for  a f i n i t e  
l , j  

number of i and j z i j ~ .  An element a~sij has head-rank i and ta i l - rank  j .  Also, we 

define z..=U s i j  and z..=U s i j .  Then (rooted) dags are defined induct ive ly  (as in 
J i  i j 

the tree case) along with the concept of "leaves". 

2.1. Def in i t ion .  Let E be a doubly ranked alphabet. The set of par t ia l  dags 

over z, denoted by PS, is defined as fol lows: 

( i )  I f  aESo., then acPs; leaves(a)=a (when convenient we w i l l  i den t i f y  the node 

with i t s  label ) .  

( i i )  Let dEPz with leaves(d)=al . . .a  n and aiES.m; le t  b I . . . .  ,bm~Sl.. Then d' of 

Fig. l (a)  is in PZ and leaves (d ' )=a l . . . a i_ ib l . . . bma i+ l . . . an  • 
( i i i )  Let d~P s with leaves(d)=al . . .a n and a i ,a i+  1 . . . . .  a j~z. l  for  some l~i~j~n. 

Let bEz( j_ i+ l ) . ;  then d' of Fig. l (b )  is in Pz with leaves(d ' )=a l . . .a i_  1 

ba j+ l . . .a  n. [ ]  

I 
I I I I I I 
a I , .  a i . . .  a n a I . .  a i . .  a j  . .  ,/\ \;/ 

b I , . .  b m 

(a) (b) 

Fig. ! .  

] 
I 
a n 

The set of dags over s is then Ds={dEPzlleaves(d)cZ~O}. 



319 

3. Paral le l  Da 9 Automata. 

For a doubly ranked alphabet z we define a companion alphabet z '={o ' Iocz}  such 

that o and o' have precisely the same head and ta i l  ranks. 

3.1. Def in i t ion.  A f i n i t e  dag automaton is a construct A=(Q,s,R) where Q is a 

f i n i t e  set of states, E is a doubly ranked alphabet and R is a f i n i t e  set of rules 

of the form r: ~÷B. ~ and B are respect ively the left-hand side and the right-hand 

side of r. A is determinist ic i f  two d i f fe ren t  rules have d i f fe ren t  lef t-hand sides; 

otherwise A is nondeterministic. A being top-down or bottom-up depends on the form 

of ~ and B above as fol lows. 

(a) A is top-down i f  the rules in R are of the form 

[Pl . . .Pn]~÷o' (q l . . .qm ) 

(b) A is bottom-up i f  the rules in R are of the form 

o(ql . . .qm)÷[Pl . . .Pn ]o'  
for  some O~Snm and Pl . . . . .  Pn'q] . . . . .  qm ~Q" [ ]  

The reason for introducing the primes in the right-hand sides of rules is to 

s ign i fy  that o has been processed and to prevent repeated reprocessing of the same 

dag. 

A configurat ion of the f i n i t e  dag automaton A=(Q,z,R) is a dag over the doubly 

ranked alphabet A=zuz'uQ with Q~AII. Let d I and d 2 be two configurations of A. Then 

the (direct  computation) re la t ion l -  A - i s  defined as fol lows: 

( i )  I f  A is top-down, then dl Al-~-d 2 i f  d I contains a subdag of Fig. 2(a), R 

contains the rule [p l . . .pn]~÷o ' (q l . . .qm) and d 2 is obtained from d I by re- 
placing the subdag of Fig. 2(a) by the subdag of Fig. 2(b). 

( i i )  I f  A is bottom-up, then dl AI-A-d 2 i f  d I contains a subdag of Fig. 2(c), R 

has a rule o(q l . . .qm)÷[p l . . .pn]~ '  and d 2 is obtained from d I by rep]acing 
the subdag of Fig. 2(c) by the subdag of Fig. 2(d). 

i'i i 0 y, / \  / \  
/ ~ . ~  i l . . .  im i l  . . . ]m / o . ~  

o I . . . o n o I . . . o m o~ m °l " " " °m 

(a) (b) (c) (d) 

Fig. 2. 



320 

, F ~ - i s  the re f l ex i ve - t r ans i t i ve  closure of A I--A-. The dag Given ~ language recog- 

nized by A is L(A)={dEDsId A~-~--d'} where d'~D z, is the dag resu l t ing from dED z by 
priming a l l  the labels of d. 

NT and DT denote respect ively the set of a l l  nondeterminist ic and determinist ic 
top-down dag automata and s im i l a r l y  NB and DB in the bottom-up case. For a class K 

of dag automata~(K):{L(A)IAEK} is the class of dag languages defined by automata in 

K. Languages in~(NB) are said to be recognizable, and~(NB) w i l l  also be denoted by 

RECOG D. I f  a dag automaton instead of priming the labels of the processed dag consis- 

ten t l y  relabels them by SyTnboIs of another doubly ranked alphabet then we obtain a 

device cal led f i n i t e  state re label ing,  cf.  [3,4] .  The formal de f in i t i on  is l e f t  to 

the reader. A re label ing is jus t  a ( to ta l )  single state relabe]ing. Let T be a 

f in i te state relabeling from z to ~ and let  LEDs; then T(L)={gEDAIdF~-g for some dEL}, 

We are now ready to compare the machines defined above. The f i rs t  of the next 

two results is easy while the second follows from a similar result for trees, see e.g. 

[4] .  

3.2. Theorem. ~(NT)--~NB). 

3.3. Theorem. ~ (DT )~NT) .  

In view of Theorem 3.3 the next resu l t  is rather surpr is ing (even though for  

trees i t  is easy). 

[ ]  

[ ]  

3.4. Theorem. ~(DB)=~(NB). 

Proof. We have to show~(NB)_~DB). Unlike the tree case, a simpleminded subset 

construction does not work here because of the "non-tree-like" rules ~(ql...qm)÷ 

[pl...pn]O' (n>l) of A in NB. Let A~DB be the automaton to be constructed. 

The states of A are Q=~({(q,z,r) lq~Q,~,r~Ru{~}}). Let aCSnm and Q1 . . . . .  Qm ~Q" We 

explain the construction of P1 . . . . .  PncQ such that ~(QI...Qm)÷[PI...Pn]O' w i l l  be in 
R, the set of rules of A. 

Let (q i ,~ i , r i )EQ i  (l~i~m) such that r i=~i+ 1 (l~i~m) and such that  s: o(ql . . .qm)÷ 
I :  r [ p l . . . pn ]a '  is in R. Define r l - ~2 - r2 - . . . - r n_  l - ' - o  . . . . . . .  C'-n-S and i f  m>O then ~I:~I  and r n m 

but i f  m=O then ~=r~=@. Then (P i '~ i  'r~)EP'I i ( l~ i~n) .  I t  can now be shown that L(A): 

L(A). [ ]  

The inclusion diagram of Fig. 4 summarizes the resul ts of th is  section. Note 

that precisely s imi lar  diagram holds for  the tree case. 
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~.(NT):~DB)=~NB)=RECOG D 

I 
~(DT) 

Fig. 4. 

4. Two-way Dag Walking Automata. 

Our sequential two-way dag automata have a single pointer into the input dag. 

They are allowed to walk freely on the dag except that when moving up they must go 

through the edge by which they came down. This requirement is especially meaningful 

when the automaton is allowed to temporar i ly  wr i te  some information on the dag (com- 

pare to remarks at the end of [ I ]  and also to  [5 ] ) .  Thus, the automata which are 

allowed to use the input as temporary storage are res t r i c ted  to have a synchronized 

push-down store between the root of the dag and the current locat ion of the po in ter ;  

see [5]  fo r  the tree transducer case. 

4.1. Definition. A two-way push-down da B automaton is a construct A=(Q,z,r,a, 

qo,F) where Q is a f in i te  set of states, z is a doubly ranked alphabet, r is the push- 

down alphabet, qocQ is the in i t ia l  state of A and F~Q is the subset of f inal states. 

is a mapping from Qxzxr to f in i te  subsets of Q×D where D={-i l i~l}u{(i,Y)Iy~r, i ~ l } . [ ]  

A conf igurat ion of a two-way push-down dag automaton A=(Q,z,r,6,qo,F ) on a dag 

dcD z is a quadruple <q,d,m,~> where q~Q, ~ is a path in d, m=(nl,n 2 . . . . .  nk) wi th n 1 

the root of d and n k the node current ly  scanned, and B=yl.. .ykEr * is the contents of 

the push-down store. Let Cl=<q,d,(n I . . . . .  nk),Biy> and C2=<P,d,(n I . . . . .  n~),B2> be two 

conf igurat ions wi th n k labeled by ~ and yes. Then C 1 A~-A--C2 i f  e i the r  of the fo l low-  

ing holds. 

I) (p,(j,y'))E~(q,~,y), ~2=~l~y ', ~=k+l and n~ is the jth son of nko 

2) (p,-j)E~(q,~,y), B2=B l ,  ~=k-l and nz is the j th father of n k. For k=l, 

<q ,d , (n l ) , y>~<p ,d , (  ),z>. 

A is deterministic i f  the following conditions are satisfied: ( i) (p,(j,x))Ea(q,o,y') 

implies ~(q,o,y')={(p,(j,y))} ( i i )  (pl,-Jl),(p2,-J2)Ea(q,c,y) implies jlyJ2 . Note 
that in general a deterministic a is not a partial function from Q×zxr to QxD as in 

the tree case [5]. This is because such a restriction would force the automaton to 

move up in the same direction and the same state each time i t  comes to some node in 

the same state (with the same push-down symbol) and is about to move up. This would 

make our automata unduly awkward. On the other hand note that the above restrictions 

force a deterministic behavior for any input dag. The relation ~ -  is the reflexive- 

transitive closure of AFt-and the dag language recognized by A is L(A)={d~Dsl(qo,d,(nl),y ) 
~ - ( p , d , ( ) , z )  with some pEF and yet}; n I is the root of d. 
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A two-way push-down dag automaton is f i n i t e  state dag walkin~ automaton i f  i ts  

push-down alphabet contains a single symbol. In this case the push-down is redundant 

and the configurations w i l l  be <q,d,~> with q~Q, dED s and ~ a path from the root of d 

to some node. 

2N-PD and 2D-PD denote respectively the set of a l l  nondeterministic and deter- 

ministic two-way push-down dag automata; s imi lar ly,  2N and 2D are the versions without 

the push-down fac i l i t y .  

The inclusion relationships between the two-way dag walking automata are summar- 

ized next. 

4.2. Theorem. The following inclusion diagram (Fig. 5) holds. 

~(2N-PD)i(~(2D-PD) 

~N) 

Fi 9. 5. [ ]  

4.3. Remarks. The following remarks could help to understand Theorem 4.2. 

( i )  The equality~(2N-PD):~2D-PD) is proved using the method of transit ion 

tables [7,13] extended to dags. 

( i i )  The proper inclusion~(2N)~2N-PD) is proved by showing that the set of 

derivation dags (trees) D G of the grammar G=({S,A},{a,b},{S÷blA,A÷aalaAIAa I 

AA},S) cannot be recognized by any f i n i t e  state dag walking automaton while 

i t  can be easily recognized using the push-down f ac i l i t y .  

( i i i )  The complement of D G of ( i i )  with respect to i ts doubly ranked alphabet 

s={S,A,a,b} with zOl={S}, sI2={A}, slO={a,b} can be recognized by a non- 

deterministic automaton in 2N but by no automaton in 2D. [ ]  

Let us note in passing that the diagram of Fig. 5 holds unmodified for the tree 

case (in fact our counterexamples were tree languages). 

5. Comparison, Properties and Problems. 

The f ac i l i t i e s  of (one-way) parallelism and two-way movement capabil i ty are com- 

pared. I t  turns out that the synchronized push-down store is precisely what is needed 

to handle the parallelism present in NB. On the other hand, the parallelism in DT 

cannot be handled by 2N and the two-way motion capabil i ty cannot be handled by DT. 

Thus the inclusion diagram of Fig. 6 holds. 
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RECOGD=~ NB) =~(NT) =~(DB) 

=~(2N-PD)--~iD-PD) 

~(DT) ~ ~(2N) 

I 
~.(2D) 

Fi 9. 6. 

5.1. Remarks. 

( i)  The proof of RECOGD~2N-PD) is (more or less) straightforward. 
( i i )  Given any Ac2N-PD, the equivalent A~2D-PD constructed in the proof of Remark 

4.3(i) enables an easy construction of B~NB, equivalent to A. This shows 

that~2N-PD)~RECOG D. 

( i i i )  The language { /A  X A b ' b/~a } i s  not in~(DT) but can be easily accepted 

by an automaton in 2D. 

(iv) The language D G of Remark 4.3(i i)  is not in~.(2N) but can be recognized by 

a deterministic top-down automaton. [ ]  

The next theorem characterizes the difference between RECOG D on the one hand and 

~(DT),~2N) ando'~2D) on the other. 

5.2. Theorem. Let K be any of DT, 2N or 2D. For every LcRECOG D there exists a 

language L '~K)  and a relabeling h such that L=h(L'). Moreover, there is a f in i te 

state relabeling T such that L'=T(L). [ ]  

Theorem 5.2, the fact that derivation structures of phrase-structure grammars 

are (dags) in RECOG D [2,6,9,10] and the undecidability of the emptiness problem for 
phrase-structure grammars yield the next result. 

5.3. Theorem. The emptiness problem is unsolvable for any of the classes of 
dag languages in Fig. 6. [ ]  

This situation should be compared with the tree case where the emptiness problem 
is solvable [4,15]. 

Finally we summarize the closure properties of our classes of languages in Table I. 

Two questions are lef t  open and we conjecture that the answer to both is negative. 
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Union Intersection 

RECOG D Yes Yes 

~(DT) NO Yes 

~(2N) Yes Yes 

~2D) ? Yes 

Complement 

Yes 

No 

No 

? 

Finite State 
Relabelin~ 

Yes 

No 

No 

No 

Table 1 
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ABSTRACT This paper studies how we can exclude noncc~putable elements of effectively 

given domains to obtain effective domains, and how we can obtain an effective 

dcmain which is an effectively initial solution to a recursive domain equation. 

1. Introduction 

Recursive dc~ain equations play essential roles in denotational semantics of 

programming languages (See Scott-Strachey[4] and Tennent [8]). Also recently 

lehrnann-Smyth [3] showed the impo_ rtance of th~n in abstract data type specification. 

Systematic ways of obtaining noneffective initial solutions of the~ have been known 

(See Scott [5,63, Smyth-Plotkin [7]). Kanda-Park [2] showed a method of obtaining 

initial "semi-effective" solutions which are effectively given domains. 

This paper concerns full~ effective initial solutions, which are 

effective domains. A preliminary report on this problem could be found in 

Kanda [ I ] .  

Throughout this paper, we ass~ne a fixed acceptable indexing <~i > and <Wi> 

of partial recursive functions and r.e. sets s.t. W i = range (~i) . 

2. Effectively Given Domains 

The following terminology se6~s to be widely accepted. A poset is directed 

(bounded) ccr~olete iff every directed (bounded) subset has a least upper bound 

(lub). A ~ is a directed ccmplete poset with a least el~nent (called bottom). 

An el~ment x of a poset D is compact iff for every directed subset S_cD with a 

lub, x£4~ implies x_~S for some seS. A directed ccxnplete poset D is countably 

algebraic iff the set ~ of all Cc~pact el~ments of D is countable and for every 

xeD, Jx = {ee~ le~x} is directed and x = t17 x. ~ will be called the basis of D. 

If D is a oountably alegbraic cpo then for every cpo Q, every monotone m:~Q has 

a unique continuous extension m:D~Q given by re(x) = ~n(J x) . A poset has 

bounded joins iff every bounded finite subset has a lub. It can readily be 

seen that a countably algebraic cpo has bounded joins iff its basis has bounded 

joins iff it is bounded cc~plete. 
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Definiticn 2.1 (i) Let D be a countably algebraic cpo with bounded joins (count- 

ably al@ehraic domain). A total indexing a:N+E D is effective iff there is a 

pair of recursive predicates (b,z) called the characteristic pair of a, s.t. : 

b(x) iff a(fs(x))is bounded in E D, and 

Z(k,x) iff E(k) = Ug(fs(X)) , 

where fs is the standard en~Teration of finite subsets of N. 

(2) An indexed domain is an ordered pair (D,E) where D is a countably algebraic 

dc~ain and e :N+E D is a total indexing. An indexed dcmain is an effectively ~iven 

domain iff E is effecti%~. We will write D E for (D,E). In case D E is effectively 

given, the characteristic pair of D e is the characteristic pair of e. 

(3) Given an effectively given dc~in D e, xED is cc~utable w.r.t, a (or in D e) 

iff for scrne r.e. set W,E(W) is directed and x= IE(W). We say that an r.e. set W 

is E-directed if E (W) is directed. The set of all cc~putable elements of D E is 

denoted by Cc~o(D E) . 

(4) Given effectively given domains D E , and D *E' , a function f:D+D' is ccr~outable 

w.r.t. (e,e') iff the graph of f which is { <n,m>l E'(m)~f.c(n)} is r.e. 

In case D E and D' e' have the same dlaracteristic pair, D E is merely a renaming 

of D' E' More formally, there is an order isomorphism f:D+D' s.t. f-a =" E'. 

We denote this relation by D E r D' s' r • To within ~ we can introduce the following 

partial indexing ~ called the acceptable indexin@ of the class of effectively 

given dcmains s.t. ~(<i,j>) ,is the effectively given danain whose characteristic 

pair is (~i,¢j). Notice that if T is a partial functicn then we write T(X) iff it 

is defined. 

Given an effectively given dcgnain D e , there is a recursive functicn d (called 
E 

the d i rec t i nq  functic~l) s.t. for every j~N,W .... is E-directed and if W. is 

already E-directed then Us (W)={]E (W). T~erefore we have a total indexing 6~ 
3 de (3) E 

(called the directed indexing) of CGmp(D ) s.t. ~ c(i)=(UEWdE(i)). 

Definition 2.2 Let D E and D' E' be indexed dcm~n/_ns. 

(I) DExD, E ' df (DxD', ~xe') , (2) D~+D 'E' d~---f(D+D',E+E') , 

(3) [DE÷D' E ' ]df~ ([D+D' 3, [E÷e' ]) . 

where ex£' and e+e' are evidently induced indexings of EDXED, and ED+ED, respect- 

ively. [~÷e'] is defined by [e+e'] (n)= if ~(n) has a lub then [b(n) else 2-, 

and ~(n)= {[e(i),E(j)]I <i,j>e P(n)} where P is the standard entm~raticn of finite 

subsets of NxN and [e,e'] is defined by Ee,e'](x)= i_ff x=_e then e' else i. 
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It is well-kna~ that "effectively giveness" is invariant under x,+, and +. 

Furthermore these dcmain constructors are effective operators w.r.t, the acceptable 

indexing ~. 

A function f:D+D ~ is cc~utable w.r.t. (e,s') iff fe~([D¢÷D'e']). This 
£I 

equivalence in fact is "effective" uniformly in D e and D' 

Fact 2.3 (i) A function from an effectively given domain to another is c~utable 

w.r.t, their bases iff it maps computable elements to cc~outable elements recursive- 

ly in directed indices. 

(2) The composition of ccnloutable functions is recursive in directed indices uni- 

formly in the ranges and domains of functions to be ccmposed. 

Kanda-Park [23 shg~ed that order isc~norphic relation is not sufficient to 

identify two effectively given dcxnains. They proposed a notion of "effective iso- 

morphism" for this purpose. 

Definition 2.4 (1) Given indexed domains D e and D '¢' , a function f:ED+ED, is an 

effective imbedding frc~ s to e' (in symbols f:£÷¢') iff 

i. f is injective, 

2. f-¢= e' .rf for sc~e recursive function rf:N+N, 

3. {¢(ii), .... C(in)} is bounded iff {f.a(i I) ..... f.s(in)} is bounded, 

4. f(U{a(i I) .... ,¢(in)}) = U{f.e(il), .... f.a(in)} 

(2) We say ¢ and ¢' are effectively iscmorphic (in symbols e e ¢, or D e e D,e') iff 

there exists an effective embedding f:s+¢' s.t. f-l:a'÷ ¢. 

If f:¢÷e j then ~:[~D' is an embedding with the aajoint g:D'+D given by g(y)= 

U{ee E D I f(e)Cy}. We will call ~ an effective e~bedding. In case rf=~j we say 

that f (or ~) has a recursive index j. 

A pair-wise cc~putable (p-cc~2utabl e) embedding is an embedding which is 

computable as well as its adjoint. The next fact establishes the "effective" 

equivalence of effective embeddings of effectively given dcmains and p-ccxr~outable 

embeddings. 

Fact 2.5 (i) We can effectively go frc~ a recursive index of an effective embedding 

of effectively given domaJr~ to directed indices of itself and its adjoint. 

(2) Given directed indices of a p-cc~p_utable embedding and its adjoint, we can 

effectively obtain a recursive index of the p-cc[nputable 6~Ibedding. 

e 
If D e ~ D' e and eit~her of the/n is effectively given then both of them are 

effectively given rand Cc~p (D e) Z Ccrap(D' a'). 

An indexed ~ is a pair (E,a) where E is a countable poset with a bottcxn 

and bounded joins and a is a total indexing of E. If ¢ is effective, i.e. it 

has a characteristic pair, E C is called an effective poset. The (algebraic) 

ccmpletion of an indexed poset (E,e) is an indexed domain (~,~) where E is the 

algebraic ccmpletion of E and [ : N+T (E) is given by [(n) =T.¢ (n) where T:E+P is 
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given by T(x) = {ecEJ e~x}. 

Fact 2.6 (i) The completion of an effective poser is an effectively given 

domain. 

(2) Given an effectively given dc~nain D e, ~ is an effective poset and (%,[) is 

equal to (D,e) (to within r). 

(3) An indexed dcmain is an effectively given domain iff it is (effectively 

iscraorphic to) the completion of an effective poset. 

An e-sequence <D~m, fm> of effective ~mbeddings of effectively given dc~aJns 

is effective iff there exists a recursive function q:N+N s.t. ~l.q(m) is a recursive 

index of fm and ~2.q(m) is an acceptable index of Dm~m iff there is a recursive fun- 

ction q s.t. ~l.~l.q(m) is a directed index of frn' ~2"~i "q(m) is a directed index of 

the adjoint gm of fm' and ~2.q(m) is an acceptable index of Dem m. The inverse limit 

of an w-sequence <D~m, fm> (in symbols lim<D~m,fm>) is an indexed dcrnain (D ,e ), 

where D is the inverse limit of <Dm, fm > and e is defined by : 

e (0) = fob'so(O) 

g (2) = fl~,el(O) 

E (i) = fo~'EO(1) 

e (3) = fo~'eO(2) 

where <fm~> is the universal cone of <Dm,fm > . 

Fact 2.7 Let <D~m, fm> be an effective sequence of effective embeddings of 

effectively given dc~ains. Then (D,e) is an effectively given dcmain. Also 

fm~: DmeD~ is an effective es%bedding from em to e • Furthezmore there are recursive 

functions ld, Pd s.t. ld(m) and Pd(m) are directed indices of fm~ and g~m 

respectively where g~ra is the adjoint of fm~" 

3. Effective Danains 

For a theory of cc~putation, it is at least desirable to handle only ccrn- 

putable objects. In this section, we will see that (Ccmp (D e) , e) functions per- 

fectly well as a dc~ain (called effective dca~/n). 

An effectively algebraic (ef-algebraic) domain is a pair (X,~) where X is a 

pcset and e is a total indexing of E x s.t. : 

(i) E X has bounded joins. 

(2) If ~ (Wj) is directed then Ue(Wj)eX. We call such r.e. set Wj e-directed. 

(3) For every xeX, there is a e-directed r.e. set W s.t. x-~e(W). 

We call ~ (or E X) the basis of X. 

Definition 3.1 An el-algebraic domain (X,e) is an effective dcmain iff there 

exists a pair (called the characteristic pair of e) of recursive predicates 

(b,£) s.t.: b(x) iff e(fs(X)) is bounded by EX, and z(k,x) iff e(k)=~e(fs(X)) , 
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where f is the standard en~eration of the finite subsets of N. In this case 
s 

we call ~ an effective indexinq of E X (or an effective basis of X) • 

Notice that to within the renaming relation r, a characteristic pair uniquely 

determines an effective domain. In case (%i,%j) is a characteristic pair, then we 

write ~ (<i,j>) to denote the effective domain determined by (%i,6j). We say that 

<i,j> is an acceptable index of ~ (<i,j>). 

The "directing function" does exist for every effective domain. Thus we 

can introduce the "directed indexing" ×e to every effective domain (X,~) as we did 

for the set of all cc~utable elements of each effectively given domains. By an 

effectively directed (ef-directed)subset of an effective dcmain X e we mean a 

directed subset Zc_X s.t. Z = Xs (W) for sc~e r.e. set W. We say that this W is 

X e -directed- 

Theorem 3.2 An effective dcmain is ef-directed ~-xmlolete, i.e. every ef-directed 

subset has a lub. 

.Proof Let Zc_X be ef-directed s.t. Z = ~ (W) for some X -directed W. For every 

x in Z we have an c-directed r.e. set W x s.t. x = ~c(W x). Let Y = u eoNx). It can 
X 

readily be seen that Y = e (W') for s(~ne c-directed r.e. set W'. Furthermore 

Definition 3.3 Let X e and X '~ be effective dcznains. A function f • X÷X' is fully 

cc~putable (f-computable)w.r.t. (e,c') iff 

(i) the graph of f is r.e., 

(2) f is effectively continuous w.r.t. (e,e'), i.e. for every xc-directed r.e. set 

W, f(xeoN)) is effectively directed and f (H×coN)) = Uf(xcoN))° 

4. Effective Iscmorphi~n 

By the s&me reason as for the effectively given domains, we need the notien 

of effective isc~mrphima as a criterion for identifying effective dcmuaJ_ns. 

We define effective embeddings and effective isc~Dr~his~s ~rong the bases of 

ef-algebraic domains exactly as we did in 2.4. Given ef-algebraic dcrnains X ~ and 

X' c' and an effective @_mbedding f : c ÷ e', let f : X+X' be the following extensien 

: f(UeoN)) = Uf (c ON)) for every c-directed W. Notice f is well-defined since f is 
! 

an effective ~bedding. We call f an effective 6s~ddin~ from X e to X' c (or from 

c to c'). 

For an effective embedding f of ef-algebraic dcm~nins, we can not expect 

more than manotonicity. In fact it could not be even an embedding even though it 

is called an "effective embedding". But effective emlbeddings of effective domains 
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enjoy much more interesting properties. 

Definition 4.1 Let X ~ and X' e' be effective domains. We say that a functicn 

f:X+X' is pairwise fully cc~utable (pf-ccnputable) embedding from ~ to E' iff f is 

f-ccsputable w.r.t. (e,e') and there exists a unique f-computable w.r.t. (e',e) map 

g:X'÷X s.t.f.g~i~, and g.f= id . 

~heor~ 4.2 Let X e and X 'e' x be effective domaJ_ns. A map f:X÷X' is an effective 

ea~3eddJ_ng from e to e' iff it is a pf-ccaputable embedding from e to e'. 

Despite discouragingly poor character of effective 6rnbeddings of ef-algebraic 

domains, effective isc~isms of them are quite interesting. 

Iammna 4.3 Let X e and X 'e' be ef-algebraic domains s.t. f:e÷ e' is an effective 

isc~orphis~u. Then E x ~ Ex, via f and X ~ X' via f. 

Proof By the injectiveness of f and f-l. 

In case either X e or X'e' is an effective domain and e e ~, via f:e÷e', then 

both of them are effective dcrnains and X ~ X' via a pf-ccmputable isomorphism f. 
e 

We will denote this fact by X e ~ X 'e' . Note that a pf-ccr~putable isc~Drphism is an 

iscmorphism which is f-ccr~putable as well as its adjoint. 

5. Effective Ccr~oletion 

By an effective cc~leticn of an effective poset (B,e) , we mean a poset (Be,c) 

together with a total indexJ_ng ~:N~(B) s.t. K is as in section 2 (between 2.5 and 

2.6) and B ~ = {e(W) I W:e-directed}. We will write B for B ~e if ~ is evident from the 

context. 

Remember that for each effective poset there is a unique characteristic pair. 

If two effective posets (B,~) and (B' ,e') have the sane characteristic pair then 

(B,e) is a renaaing of (B',e'), i.e. there is an isomorphism f:B+B' s.t. f-e = e' . 

Thus they are the sane. Notice that the characteristic pairs of effective(ly given) 

dcmains are special cases of this ar~t since every effective basis is an 

effective poset. To within r we can introduce a partial indexing (called an 

acceptable indexing) ~ of effective posets s.t. {(<i,j>) denotes the effective poset 

determined by the characteristic pair (#i,~j). 

Theorem 5.1 Given an effective Ix)set (B,E) we have: 

(i) ~(B) =~ and (T(B),~) = (B,e), 

(2) for every xeB, there is a ~ -directed r.e. set W x s.t. x--q~(W~)=UT.c(wX), 

(3) (B,T) = (Ccmp~,~) ,e), 

(4) (B,~) is an effective domain. 

Theorem 5.2 Let (X,e) be an effective dcmain. Then (Ex,e) is an effective poset 

and (Ex,T)= (x,e). 

Proof Define #:X÷F. x by %(x)= {eEE x le_cx}. Evidently # is an isomorphism and ~.E = 

Therefore T r e. 

Corollar~ 5.3 An ef-algebraic dcrnain is an effective dc~ain iff it is (effectively 

isomorphic to) the effective completion of an effective poset iff it is (effectively 



332 

ismmorphic to) (Ccn_~(D e) ~e) for sc~e effectively given dcmain D e . 

Notice that we have observed that every effective basis of an effective 

(ly given) domain is an effective poset and every effective poset is an effective 

basis of some effective (ly given) domain. In fact we have : 

~%eorem 5.4 (%~e Acceptable Indexing Theorem) 

(2) ~(i):~ (i). 

6. Dcmain Constructors 

Let X ~ and X' s' be effective domains. 

X~xX '~' df (XxX') exe' and Xe+X 'E' df (XxX,)E+e' 

as in 2.2. By 5.4, X e = CQmp(Ex). But evidently Cc~P(Ex)×tEx,) = Cc~P(ExXEx,). 
e x we ! . ! Therefore X X is an effective domain. Similarly Xe+X ' e is an effective 

domain. 

The proble~ of function space is not so straightforward because effective 

domains are not necessarily _cpo's. 

Definition 6.1 Let Xe and X 'e' be effective dQmains. Define the function space 

(Xe+X 'e') to be (X÷X') (e÷e') where (X÷X') is the set of all f-ccmputable (w.r.t. 

(e,e')) functions with the pointwise ordering, and (e÷e') is the following total 

indexing of E(XgX,) : (e+s') (n) = if ~(n) has a lub then U~(n) else ±, where ~(n) 

= { (e(i),e(j)) l<i,j>eP(n) } and (e,e') :X~X' is a step function s.t. (e,e') (x) = if 

x_=e then e' else< Evidently (e,e') = [e,e']IX where [e,e'] is a step function 

EX÷ ~, . 

Lenlm] 6.2 Let X e and X 'e' be effective, h:X÷X' is f-con~utable w.r.t. (e,e') 

iff it is the restriction to X = Comp (~) of a function Ex÷E X, which is 

computable w.r.t. (e,e') • 
-- I e 

Proof Necessity is trivial. We prove sufficiency. Ass~ne h:Con~p_ (Ex)~Cc~(Ex,) 

is f-computable w.r.t. (~,~'). Evidently h~[(Ex):T(Ex)÷Ex, is monotone. Thus 

%h:Ex+~, s.t. ~h~(W)=Lh.~(~{) for all s-directed W, is the unique continolzs 

extension of hIT(Ex)° Since h is f-computable, %h is cc~outable w.r.t. (e,e'). 

Also ~h(~(W)) = Lh.~(W)= h(~[(W)) for every E-directed W. Notice that the 

second equality is due to the fact that we can effectively go from effective 

indexing ~ to the directed indexing X~£ • Thus #h is the unique computable 

extension of h. 

Theorem 6.3 Let X e and X 'e' be effective dc~ains. We have (Xe÷X 'e') = (Camp( 

[ X,]), [~÷e']). The[efore (Xe+X 'e') is an effective domain. 

Proof Define a:Cc~o ([Ex÷Ex,])+(Cc~p(Ex)+CcmP(Ex[))by a(h)= h@Conp(Ex). Then 

is an isomorphism with the adjoint B s.t. B (h)= }h" Evidently ~[r÷x'] = C6~'). 

Therefore (X~X ' e') ~r (Comp([~e+~X 'x ]) , [e÷~' ]). 

e ! 
We define X~xX 'e' and X +X' by : 

where exe' and e+£' are the same 
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Notice that x,+, and ÷ are effective operators w.r.t, acceptable indices. 
--E --C ! -- -- . . 

Furthermore the directed indexing ~ ..... of (comp_ ([Ex+Ex, 3), [~+c0) is _equivalent 
L E-~E J ! 

to the directed indexing X(E÷~,)of (X~+X '~ ) in such a sense as ~(~(i)) = x(i). 

Therefore frcm 2.3 we inmediately have : 

Le~ma 6.4 (i) Every f-co, table function maps recursively in directed indices. 

(2) The c~_ sition of f-computable functions is recursive in directed indices 

uniformly in the ranges and domains of the fiunctions to be ~sedo 

Also we can introduce the recursive indices of effective e~ibeddings as 

we did for effectively given dQmains, and we can observe the same result as 2.5 

for effective domains. 

7. Effective Inverse Limit 

We define the effectiveness of an ~-sequence of effective ~mbeddings of 

effective domains in the s~e manner as we did for effectively given dcmains. 

Even-though an m-sequence of embeddings is effective, the usual inverse limit 

construction gives us a poset which is uncountable. Therefore we need a notion 

of "effective inverse limit" which will cut down the cardinal of limits to _<~. 

Definition 7.1 The effective inverse limit of an effective sequence <X~m,Jm> 

of effective enlbeddings of effective dc~nains is a ~air (X ,e )where X is a 

poset {<Xm>IXm=gm(Xm+ I) , there is a recursive function s:N+N s.t. s(m) is a 

direct index of x m} with a coordinatewise ordering, and e is defined as in 
, g 

section 2. ~e write ef-~im<X~m,f> for (X,e). Evidently ef-lim<X~m,f> is 

ef-alqebraic. 

Theorem 7.2 Let <~m,f> be an effecti~ sequence, then ef-~im<X~m,fm> is an 

effective domain. 

proof (outline) We can sh~ ef-~_~<Xmm,f> -E c fm> = el-l~<Cc~ (EXm) m, = Cc~p ( 

~_~<E--~,%f >)~ where %f is the unique co r~gutable extension roof f . 
m m m m 

8. Effective Categories and Effective Functors 

In this section we will study a general framework for providing initial 

solutions to recursive dcrnain equations. 

Definition 8.1 An E-categor~ is a category K together with an object indexin s 

< a~ a morphis~ indexing ~(K,K') : N+Hem(K,K') for each pair (K,K') of objects 

s.t. there is a recursive function ~-cc~i0ese satisfying: 

(~(i),<~)) (~-cC~se (i,j,k,l,m)) = ~(~(j),~(k)) (m).~(~(i),<(j)) (i) 

Definition 8.2 (I) _~ is the category 0_<1_<2_< .... 

(2) An effective codiagram (with a codiagram index j) in an E-category (_K,<,~) is 

a functor G : e~K s.t. ~j is recursive and 

G(n) = <(~l'%j(n)) 

S(nsn+l) = ~(S(n), G(n+l)) (n2.%j (n)) . 

(3) An effective eooone (with a cocone index <i,j>)of an effective diagram G is 
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a aocone <In:G(n)+<(i)> s.t. I n = ~(G(n),<(i)) Cj(n)) where ~j is recursive. 

(4) An effective colimiting cocone of an effective codiagram G:~_+K_ is an 

effective cocone <~n :G(n)÷K> of G s.t. there exists a recursive function C-Med s.t. 

for every effective cocone<In:G(n)+K'> with a cocone index <i,j>, ~=~ (K,K') 

(C-Med (i, j ) ) is the unique morphism which mediates frcm< ~n > to <~>. We will 

denote such K by ef-colim G. 

Definition 8.3 Given E-categories (K,<,~) and (_~,<',~'), a functor F:K+K' is 

semi effective (w.r.t. <(~,~),(K',~')>) iff there are recursive functions fob and 

fmr s.t. F(~(n)) = K'(fob(n)) and F(~(<(i),K(j))(n)) = ~'<'(~l.~ifmr(n)), K'(~ 2. 

~l.fmr(n))(v2.fmr(n)) . Such F is effective (w.r.t. <(<,~',(<',~',>) iff it 

preserves all existing effecti_ve colimiting cocones. 

Definition 8.4 Given ~n E-category (K,K,~) and an endo functor F:K+K, an F-al~ebra 

is a pair <A,~> where ~:FA+Ao An F-homcmorphism frcm an F-algebra <A,~> to another 

<b,B> is a _K-morphi~n f:A+B s.t. : f.~=B.Ff. 

If A=K (a) and ~=~ (FA,A) (i), we say that <A,~> has an al@ebra index <a,i>. _A F will 

denote the category of F-algebras and F-hcrs3morphisms. 

Definition 8.5 The effective initial F-al@ebra is an F-algebra <I,t > s.t. there 

exists a recursive function Int : NxN+N s.t. for every F-algebra <A,~> with an algebra 

index <a,i>, ~(I,A)(Int(a,i)) is the unique F-homc~orphism frcm <I,t> to <A,~>. 

Lemma 8.6 Effective initial F-algebra, if exists is an isc~orphism. 

Theorem 8.7 (The Fundaaental Theorem) 

Let (K, K, ~) be an E, category with an initial object ±. Let F : K÷K be 

semi effective. Evidently .A : ±±F~F± F-(±F±)_2 ÷ ~ ±÷... is an effective codiagram in 

(K,<,~), where ~F± is the unique mor~hism frc~ ± to F±. AssrRne ~ = <~n:Fnl+A> 

is an effective colimiting cocone of A. Also ass~ne that F.A has an effective 

<F~n.-Fn+II+FA>. Then the effective initial F-algebra colimiting cocone FU 

exists. 

Corollary 8.8 Let (K,~,~) be an E-category with an initial object ± and F:K÷K 

be an effective functor s0t. 
± F(IF~)F2 &: ± F± F± ± ÷ .... 

has an effective colimit, then effective initial F-algebra exists. 

Definition 8.9 An effective category is an E-category with an initial object 

s.t. every effective codiagram has an effective eolimiting cocone. 

Corollar~ 8.10 Let (K,<,~) be an effective categorv and F : K+K be an effective 

functor, then the effective initial F-algebra exists. 

It should be noted that the notion of effective universality, like effective 

colimit and effective initiality, implies effective existence of the unique universal 

morphisms. In this sense our theory here is more an propriate than the previous 

developments of Kanda [ 13 and Kanda & Park [ 2]. 
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Given two effective categories (K,K ,3) and (K' K v, 3') the product category 

KxK' together with the evidently induced object index/rig ~xK' and mo~hism 

J_ndexing 3×3 ' is an effective category which will be denoted by (K,<,~) × (K' ,K' ,3' ). 

Evidently F : (K, K, ~ ) X (K', K', 3' ) ~K", ~", ~" ) iff F is effective in both K and K'. 

Also notice that the c~mposition of two effective functors is again effective. 

Theorem 8.11 The category of effective(ly) danains and effective es~oeddings 

together with ~ (~) as an object indexing and the recursive indexing as a morphism 

indexing is an effective category. The effective diagrams are effective sequences 

and effective colimits are effective inverse (inverse) limits of effective 

sequences. We will denote this effective category ~ (ED E) without being explicit 

about indexing. 

Given an effective embedding f of effective(ly given) dcmains with the 

adjoint g, we call (f,g) an effective embeddi~ .pair. If f and g have directed 

indices i and j respectively, we say that the effective embedding pair has a 

directed index <i,j>. 

Theorem 8.12 The category of effective(ly given) domains and effective embedding 

pairs together with ~(~) as an object indexing and direct indexing as a morphism 

indexing is an effective category. The effective diagrams are effective sequences 

and the effective colimits are effective inverse (inverse) limits. We denote this 

category by E ~ (ED EP) without explicitly mentioning indexings. 

It can readily be seen that x,+, and + induce bi-functors which are effective 

of these effective categories. Thence for every recursive domain equation which 

involves these dcmain constructors we can obtain an effectively initial solution 

which is an effective (ly given) dcmain. In fact this solution is to within effective 

isc~orphi~. 

The following theorem says that ED E and ED EP are redundant version of ~ and 

Theorem 8.13 EDE~z~I~--~ ~ within the category of effective categories and 

effective functors. 

Theorem 8.14 An effective dcmain together with the directed indexing as an 

object indexing and the evident morphism indexing is an effective category and all f- 

cc~putable functions are effective functors. 
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A NOTE ON COMPUTATIONAL COMPLEXITY OF A STATISTICAL 

DEDUCIBILITY TESTING PROCEDURE 

Ivan Eramosil 

Institute of Infozmation Theory and ~/tomation, Czechoslovak Academy 

of Sciences, Prague, Czechoslovakia 

1. INTRODUCTION 

Automated theorem proving has been taken for a common part of 

artificial intelligence and comp/ter science since the birth of these 

two branches of applied science. Us/ally, theorem proving is investi- 

gated as an autonomous domain in the sense that a decision taken abcut 

a tested foImula is not followed by some further decision making or 

action. Cf., e. g., Chang and Lee [i] as a surveyal monography on theo- 

rem proving. However, some recent results dealing with applications 

of mathematical logic and proof theory in artificial intelligence pro- 

ved an interesting possibility of theorem proving when used as a tool 

for, say, robot plan fo~nation, cf. ~t~pankov~ and Havel[7]. 

The application-oriented approach to theorem proving forces also 

an appropriate change of criteria with respect to which a theorem-pro- 

ving procedure can be classified. In the classical, pure mathematics 

and also in the case of an autonomous theorem-proving procedure we ha- 

ve always the possibility to give up our effort to prove or disprove 

a formula before reaching an answer, s/pposing the length or complexi- 

ty of the desired decision is beyond our powers. Such a resignation is 

not taken as an error and is always strictly prefected to a wrong deci- 

sion. However, in the case of, say, robot plan folmation we m/st decide 

somehow, hence, using the proof theory apparatus, we m/st take a deci- 

sive answer whether the corresponding fo~nalized proof does or does 

not exist. In such a si~ation an approximative, pelhaps statistical, 

dedecibility testing program may be of a great significance. 

Probably the first statistically based deducibility testing pro- 

ceduxe was that proposed by A. ~pa~ek [6]. Here a rather modified ver- 

sion of this method will be briefly presented, a more detailed explana- 

tion can be found in Kramosil [2] or in some special papers. Our aim 

in this paper will be to study this statistical dechcibility testing 

method from the viewpoint of its computational complexity. 
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Consider a foz~nalized theo~L,T>;i is a formalized language~ T.c L 

is the set of theorems. Usually the property of theoremhood is not 

decidable, i. e., T is not a recursive subset of i. 

Let ToGT be a recursive (and often finite) set of theorems such 

that for every sentence x6 L we are able to decide effectively and 

within some a priori given time and space limitations whether x belongs 

to To or not. Considering a theorem proving program, say, a resolution 

-based one, together with necessary time and storage limitations, then 

To is the set of theorems provable by this program within these limita- 

tions. We shall suppose, in the rest of this paper, that: 

(a) There is given a complexity measure S defined" over the set of 

all fozz~/las of the formalized theory <L,T> and taking its values in 

the set N = {0~I,2,...}. This mapping will be called, in what follows, 

the size of a fozmala or sentence. Suppose that for each ne N = 

= {0,I,2,. o.}, n>0, there is at least one sentence x ~ i sach that 

s ( x )  = n .  

For example, the length of foz~n/la or its syntactical depth can 

selve as such size . 

(b) For each pair of sentences x,yE i the implication x ~ y 

belongs to To only if Is{x) - sly) J < K = K{To)~where KITol is an 

a priori given positive integer (bat not all implications with this 

property belong, in general, to To). 

If we take the syntactical depth to play the role of size we can 

see that the demand IS(x) - s(y)I < K is satisfied if ~ ~ y is provable 

and possesses a proof consisting of K or less fo~/las. The same will 

hold if s(x) = min{l(x),n) for xe T, s{x) = n for x6 L - T, where l[x) 

is the length of a shortest proof of x and ne N is an a priori given 

threshold value. 

2. A STATISTICAL DEDUCIBILITY TESTING PROCEDURE 

Consider the fo!loving decision procedure. Let n{O), m(O)e N, 

1<m(O)<_n(O), let x e L be a sentence which is to be tested for theoz~m- 

hood. Sample at random, statistically independently and from the same 

probability distribution, n(O) sentences al,a2, .... an(o) from L and 

test, for i =i~2, ,n(0}~whether ra - x1& To. If this is the case 

for at least mI0) values of i, proclaim x to be a theorem, in the 

other case proclaim x to be a non-theorem. In order to find under 

which conditions such a decision procedure has a sense we have to 

fo~nalize it as follows. 

Let <~,SpP> be a probability space, hence, £ is a nonempty set, 

S is a G-field of subsets of ~, and P is a no~nalized set measure on S. 
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Let x,al ,a2,... ,an(o) be random variables (i. e., measurable mappings) 

defined on <~,S,P> and taking their values in the set L of sentences; 

suppose that al,a2,...,an(o) are mutually independent and equally 

distributed. Set I(x} = 1 for xe To, I(x) = O for x& L - To. The deci- 

sion rule above can be expressed as follows 
n(0)) 

= dl iff ?nIO)I(ai(~1 ~ x(~)) >_ re(O), d(x) = d(×I~), m(O),{ai(~)}i= 1 Li=I 

d{x) = d 2 otherwise, (i) 

where dl,d= are possible decisions and the random event {d(xI~)]=dl} 

is taken as proclaiming x(~) to be a theorem, [d(x(~))=d2]as proclaim- 

ing x(~) to be a non-theorem. The asslmption that the tested formula 

is sampled at random is necessary in order to be able to classify the 

statistical properties of the testing procedure globally, i. e., with- 

cut respect to a particular tested fo~nula. When denoting random events 

(elements of S) we write simply [A(~)} instead of {~:~ ~,A{~}}. 

Denote by p,q the two following conditional probabilities 

p = P ( { r a l ( ~ )  ~ x(co) l~  To} I { x ( ~ ) e  T } ) ,  

P = P(  {re1 (e) ~ x ( ~ )  ~ e To} I { x ( ~ ) e  L - T }  ) . ( 2 )  

Theorem i. If 

P({x(~)a To}l{x(~)~T}) > P({a1(~)e L-T}), then p > q. 

ProOf. A simple consequence of Theorem 5.3, Kramosil [2]. This 

theorem offers a weaker condition for the inequality p>q to hold. 

Calling an a& L "successful" (w.r . to x& L andTo) if ra~1 e To3 

the original decision problem (whether x(~)~T or not) can be trans- 

fomned into this one: whether the probability of sampling a success- 

ful ai(~) equals p or q. This is nothing else than the usual case 

of parametric hypothesis testing theory - simple hypothesis H : Po=p 

against a simple alteznative A : Po=q. If p>q, then the decision func- 

tion (I) is adequate and m[0) can be chosen in s/ch a way that (i) 

is optimum among all ~/les resulting from (i) by m(0} ranging from 

1 to n(O). Here optimality is taken either in the sense of minimal 

sum P i+Piior as minimal Pi(Pii,resp.) under the condition that PII 

(Pi,resp.) is kept below a given threshold value. Let us recall the 

two corresponding probabilities of errors: 

PI  = P(  { d ( x ( ~ )  ) = d l } l { x ( ~ )  • L - T } ) ,  

P I I  = P ( { d ( x ( ~ ) )  = d2}  I [ x ( ~ )  6. T}) .  (3) 

A possible asymptotic solution for re(O) can be found in Kramosil 

[2] or Kramosil and ~indel~ [3], here we shall not investigate the 

statistical properties of the proposed decision function. The value 

n(O) can be either given a priori as a free parameter of the decision 

function d or chosen appropriately in order to keep the probabilities 
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of errorunder some limit. A way of setting n{O) m/st be taken as a 

part of the decision procechre described above, below we shall make 

this step precise. 

3. A SIZE-RELATIVIZED DEDUCIBILITY TEST 

When choosing the parameters of the testing procedure only on the 

basis of the values p,q and prescribed upper bounds for Pior PII we 

do not take into consideration the size S(X(m)) of the tested fozmula 

x(~). It is why the criteria of the test have just a global and avera- 

ge character and the quality of this test may significantly differ 

when relativized to, say, the class of sentences of the same given 

size. Hence, we would like to modify the testing procedure in such 

a way that, first, x(~) is sampled, then S(x(~)) is comp/ted or esti- 

mated, and finally, the parameters n(O) = n(O)(s(x(~) ) ) , re(O) = 

= m(O)(~(x(~))) are chosen in s/ch a way that the relativized probabili- 

ties of error satisfied given limitations. Denote, for each ie Nj 

Pi = P({ra1(~} -" x ( ~ l l  ~ T o } l  { x ( w ) ~  T, s ( x ( ~ } }  = i } ) ,  
(4)  

qi  = P ( { r a 1 ( ~ )  ~ x{~)1 ~ T o } i { x ( ~ )  & L - T ,  s ( x ( ~ ) )  = i}  ) .  

Let us suppose, for the sake of simplicity, that all these conditional 

probabilities exist. Denote, moreover, 

t ,  = P { { s { a { ~ ) )  = i ] ) ,  i ~ N  

and remember that 

P = [ i ~ N  Pi  " P ( { s { x { ~ } )  = i } I [ x { ~ )  6 T ] ) ,  

q = [ i e N  Pi  ° P { { s ( x ( ~ ) }  = i ] l { x ( ~ )  & L - T } } .  

Theorem 2. 

< [i+Kj=i_K- [i+Kj=i_K t ( i )  Pi t j q i  < J ' i ~ N, 

(2)  lira Pi = O, lira q i  = O, i ~  ~ . 

Proof. If S(X(~)) = i then a necessary condition for 

ra1(Lo) ~ x(~)l& To is that Is{a1{~}} - s(x(~))l < K, i.e., 

Pi = P ( { r a 1 ( w )  ~ ~ { ~ ) l &  To}l  {x{w)& T, s ( x ( ~ ) )  = i } )  < 

~i+K j = i - K  < P{ { s (a~  { ))& <i-K, i+K>} }= j = i - K  P ( { s ( a ~ ( ~ ) ) = j }  }= ~ i+K t j  , 

~=I i+K t j  < 
and similarly for qj.j t~ _ = i, hence, t~ _ ~ O, so Z j=i-K - 

_< (2K+l} max {~j.:i-K <_ j <_ i+K} ~ O. Q.E.D. 

Theorem 2 implies that the most simple case of Pi' qi' i.e., 

pi=p, qi=q, i~ N does not meet the o£her conditions. In order to sim- 

plify the situation enough to be able to arrive at some explicit re- 

sults concerning the computational complexity let us adopt the two 

following simplifying assumptions concerning the values pi, qi. 

(Cl) Pi = {2K+1)P'ti" ieN , 

(C2) pi/qi = p/q hence, qi = (2K+1)q'ti' i ~ N. 
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To explain intuivitely (Cl) let us remark that in the case of 

a monotonous random variable ~1 when t i > ti+ I , ie N, we can write 

> [i+K 
(2K+1)ti-K j=i-K tj _> (2K+1)ti+ K, and, roughly, [i+Kj=i_Ktj ~ (2K+I)ti. 
Now, (Cl) asserts that, under the condition x(~)~ T, the ratio of suc- 

cessful al (~)'s satisfying the demandls(al (~))-S (x(~))l < K to all 

al (~)'s coping with this demand is approximately (in the sense of ~) 

the same as the ratio of all successful al (~)'s and this latter ratio is 

nothing else than p. So pil(2K+l)Zi = p/1, which gives (Cl). (C2) as ~ 

serts that the ratio pi/q i equals p/q, i. e., the relativization of 

Our statistical dechcibility problem to formulas of complexity i does 

not change the ratio of the two corresponding probabilities. We would 

like to emphasize the fact that we realize the unprecise and approxima- 

tive character of these assumptions and we accept them just with the 

aim to obtain some explicit results within the limited extend of this 

paper. 

Let us modify the statistical deducibility testing procedure abDve 

in s/ch a way that, having p,q and X(~), we comp/te i=~(x(~)), 

and try to find an optin~m (in the given sense) test of the hypothesis 

Po=Pi against the alternative Po=qi. Suppose that we want to have 

PI+PII_<e>O given a priori and that we look for n(O),m(O) which meet 

this demand using the Tchebyshev inequality. Namely, ifs(x(~))=i then 

[raj(~) ~ x(~) I £To] is a random event occ~ring for each j£N indepen- 

dently and with the same probability,say ]~o.Tchebyshev inequality then 

reads (cf. R6nyi [5], e. g.) 

P({I  I* (~)  - Pol >e}) < D ( 1 )  n e N  
n n c  2 ' ' 

wherei n (~) = (~=i I(aj(~) ~ x(~)))n -I, D(I) is the dispersion of 

the random variable I. We make precise the decision function d by set- 

ting: d(x(~)) = d I v if 

II*(~)n - p i  I _< II*(~)n - q i  I, (5) 
d(x(~)) = d 2 otherwise. 

Random variable I takes the value 1 with probability Po (=Pi or qi ] 

and O with probability l-Po, so D(1) =Po(l-Po) . (C2) and P>q implies 

pi>qi, so under the condition Pi<i/2, D(I)<Pi(l-Pi)=KItiP(l-K1tiP), 
setting KI=2K+I. 

The decision procedure can lead to an error only under the condi- 

tion that the relative frequency I*(~) differs from Po by more than 
n 

1/2 iPi-qi I . Hence, 
K 1 t i P ( 1 - K 1 t i P )  

PI+PII<P( {I In (u)-PoI>-I / 2 1 p i - q i  l} )<- 2 = 
n( I /2  i p i - q i  I ) 

4p( I-K I p t  i )  (6) 

= n K 1 t i ( P - q )  2 < E 
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using (CI). with the aim to meet the condition PI+PII<£ we set n(O) as 

the minimal n satisfying the right side of (6) and compute re(O) using 

this n(O) and (5). Namely, ~n(O)=Int((i/~n(O)(pi-qi))+l. Till the end of 

this paper we shall consider this way of choosing m(O) and n(O) as 

fixed and integral part of the investigated statistical dechcibility 

testing procedure to which the following computational complexity 

estimates are related. We leave outside the optimality problem of this 

decision rule as well as the possibility of its replacement by another 

way of choosing m(O) ant% n(O). 

4. RESULTS CONCERNING TIME AND SPACE COMPLEXITIES 

Consider a time-complexity measure TC and a space-complexity mea- 

sure SC of the characteristic function I of the set To~ i. Fozmally, 

TC: P(i)×i×i~, TC(To,x,y) expresses the time or the n~mber of some unit 

operations necessary for deciding whether rx~yleTo or not. Analogously, 

SC: P(L) ×i×i-N measures the storage demands of the same procedure. Let 

these two complexity measures be also able to quantify the time and spa- 

ce pretentions connected with the process of sampling at random sen- 

tences x(~) , al (~) , a2(~) ,... (random sampling can be fozmalized, from 

the computational point of view, as a Turing Machine equipped with 

oracle). We shall suppose, for the sake of simplicity, that the time 

(space, resp.) complexity'connected with sampling at random the tested 

fomrula x(~) equals a constant tCx(S~, resp.); the same is supposed to 

be valid for the random sample of formulas aj(~),j<n(O), with tea(SO a, 
resp.). Denote by b~x)the time complexity (measured by TC) of the opera- 

tion consisting in (1) enlarging by one the value of an auxiliary variab- 

le v enregistering the number of sampled aj(~)'s, (2) enlarging by one 

the value of an auxiliary variable w enregistering the numDer of suc- 

cessful aj(~)'s , if the last sampled aj(~) was such that raj(~)~ 
x(~) I & To, and finally, (3) deciding whether ~/z_m(O) or v>n (O),in or- 

der to stop the testing procedure. Denote by bt(x) the time complexity 

(measured by TC) connected with the computation of S(x) and suppose 

that bt(x)=bt(y) if s(x)=s(y), so we shall use the notation bt(i), 
i e N, instead of bt(x). Symbols bos, b s(x) and b s (i) play analogous ro- 

les with respect to SC. Moreover, we may suppose that there exist two 

constants Bt(To) and B s (To) such that 
s u p { T C ( T o , x , y ) : x , y ~  L}<Bt(To),  

sup [SC (To, x, y) :x,  y ~ L} <B s (To).  
This assumption is not too restrictive, as the set To is just chosen 

or defined in s/ch a way that the problem whether an implication x~y 
belongs to To or not was decidable "easily and effectively", i.e., 
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within some time and storage limitations. Finally, denote by TC(x) 

and SC(x) the time and space complexities of the statistical dedlcibi- 

lity testing proce6hre defined above, set 

TO(i) = s u p { T C ( x ) : x &  L, s ( x ) = i }  , 

and similarly for SC(i). Our aim in the rest of this paper will be to 

express or estimate the values TC(i) and SC(i) as functions ofi, tCx, 
tca ,... and the other input parameters. The specific character of the 

complexities TC or SC and the appropriateness of their choice will not 

be considered in this paper. 

Theorem 3. TC(i) <_ K I o ~ + K 2 + bt(i} , (7) 

4p 
w h e r e  K I = I n t (  (2K+1){p_q)2 ~ ) (B t (To)  + Zc a + bo t  ) 

a n d  K 2 = Bt (To)  + t c a  + t c  x + b o t  
are constants, i. e., 6b not depend on x. 

Proof. In order to test x(~) we need (1) to sample it and to com- 

pate s(x(~))= i, i.e., tc x +bt(i) time units, then (2) to repeat at 

most n(O)-times the process of sampling aj(m), verifying raj(~) 

x(~) I ~ To and enregistering the result; these three operations re- 

quest Bt(To)+tca+bot time units, so 

TO(i) < n (O) (B t (To )  + t c a  + bot)+ t c  x + b t ( i ) ,  
where, by (6) 

n(O) = I n t (  4p~ ) + i .  ( 8 )  
( 2 K + I ) t i ( p - q ) 2 ~  

An easy calculation gives the result. Q.E.D. 

Theorem 4. 

4~ )+i) (9) SC ( i )  < Scx  +SCa+Bs ( T o ) + b o s + b s ( i ) + 4 C l l O g 2 (  I n i ( 2 K + 1 ) t i ( p _ q ) 2 E  

where ci is the space complexity (measured by SC) of one-bit unit of 

storage (hence, if SC ccunts just the bits, then £i=i). The right side 

of (9) can be asymptotically expressed as 

K{ + K21og 2 (i/ti) + bs(i), (iO) 

where K;=4c I and 
4p ) 

K~=SC x +SCa+Bs(To)+bos+4Cl log 2 ( (2K+1)(p_q)2~ . 

Proof. The valuesc x (Sea , resp.) expresses the storage necessary 

, resp.) B (T o) is the space for sampling and inscribing x(m) (aJ(~)(~)~ex ' s 

necessary for deciding whether raj(~)~ To, and bos is the space 

occupied by the procedure modifying the values v,w and comparing them 

with re(O) , n(O) . bS(i) space units are necessary for computing @(x(~))=/. 

Finally, we need some space to enregister the four integers v,w, m(O), 
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n(O). As none of them exceeds n(O),4.1og2(n(O)) bits will do. Using (8) 

we obtain (9). (iO) follows immediately. Q.E.D. 

Theorem 5. Let there exist two functions f, g, such that 

-I ~ f ( i ) =  [m dK iK, b t ( i )  < g ( i ) =  [m ~K t i  K=O - K=O ~K r ' m ' n ' ~ ° ' ' ' ' ' ~ m '  

Bo, . . . .  ~m" i & N. 

Then there exists a function h polynomial in i and such that 

TC(i] ~ h ( i } ,  i ~  N. 

P r o o f .  S e t  h ( i )  = ( I n t  K1+1]f( i )  + { I n t  K2+1]g(i) Q . E . D .  

Roughly said, Theorem 5 shows that under some conditions the time 

complexity of the investigated statistical ded/cibility testing proce- 

d/re is of polynomial type. This result can selve as an interesting 

counterpart of the well-known fact that the comp/tational complexity 

of detelministic theorem-proving procedures is at least of exponential 

type. This complexity rechction has been achieved, of co/ rse, by admit- 

ting a positive probability with which the decision taken about the 

tested fo~nula can be wrong. Such a fact can be seen as an illustrati- 

ve example verifying the well-known M. O. Rabin's thesis [4] that the 

ad~nission of the possibility of an error can reduce substantially (in 

the sense of type reduction the comp/tional complexity of problem- 

-solving algorithms. Let us note that a probability distribution {ti} 
coping with the demand of Theorem 5 can be easily obtained; set e.g., 

to=O, ti=c/i2 , c=~=i(I/i)2=~2/6 , i=1,2. ..... On the other hand, e.g., 

~=(I-I)~ l, 0<~<I, i ~ N does not satisfy geometric distribution with t 

the conditions 

Theorem 6. 

(a) Let f,g be as in Theorem 5, let t-i1<_f(i), bt(i)<_log2g{i), i6 N. 
Then there exist c2,ca& N such that SC(i)< £21og2i÷63. 

(b) Let ti1<y1expI72i), bs(i)<_slexp(62i), 8j,yj6 N, j=1,2, i~ N. 
Then there exist 04,Cs ~N such that SC(i)<c~i÷cs, i~ N. 

Proof. Simple substitutions into Theorem 4. Q.E.D. 

Hence, the space complexity red~ction is still more remarkable 

then the time redaction. This resalt seems to be interesting namely in 

the light of the fact that just the space complexity problems (popula- 

tion explosion) have challenged the question of practical applicability 

of detelministic theorem-proving algorithms. 
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1. Introduction 

Post Normal Systems ( or Normal Systems, abbreviated by NS ) are rewriting sys- 

tems with rules of the form aw ~wb where a a V ÷ , b e V ~ . They have been intro- 

duced by E. Post (1) who also proved that such systems generate the same class of 

languages as Semi-Thue Systems ( STS ) do which have rules of the form WlaW 2 ~WlbW 2 , 

namely the class of recursively 8numerable languages ( RE ). 

with a similar proof it may ba shown that Normal Systems with faJ~Jbl ( called 

Context Sensitive Normal Systems, CSNS ) generate the class of Context Sensitive 

languages ( CS ). Context Free Normal Systems ( CFNS ) however, generate a larger 

class than Context Free languages ( C F ). CFNS's have very simple rewriting rules 

since derivations are performed at the first symbol of a word. They also have some 

close relations to Lindenmayer Systems. The generated class is lying between EOL and 

ETOL languages. 

2. Definitions and Basic Properties 

It is assumed that the notations of L systems are known (2,3). 

D1 Normal System 

A Normal System ( NS ) is a formal system G=(V,A,R) with a finite alphabet V, 

an axiom A=~} c V ~ , and a finite set R of rules of the form r : aw ~wb 

( written a ~b ) with a s V + , b e V ~ and w arbitrary 

A NS is called Context Sensitive ( CSNS ) if [aI~Lbl or S ~ E where S is the 

axiom and doesn't occur on any right side of a rule. 

A NS is called Context Free ( CFNS ) if laI=1 . Note that ~-rules are allowed in 

CFNS's, and that x~× is not a trivial rule. 
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A derivation is defined as usually by 

w ~w' iff w=av , w'=vb , a~b e R 

w ~w' iff 3 w=wo,wl,...,Wn=W ' e V ~ : wi_ 1~w i , O~i<n 

w ~w' iff w=w' or ~n e ~ : w ~w' o 

As for L systems the letters E, P, D, F will be used to denote extended, propaga- 

ting, deterministic, and finite axiom set systems respectively : 

E : V = @NUVT , VNnVT=~ ( notation G = (VN,VT,A,R) ) 

P : laI~ Ib[ 

F : IAI~I 

0 : if x-*b1 , x-->b 2 s R then bl=b 2 ( for CFNS's only ) 

The language generated by such systems is defined by 

L(G) = ~w e V*I 3w ° e A : Wo ~w~ for systems without E 

L(G) = ~w e V*I 3w ° s A : w e ~w~ n V T for systems with E 

The classes of languages generated by such systems will be denoted by underlining. 

E1 G = (~a,b~,~a~,~a~,~a-~bb,b--~a~) s EPOCFNS 

2 n 
with L(G) = ~ a I n~O~ e EPDCFNS . 

D2 Cyclic permutation 

If L C V ~ • L} , then Cyc(L) ~w e V~I 3u,v s V ~ = w ~ uv ~ vu c 

is the set of ell cyclic permutations of words from L ° 

For completeness it will be shown in the following theorems that ENS = ESTS = RE 

and ECSNS = ECSSTS = CS . All rules are written in the short form a-~b for NS's 

as well as for STS'so 

TI ENS C ESTS , 

Proof : Let G = (VN,VT,A,R) e ENS with A = {S~ o 

Define G' = (V~,VT,A',R') e ESTS by A' = ~S'~ , 

V N' = V N u ~S',A,B,C,D,E,F,G,H~ u ~T i I 1~i~IR]~, and R' = R I' u R 2' with 

R I' = ~S'-~ESF, Eai-->AS i ( ai-~b i e R , 1~i~<IRf ), T.x-~xT.i l ( 1~<i~<fR[ , × e V ), 

TiF-~BbiF ( l¢i~<IRl ), xB-~Bx ( x e V ), AB-gE~ 

R~ = ~E-~CO, Ox-~xO ( x e V T ), Dx-*Gx ( x s V N ), OF-~H, xH-~Hx ( x c VT) , 

DH--~e, xG-*Gx ( x s V ), DG--~E 

Then R~ generates all and only such w e LsF(G ) = ~w e V~I S ~w~ in the form 

EwF . R~ produces from these all and only such w e L(G). Therefore L(G') = L(G), 

hence ENS C ESTS . 
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T2 ESTS C ENS 

Proof : Let G = (VN,VT~A~R) ~ ESTS with A = {S~ . 

Define G' = (V~VTtA',R~) e ENS by A' = {S'} , 

I v I T V N = ~ u {S',A,B,C,K,L,M~N,P~ and R ~ = R I u R 2 u R 3 with 

R 1' = {~--.e~ ( X e V ) ,  B ~ B }  

R~ = { S ' ~ E ~ ,  E ~ B A ,  A ~ A  ( x ~ V ) ,  A a ~ b C  ( a..-~b e R ) ,  A B L E ,  

R~ = {E-~PK, P~L, K~xMK ( x e V T ), LxM~LxM ( x e V T ), xM-~xM ( x ~ VT) , 

KLx~Nx ( x ~ VT) , Mx~x ( x e VT) , MN~} • 

T ', ' generate all and only such w e LsF(G) in the form Ew , and R 3 Then R 1 R 2 

transforms all and sniy such w e L(G) from E~ into w. Therefore L(G') = L(G), 

hence ESTS C ENS . 

T3 ECSNS C ECSSTS 

Proof : Let G = (VN,VT,A~R) c ECSNS with A = {S~ 

Define G' = (V~,VT,A',R') e ECSSTS by A v = {SEF} , 

V~ = V N u VEF u V E u V F u V A u V B u ~ u {Crl r e R} , and R' = R'I u R 2' 

R~ = {XEF-~YEF ( x-~y e R ), XEF-*YEaZF ( x~yaz e R ), 

xEsYF-~UEbZ F ( xay-eubz e R ), xEaYF-~YEbZF ( xa~ bz e R ), 

xEay~YAC~ (r) ( r : xa~bz e R, IbzI= n(r) ), 

cn(r)x-+xC n(r) ( r e R, x e V ), c~(r)xF ~xBbz F ( r e R, x 8 V ), 
r r 

xYB~XBY ( x,y c V ), XAYB~XEY ( x,y e V )} 

R~ = {XEF~X ( x e V T ), XEYF-~xy ( x,y e V T ), xEY~X~ ( x,y e V T ), 

~y-ex~ ( x,y e V T ), ~yF-~xy ( x,y e V T )}. 

generates all and only such w e LsF(G) in the forms Then R 1 

' produces from these ell and only such w e L(G)o Therefore R 2 

hence ECSNS C ECSSTS o 

with 

XEF or xEvY F . 

L(G') = L(G) , 

T4 ECSSTS C ECSNS. 

Proof : Let G = (VN~VTgAgR) 8 ECSSTS with A = {S} . 

Define G T = (V~gVT,A',R') e ECSN£ by A' = {SE} , 

V N, = V N u ~ u V A u V B u V C u V E , and R' = R I' u R 2' u R 3' with 

R~ = {~->~ ( x e V ), XA->X A ( x e V )} , 

R~ = {xEa-~YE ~ ( xa4yb e R ), XE~-~xAY B ( x,y e V ), XB~-~y B ( x,y e V ), 

XBYA-~XYE ( x,y e V ), xBa-->yc~ ( xa-~yb ~ R ), Xc~-exy C ( x,y e V ), 

XcYA-~yE ( x,y e V )} 

R~ = {XE->X ( x e V T ), x4x ( x ~ V T )} . 

Then R~, R~ generate all and only such w e LsF(G) in the form XEV , and R~ 

transforms all and only such w e L(G) from those into xv . 

Therefore L(G') = L(G) and hence ECSSTS C ECSNS . 
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T5 ENS = ESTS = RE and 

Proof : By T_I to T__4 

ECSNS = ECSSTS = C__S . 

T6 EFXNS = EXNS ( X e {~,CS,CF} ). 

Proof : If G = (VN~VT,A,R) and IAJ~I define 

R' = R u ~S~ a l a e A~ . Then G' e EXNS and 

G' = ( V N U [ S } , V T , { S } , R ' )  

L ( O ' )  = L ( ~ )  . 

with 

From now on Context Free Normal Systems will be considered only. 

The next theorem shows relations between CFNS derivations and OL derivations. 

T? To each CFNS derivation Wo~W (CFNS) by G ~ XCFNS ( X arbitrary ) there exists 

a uniquely determined integer k and another derivation using for the first k 

steps the rules R of G as XOL rules ( WoO* w k (XOL), w k = ab ) and after that using 

them as XCFNS rules for m = lal<labf steps ( ab~bc (XCFNS), w = bc ). 

Proof : If XCFNS rules are applied lul times on a word u e V~, then this may also 

be ~chieved by one XOL step. 

Now, if we ~w (XCFNS) then there exist uniquely determined Wo,Wl,...,w k E V ~ 

with wi_1~w i (XOL) , wi_im(~)w i (XCFNS) , 
Wo 

m ( i )  = Iwi_ll ( l ~ i ~ k  ) , w k m ~ ) w  (XCFNS) , w 1 

m(k) =Isl<labl, w k = ab ~ w = bc . 

This fact is shown by the following figure : wk=ab 

w=bc 

The next theorem traces back the first symbol of a derived word using XCFNS rules. 

T8 Let G s XCFNS with arbitrary X. To each derivation of xw e LsF(G ) there exist 

w e A 9 an integer k, and a unique sequence of splittings 
o 

1 o o I = u k. o o v k 
Wo = U°Xo o v°o ' Wl = UoU1×IVlVo ' "'" ' Wk o "'Uk×kVk''" o with 

j j+1 j o o 
x i e V , ui~u i (XOL) , v~v~+1 (XOL) , xi~ Ui+lXi+IVi+ I (XOL) and 

k o a k m o k k+1 I k 
Uo...UkXkVk...v ~XkVk...VoU ° ...u k (XCFNS) , m = luo...u~l , w ° 

o k k+1 I w 1 
xw = XkVk...VoUo ...u k . 

Proof : This is an immediate consequence from T7. 

w k 

xw T9 If ~ e LsF(G ) then to each derivation of ~ there 

exist w e A , an integer k, and a unique 
o 

sequence of splittings w = uCx v ° , ... , 
O 0 0 0  

o o k-1 o k 
Wk_ 1 = Uk_1×k_IVk_1...v ° , w k = ×kVk...Vo with 

o o j j+1 
u~ s , ×i ~ui+Ixi+Ivi+ I ~ vi~v i , Wk~ ~ (XOL) . 

Proaf : As in T__8. 

w 

L ° 
w 1 

w k 
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3. Hierarchies a n d  Closure Properties 

TIO For G e XCFNS with arbitrary X it is decidable whether E c L(G). 

Proof : Define M = {x e V I x-eE e R} and 
o 

Mi+ I = M i u { v e V I ~ u s M ~ • i : y->u e R} inductively. 

Then M = M k = Mk+ 1 for all 1 ~ ~ with k = IvI and x s M iff 

Now, if a = Xl...x m e A then a~ iff xi~ ( 1<i~m ) o 

Therefore it is decidable whether E e L(G) . 

Only a few results concerning systems without E will be shown. 

T11 DCFNS ~ PCFNS 0 

Proof : L = {~,a} c DCFNS 

But L ¢ PCFN5 . 

b y  G = ( { a } , { a } , { a . . - e . E } )  s DCFNS . 

TI__~2 PCFNS~ DCFNS . 

Proof : L = {a,b} + e PCFNS by G = ({a,b},{a},{a~a,a~b,a~aa,b~a,b-eb}) 

But L ¢ OCFNS . To get words of arbitrary length one rule has to be strictly 

propagating. To get all words of one length not both rules can be strictly 

propagating. If the second rule is length preserving at most lwl words of that 

twl 
length may be generated. But 2 such words exist. Therefore the second rule 

has to be the ~-rule generating ~ in contradiction to L. 

Therefore the following diagram holds : CFNS 

DCFNS PCFNS 

PDCFNS 

More interesting are the language families with E. Their relations to OL 

families with E will be shown. 

T13 EXOL C EXCFNS for X e (a~P,D,F,PD,PF,OF,PDF}. 

Proof : If L(G) s EXOL with G = (VN,VT,A,R) define G' c EXCFNS by 

G' = (VNU~,VT,A,~uR') with ~ = {x~ Ix~a e R} , R' ={~x I x e V} . 

Then L(G ') = L(G) . 

T14 ECFNS C ETOL 

Proof : Let G = (VN,VT,{S},R) e ECFNS . Define G' = (V~,VT,{S'},~') s ETOL 
^ 

' = V u ~ u ~ u V N u {S',A} by V N 

and the following tables where for shortness all trivial rules are omitted : 

( note that e e L(G) is decidable by TIO ) 
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u 

x~ayb e R , y e V ( each such splitting ) } 

u ~ 4 a  ( x e V ) , ~ e  ( x e V ) , x ~ e  ( x c V ) , A ~ E  i f  e ~  L ( G ) .  

The first table is the starting table, and the last one ( or two if s g L(G) ) 

are the terminal tables. 

o o 
By T S te each derivation of xw there exis~a sequence S = w ~ w I = UlXlV I , 

k-1 o o k-1 o k-1 k I o 
... , w k = u I ...UkXkVk..OVl , xw = XkVk...v I Ul...u k . 

Using the tables the following sequence may be constructed : 
^ -o=o ^ -o -k-l=k-1 =o a k-1 k I 

S' , SA , XlVlUIA , ..° ~ XkVk..,v I u I ..°UkA ~ XkVk...v I Ul...u k 

On the other hand, to each derivation of w using tables there existsa corres- 

ponding derivation in the way of T__88. Therefore L(G') = L(G) o 

If e g L(G) the same holds using one of the two terminal tables and T g. 

Hence ECFNS ~ ETOL . The derivations are illustrated by the following two 

diagrams : S 

w k 

×w 

SA 
^ -o=o A 
XlVlU I 

^ - o  = o  
XkVk-o.UkA 

xw 

T15 EPCFNS cEPTOL . 

Proof : Let G = (VN,VT,{S},R) e EPCFNS . Define G' = (V~,VT,{S'},%') e EPTOL 
^ 

, = ~ u V u ~ u ~ u ~ u ~ u VN u (S, I by V N 

and the following tablesjwhere the trivial rules are omitted again : 

u { [  ~ - ~ c ~  ( i f  a = cz ) , ~ ~ o  ( i f  a = ¢ , b = dz )1  I 

x ~ a y b  a R , y e V ( each  such  s p l i t t i n g  ) 

e{ t o . . . . .  z-~ zcu  ( i f  a = cu ) , 7 - ~  ( z - ~ a  e R ) , Z - ~ a  ( z-~ a e R ) 

~ - ~  , ~ ( i f  a = ~ ) , ~ - ~ z c ~  ( i f  a = c u  ) , o o ( . i f  s = e ) , 

x~ayb c R , y e V ( each such splitting ) } 

Again, the first table is the starting table and the last one the terminating 

one. As in T14 it follows that L(G') = L(G) , hence EPCFNS cEPTOL 
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T16 EDCFNS C EDTOL and EPDCFNS C EPDTOL • 

Proof : This is shown exactly as in T14 and T15o 

The next theorems show closure properties of classes with E. The classes without E 

will not be considered here° Most of those classes are not closed under AFL eperations~ 

T17 EPCFNS is closed under E-free homomorphism h E : VT ~ V 2 . 

Proof : Let G = (VN,VT,A,R) e EXCFNS . Then define G' = (~I,V2,~,R') 

V I = V N u V T , and R' = {~aJ x~a ~ R} u {~-~he!x)l x e VT~ 

Then L(G') = L(G) . 

by 

T18 EXCFNS is closed under union u for X c {E,P~ . 

Proof : If G. s EXCFNS with G i = (VNi,VTi~Ai,Ri) define G s EXCFNS by 
l 

G = (VN,VT,A,R) with VN = ~I u ~2 u {S~ , V T = VTI u VT2 , A = {S~ , 

R = ~ S ~ I  a 6 AI~ u ~ S ~ [  a e A2~ u { ~ 1  x-->a e R1} u {~->~1 x-->a e R2~ u 

u { ~x I x e VTI ~ u {~-~x I x e VT2 ~ o 

Then L(G) = L(GI) u L(G2). 

4. Decidability Problems 

In the following theorems it will be shown which problems are decidable and which not. 

T19 The membership problem is decidable for ECFNS ( w e L(G) ) 

Proof : This is a consequence from T14 and ETOL c CS . 

T20 The emptiness problem is decidable for ECFNS (L(G) = ~ ) 

Proof : This is also a consequence from T14 and ETOL c IN D (3). 

T21 The finiteness problem is decidable for ECFNS (L(G) finite ) . 

Proof = This too is a consequence from T14 and ETOL c IND (3). 

T22 The language equivalence problem is not decidable for CFN5 (L(GI) = L(G2) ) . 

Proof : This may be shown by a proof similar to that for OL in (2). 

, V ~ instance of a Post Let (a I ..... an) , (b I .... bn) with ai,b i c an 

Correspondence Problem ( PCP ). Let ~ denote the mirror word to w . 

Then define G I = (VI,{S~,RI) by V I = V u {A,B,C,D,E,F,H,S,T~ t 

R 1 = {S~TH, T~aiE~ i (1~i&n), T~xAx (× s V), T~ xBy (x,y e V, x~y), A~ A, 

A~ xAx (x a V), A~xBy (x,y c V, x~y), A~ xC (x e V), A~ Fx (x c V), 

B~xB (x e V), B~Bx (x e V), 8~ 8, C~xC (x e V), B~D, C~C, C~O, 

D~D, E~E, E~a.EB. (l~i~n), F~F, F~Fx (x 6 V), F~D, H~H, x~x} 
ii 
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and G 2 = ( V 2 , { S } , R 2 )  by V 2 : V 1 , R 2 = R 1 u ( E 4 D } o  Then 

L(G1) = {S,TH~ u 

{AwHwl w c u L w,u u Cyc( ~ V+~ ~ e V +, [OuHw w~u~ 

u {Bub~Hwaz l w,u,z E V ~, a,b e V, a~b} 

u {C~Hwz l w,z e V+~ u {Fz~Hw J w,z e V +} 

u {E~Hw I w=ai(1)..oai(t) , u=bi(1)...bi(t) , t~1 , 1~i(j)~n} ) , 

L(G2) = L(GI) u Cyc( { D~Hw I w=ai(1)...ai(t) , u=bi(1)...bi(n) , t~1, 1~i(j)~n~ ) 

and L(G I) ~ L(G2) iff PCP has a solution. 

Therefore the language equivalence problem is undecidable for CFNS. 

T23 If LI,L 2 e CFNS it is undecidable whether LInL 2 = ~ . 

Proof : Let (al,...,an) , (bl,...,bn) be an instance of a PCP. 

Then define G I = (VI,{S},R I) by V I = V u {I ..... n} u {S,A,C} 

R I = [S~A, A~iAai, A-~iCai, i-~i ( 1~i4n ), x~x (x e V), A->A, C~C~ 

and G 2 = (V2,{T},R 2) by V 2 = V u {I ..... n} q [T,B,C~ 

R 2 = ~T~B, B->iBbi, B~iCbi, i~i ( 1~i~n ), x~x (x e V), B~B, C~C~ 

Then L(GI) = IS,A} u Cyc( [uAvl u=i(t)...i(1), v=ai(1).o.ai(t) , t~1} 

u {uCv I u=i(t)o..i(1), v=ai(1).o.ai(t) , t~1 ~ ) 

and L(G 2) = (T,B} u Cyc( { uBv[ u=i(t)...i(1), v=bi(1)...bi(t) , t~1 } 

u { uCvl u=i(t)...i(1), v=bi(1)...bi(t) , t~1 } ) 

Therefore L(G I) n L(G 2) # ~ iff PCP has a solution. 

Hence LInL 2 = ~ is undecidable for CFNSo 

5. Open problems 

~everal problems concerning ECFN5 are left open. Among them are closure 

properties under catenation~ catenation closure, inverse homomorphism 9 and inter- 

sect3on with regular sets. It is also unknown if there exists a Normal Form theorem 

as the Chomsky Normal Form for C F. Further open problems are the corresponding 

automata. 
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INTRODUCTI ON 

The deterministic context-free languages (see e.g. Harrison [5]) constitute an 

important subfamily of the context-free languages. The need of good parsing al- 

gorithms and the intriguing equivalence problem have lead to the investigation of 

various subfamilies and various characterizations of this family. The deterministic 

pushdown automata with jumps, jump dpda's in short, establish a useful device of 

characterizing the deterministic languages. 

A jump dpda is a dpda with the additional facility of erasing the pushdown 

memory until a symbol from a set specified by the transition is found, all this at 

one step. Thus, in erasing situations, these jump transitions can speed up the 

computation. It is easy to see that, if no restrictions on the computation time are 

settled, the jump transitions do not increase the generating capacity. But it has 

been shown in [3] and will be shown here, that all deterministic languages can be 

accepted by jump dpda's in realtime. The usefulness of jump dpda's has been demon- 

strated e.g. by the simplified regularity algorithm of deterministic languages [2]. 

In spite of the importance of jump dpdaPs, the proofs of the basic results 

cannot be found in the litterature. Some results can be found in [4] but without 

proofs, and [3] is unpublished. In [I] it is proved that all deterministic lan- 

guages can be accepted in realtime by somewhat different jump dpda~s. Various 

results can be found in [2] including Theorem 2 of this paper. Here we give a short, 

self-contained and, we hope, transparent proof of that theorem. 

We shall show that all prefix-free deterministic context-free languages can be 

accepted in realtime by one-state jump dpda's whose jump sets contain only a single 

symbol. This is what our Theorem 2 says. It was first proved in [2]. The proof of 



355 

Theorem 2 is strongly dependent on the constructions of Theorem 1. Theorem I would 

follow from Proposition I (1), proved in [3], and Proposition 2 of [2], but unfor ~ 

tunately the proof of Proposition 2 is not correct. The erroneous construction does 

not simulate a jump dpda, where the erasing is extended until and including a sym- 

bol of the set given in the jump transition, but rather a modification of the jump 

dpda, where the symbol of the jump transition is saved. We feel that there is no 

easy way to correct the proof. Essentially, one has to prove our Theorem 1, which 

starts from the "conventional" dpda directly. However, the proof of the main result, 

our Theorem 2, is independent of Proposition 2 and is correct in [2]. 

1. P~LZMZ~ZS 

In this section we fix our terminology and prove two normal form lemmas about 

deterministic pushdown automata. 

The empty word over an arbitrary alphabet is denoted by e. The cardinality of 

a set S is denoted by ISI. If f is a partial function, f(a)+ and f(a)+ mean that 

f is, respectively is not, defined on the argument a. 

Definition. A dpda is a 7-tuple M = (Q,Z,F,~,qo,Z0,F) , where Q, z and F are the 

finite sets of the states, inputs and stack symbols, q0 6 Q, Z 0 E F, F E Q, and 

5: Q x (z U {e}) x F ÷ Q x F* is a partialfunction satisfying the determinism con- 

dition: if ~(q,e,Z)+, then for all a E Z, ~(q,a,Z)+. The relation ~'M on Q x z* x F~ 

is defined as fellows. 

(q,ax,Zy) ~M (p,x,y'T) iff 6(q,a,Z) : (p,T'). 

Moreover, ~ is the reflexive, transitive closure of ~'M" The language L(M) ac- 

cepted by M by empty stack and final state is the set 

L(M) = {wl (q0,w,Z0) ~-~ (qf,e,e), qf 6 F}. 

For a more detailed introduction to the terminology, consult [5]. 

Lenmm I. For every dpda M = (Q,X,F,6,q0,Z0,F) there exists a dpda M' = 

(Q,X,F',~',q0,[Z0],F) such that 

(i) L(M) = L(M'), 

(ii) if 6'(q,a,Z) = (p,T) then ITI ~ 2 (ITI is the length of T), 

(iii) if ~'(q,a,Z) = (p,e) then a = e, 

(iv) if 6'(q,e,Z) = (p,T) then T = e. 

Proof. Assume that M is loop-free (see [5]). There exists a constant k such 
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that for all q~p C Q, ~ ~ F + and a C X, if (q,a~n) ~-[ (p,e,y) then IyI <_ lql + k. 

It c~n also be assumed that M pops only on e ~ because otherwise one can replace 

(q,a,Z) ~-H (p,e,e) by (q,a~Z) ~'M (PE 'e'E) ~M (p,e~e), where E is a new stack 

letter and PE is a new state, lhe stack alphabet of M' is F' = ([q]l q £ Q} U 

{[T]I ¥ C F +, I < IyI _< k} and the transition function 6' is defined for all p,q C Q, 

a C Z, and n E F* such that I <= I n l  < k, as follows. 

+ 
1. If (q,a,n) ~'M (p,e,T) is the maximal (unique) computation then 

~(p,[y1][T2]) if Iyl > k, ¥ = YiY2 , IY21 = k, 

6'(q~a,[n]) : { (Note that IYI <_ 2k) 

I (p,[T]) if I 5 ITl 5 k, 

<(p,[p]) ify': e, - 

and 

6'(q,e,[q]) : (q,e) for all q £ Q. 

+ (p,e,e) then 2. If (q,e,n) ~'M 

6'(q,e,[n]) = (p,e). 

Otherwise 6' is undefined. 

It is easy to verify- that L(M) = L(M'). 

We shall now give another normal form that simplifies constructions. It affirms 

that the stack is changed only by pushing new letters into it or popping existing 

ones~ but never changing the topmost letter to another. This property is preserved 

in the constructions of Theorem 1 and Theorem 2. 

Le~ma 2. For every dpda M = (Q,E,r,6,qo,Z0,F) there exists a dpda M' : 

(Q',Z,F',6',[q0~Z0],Z~,F') such that 

(i) L(M) = L(M'), and 

(ii) each transition of M' is of one of the following three types: 

6'(q,e,Z) = (p,e), 

6'(q,a,Z) = (p,Z), 

6'(q,a,Z) = (p,YZ). 

' ~ r ,  r '  = r u ( z ~ } ,  q ' :  qxr ,  Proof. Let M be in the norm~l form of Lemma I, Z 0 

and F ~ = F x y~. The transition function 6' is defined for all q,p E Q~ X,Y,Z C r, 

U C F ~ and a C E as follows. 

6'([q,Z],e~U) = ([p,U]~e) if 6(q,e,Z) = (p,e), 

6'([q,Z],a,U) : ([p,Y],U) if 6(q,a,Z) = (p,Y), 

6~([q,Z],a,U) = ([p,X],~J) if 6(q,a,Z) = (p,XY). 

Note that M ~ differs from M only having the topmost symbol in the finite state 
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memory. Thus an input w empties the stack of M iff it empties the stack of M'. The 

correspondence between F and F t implies that L(M) = L(M'). 

Remark I. Without loss of generality we may assume that the first transition 

in every computation, unless it is a popping transition, changes only the state, 

i.e. is of the form6(q0,a,Z 0) = (q,Z0). If necessary, the k in the proof of 

Lenma I is increased. 

2. JUMP DPDA 

Definition. A ju~ dpda is a 7-tuple M = (Q,Z,F,~,q0,Z0,F) , where all other 

components are as in the definition of the dpda, but ~ is now a partial ftmetion 

8: Q x (Z U {e}) x F ÷ (Q x F~) u ({J} x Q x 2 F) satisfying the determinism con- 

dition. The relation ~'M is defined as follows. 

(q,ax,Zy) ~'M (p,x,y') 

iff either 6(q,a,Z) = (p,y") and y' = y"y, or 6(q,a,Z) = (J,p,S) and Zy = y"Yy' 

for some Y 6 S and y" E (F-{S})*. M is a single jump dpda if in all transitions 

~(q,a,Z)= (J,q,S), the set S consists of a single element only. 

The specialty of the jump dpda is the ability to pop smbitrarily many letters 

from the stack at one step. By Lenma I~ we may assume that all e-transitions of 

a dpda are popping transitions. In the next theorem we shall show that all the 

e-transitions can be combined to a single jump transition. 

To illustrate the correspondence between the computations of a dpda M and the 

simulating jump dpda M', we define the relation ~M as follows: 

(I) (q,a,Zy) ~M (p,e,y') 

iff ~(q,e,Z)+, (q,a,Zy) ~-~ (p,e,y'), and either y' = e or y' = Z'y" and ~(p,e,Z')+. 

As usual, ~ means the reflexive, transitive closure of ~M" 

In the next theorem, a jump dpda M' is constructed such that the computation (I) 

is simulated bya single step of M'. 

Theorem I. For every dpda M = (Q,I,F,~,q0,Zo,F) there exists a realtime single 

jump dpda M' = (Q',K,F',~'~q~,0,F) such that 

(i) L(M) = L(M'), 

(ii) the transitions of M' are of the form 
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8'(q,a,Z) : (J~p,Y), 

6'(q~a,Z) : (p~Z), 

~'(q,a,Z) = (p~XYZ). 

Proof. Let Mbe of the formof Lemma 2, Q = {qo~...,qn ), Q' : Q 0 {q~}, and 

r, : {B}U rad r U Fpush ~ where 

tad r : {0,I,°..,n+2}, 

Fpush = {[Z,I]I Z E F and ~: Q + Q x tad r is a partial funetion} 

and B is a special symbol needed only in a transition to satisfy the length con- 

dition (ii). The initial symbol 0 appears only as the bottonmost symbol. 

The jump dpda M' will be defined in such a way that a computation 

(qi'a~ZmZm-l"" "Zo) ~M (qj'e'Zm'" ..Z~) is simulated by a single transition of H'. 

The configuration (qi,ZmZm_l...Z 0 ) of M is simulated by the configuration 

(qi,[Zm,lm]im_l[Zm_1,1m_l]...lo[Zo,Io]BO) of M'. The integers im_ 1,...,I 0,0 E radr, 

called jump addresses, and the partial functions Ira,... ,i 0 contain the popping in- 

formation as follows: If M begins popping in the state qi on Zm, (to be exaet~ now 

we are considering the second configuration of a mac~-step ~M ) and ends popping 

in the state qj with ~ on the top, then lm(qi ) = (qj,l), where i = I k and i ~ i r 

for r : m,m-1,... ~k+l. Note that, because the popping transitions of M are e-tran- 

sitions, the point where popping ends depends only on the state and the contents 

of the stack. 

Assume now that M pushes by the transition 6(qi~a~Z) = (qj,YZ), denoting Z : Z m 

and I = kin" Then the next address is calculated by the function adr: rpush ÷ radr, 

and the new popping information by the function push: Q x I x rpush ÷ rpush as 

follows : 

adr([Z,l]) = rain {tl t > 0 and for no j~k, ~(qj) : (qk,t)}, and 

push(qi,a,[Z,l ]) = [y,l~], 

where ~(qi,a,Z) = (qj,YZ) and for k = 0,...,n, 

undefined if 6 (qk,e,Y)+ 

1'(qk) =~(qr,adr([Z~l]))if 6(qk,e~Y) = (q~,e)and ~(qr)+, 

Li(qr) if 6(qk,e,Y) = (qr,e) and 1(qm)+. 

Note that for all Z and I~ adr([Z,l]) _< n+2. The initial popping information is 

given by 

fundefined (k : 0,... ,n) if 6 (qk,e,Z0)+ , 

10(qk) : L *rl(a'°) if 6(qk,e,Z 0) = (%r,e). 
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The transition function 8' is defined for all qi,q9 in Q~ Z~Y in F and a in Z as 

follows : 

I. If ~(q0,a,Z0) = (qj,Z 0) then 

f(J,qk,0) if ~(qj,e,Z 0) = (qk,e), (a) 

~'(q~,a,0) = L(qj,[Z0,10]B0) if ~(qj,e,Z0)+. (b) 

2. If ~(qi,a,Z) = (qj~Z) then 

f (qj,[Z,l]) if l(qj)+, (a) 

~'(qi 'a'[Z'l]) : ~(J,qr,l) if l(qj) = (qr,l). (b) 

3. If ~(qi,a,Z) = (qj~YZ) then 

(qj,push(qi,a,[Z,l])adr([Z,l])[Z,l]) if 6(qj,e,Y)+, (a) 

~'(qi,a,[Z,l]) = ~(qk,[Z,l]) if ~(qj,e,Y) = (qk,e) and l(qk)+, (b) 

[(J,qr,l) if 6(qj,e,Y) = (qk,e) and l(qk ) = (qr,l). (e) 

Otherwise ~' is undefined. 

If a word of length one empties the stack of M, then it also empties the stack 

of M' by the transition 1 (a). Otherwise the computation is initiated by I (b), by 

which the stack, particularly 10 , is properly determined. The most important part in 

the proof is to assure that in the transition 3(a) the popping information ~' in 

[Y,I'] : push(qi,a~[Z~l]) and the address adr([Z,~]) are correctly formed. This 

follows immediately by an inductive argument from the definitions of the functions 

push and adr. 

The correspondence between the computations of M and M' is very easily illus- 

trated. The transitions 2(a) and 2(h) correspond, denoting Z m = Z, to the moves 

(qi'a~ZmZm-1 .... Z0) ~M (qj 'e'ZmZm-1 " " "Z0) and 

(qi'a'ZmZm-1 " " "Z0 ) ~M (qr 'e 'ZsZs-1 " " "Z0) ' 

where 1 = i s but 1 ~ i t for t = m,m-1,...,s+1. The transitions 3(a)~ 3(b) and 3(e) 

correspond to the ~mves 

(qi'a'ZmZm-1 "''Z0) ~M (qj'e'YZmZm-1""Z0)' 

(qi~a'ZmZm-1 " " "Z0) ~M (qk 'e'ZmZm-1" " "Z0 ) ' and 

(qi'a~ZmZm-1""Z0) ~M (qr'e'ZsZs-1"''Z0)' 

where 1 = i s but 1 ~ i t for t = m,m-1,...,s+1. 

Remark 2. For easy reference we surmmrize here some properties of the jump 

dpda M' : (Q',E,F',~',q~,0,F): 
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(i) F' : Fpush U Fad r U {B]a~nd adr is a function Fpush ÷ Fad r. 

(ii) The iritial symbol 0 E Fad r appears as the bottommost symbol of the stack 

and after the first step it is reached only at the last step with a ju~. 

(iii) The transitions are of the form 

I. 6'(q~a~0) = (J,p,0), 

2. ~'(q~,a~0) = (p,ZB0), where Z C Fpush ~ 

3. ~'(q,a,Z) = (p,W~Z), where X,Z E Fpush and Y = adr(Z), 

4. 6'(q,a,Z) = (p~Z), where Z E rpush , 

5. ~'(q,a,Z) = (J,p,Y), where Z C Fpush and Y £ Fad r. 

(iv) In two successive jumps the jump addresses are different. 

dpda 

(ii) 

Theorem 2. For every dpda M there exists a realtime one state single jump 

M" such that 

L(M) = L(M"), 

the transitions of M" are of the form 
,T ~"(a~Z) = <~,Y), 

6"(a~Z) = YI...Yn Z, where n { @. 

Proof. Let M' : (Q~,Z,T',6',q@,@,F) be the realtime single jump dpda of 

Theorem I such that L(H) = L(MT), For eonvenienee we have changed the notation for 

the initial state: and denote Q~ = {q0,..,,qn }. Let 

r" : [[qi~Z]i i : 0 .... ~n, Z £ r', Z # 0,B) U {0,B}. 

By the property (iii) of Remark 2 ~ the configurations of H ~ are of the form 

(qi,XmYm_IXm_j.. oYIX~B0), where each X i £ rpush and Yi = adr(Xi)" We shall con- 

struct a realt±me one state single jump dpda M" = (Z,F",6",0) such that this con- 

figuration is simulated by the stack 

[qi 'Xm] [qi-1 'Ym ] [qi-I 'Xm]"'" [q@ 'Ym ] [qo 'Xm] [qn'Ym- 1 ] [qn'Xm~l ] ' "  

[qo 'Ym-1 ] [qo ~Xm-1 ]''" [qn'Y1 ] [qn~X1 ]'" [qo 'YI ] [qo 'XI ]BO. 

Thus the cur,rent state is stored in the topmost letter of the stack of M". 

Formally, ~" is defined for all qi,q j in Q', X,Y,Z in F' and a in Z as follows. 

(Compare with Remark 2 ) 

1. If 6'(q0,a~0) = (J,qj,0) and qj E F then 

6"(a,0) = (J,0), (In this case a is accepted) 

2. If ~(q0~a~O) : (qj~ZBO) then 

~"(a,0] = [qj~Z][qj_1 ~Y][qj-1'Z]'''[q0 'Y][q0'Z]B0' where Y = adr(Z). 



361 

3. If ~'(qi,a,Z) = (qj,XYZ) then 

~"(a,[qi,Z ]) = [qj,X][qj_1,U][qj_1,X]...[q0~U][q0,X][qn,Y][qn,Z]... 

[qi,Y][qi,Z], where U = adr(X). 

4. If 6'(qi,a,Z) = (qj,Z) then 

6.(a,[qi,Z]) =I[qj,Z][qj_1,Y][qj_1,Z]...[qi,Y][qi,Z] if j~i (Y : adr(Z)) (a) 

~(J,[qj,Y]) if j < i (Y = adr(Z)) (b) 

5. If 6'(qi,a,Z) = (J,qj,Y) then 

_ f(J,[qj,Y]) if Y ~ 0 (a) 

6"(a'[qi'Z]) -~(J,0) if Y = 0 and qj e F. (b) 

Otherwise 6" is undefined. 

In the transitions 3 and 4 it is important that the address of the topmost 

letter is uniquely determined by the function adr. Therefore the chains will never 

be mixed. In the transition 5(a), note that the property (iv) of Remark 2 assures 

that the jump goes deep enough. By induction on the length of w ,it is easy to ver- 

ify that for all w in X~ 

(q0,w,9) ~, (qi,e,XmY~iX~1..-Y~Xl B0) 
iff 

(w,O) ~-~, (e, [qi,Xn] [qi-1 'Ym ] [qi-1 'Xm]" " " [qo 'Ym ] [qo ~Xm] [qn'Y~l ] [qn'X-1 ] ' ' "  

[qo'Ym-1 ] [qo'Xm-1]"" [qn'Y1 ] [qn'X1]' '" [qo'Y1 ] [qo'X1]BO)' 

where Y = adr(X ). 
m m 

Moreover, the property (ii) of Remark 2 and the jump transitions I and 5(b) 

assure that M" empties the stack iff M' empties the stack in a final state. Hence 

L(M") = L(M') = L(M). 
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0. INTRODUCTION 

A very pure subsemigroup P o f  a f ree semigroup A + is a subsemigroup of  A + 

sa t is fy ing  the condi t ion : fo r  al l  u v E A + • u v ,  vu ~ P => u , v e  e. 

The notion of  v e r y  pu re  subsemigroup of a f ree semigroup plaies an important  ro le 

in some problems o f  a lgebra ,  in format ion theory  and language theory .  In pa r t i cu la r  the 

bases o f  v e r y  pu re  subsemig roups ,ca l led  very pure codes,have been cons idered by  M.P.  

Schutzenberger  in the factor izat ions of  f ree monoids and in the const ruc t ion of  the bases 

of  f ree  Lie a lgebras  [ 17-18 ] . Fu r the r  v e r y  pu re  subsemigroups and codes have r e m a r k -  

able synch ron i z i ng  p roper t i es  which are of  re levan t  in terest  in the theory  o f  in format ion 

t ransmiss ion [ 2, 10, 12, 13 ] . Recent ly J. Pin [ 11 ] has shown that a charac ter iza t ion  of  the 

va r i e t y  of  locally testable languages [ 6 ] can be obta ined in terms of  the not ion of  v e r y  

pu re  subsemigroups .  

The aim of  this paper  is to present  some new resu l ts  which are main ly  concerned 

wi th  the p rope r t i es  o f  synchron iza t ion  and maximal i ty  o f  v e r y  pu re  subsemigroups and 

codes. In  sect ion 2 a b r i e f  account of  the synch ron i z i ng  p roper t i es  o f  v e r y  pu re  subsemi-  

g r o u p s , g e n e r a l i z i n g  some p r e v i o u s l y  pub l i shed  resu l ts ,  is g iven.  In sect ion 3 two d i f f e ren t  

not ions of  max imal i ty  for  a v e r y  pu re  code are  in t roduced:  one wi th  respect  to code cond i -  

t ion and the o ther  wi th respect  to the p r o p e r t y  of  be ing " v e r y  pu re "  .The main resu l t  o f  

th is sect ion states that the two not ions are indeed equ iva len t  under  the hypothes is  that 

the code is nondense .Several  co ro l la r ies  are d e r i v e d . O n e  in p a r t i c u l a r , s h o w s  that a max-  

imal v e r y  pu re  code has to be in f in i te .  F ina l l y  in sect ion 4 some resu l ts  concern ing  the 

smal lest v e r y  pu re  subsemigroup conta in ing a g iven  set X c A + _ are p roven .  

1 .PRELIMINARIES 

Let A + be the f ree  semigroup generated by  a f in i te  alphabet A. In  the fo l l ow ing  
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A *  = A + U { l }  w i l l  denote the free monoid generated by  A ,whe re  I is the ident i ty  e le-  

ment o f  A* o r  empty word .Forany f E A * ,  I f [ denotes the length of  f where  con-  

ven t i ona l l y ,  !11 = 0 . 

A c lassical  resu l t  o f  SchLi tzenberger [ 15 ] states that a subsemigroup P o f  A + is 

A + f ree i f  and on ly  i f  fOr all s~ , p ,  q ~P s p ,  qs ~P => s~ P. From the de f in i t ion  one 

has t h a t a  v e r y  pu re  subsemigroup P o f  A + is f ree.  In fact i f  sp ,qs sP  then spq ,pqs  eP 

so that since P is v e r y  pu re  s ~P. 

The base X =  p \ p 2  o f  a f ree subsemigroup P o f  A + i s  usua l l y  cal led code since 

any word  of  P can be uniquely fac tor ized in terms o f  the elements of  X (code words). 

When P is v e r y  pu re  X is cal led very pure code. 

Let P b e a  s u b s e m i g r o u p o f A  + and X =  p \ p 2  the (un ique}  minimal set of  g e n e r -  

ators o f  P .One can then in t roduce in P the fo l l ow ing  re la t ion (X-conjugat ionJ def ined 

fo r  al l  f , g  eP  as f X - t o n i  g i f  there  ex is t  u , v  s X  ~ such that f = u v  ,g = v u . W h e n  

u , v  are d i f f e ren t  f rom the empty word  f and g are said str ict ly X-con jugate .  It is c lear  

that X -con juga t ion  impl ies A -con juga t i on  whereas the converse is not gene ra l l y  t rue .  

Proposition 1.1. Let P b e a  subsemigroup of  A + , X = P \ P  2 and P [ = P U { 1 } .  

The fo l l ow ing  condi t ions are equ iva lent :  

i. P is v e r y  pu re .  

A + i i .  f o r a l l  h ~ h P  A P h  # ~ => h ~P. 

i l l . f o r  al l  u , v  s A  + uv £ X => v p1 u ~ P = ~ . 

i v . f o r a l l  u s A , v ~ A  + uv  ~ X ,  x s X  and I v l <  I x l = > v P ] u r l x p t = ~  . 

v .  P is a f ree s u b s e m i g r o u p o f A  + a n d  for  al l  u , v  ~ P u and v a r e s t r i c t l y X - c o n -  

jugate  i f  and on ly  i f  they are s t r i c t l y  A-con jugate .  

The p rev ious  p ropos i t i on  whose p roo f  Can be found in [ 3 ] and [ 5 ] , g i ves  then d i f f e ren t  

charac te r i za t ions  o f  v e r y  pu re  subsemigroups  and co des .We remark  that condi t ion i i i .  

and iv .  exp ress  that  any  word  o f  P can be circular ly fac tor ized in a un ique  way in code 

wo rds .Cond i t i on  v .  is the one used by  Sch6 tzenberger  in the fac tor iza t ion  o f  f ree  monoids 

[ 17] .Condi t ion i i . , a t  last,  has been cons idered by  Levenste in  in o r d e r  to charac ter ize  

the fami ly  of  f in i te  codes hav ing  a bounded synchron iza t ion  de lay [8 ] .  

in the fo l l ow ing  we shal l  denote by  VP ( resp. VC ) the fami l ies of  v e r y  pu re  

subsemigroups  (resp. v e r y  pu re  codes ) of  A +. Let us p rove  the fo l l ow ing  c losure  p r o p e r -  

t ies o f  VP and VC that we shal l  use in the next:  

Proposition 1.2. VP is c losed under  in tersec t ion .  

+ 
Proof. Let { P 3 ' |  y e I '  } be any subfami ly  of  VP a n d s e t  P =  yET I"/ p3' . F o r a n y h  e A  

one has that h P N P h  c_ h P ~ P h fo r  al l  3' s r . l f  h P I'/ P h #  ~ then fo r  al l  y c ? 
3' Y 

h P  N P h  # ~ s o t h a t f r o m  p ropos i t i on  1.1 i t f o l l o w s  h E P  f o r a l l  y s£ a n d t h e n  
Y 3" 3' 

h s ~] P = P. 
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Proposition 1.3. VP and VC have the Zorn p rope r t y .  

Proof :  L e t "  l" b e a c h a i n o f  P ~VP . One has that P = U P ~ v P . I n f a c t  let u , v ~ A  + 
c~ y ct 

be such that uv  , vu ¢ P .There  e x i s t  then two elements of  the chain P and P fo r  
~I ~2 

which u v c P  and vu ~P . Let us suppose P _c p .Since P is v e r y  pu re  it  fo i -  
st (~2 ~1 (~2 ~2 

I ows tha t  u , v E P  c P . L e t n o w  ~( be a chain o f  elements of  VC a n d b e  X = U X c . S i n c e  I 

for  any X c~e VC , X  is v e r y  purepone has a chain of v e r y  pu re  subsemigroups so that 

f rom the p rev ious  resu l t  X + = ( IJ X )+ = U x + eVP.At  last i t  is easy v e r i f y  that X is 
~f c~ ~f 

jus t  the base of  X + so that X cVC. 

Let us remark  that p ropos i t ions  1.2 and 1.3 hold t rue also fo r  the fami l ies of  f ree 

subsemigroups and codes o f  A +. Fur ther  p roper t ies  of  v e r y  pu re  subsemigroups and codes 

are the fo l lowing:  

1. The p r o p e r t y  VP is p rese rved  under  the format ion of  i nverse  homornorphic images, 

2. If  X eVC then any subset X ~ ~_ X belongs to VC. 

Let X and Y be two codes ove r  the a l p h a b e t A  . I f  X c y + t h e n t h e  image of X in 

Y+ is s t i l l  a code (over  the a lphabet  Y } ~ say Z .X is said to be obta ined by  composition 

of  Z and Y and denoted by X = Z ® Y . X is cal led mdecomposable i f  i t  admits t r i v -  

ial decomposi t ions on ly .  

3. The composi t ion of  two v e r y  pu re  codes is a v e r y  pu re  code. 

A subset M of A + is recognizable (by a f in i te  automaton ) i f  its syntactic semi- 

group S(M} is f in i te  [ 6] . In the fo l low ing  we shal l  denote by  u the canonical ep imor -  

phism u: A + + S [ M ) .  

If  T i s a  subset of  A + , a  word  u ~A + is said to be completable in T i f  u is 

factor  o f  some word  o f  T , i . e .  i f  there ex is t  v , w  c A *  such that vuw ~T.Otherw ise  u is 

said t o b e  incompletoble in T . I f  T and S are subsets o f A  + , w e  say that T is dense 

with respect to S i f  any word  of  S is completable in T . I f  S = A + ,we s imply  say that 

T is dense. 

2.SYNCHRONIZING PROPERTIES OF VERY PURE CODES 

Let P b e a  s u b s e m i g r o u p o f A  + ,We recal l  the fo l low ing  d e f i n i t i o n . A p a i r  ( u , v ]  

p x p  i s a  synchroniz ing pa i r  f o r P i f  f o r a l l  s , t c A *  s u v t ~ P i m p l i e s  s u , v t  ~ P . T h e  

subsemigroup P is cal led synchroniz ing i f  i t  has at least a synch ron i z i ng  pa i r .  

I f P  is a synch ron i z i ng  f ree s u b s e m i g r o u p o f  A + its base X = p \ p 2  is said to be 

a synchroniz ing code . I t  is c l e a r  f rom the de f in i t ion  that i f  X is a synchroniz ing code 

then X is nondense with respect to X+. ln  the case o f  v e r y  pu re  subsemigroups  o f  A + it  

holds the fo l low ing  [ 51 : 

Proposition 2. 1. I f  P is a v e r y  pu re  subsemigroup o f A  + such that its base is nondense 
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wi th respect  to P then P is synch ron i z i ng .  

The condi t ion that X = p \ p 2  ,whe re  P is any f ree s u b s e m i g r o u p o f  A+ , i s  non 

dense wi th respect  to P is ve r i f i ed  in the p a r t i c u l a r l y  in te res t ing  case of  recognizab le  

codes [ 2 ] so that f rom p ropos i t i on  2.1 one de r i ves :  

Proposition 2.2. A .~ecognizable v e r y  pure  subsemigroup of A + is synch ron i z i ng .  

In the case of  recogn izab le  codes, the not ion of  v e r y  pu re  is however  c lose ly  re -  

lated to a s t ronge r  synchron iza t ion  p r o p e r t y .  Let us g ive  the fo l l ow ing  def in i t ion :  A sub-  

semigroup P of A + has a bounded synchronization delay i f  a pos i t i ve  in teger  k ex is ts  

such that al l  the pa i rs  of  P kx  P k are synch ron i z i ng  .The least in teger  fo r  which this 

condi t ion is ve r i f i ed  is cal led the synchronization delay of P. 

I f  P is a f ree  subsemigroup of A + hav ing  a bounded synchron iza t ion  de lay , then  

a pos i t i ve  in teger  p has to ex i s t  such that the fo l low ing  cond i t i on ,ca l led  F ( p } , h o l d s :  

A * X  p A *  N X = ~ ,w i th  X =  P \ P 2 .  A t h e o r e m  of  Rest ivo [ 13]~proved by means of  

combinator ia l  techniques,  re lates the concepts of  v e r y  pu re  subsemigroup and f ree subsemi-  

g roup  hav ing  a bounded synchron iza t ion  d e l a y . M o r e o v e r  an a lgebra ic  charac ter iza t ion  of  

the syntact ic  semigroup S(P] o f  a v e r y  pu re  subsemigroup  P o f A  + has been g i ven  by  

the authors  Pe r r i n  and Te rm in i  [ 4] in the case in which P is f i n i t e l y  generated and 

extended by  de Luca [ 2 ] to more genera l  cases. For a recognizable subsemigroup P of  

A + the fo l low ing  p ropos i t ion  holds: 

Proposition 2.3. Let P be a recogn izab le  f ree subsemigroup of  A+ .The  fo l low ing  cond i -  

t ions are equ iva len t :  

i .  P has a bounded synchron iza t ion  de lay .  

i i .  P is v e r y  pu re  and sat is f ies the condi t ion F(p)  fo r  some p . 

i i i .  The 0-minimal ideal J of  the syntact ic  semigroup S(P) has t r i v i a l  H-c lasses 

and all the idempotents of Pc~ belong to J . 

iv .  For al l  the idempotents e o f  Po , eS[P]e  c { e,0 } . 

I f  P is f i n i te l y  generated then the condi t ion F(p)  is obv ious l y  ve r i f i ed  and the 

class of free subsemigroups having a bounded synchronization delay coincides with the 

class of very pure subsemigroups. Moreover  f rom a resu l t  o f  Rest ivo [ 12] i t  fo l lows that  

these two classes coincide wi th  the class of locally testable free subsemigroups of  A + 

(see also I 7] ] .  

The resu l ts  repor ted  in th is section show the close re la t ion ex i s t i ng  between the 

notion of  " v e r y  pu re "  and synch ron i z i ng  p r o p e r t i e s . H o w e v e r , w e  st ress that there are 

v e r y  pu re  subsemigroups which do not admit synchronizing pairs. From propos i t ion  2.1 

one has t h a t a  v e r y  pu re  subsemigroup P of  A + is not synch ron i z i ng  i f  and on ly  i f  i ts 

base is dense wi th respect  to P . In [ 5 ] we have shown that this is the case fo r  the 

restricted Dyck's language D over  an a lphabet  A of  2n l e t t e r s , f o r  all n >_ 1 . In 
n 

fact, by  making use of  condi t ion iv .  o f  p ropos i t ion  1.1 ,one can p rove  that D is a v e r y  
n 
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p u r e  s u b s e m i g r o u p  o f  A +. The  base A o f  D is the set o f  pr ime Dyck 's  words 
13 il 

( a Dyck ' s  word  is p r ime  if it cannot  be wr i t ten  as  the p roduc t  of two or  more  nonempty  

D y c k ' s  w o r d s ) .  One can show that  z~ is dense  w i th  respec t  to D . M o r e o v e r  A, is 
n 13 

d e n s e .  

3. M A X I M A L  VERY PURE CODES AND SUBSEMIGROUPS 

Let X c_ A + b e a c o d e .  X i s c a l l e d  complete , o r  max ima l  (as a code ) , i f  i t  does 

not  e x i s t  a n o t h e r  code X'  such  tha t  X c X ' .  A complet ion )( of  X is any  comple te  

code ,X such that  ,~ _m X .S ince  the fam i l y  o f  codes o f A  + has the Zorn  p r o p e r t y  then 

f rom the Hausdor f f  maximal  p r i n c i p l e  i t  f o l l ows  that  f o r  any  code X t h e r e  ex i s t s  at least  

a comp le t ion  X o f  X . Res t i vo  [ 14 ] has r e c e n t l y  p r o v e n  the ex i s tence  o f  f in i te  codes 

w h i c h  do not admit  o f in i te  comple t ion.The f o l l o w i n g  bas ic  c h a r a c t e r i z a t i o n  o f  comple te  

codes has been g i v e n  b y  S c h . i t z e n b e r g e r [  16 ] (see a lso [ 6] , [ 9]  ): 

Theorem 3. I . Let X be a code w h i c h  is not  dense .  X is comple te  i f  and o n l y  i f  X + is dense .  

Let  us now c o n s i d e r  the f am i l y  VC o f  v e r y  p u r e  codes.We say tha t  X ~ VC is 

complete as very pure if it does not exist X' a VC such that X' D X. A very pure comple- 

tion ,~ of X ~ VC is any very pure code which is complete as very pure and such that 

_ X. Since from proposition 1.3 the family VC has the Zorn property it follows that 

any X ~ VC has a very pure completion. It is clear that if X is complete as code then X 

is complete as very pure.Our main result is the following proposition [ 5] : 

Proposition 3. l . Let X ~ VC . I f X  is complete as very pure then X + is dense. 

(Outline of tl~e proof). In the case Card A = I the proof is tr ivial.  Let us then suppose 

CardA > I . If P = X  + is not dense then there would exist a word f ~ A + such that 

A ' f  A* N P = I~ .Let us then consider the word f' = f 2 b rfl ,where b is a letter differ- 

ent from the first letter of f . Since f~ is nota sesquipower X' =X U{ f' } is a code. 

Moreover we can prove that X' is very pure by showing (cf. proposition I .  I) that for all 

A + u , v  ~ i f  u v  s X '  then  v ( X ' ) *  u ~ iX ' )  + = ~ .The  p r o o f  is ob ta ined  b y  c o n t r a d i c t i o n  

c o n s i d e r i n g  two cases .  In the f i r s t  case u v  ~ X and in the second u v  = f '  . I f  u v  ~ X 

and v g u = g '  w i t h  g ~ ( X ' ) *  , g '  ~ ( X '  J l  one has that  the o n l y  p o s s i b i l i t y  i s t h a t  

g , g '  ~ {X ' ) *  \ (X)*  so tha t  the p r e v i o u s  equa t i on  can be w r i t t e n  as: 

v h  f 2 b l f l w u = h ,  f 2 b  I£1 w= ' 

X *  h '  w i th  h , h '  ~ , w , w '  E (X ' ) *  .One can then p r o v e  that  vh  = and wu = w ' . T h i s  im-  

p l i es ,  s ince u v  ~ X l t h a t  u , v  ~ (X ' ]  + and X'  ~'I [ ( X ' ) + ]  2 # ~ w h i c h  i s a b s u r d  s ince 

X '  is a code .  I f  u v  = f 2 b I£r one  has to c o n s i d e r  the f o l l o w i n g  t h r e e  subcases :  

I .  l u i ,  I v l  > I f l  . 2. I v l  > I f l ,  lu l  < - ] f l  . 3 .  I v l < - I f ]  . In a l l  these cases 

one c o n t r a d i c t s  e i t h e r  that  f beg ins  w i th  a le t te r  # b ,  o r  that  X '  is a c o d % o r , a t  

last ,  tha t  A * f  A *  N X + = ~ . 
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Let us now examine some co ro l l a r i es  o f  the p rev ious  p ropos i t ion  the p roo f  o f  wh ich  we 

omit f o r  the sake of b r e v i t y .  

Corol lary 3. 7. Let X be a nondense v e r y  pu re  code . l f  X is complete as v e r y  pu re  then 

X is complete as code. 

We exp l i c i t  ly observe  that the hypothes is  that X is nondense is ce r ta in l y  ve r i f i ed  when 

X is recogn izab le .  

Corol lary 3.2. I f  X is a f in i te v e r y  pu re  code ,d i f f e ren t  f rom the a lphabet  A , then X is 

not complete as v e r y  pu re .  

Corol lary 3.3. Let X be a recognizab le  code hav ing  a bounded synchron iza t ion  d e l a y . l f  

X is maximal as regard  to th is p r o p e r t y , t h e n  X is complete as code. 

Let P be a f ree subsemigroup of A +. P is said maximal as free subsemigroup 

i f  i t  does not ex i s t  a f ree  subsemigroup Q such that p c  Q c A  + , i . e .  P is indecomposable.  

It is c lear  that a maximal f ree subsemigroup of  A + is generated by  a complete code.The 

c o n v e r s e , h o w e v e r ,  is not gene ra l l y  t rue .  

S im i l a r l y  we say that P a VP is maxima/as very pure subsemigrou p i f  i t  does 

not ex i s t  Q ~ VP such that P c Q c A  + . I f  P is maximal as v e r y  pu re  then i ts base has to 

be a complete v e r y  pu re  code so that f rom propos i t ion  3.1,  P has to be dense .However  

d i f f e r e n t l y  f rom what occurs in the case of  v e r y  pu re  codes (of. co ro l l a r y  3.1} one has 

that if P is a maximal very pure subsemigroup of A + ,such that its base is not dense, 

then P is not, in general, maximal as free subsemigroup of A +. This fact is shown by the 

fo l low ing  example.  Cons ider  the a lphabet  A =  { a ,b  } and the subsemigroup P =  { a~b }+. 

P is v e r y  pu re  since its base has a bounded synchron iza t ion  de lay ( c f .p ropos i t i on  2.3) 

and maximal s ince how one can eas i l y  p r o v e  by lemma 4.1 it cannot ex is t  a v e r y  pu re  sub-  

semigroup Q such that P c Q  c A +. However  P is not maximal as f ree subsemigroup  

s ince P c {  a 2 ,ab ,b  } + c A + 

A consequence of  co ro l l a r y  3.2 is that the fami ly  of  f i n i t e l y  generated v e r y  pu re  

subsemigroups  of A + , o r d e r e d  by inc lus ion,  does not contain maximal elements. 

4. AUXILIARY RESULTS 

In the sect ion I we have siren that the fami ly  of  v e r y  pure  subsemigroups of  A + 

is c losed under  in tersect ion ( c f .p ropos i t i on  1 . 2 } . T h u s  fo r  any XC-A + one .cande f i ne  

the smallest very pure subsemigroup P containing X , i . e .  P is the meet of  al l  v e r y  

pu re  subsemigroups  o f  A + conta in ing  X . Ex tend ing  a s im i la r  resu l t  shown in [ 1] in 

the case of  f ree subsemigroups  of A+ ,we can p rove  the fo l lowing:  

Lemma 4.7. Any element of  the base Y of  P is a left  factor  ( r i gh t  factor)  of  a word  of  X 

at least.  
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Proof:  The p roo f  is by con t rad ic t ion .Suppose that a y c Y ex is ts  such that yY*  ~IX = 9. 

We can then cons ider  the set Z = (Y \ { y } }  y *  . Z looked as code over  the a lphabet  Y 

is v e r y  pu re .  Since Y is also a v e r y  pu re  code ove r  the a lphabet  A , f rom the c losure 

p r o p e r t y  of  v e r y  pure  codes by composit ion (cf.  section 1) i t  fo l lows that Z is a v e r y  

pu re  code over  the a lphabet  A . Fu r the r  since obv ious ly  X _c Z + one concludes that 

X c_ Z+c  p ,wh ich  cont rad ic ts  the fact that P is the smal lest v e r y  pu re  subsemigroup con-  

ta in ing  X .  

As a consequence of  the p rev ious  lemma the fo l low ing  holds : 

Proposition 4.1. I f  X is f in i te  then Card Y < Card X . 

Proof: Since X c_ y+  and Y f ree l y  generates Y + w e  can in t roduce the map ~ : X ÷ Y  

def ined fo r  al l  x ~ X as a (x) = y i f  and on ly  i f  x ~ y Y *  .From lemma 4.1 it  fo l lows 

that ~ is su r jec t i ve  so that in the f in i te  case Card Y < Card X . 

For  any subset X of  A + let us def ine # ( X )  = { h ~ A  + I h X  I~t X h  # ~ ) . 

I f  X is a subsemigroup P o f  A + then .~' (P) _~ P . By us ing  condi t ion i i .  o f  p ropos i -  

t ion 1.1 one has t ha ta  subsemigroup P of A + is v e r y  pu re  i f  and on ly  i f  # [P) = P  . 

Let us now in t roduce fo r  any X c__ A + the fo l low ing  sequence P o f  subsemi - 

g roups  of  A +: n 

P : X+ ' Pn = [ ~'[P ] ] +  o + l  n ' n > 0  ' 

It is c lear  that P n c_ Pn+l ,n >-0. Def in ing P (X) = n>_.oU Pn one eas i ly  de r i ves  the 

fo l low ing  propos i t ion  (see, Spehner  K19] ) the p roo f  of  which we omit: 

Proposition 4.2 . 
-F . . 

P(X) is the s m a l l e s t v e r y  pu re  subsemigroup of  A conta in ing  X . 

Let us remark  that the in terest  of  the p rev ious  p ropos i t ion  l ies in the fact that one 

can obta in from i t ,a t  least in some pa r t i cu la r  cases, a lgor i thms in o rde r  to const ruc t ,  s ta r t -  

ing f rom a g i ven  set X , the base Y of the smal lest v e r y  pu re  subsemigroup conta in ing 

X. 

In conclus ion we observe  that the resul ts  obta ined in th is section fo r  v e r y  pu re  sub-  

semigroups o f  A + cannot,  in genera l ,  be extended to the fami ly  of  f ree subsemigroups  

hav ing  a bounded synchronization delay and to that of  locally testable f ree subsemi-  

g roups  of  A+ ,wh ich  reduce themselves to the fami ly  VP in the f i n i t e l y  generated case. 

As shown b y  the examples repor ted  below both these fami l ies are not c losed under  i n te r -  

section so that is not, in genera l ,  poss ib le  def ine the smal lest f ree subsemigroup hav ing  

a bounded synchron iza t ion  de lay and the smallest local ly  testable f ree subsemigroup of  A + 

conta in ing  a g iven  set. 

Examples . Let us c o n s i d e r , f o r  any pos i t i ve  in teger  n , the f ree subsemigroup of  A +, 
+ 

A =  { a , b  } ,genera ted  by  the set X = { a 2 k b  I k -< n } U a 2n a b . The sub-  
13 + + 

semigroup X + is s t r i c t l y  local ly  testable and moreover  X n + l  c X  n The meet of  al l  
n 
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X + is the free subsemigroup generated by the set X = ( a 2 } *  b and X + obv ious ly  
D 

is not local ly  testable. 

For free subsemigroups having a bounded synchronizat ion delay let us g ive the 

fo l lowing example.  Consider s for any pos i t ive integer n , the free subsemigroup generated 

by the set X = { a k b  a k + l b  I k<_n } U a n+3_ a , b . X + has a bounded syn-  
n n 

+ X + The meet of all X + is generated by chronizat ion delay and moreover Xn+ i c n ' n 

the set X = { a k b a k + 3 - b j  k->0 } . The subsemigroup X +has an inf in i te delay of syn-  

chronizat ion (cf. [ 13 ] ) . 
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ON THE SETS OF MINIMAL INDICES 

OF PARTIAL REGURSIVE FUNCTIONS 

G. B. Marand~jan 

Computing Center, 

Academy of Sciences of the Armenian SSR, 

P. Sevak st. fl, Erevan 375200, USSR 

Let {~i} be a uniform effective numbering of the family of 

partial recursive functions of one variable. Denote by M~ the set 

~x i (Ay)(Tx =~y~ x~ y) 

of minimal indices. A. Meyer [I] showed that M~ is of Turing degree 

0 TM and asked whether M~ m M~' for all uniform effective n~mberings 

~d ~ or whether MY~tt My'. P. Young [I] showed that My 

and M~. are not I - equivalent in the general case. The first ques- 

tion of A~ Meyer was negatively answered by J. Kinber [2] and the 

present author [3] independently and in different ways. Namely, 

J. Kinber proved the existence of such a pair of numberings ~ and 

~'that M~ and M#, ~ are incomparable with respect to bounded truth 

table reducibility. The present author proved the existence of such a 

pair of numberings ~ and ~ that M~ and M~" are incomparable 

with respect to c - reducibility (i. e. conjunctive reducibility). 

Further these results were extended to dther reducibilities by the 

same authors. However, the second question remains open. 

• the domain of a partial recursive function ~i " Denote by W l 
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Denote by M w the set {x I (Ay)(W = Wy 

Proposition I. M w is of Turing degree @" 

x 4 y)} • 

and belongs to ~2-- n2. 

Proof is a slight modification of A. Meyer's proof [I] with the 

following main differences: 

(I) Replace the set Z in Lemma 6 by Z = {il W i = N} ; 

(2) Define f in the Theorem 7 as follows 

f(n) =ma~{tI(~k>(k~t~W k~i=i I ~i~m w~tisthe first 

element in a standard enumeration of W k )} . 

p 

Proposition 2. There exist ~ and ~ such that M w = M w, but M F 

and Mg' are of incomparable c - degrees. 

The proof is too long to be presented here, and so we confine 

ourselves to a short sketch of the main idea of the proof. 

In [3] two acceptable numberings ,-% and ~/ are constructed 

by concatenating finite segments defined in such a way that the im- 

possibility of c - reduction of ~ to q/ via ~n was ensured by 

the (2n + 2)-th segments of these numberings. Let fix an arbitrary 

acceptable numbering {~/i} called the initial one. Now we construct 

the needed numberings alternating segments just like above mentioned 

with segments obtained from the corresponding segments of the initial 

numbering by replacing all the values of functions (in their domain) 

by zeroes. These segments of the initial numbering are choosen in such 

a way that any of them contains, at least, one index j satisfying the 

following property: 

(Ai)(i< j ~ W i = Wj & (Ey)(•j(y) is defined and ~/j(y) @ 0)). 

The segments of the first kind provide M~ Ic M~, whereas the second 
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ones provide M 
w 

condary character. 

= ~w'" The remaining needed modifications are of se- 
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SOME REMARKS ON BOOLEAN SUMS 

K u r t  M e h l h o r n  

F a c h b e r e i c h  l o  - A n g e w a n d t e  

M a t h e m a t i k  und I n f o r m a t i k  

U n i v e r s i t ~ t  des S a a r l a n d e s  

66oo S a a r b r U c k e n ,  BRD 

A b s t r a c t  

N e c i p o r u k ,  L a m a g n a / S a v a g e  and T a r j a n  d e t e r m i n e d  t h e  m o n o t o n e  n e t -  

wo rk  c o m p l e x i t y  o f  a s e t  o f  B o o l e a n  sums i f  any two sums have a t  mos t  

one v a r i a b l e  i n  common. Wegener  t h e n  s o l v e d  t h e  case t h a t  any two sums 

have a t  most  k v a r i a b l e s  i n  common. We e x t e n d  h i s  me thods  and r e s u l t s  

and c o n s i d e r  t h e  case  t h a t  any s e t  o f  h + l  d i s t i n c t  sums have  a t  mos t  

k v a r i a b l e s  i n  common. We use ou r  g e n e r a l  r e s u l t s  t o  e x p l i c i t l y  con -  

s t r u c t  a s e t  o f  n B o o l e a n  sums o v e r  n v a r i a b l e s  whose m o n o t o n e  com- 

p l e x i t y  i s  o f  o r d e r  n 5 / 3  . The b e s t  p r e v i o u s l y  known bound was o f  o r d e r  

n 3 /2  R e l a t e d  r e s u l t s  were  o b t a i n e d  i n d e p e n d e n t l y  by P i p p e n g e r .  

I .  I n t r o d u c t i o n ,  N o t a t i o n s  and R e s u l t s  

We c o n s i d e r  t h e  m o n o t o n e  n e t w o r k  c o m p l e x i t y  o f  s e t s  o f  B o o l e a n  

sums f = ( f l  . . . . .  fm ) : { 0 ' l } n  ÷ { O ' l } m  w i t h  

f i  = V x .  and F i c {1 . . , n } .  
j CF i J - , .  

Se t s  o f  B o o l e a n  sums were  a l s o  c o n s i d e r e d  by N e c i p o r u k ,  L a m a g n a / S a v a g e ,  

T a r j a n ,  Wegener  and P i p p e n g e r .  

CB( f  ) d e n o t e s  t h e  n e t w o r k  c o m p l e x i t y  o f  f o v e r  t h e  b a s i s  B; we 

w i l l  c o n s i d e r  B = { v }  and B = { v , ^ } .  A s e t  o f  B o o l e a n  sums i s  c a l l e d  

( h , k ) - d i s j o i n t  i f  f o r  a l l  p a i r w i s e  d i s t i n c t  i o , i l , i  2 . . . . .  i h : 

I F i o  N F i l n . . . N F i h I ~  k .  I t  i s  p o s s i b l e  t o  r e p r e s e n t  a s e t  o f  B o o l e a n  

sums f : { 0 , i }  n ~ { 0 , i }  m by a b i p a r t i t e  g r a p h  w i t h  i n p u t s  ( x  I . . . . .  x n}  



376 

and o u t p u t s  { f l  . . . . .  fm } .  The edge ( x j , f i )  is  p r e s e n t  i f  and on l y  i f  

j E F i .  Then ( h , k ) - d i s j o i n t n e s s  is  e q u i v a l e n t  to  say ing  t h a t  the 

a s s o c i a t e d  b i p a r t i t e  graph does not  c o n t a i n  Kk+ l ,h+  I (= comp le te  b i -  

p a r t i t e  graph w i t h  k+ l  i n p u t s  and h+l  o u t p u t s ) .  

Theorem I :  Le t  f : { 0 , i }  n ~ { 0 , 1 }  m be a ( h , k ) - d i s j o i n t  s e t  o f  

Boolean sums. Then 

m 
C A : V ( f  ) _> Z 

i = l  
( I F i I / k  - l ) / h . m a x ( l , h - 1 )  

N e c i p o r u k ,  Lamagna/Savage,  T a r j a n  proved the  theorem in the case 

h = i = k. Wegener ex tended  t h e i r  r e s u l t s  to  the case h = 1 and a r b i -  

t r a r y  k. The f i r s t  t h r e e  a u t h o r s  used t h e i r  r e s u l t  to  e x p l i c i t l y  con- 

s t r u c t  se ts  o f  n Boolean sums over  n v a r i a b l e s  whose monotone ne twork  

c o m p l e x i t y  i s  ~ ( n 3 / 2 ) .  

We e x p l i c i t l y  c o n s t r u c t  se ts  o f  Boolean sums 

f : { 0 , 1 }  n ~ { 0 , i }  m such t h a t  

C ^ , v ( f  ) = Q ( n 5 / 3 ) .  This r e s u l t  was i n d e p e n d e n t l y  o b t a i n e d  by P ippenger  

I I .  P roo fs  

Our p r o o f  o f  theorem i is  based on two iemmas. In these lemmas 

we w i l l  make use o f  c o m p l e x i t y  measure C B. C ( f )  i s  the ne twork  com- 

p l e x i t y  o f  f over  the bas i s  B under the assumpt ion  t h a t  a l l  sums 

V x j  w i t h  IFi < k are g iven  f o r  f r e e ,  i . e .  the sums V x j  can be 
jcF ' - jEF 

used as a d d i t i o n a l  inputs .  

Measure C B was int roduced by Wegener. 

Lemma 1: Let f : { 0 , I } n ~ { 0 , i }  m be a ( h , k ) - d i s j o i n t  set of Boolean 

sums. 

Then 

a) Cv ( f  ) _< m a x { 1 , h - 1 }  C ~^ ,v( f )  

b) C v ( f )  ~ m a x { l , h - l , k - 1 }  C ^ , v ( f  ) 

P r o o f :  a) Le t  N be an o p t i m a l  ~ - n e t w o r k  f o r  f over  the bas i s  { v , ^ } .  

Then N c o n t a i n s  s v - g a t e s  and t A - g a t e s ,  s+ t  = C* ( f ) .  V~A 
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For i = 0 ,1 . . . . .  t we show the e x i s t e n c e  o f  a ~ - n e t w o r k  N i f o r  f w i t h  

t - i  A -ga tes  and ~ s + ( h - l ) - i  v - g a t e s .  

We have N o = N. Suppose now N i e x i s t s .  I f  N i does no t  c o n t a i n  an 

A -ga te  then we are done. O the rw i se  l e t  G be a l a s t  A -ga te  in t o p o l o -  

g i c a l  o r d e r ,  i . e .  between G and the o u t p u t s  t h e r e  are no o t h e r  A - g a t e s .  

Le t  g be the  f u n c t i o n  computed by G, g l  and g2 the f u n c t i o n s  a t  the 

i n p u t  l i n e s  o f  G. Then 

g : S l V . . . ~ s  p v t l v . . . v t  q 

where s i i s  a v a r i a b l e  and t j  i s  o f  l e n g t h  a t  l e a s t  2, is  the mono- 

tone d i s j u n c t i v e  normal form o f  g. 

Case i :  p ~ k. The sum S l V . . . v s  p comes f o r  f r e e .  By theorem I o f  

M e h l h o r n / G a l i l  g may be r e p l a c e d  by S l V . . . v s  p and an e q u i v a l e n t  c i r -  

c u i t  is  o b t a i n e d .  Th is  shows the e x i s t e n c e  o f  ne twork  Ni+ 1 w i t h  

t - i - 1  A -ga tes  and ~ s + ( h - l ) ( i + l )  v - g a t e s .  

Case 2: p > k: There are some o u t p u t s ,  say f l , f 2  . . . . .  f ~ ,  depend ing  on 

G. Between G and the o u t p u t  f j  t h e r e  are o n l y  v - g a t e s  and hence 

f j  = g v u j .  S ince f j  i s  a boo lean sum, uj  i s  not  the c o n s t a n t  i .  

Hence {s I . . . . .  Sp} ~ Fj fo r  j = i . . . . .  ~. Since f is ( h , k ) - d i s j o i n t  we 

conclude ~ < h. 

Cla im:  For every  j ,  i < j < L : e i t h e r  f j  = g l  v uj o r  f j  = g2 v u j .  

P r o o f :  S ince g = g l  A g2 and f j  = g v uj we c e r t a i n l y  have f j ~  g l  v uj 

and f j  ~ g2 v u j .  Suppose both i n e q u a l i t i e s  are p r o p e r .  Then t h e r e  

are ass ignments  a l , a  2 E ( 0 , 1 }  n w i t h  f j ( a l )  = 0 < i = ( g l  v u j ) ( a l )  

and f j ( a 2 )  = 0 < 1 = (g2 v u j ) ( a 2 ) .  

Le t  a = m a x ( a l , a 2 ) .  S ince f j  i s  a boo lean  sum f j ( a )  = 0 and s i nce  

g l  v uj and g2 v uj  are monotone ( g l  v u j ) ( ~ )  = (g2 v u j ) ( a )  = i .  

Hence e i t h e r  U j ( a )  = 1 or  g l ( a )  = g2 (a )  = 1 and hence g (a )  = 1. In 

e i t h e r  case we conc lude  f j ( a )  = (g v u j ) ( a j )  = 1. C o n t r a d i c t i o n .  [] 

We o b t a i n  c i r c u i t  Ni+ I e q u i v a l e n t  to  N i as f o l l o w s .  

1) Replace g by the c o n s t a n t  O.This e l i m i n a t e s  A -ga te  G and a t  l e a s t  

one v - g a t e .  A f t e r  t h i s  r e p l a c e m e n t  the o u t p u t  l i n e  c o r r e s p o n d i n g  to  
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f j ,  1 ~ j ~ C, r e a l i z e s  f u n c t i o n  u j .  

2) For every  o u t p u t  f j ,  I ~ j ~ &, we use one v - g a t e  to sum uj and g l  

( respo g2)o This adds ~ ~ h v - g a t e s .  

C i r c u i t  Ni+ 1 has ~ s + ( h - l ) ( i + l )  v -ga tes  and < t - i - 1  A -ga tes .  

In e i t h e r  case we showed the e x i s t e n c e  o f  , - n e t w o r k  N i + l .  

Hence the re  e x i s t s  a . - n e t w o r k  r e a l i z i n g  f and c o n t a i n i n g  at  most 

s + ( h - 1 ) . t  < m a x { 1 , h - 1 } ( s + t )  = max {1 ;h -1 } .C  ( f )  v - g a t e s  and no A-ga tes .  
- -  A ~ V  

This ends the p r o o f  o f  p a r t  a. 

b) In o rde r  to prove b) we on l y  have to observe t h a t  in case I )  above 

( i . e .  p ~ k) we can e x p l i c i t e l y  compute S l V . . . v s  p us ing a t  most k - I  

v - g a t e s .  Hence Ni+ I c o n t a i n s  a t  most ( k - l )  a d d i t i o n a l  v - g a t e s .  [] 

Lemma ! has seve ra l  i n t e r e s t i n g  consequences.  F i r s t l y  i t  shows 

t h a t  A-gates  can reduce the monotone network  c o m p l e x i t y  o f  sets o f  

( h , k ) - d i s j o i n t  Boolean sums by a t  most a c o n s t a n t  f a c t o r .  Second ly ,  the 

p r o o f  o f  Zemma 1 shows that op t ima l  c i r c u i t s  f o r  ( 1 , 1 ) - d i s j o i n t  sums 

use no A-gates and t h a t  t he re  is  always an op t ima l  monotone c i r c u i t  

f o r  ( 2 , 2 ) - d i s j o i n t  sums w i t h o u t  any A -ga tes .  

Lemma 2: Le t  f : ( 0 , 1 }  n ~ { 0 , I }  m be a ( h , k ) - d i s j o i n t  se t  o f  Boolean 

sums. Then 
, m 

Cv( f )  > Cv ( f )  > ~ ( r I F  I / k 1 - 1 ) / h  
- - i = 1  i 

P r o o f :  Let  S be an op t ima l  ~ -ne twork  over  the bas is  B = { v } .  

Since f i  = V x j  and i n p u t  l i n e s  r e p r e s e n t  sums of  a t  most k v a r i a b l e s  
JCF i 

o u t p u t  f i  i s  connected to at  l e a s t  r I F i l / k l  i n p u t s .  

Le t  G be any gate in S. S ince S is  op t ima l  G r e a l i z e s  a sum of  > k 

v a r i a b l e s  and hence at  most h ou tpu ts  f i  depend on G ( c f .  the d i s -  

cuss ion  o f  case 2 in the p r o o f  o f  Lemma i ) .  

For every  gate G l e t  n(G) be the number o f  ou tpu ts  f i  depending on G. 

Then n(G) ~ h and hence 

_ * f  n(G) < h. Cv( ) 
GCS 

Next c o n s i d e r  the set  o f  a l l  gates H connected to o u t p u t  f i '  1 ~ i ~ m. 

This  s u b c i r c u i t  must c o n t a i n  a b i n a r y  t r e e  w i t h  r l F i l / k ~  l e a v e s ,  

(comesponding to the i n p u t  l i n e s  connected to f i )  and hence con ta i ns  
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at  l e a s t  r l F i l / k 1 - 1  ga tes .  This  shows 

m 

1: n(G) = I: number o f  g a t e s  c o n n e c t e d  to  o u t p u t  f i  
GES i =1 

m 

> z ( r l F i l  / k 1 - 1 ) .  [] 
i = l  

Wegener proved Lemmas i and 2 f o r  the case h = 1. This s p e c i a l  case 

is  c o n s i d e r a b l y  s i m p l e r  to p rove .  P ippenger  proved Lemma 2 by a more 

c o m p l i c a t e d  g r a P h - t h e o r e t i c  approach.  

Theorem 1 is  now an immediate consequence o f  Lemmas 1 and 2. Namely, 

Cv,^(f) _> CV,A(f) by defini ' t ion of Cv, A 

> C v ( f ) / m a x ( l , h - 1  ) by Lemma la  

m 

_> Z (IF i I/k-1)/h.max(1,h-1) by Lemma 2 
i=1 

111. E x p l i c i t  c o n s t r u c t i o n  o f  a "ha rd "  se t  o f  Boolean sums 

Brown e x h i b i t e d  b i p a r t i t e  graphs w i t h  n i npu ts  and o u t p u t s ,  

~(n 5 /3 )  edges,  and c o n t a i n i n g  no K3, 3. 

Hfs c o n s t r u c t i o n  is  as f o l l o w s .  Let  p be an odd pr ime and l e t  d be a 

non-zero  e lement  o f  GF(p) ( the  f i e l d  o f  i n t e g e r s  modulo p ) ,  such t h a t  

d i s  a q u a d r a t i c  n o n - r e s i d u e  modulo p i f  p ~ 1 modulo 4, and a quadra -  

t i c  r es i due  modulo p i f  p z 3 modulo 4. Let  H be a b i p a r t i t e  graph w i t h  

n : p3 i n p u t s  and o u t p u t s .  The i npu ts  (and o u t p u t s )  are the t r i p l e s  

( a l , a 2 , a 3 )  w i t h  a l , a 2 , a  3 E GF(p).  I npu t  ( a l , a 2 , a 3 )  is  connected to 

o u t p u t  I b l , b 2 , b 3 )  i f  

( a 1 - b 1 ) 2 + ( a 2 - b 2 ) 2 + ( a 3 - b 3 ) 3  = d modulo p 

Brown has shown t h a t  b i p a r t i t e  graph H has p 4 ( p - l )  edges and t h a t  i t  

c o n t a i n s  no copy o f  K3, 3. 

By the remark in the i n t r o d u c t i o n  a b i p a r t i t e  graph cor responds in a 

n a t u r a l  way to  a set  o f  boo lean sums. Here we o b t a i n  a set  o f  boo lean 
n 

sums over  {x I . . . . .  x n} w i t h  z I F i l  = ~ ( n 5 / 3 ) .  
i = l  
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Furthermore~ t h i s  set of boolean sums is ( 2 , 2 ) - d i s j o i n t .  

Theorem 1 imp l ies  tha t  the monotone complex i ty  of  t h i s  set of boolean 
sums is ~(n5/3). 
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ABSTRACT 

The aim of propositional algorithmic logic PAL is to investigate 

p r o p e r t i e s  of  program c o n n e c t i v e s  and to  d e v e l o p  t o o l s  u s e f u l  i n  t h e  

practice of proving properties of program schemes. The tautologies of 

PAL become tautologies of algorithmic logic after replacing program 

variables by programs and propositional variables by formulas. 

INTRODUCTION 

We shall investigate here properties of program connectives: 

begin ... end, if ... then ... else ...g while ... do ...~ 

either ... or ... (the connective of nondetermlnistic cholce~ . We are 

also interested in tautologies, i.e. expressions which are true by vir- 

tue of  t h e i r  s y n t a c t i c a l  c o m p o s i t i o n ,  i n d e p e n d e n t l y  of  v a r i o u s  i n t e r -  

p r e t a t i o n s  which  can be a s s o c i a t e d  w i t h  s i g n s  o c c u r r i n g  i n  them.  

The f i r s t  r e s u l t  i n  p r o p o s i t i o n a l  a l g o r i t h m i c  l o g i c  b e l o n g s  t o  

Y a n o v [ ~ ]  . In  1972 Grabowski [Z~ p roved  t h a t  z e r o - o r d e r  a l g o r i t h m i c  

l o g i c  w i t h  p r o p o s i t i o n a l  v a r i a b l e s  o n l y  i s  d e c i d a b l e .  In 1977 F i s h e r  

and Ladne r  ~4] c o n s t r u c t e d  P r o p o s i t i o n a l  Dynamic L o g i c  which c o n t a i n s  

p r o g r a m  v a r i a b l e s  a p a r t  of  p r o p o s i t i o n a l  v a r i a b l e s .  The s e t  of  w e l l -  

fo rmed  e x p r e s s i o n s  s p l i t s  i n t o  two s e t s  : of  schemes  of  p rograms  and 

of  f o r m u l a s .  T h i s  t u r n e d  out  t o  be a p r o p e r  c o n t i n u a t i o n  of  s c h e m a t o -  

l o g y  as o r i g i n a t e d  by Yanov.  Fo rmu la s  of  PDL a re  schemes of  s t a t e m e n t s  

abou t  t e r m i n a t i o n ,  c o r r e c t n e s s ,  e q u i v a l e n c e  and o t h e r  p r o p e r t i e s  of  

p r o g r a m s ,  in  [1 ]  F i s h e r  and Ladner  p r o v e d  t h a t  PDL i s  d e c i d a b l e  and 
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e s t i m a t e d  t h e  c o m p l e x i t y  o f  t h e  a l g o r i t h m  w h i c h  r e c o g n i z e s  t h e  s e t  o f  

tautologies o£ PDL. Next Segerberg [~ p Parikh [81 and Pratt ~ 6] 

gave three different proofs of completeness of axiomatic systems for PDL. 

We intend here to study PAL which differs from PIlL in syntax and 

semantics. Syntax - schemes of programs in PAL are constructed from 

propositional formulas and program variables by means of program 

connectives. This is in contrast with PDL where program expressions 

are regular expressions over tests~ propositional formulas and pro- 

gram variables. The minor difference is that we consider two kinds 

of formulas ~KO~ and VK~ . The formula V gO~ corresponds to PDL's 

~K~0~where AKOO corresponds to ~K÷~O~ o f  I~ +. The semantics introduced 

i n  PAL a s s u m e s  a r i c h e r  s t r u c t u r e ~  n a m e l y ~  we i n t r o d u c e  i n  PAL v a l u a -  

t i o - e  o f  p r o p o s i t i o n a l  v a r i a b l e s  e x p l i c i t l y .  I n t e r p r e t a t i o n  o f  a p r o -  

g r am v a r i a b l e  w i l l  be  t h e n  a r e l a t i o n  b e t w e e n  v a l u a t i o n s .  

The  g o a l s  o f  PAL go b e y o n d  t h o s e  o f  PDLp we a r e  a b l e  t o  c h a r a c -  

t e r i z e  t h e  s e t  o f  t a u t o l o g i e s ~  we c a n  p r o v e  i t s  d e c i d a b i l i t y ,  m o r e -  

o v e r  we s e e  f u r t h e r  q u e s t i o n s  w h i c h  s h o u l d  be  a n s w e r e d .  

a /  T h e r e  a r e  p o s s i b l e  s e v e r a l  v a r i a n t s  of  t h e  s e m a n t i c s .  The m e a n i n g  

o f  p r o g r a m  v a r i a b l e s  a t o m i c  p r o g r a m s  may be r e s t r i c t e d  t o  t h e  c l a s s e s  

o f  : t o t a l  f u n c t i o n s  f r o m  t h e  s e t  W o f  v a l u a t i o n s  i n t o  i t s e l f ~  p a r -  

t i a l  f u n c t i o n s  f r o m  W i n t o  W~ t o t a l  r e l a t i o n s ~  r e l a t i o n s  i n  W. E a c h  

o f  t h e s e  s e m a n t i c s  g i v e s  a n o t h e r  s e t  o f  t a u t o l o g i e s  a n d  may be c o n s i -  

d e r e d  s e p a r a t e l y .  

REMARK There are two sources of nondeterminism in a language of 

programs. First~ we can admit the progra~ connective either ... or ... 

of nondetermlnistic choice. Second~ we can admit nondeterministic 

atomic programs . Obviously they can be combined simultaneously 

as in DL and PDL or they can be considered separately. 

b/ We wish to study not only deuctive system but also propositional 

theories with specific axioms in order to obtain the equality: 

The set of theorems of a consistent theory is equal to the set 

of all formulas valid in every model of the set of axioms. 

In view of noncompactness of propositional logics of programs it is 

important to be able to recognize those inference rules of PAL which 

can be used in the practice of proving properties of programs. 

c/ We would like to indicate that the semantics proposed here allows 

us to consider not only program variables but also propositional 

assignments of  the form 

<propositional variable~ := .x/propositional formula~ 

With this in mind we are able to assert at least three useful facts: 
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I. Every progra~ scheme can be normalized. 

It means that for every program scheme M there exists an equivalent 

one of the form 

begin MI ; while Of do M2 end 

where the schemes NI and M2 do net contain the while connective. 

2. The language of extended PAL~ i.e. with propositional asslgnments~ 

is at least as expressive as the language of PDL~hisfollows from 

K begin[p:= or while p do [K or p:: J end 

3. All schemes of axioms of PAL are also schemes of axioms of AL. 

In other words the axiomatization of AL arises from the axiomatizatlon 

of PAL with propositional assignments simply by adding rules for 

introduction and elimination of quantifiers. 

d/ The tautologies of PAL are schemes of predicate tautologies of 

algorithmic logic. 

§I . SYNTAX AND SEMANTICS 

We consider here the formalized language - an extension of the 

language of classical propositional calculus in which there are two 

kinds of variables<propositional and program variablesJ and two kinds 

of connectives Cusual propositional connectives and program connectives). 

Let V o denote the set of all propositional variables and Vp the 

set of all program variables. Let F o be the set of all propositional 

classical formulas composed in the usual way by means of propositional 

connectives: disjunction u , conjunction n , negationland implication 

=> and two logical constants ~ and @ from Propositional variables. 

By a s c h e m e  o f  p r o g r a m  we u n d e r s t a n d  any  e l e m e n t  o f  t h e  s e t  q[ 

of expressions which is the least set containig Vp and is closed 

under following rules: 

- if M~ N are schemes of programs~ then[begin M }Nend] and 

[either M or N 3 are schemes of programs 

- if C is a classical formulaji.e. ~& Fo,and M~N E~[~then 

~hile ~ do M~ ~ [if ~ then M else N~ are schemes of programs. 

Now~ we d e f i n e  t h e  s e t  o f  a l l  f o r m u l a s  a s  t h e  l e a s t  s e t  c o n t a i n i n g  

F and  s u c h  t h a t  
o 

- if (~ 6 F and M &~ j then AMG~F and ~Mf~F 

- i f  ~ ,  ~ are fo rmu las ,  then ~ , C ~ ) , < ~ ) , ( ~ ) ~ e  i n  the  se t  F .  
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To define the semantics of the language L 0 we shall consider the 

two-element Boolean algebra BO- ~ I@o~l v • ̂  . .-~> and valuations of 

propositional variables in BO~ i.e. functions v: VO---~B 0 . Let W de- 

note the set of all valuations of propositional variables. 

By an interpretation of the program variables we shall mean any 

function I which to every program variable assigns a binary relation 

in W I I : Vp--~ 2 W~W . For every program variable K~ K I denotes a re- 

lation which is assigned to K by the interpretation I . 

Values of classical propositional formulas are defined depending 

on valuations of propositional variables [ef. Rasiowa-Sikorski~ I. 

The notion of interpretation may be extended to the set of all 

programs. Let us introduce first some definitions. 

By a configuration we shall understand an ordered pair 

<v~MI;..;M > where v is a valuation of propositional variables and 

MI~..;M n is a list of programs ~may be empty) . 

For a given interpretation I of the program variables let 

denote the binary relation in the set of all configurations such that: 

I. <v~M1~..;Mn> F--> <v'~M2~.-;Mn~ where M I is an atomic program 

M 1 6 Vp and <v~v'>6MII 

2. Cv, either M I or M2;M3~..MnJv-~ ~v,M I;MS~..M~ 

~v, either M I or M2;Ms~..Mn>I----><v,M2;MS;..Mn> 

3. ~v, begin MI~M 2 end ~MS...Mn>~_ 9 ~v, MI;M2;Ms;..Mn~ 

~<v,MI;M3;..Mn> iff T(v) -~ 
4. <v,if ~ then M1else M2~M3;..~nJ}-z~<v,M2;M3;..MnJ iff 

%. 

5. I <v'M1~while~d° MI;M2; "'> iff g(v).~ 
Cv, while ~do M I ~N2~.OMn~-~[ <v,M~;M3}.. MnJ in the opposite 

case 

The sequence of configurations will be called computation of the 

program scheme M in the interpretation I at the initial valuation v , 

iff ci= ~v,M> and for all i , c i~-->ci+ I • 

If the computation is a finite sequence Clt...,c n and the last con- 

figuration c n is of the form ~v', ~ (i.e. the second part of the 

configuration is the empty sequence )~ then the computation will be 

called successful. The valuation v" in the successful computation will 

be called result of the computation of the program M . 

The set of all results of the program M in the interpretation I at the 

initial valuation v will be denoted by Mi(v) 

Hence . for a given interpretation I, to every program M we can 

assign a binary relation M I such that v Miv" iff v'(- Ml(V ) • 
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Now we are ready to define the value of any formula for a given 

interpretation of the program variables and a given valuation of the 

propositional variables. 

(VMO£)I(V)= ~ iff there exists asuccessful computation of the pro- 

gram M at the valuation v in the interpretation 

I such that its value satisfies the formula Or. 

(AM0[)I(V)= I] iff all computations of the program M at the valua- 

tion v in the interpretation I are successful and 

all the results satisfy the formula Ot 

By a tautology we shall mean a formula C~_ such that for every 

interpretation I and every valuation v, Oti(v)= I] • 

EXAMPLE 

For every program scheme and every formula O6 the following sche- 

mes are tautologies of propositional algorithmic logic 

§2. SEMANTICAL CONSEQUENCE OPERATION 

By a model of the set of formulas Z we shall mean a pair <Wo,I > 

where I is an interpretation and W 0 is a subset of the set of all va- 

luations W such that for every program variable K and for any valua- 

tion v & W 0 7 KI(V) 6W O and for all formulas Ot from the set Z~(XI(V)-~ t 

i.e. C~ is valid in ~Wo, I> . 

We shall say that Oc is a semantic consequence of the set of for- 

mulas z, Z ~(~ , iff for every pair <W 0 ,I>. if <W 0 ,I>is a mo- 

del for Z 7 then k/W0 .I> is a model for C~ 

The semantical consequence operation ~ has the same properties 

as the classical one excluding the compactness property. 

Lemma There exists a set of formulas Z and a formula ot such that 

Z ~ Ci and for every finite subset Z O of Z there exists 

a model for Z 0 which is not a model for <>L 

P r o o f .  
Assume t h a t  VO = ~ao ,  a 1 . . . .  ~ . Let Z= [&[beg in  K1;K2i end] ao~i~ ~ 

and C~ = ~(~[begin El; while a 0 do i( 2 end3~).where KI,K 2 are program 

variables and a 0 is a propositional variable. 

It is easy to show that Z ~ C~ 

For every subset X of ~ ,let us construct an interpretation I in 
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the following way : for every valuations v~v~ v of propositional 

variables 

vKiI v" iff v'(ai )- ~ for i6X t and v'(ai)- @ for i~ X 

"K2I v ~" Iff v''(ai)- v'(ai+1) for i " 0,1,,,o V 

The pair <V 0 ,I> is a model for the set Zo-[~[begin KI;Ki end]a~i6X 

but it is not a model for Ot 

§5. SYNTACTICAL CONSEQUENCE OPERATION 

~[while ~ do MI] OC 

V[either M I or M2]C~ 

A[either M I or M2][~ 

AMnO% -> ~ VM OC 

We shall give a syntactical characterization of the semantics 

consequence operation described above. Assume the following schemes 

as axioms : 

All axioms of classical propositional calc~LlUS and 

$[begin M I > M 2 end] (~ -_ (~M I (~M20~)) 

~ [ i f  ~ then M I else M2](X -_ (~n ~MICt ) u ( ~ n  nM20C ) 

( VMIOC u VM20C ) 

-_ (AMIOL n AM2Ot ) 

n aM ~) 
vMF) 

We assume the following rules of inference : 

¢ 

~ ~ ~ ~M F 

In all the above schemes K denotes a program variable~ M,M I,M 2 denote 

schemes of programs, ~ a classical formula and cx ~ ~ arbitrary for- 

mulas from F. The formula ~ _- ~ is used as an abbreviation for two 

formulas (cx ~ ~) and (~ -)<N). Every formula containing the sign 
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should be read twlce:as a formula wi~h d in all places where $ occurs 

and then as a formula with V in all places where G occurs. 

The set of all axioms and inference rules defines in a usual way 

the syntactical consequence operation C. The system (L 0 , C ~ consis- 

ting of the language L of propositional algorithmic logic and of syn- 

tactic consequence operation C will be called propositional algorith- 

mic logic PAL . 

By an easy verification we have the following lemmas . 

Lemma The propositional al~orithmic logic is consistent . Q 

Bemma For every formula oc , if o~ is a theorem of PAL then ~ is 

a tautology. 8 

§4. DETERMINISTIC, TOTAL INTERPRETATION OF ATOMIC PROGRAMS 

In this paragraph we shall consider the class of interpretations 

of L 0 which to every program variable K assigns a total function in 

the set of all valuations W. We shall call them functional. 

Let US extend the set of axioms defined in §3 by the axioms of 

the following two schemes : 

AK ~ for K~ V 
P 

VKO~ =~ AKO& for K 6 V and O( ~ F . 
P 

Denote the new consequence operation by Cf and the correspon- 

ding propositional calculus by PAL f . 

We shall say that O£ is valid in a functional interpretation If 

if for every valuation v , O£ I (v)= B . 

By an easy verification wefhave the following adequacy theorem 

Theorem For every formula O£ ~ if O£ is a theorem of pALf then 

(3£ is valid in every functional interpretation . B 

The two further facts are the main results of this section. 

Theorem A theory T =(Lo, Cf, A~ based on PALl is consistent iff 

T has a model . 

Theorem For any consistent theory T based on PALl the following con- 

ditions are equivalent 
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(i) Ot is a theorem of T, 

<ii) Ci is valid in every model for T . 

Proof. 

(ii)-~) by the adequacy theorem. 

To prove that (i~ impl~es (ii) assume that OL is not a theorem 

of T. Consider the Lindenbaum algebra of the theory and denote its ele- 

ments by l[c~ for C~C F . As a consequence of the assumption, L11c~ll #~. 

Hence~ there exists Q-filter ~ in the Lindenbaum algebra such that 

iluoL~l£ ~ . we shall construct a model for T such that O£ is not valid. 

Let C denote the set of all finite sequences of program varia- 

bles with the signs ~or ~ ~ e.g. AKI ~K2~2K3 . By v c for c6~ 

we denote a valuation such that 

if li call~ v (a) = Q if lla~ 

Let I be an interpretation of the program variables which to eve- 

ry program variable K assigns function K I such that Ei(Vc~ - VcA K . 

By induction on the complexity of the formula we can prove that 

for every c, II cC~l~if and only if C~i<Vc)= 13 • 

§5. SUBSTITUTION THEOREM 

In this section we aim to indicate that the tautologies of propo- 

sitional algorithmic logic are schemes of tautologies of nondetermi- 

nistic algorithmic logic ,Mirkowska [3] • 

Let CA be a formula of PAL and let s be a substitution of the form 

y a I Ic~1 , . . . .  o ~ I ~ , ~ ,  K I / ~ I " "  "'  Km/Mm-], 

where ai6V O for i=1,..n~ Kj~Vp for j=1,..m I Mj is a program of non- 

deterministic algorithmic logic NAL and (~i is a formula of NAL . 

By s--~ we shall mean an expression that arrises from the for- 

mula OC by the simultanous replacement of any variable a i by the for- 

mula C~ i respectively, and any program variable Kj by program Mj 

Theorem For every formula OC of PAL aald for every substitution 8 such 

that s--~ is a well-formed formula of NAI,, 

if O~ is a tautology of ~AL then s--~ is a tautology of NAL. 
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§6. FINAL REMARKS 

In the subsequent papers we shall study 

- relational interpretations of the language of PAL and the connections 

between modal logics and PAL 

- propositional algorithmic logic of schemes of concurrent programs~ 

in order to find properties of the program connective of parallelism 

cobegin ... coend . 
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I, INTROOUCTION 

From the point of view of parsing the LL(K] grammars constitute a very attractive 

class of context-free grammars. For each LL{K] grammar a top-down parsing algorithm 

can be devised which is essentially a one-state deterministic push-down automaton. 

From a more theoretiG point of view LL[K) grammars are attractive as well. It is 

well-known, for example, that it is decidable whether two LLfk) grammars are 

equivalent. Also the hierarchy of LL[K) languages with regard to the length k of the 

look-ahead is a characteristic property. 

The class of LL[k] grammars is properly contained in the class of LR[K] grammars, 

and even the family of LLCK) languages is properly contained in the family of LR(K) 

languages. If we focus on the "gap" between LL~K) and LR[K] grammars the following 

points are of interest, 

[i] There is the obvious difference in grammar definition. 

(ii) The generating capacities are different. 

(iii) Apart From the difference between LR[O) and LR(1) languages the length k 

of the look-ahead does not play a role for LR[K] languages. 

[iv] Every LL(K] grammar is both left parsable and right parsable but there 

are LR[K] grammars which are not left parsable [i]. 

We consider the present paper as a contribution to the research which tries to 

clarify the differences between LL(K) and LR[K) grammars. Research in this area has 

been reported e.g. in RosenKrantz and Lewis [7], Brosgol [2], Hammer [4], 

Soisalon-Soininen and UhKonen [B], Oemers [3] and Soisalon-Soininen [8]. In this 

paper we introduce the class of so called Ch[K] grammars [pronounced "chain K 

grammars"]. This class of grammars is properly contained in the class of LR(K] 

grammars and it properly contains the LL(K] grammars. However, the family of Ch[K] 

languages coincides with the family of LL(K] languages. Nevertheless, the parsing 

properties of Ch[K] grammars are quite different from the parsing properties of LL~KI 

grammars. The class of Ch[K) grammars can be considered as a generalization of the 

class of simple chain grammars [6] in the same sense as the class of LL[K] grammars 

is a generalization of the class of simple LL[I] grammars. 

The present paper is organized as follows. In Section 2 we define the necessary 
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background concerning context-free ~rammars and parsing. The Ch[K) grammars are 

defined in Section 3 where also some basic properties of Ch(K) grammars are proved. 

In Section 4 ~e demonstrate that the well-known transformation process of left 

factoring the given grammar will always produce an LLIK) grammar from e Ch[k) grammar 

end that, in fact, this process cannot produce an LL[K) grammar from a non-Ch[K) 

grammar. This result implies the equality of the classes of LL[K) and Ch(k) 

languages, and it also clarifies the relationship o~ Ch(k] grammars with some other 

classes of grammars. 

2. BACKGROUND 

In this section we review various commonly Known definitions [cf. [1]] and give some 

notations. A quadruple G = [N,~,P,S] is a context-free grcc~ar [grammar for short] 

if N and ~ are finite disjoint sets, P is a finite subset of the product N x (N u ~]~ 

and S is an element of N. Elements of the set N are called nonterminals and denoted 

by capital Latin letters from the beginning of the alphabet A,B,C ..... S. Elements sf 

the set ~ are called tez~nals and denoted by small Latin letters from the beginning 

of the alphabet a,b,c ..... s. By X, Y and Z we denote elements which are either in N 

or in ~. The elements [A,w) of P are called productions and denoted by A + ~. The 

symbol S is called the start symbol of the grammar. 

Terminal strings, i.e, strings in ~ are denoted by small Latin letters from the 

end of the alphabet t,u,v ..... z, whereas small Greek letters a,~,y ..... ~ denote 

strings in [N u ~]~. The empty string is denoted by ~. The derives relation ~ of G on 

the set [N u ~]* is defined by the condition ~AB ~c~ if a and B are strings in 

[N u Z]* and R + ~ is a production in P. If here ~ is required to be a terminal 

string, then we get the definition of the leftmost derives relation of G, denoted by 

~, and if B is required to be a terminal string, then we get the definition of the 

~ghtmoat derives relation of G, denoted by ~. 

A sequence ~1,02 ..... @n of strings Qi in [N u ~]* is called a leftmoat derivation 

[respectively rightmost derivation) of O n from 01 in the grammar G if O i ~ Oi+ 1 

Crespectively ~i ~ Qi+1 ) holds in G for each i = I ..... n-1 whenever n > I. The 

sequence of productions used in a leftmost derivation of a string @ from the start 

symbol S is a left parse of 0 in. G, and the reverse of the sequence of productions 

in a rightmost derivation of @ from S is a ~ght parse of 0 in G. 

Let G = CN,~,P,S) and G' = IN',~,P',S') be grammars and let h: P'~ ÷ P~ be a 

homomorphism. We say that G' left-to-right covers G with respect to the homomorphism 

h, if the following two conditions hold: 

~i) if ~' is a left parse s¢a terminal string w in the grammar G', then 

h(~') is a right parse of w in the grammar G; 

[ii) if ~ is a right parse of a terminal string w in the grammar G, then there 

is a left parse ~' of w in G' such that h(~') = ~. 
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If, in these conditions, "left" [rasp. "right"] is replaced by "right" (rasp. 

"left"), then, under the conditions, G' right-to-right covers (resp. left-to-left 

covers) the grammar G with respect to the homomorphism h. The shorthand "right 

cover" is often used ~or "right-to-right cover", as well as the shorthand "left 

cover" is used for "left-to-left cover". If the grammar G' left-to-right covers, 

right covers or left covers the grammar G, then we say that G' covers G. Observe 

that the l~guage L(G'] = {x ~ ~* I S' ~* x} generated by the grammar G' equals the 

language L(G} if G' covers G. 

Let G = (N,~,P,S} be a grammar and let k be a nonnegative integer. If a is string 

in (N u Z)* then we denote by K:a the first k symbols of ~ whenever the length I~I 

of ~ is greater than or equal to K, and ~ otherwise. By FIRSTK{~] we denote the set 

of all strings K:u such that u is a terminal string end ~ derives u. The grammar G 

is said to be LL[K] if, for a terminal string w, a nonterminal A and strings y, 61 

and ~2 in (N o Z]* such that A ÷ ~i and A ÷ ~2 are distinct productions of G, the 

condition 

S ~ L wAy 

implies that 

FIRSTK(61y} n FIRSTK(~2~) = ~. 

The definition of an LL[K] grammar immediately implies some properties of LL[K) 

~rammars. For example, each LL(K) grammar is unambiguous, i.e, each termina3 strin~ 

in the language has exactly one left parse. In addition, if an LL[K) grammar is 

reduced, i.e. every production is used in a le~t [or right) parse of some terminal 

string, then it is not left-recursive, i.e. it has no nonterminal A such that 

A ~+ A~ for a general string ~. 

3. OEFINITION OF Ch(k] GRAMMARS 

In order to intuitively characterize the class of grammars to be defined and its 

relationship with uther classes of grammars, we first illustrate the determLnistie 

top-down, bottom-up and left-corner parsing algorithms; i.e. the parsing algorithms 

that apply to LL[K), LRIK) and LC(K] [7,8] grammars, respectively. Consider the 

derivation tree shown in Figure I. 

, \ / , ,  
a B C E 

i t  A 
b c d e f 

Figure I. Derivation tree 
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In the top-down parsing algorithm for LL[K) grammars the productions for the non- 

terminals in the tree are recognized in the order S,A,8,D,C,E,F. Each production in 

the tree is recognized before its descendants and its right siblings and their 

descendants. In the bottom-up parsing algorithm for LR[K) grammars the productions 

for the nonterminals in the tree are recognized in the order B,A,C,E,O,F,S. 

Each production in the tree is recognized after its descendants but before its 

ancestors and its right siblings and their descendants. In the left-corner parsing 

algorithm for LC(K] grammars the productions are recognized in the order A,B,S,C,O, 

E,F. Each production is recognized after its left corner but before any of the 

siblings of the left corner [or their descendants]. 

The Ch[k] grammars can now be characterized as LR[K] grammars for which the left- 

hand sides of the productions can be recognized in the same order as the whole 

productions in top-down parsing, but the right-hand sides are recognized in the 

order of the bottom-up parse. This method for constructing the derivation tree 

"node by node" corresponds to the way in which the well-known recursive descent- 

parser constructs the tree. For example, when the top-down parsing algorithm has 

recognized the productions for S,A,B and D in the derivation tree of Figure 1, then 

in the case of Ch[K) grammars the left-hand sides S,A,B and 0 are determined but 

the whole productions only for 8 and A. 

In a sense, the Ch[k] grammars constitute a dual of the PLR(K) grammars [8,B] in a 

similar way as the LL[K] grammars constitute a dual of LR[K) grammars as regards 

the construction of the derivation tree. The PLRIK] grammars are LR[K) grammars for 

which the left-hand sides of the productions can be recognized in the same order as 

the whole productions in left-corner parsing, but the right-hand sides are 

recognized in the order of the bottom-up parse. Thus the PLR[K) grammars are those 

for which deterministic "node by node" parsing bottom-up is possible, whereas the 

Ch[K] grammars era those for which deterministic "node by node" parsing top-down is 

possible. 

DEFINITION 3.1. Let k be a non-negative integer. A grammar G = ~N,Z,P,S) is said 

to be a ChCk) gra~rmn~ if, for a terminal string w, a nonterminal A and strings T, 

~, 61 and 62 in [N u Z)* such that A ÷ ~61 and A ÷ ~2 are distinct productions of 

G and ~ is the longest common prefix of ~61 end ~62, the condition 

S ~ wAy 

implies that 

FIRSTKC61~) n FIRSTK[62T] = ~. 0 

Observe the obvious difference with the definition of LL[K) grammars. In that case 

the implidation FIRSTK[~61y) n FIRSTK[~62T) = ~ is used. Thus in the case of Ch[k) 

grammars it is not necessary to consider the terminal strings which can be derived 

from the longest common prefix ~ of the right-hand sides of two distinct 
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productions A + ~61 and A + ~62" These observations imply immediately 

THEOREM 3.2. Every LL(K] grammar is a Ch(k] grammar. 

Proof. Assume that a grammar G = [N,E,P,S) is not a Ch(K) grammar. Then there 

exist a terminal string w, a nonterminel A and strings y, ~, 81 and 62 in (N u Z] ~ 

such that A ÷ ~61 and A ÷ ~2' where ~ is the longest common prefix of ~61 and 
~2' 

are two distinct productions of G, S ~ __ way and FIRSTK[61y) n FIRSTK[62#] # 0. 

But then also FIRSTK{~Iy) n FIRSTK(~62y) # H, which means that the grammar G is 

not LL[k), as desired. 0 

As an informal description of the definition of Ch(K] grammars and of its relation- 

ship with the definitions of other classes of grammars consider the following 

situation, There exist terminal strings w, x, y and z, a nonterminel A, a symbol X 

which is a nonterminal or a terminal, and a general string ~ such that A ÷ X~ is e 

production and 

S ~ wAz, X ~* ~* Xj ~ y. 

Consider then the terminal string wxyz. The production A + X~ in question in the 

derivation tree of wxyz can be recognized with certainty after scanning 

(i) w and K:xyz if the grammar is LL[K), 

(ii) wx and k:yz if the grammar is LC(K), 

(iii] wxy and k:z if the grammar is LR[K], PLR(K) or Ch[k). 

However, if the grammar is PLR[K] then the left-hand side A o£ the production 

A + X~ is recognized after scanning wx and k:yz, and if the grammar is Ch(k) then 

the left-hand side A is recognized after scanning w and K:xyz. 

As we remarKed in the introduction the Ch(K) grammars can be considered as a 

generalization of simple chain grammars E6]. A grammar G = [N,~,P,S) is said to be 

a simple chain grammar if G is E-free (i.e. P contains no production of the form 

A + s), P is prefix-free (i.e. there are no two productions A ÷ ~6 and A + ~ in P) 

and for any pair of productions A ÷ ~X6 and A ÷ ~Yy, X and Y are in N u Z, such 

that X # Y, we have FIRSTI(X] n FIRSTI(Y) = ~. For left part grammars [5] the 

requirement that P is prefix-free is dropped. The following theorem is an immediate 

consequence of the above discussion. 

THEOREM 3.3. A grammar G = (N,2,P,S] is a simple chain grammar if and only if P is 

prefix-free and G is an E-free Ch(1) grammar. 

For example, the grammar with productions 

S + a ,  S + a b  

is not a simple chain grammar, because these two productions do not constitute a 

prefix-free set of productions. However, this grammar is Ch(1]. Thus we conclude 

by Theorem 3.3 that the class of simple chain grammars is properly contained in 
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the class of Ch{k] grammars whenever k > O. Further, since there exist simple chaln 

grammars which are not LL[K) for any k [6], we conclude by Theorems 3.2 add 3.3 

that the class of LL{K) grammars is properly contained in the class of ChCK] 

grammars whenever K > O. In the case K = 0 both classes contain only the grammars 

that derive at most one terminal string. 

The follow±ng two theorems ere also immediate consequences of the Ch[k) definition. 

The proofs are analogous to corresponding ones in the LLCK) case and therefore 

omitted. 

THEOREM 3.4. Each Ch[k] grammar is unambiguous. 

THEOREM 3.5, A reduced Ch[k] grammar is not left-recursive. 

4. PROPERTIES OF Ch{k) GRAMMARS 

In this section our primary interest is to relate the ChCK) grammars and LL[K] 

grammars by a grammatical transformation. In fact, we shall show that the Ch[K] 

grammars are exactly those which can be transformed into LL[K] grammars by left- 

faoto~ng the grammar until it has no two productions of the form A + ~B and 

A + ~y where ~ # g. This implies, in particular, that the language generated by a 

Ch[K) grammar Is always an LL~K} language, and thus, by Theorem 3.2, the family o4 

Chlh) languages equals the family o~ LLIK] languages. Furthermore, this result 

implies the interesting property that ChIk) grammars are PLRIK) grammars [8,9]. 

Since the left factoring process yields an LL[K) grammar if and only if the given 

grammar is Ch(k), we can perform the test whether a grammar is Ch{K) by left- 

factoring the grammar and then testing the LL(K)-property. However, the LL(K) 

parser of the resulting grammar cannot be used to produce left or right parses in 

the original grammar. That is, left-factoring can distort the structure of the 

grammar such that no left-to-left nor left-to-right cover is obtained [6]. 

Nevertheless, we can give a simple modification of the left-factoriog process such 

that the above mentioned properties are preserved except that, as an additional 

bonus, the transformed grammar left-to-right covers the original grammar. 

We begin by defining that a grammar is in the left-factored form, if it has no two 

productions A + ~ end A + ~T such that ~ is not the empty string. The definitions 

of LL(K] and Oh{K) grammars imply immediately 

THEOREM 4.1. A grammar in the left-factored form is LL[K] if and only if it is 

Ch[K). 

The process of left-factoring can be regarded as a transformation which is composed 
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by consecutive steps of "factoring" two distinct productions A ÷ m~ and A ÷ my, 

# ~, into productions A ÷ mA', A' -> B end A' ~ y, where A' is a new nontarminal. 

These steps are performed, in an arbitrary way, until the grammar is in the left- 

factored form. It should be noticed that the aOove specification of the process 

does not define the "left-featured" grammar uniquely. However, our results are 

independent of the particular way in which the individual steps and thelr order 

in the left-factoring process ere chosen. 

THEOREM 4.2. The grammar obtained by the left-factoring process is LL[K] if and 

only if the original grammar is Ch[K). 

Sketch of proof. By Theorem 4.1 it is enough to show that the process of left- 

factoring does not affect the Ch[k)-ness of a grammar and that the process of left- 

factoring cannot produce a Ch[k) grammar from a non-Ch(K) grammar. It is clear 

by the definition that this is true as regards one individual step in the left- 

factoring process. Since the whole process is just a consecutive sequence of these 

individual steps, we thus conclude the theorem. 0 

COROLLARY 4.3. The families of Ch(K] and LL(K) languages are identical. 

The PLR(K) grammars [8,8] ere exactly those grammars which can be transformed into 

LC[Kj grammars by the le%t-faotoring process [8]. Thus, since the class of LL[K) 

grammars is properly contained in the class of LC(K] grammars [B], we conclude by 

Theorem 4.2 that the class of Ch[K) grammars is properly contained in the class of 

PLR(K] grammars. This implies further that Ch[K) grammars are LR(K) grammars, since 

PLR{K) grammars are LRCK) grammars [8]. 

The inclusion of the Ch(k) grammars in the class of PLR(K) grammars is an 

interesting property because PLR[K) grammars can be transformed into LL[K) grammars 

such that the transformed grammar left-to-right covers the original grammar [8]. 

This is thus true also for Ch[k) grammars. However, the transformation involved is 

rather complicated, and it is thus desirable to find out easier possibilities. 

Let therefore g I = [N1,E,PI,S) be a grammar and let G~ = [N~,~,P~,S) where 

N~ = N I U { [ A ~ ]  I A ÷ m i s  i n  P} and P~ = {A ÷ m [Ae ]  I A ÷ ~ i s  i n  PI } u { [ A m ]  ÷ s l  

A ÷ ~ is in PI }. Further let G 2 = [N2,E,P2,S] be a grammar obtained by the left- 

* * be a homomorphism defined by the factoring process from G~, and let hl P2 ÷ P1 

conditions 

h{[Am] + a) = A + m, and 

h(A ÷ m) = s. 

LEMMA 4.4. The grammar G 2 left-to-right covers the grammar O I with respect to the 

hemomorphism ho 
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SKetch of proof. The appearance of a production of the form EA~] ÷ ~ in a left 

parse o# e terminal string x in G~ means that a substring y of x for which 
W 

A ~ ~ y in G 1 has been analyzed. Thus it can be shown by any easy induction 

that the sequence of these productions in a left parse of x in G~ defines a right 

parse of x in G I. Further, this is also true when G~ is replaced by the grammar 

O 2 , since the process of left-factoring does not affect the order in which the 

productions of the form EA~] ÷ g are recognized. By formalizing the above 

discus@ion we can conclude that the grammar G 2 left-to-right covers the grammar G 1 

with respect to the homomorphism h. 

Since the grammar G 2 obtained by the left-factoring process from G~ is LL[K) if 

and only if any grammar obtained by the left-factoring process from G 1 is LL(K], 

we conclude by Theorem 4.2 and Lemma 4.4 that the following theorem holds. 

* )  
THEOREM 4.5. Each Ch(K) grammar of size n can be left-to-right covered by an 

LL(K) grammar of size O(n). 
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I. IntrodUction 

Balanced search trees such as AVL-trees, 2-3 trees and B-trees are 

among the most popular data structures used to implement dictionaries. 

These structures guarantee O(log N) performance for the three operations 

searching, insertion and deletion. While AVL-trees and 2-3 trees are 

used to manipulate sets of keys in main memory, B-trees have been, un- 

til recently, the only choice for implementing dictionaries which use 

backup store. Kwong and Wood [KW] introduced a relaxed variant of B- 

trees, f(m)-trees, which seem to 5e an attractive alternative to B-trees. 

In both cases (B-trees and f(m)-trees) one node corresponds to a page 

of fixed size which can hold up to m-1 keys and m pointers to sons. The 

insertion of a new key ensues by the recursive strategy of splitting an 

"over-full" node having m keys into two (both with [m/2]-I keys in the 

case of B-trees and at least f(m)-1 ~ I keys in the case of f(m)-trees) 

and then moving one of its keys upwards. Though this strategy is appli- 

cable to ternary trees, cf. the insertion procedure for 2-3 trees of 

Hopcroft [AHU], its extension to the binary case is not obvious. In fact, 

the standard AVL insertion procedure (for binary height-balanced trees) 

comprises a quite different strategy. Further, if the keys are inserted 

in ascending order into an initially empty B-trees, the pages of the re- 

sulting tree are only half filled. An attempt to solve this "sparsity 

problem" for B-trees is the main idea of "overflow" introduced by Bayer 

and McCreight IBM] which leads to the notion of B~trees, see Knuth [K], 

p. 477 ff. Instead of splitting an over-full node look first at its left 

(or right) brother. Say the immediate right brother has only j keys and 
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j+1 sons where j < m-1. Then the over-full node "flows over" into its 

brother node. If the brother node is already full, then split both 

nodes and create three new nodes, each about two-thirds full. The re- 

sult of this modification is an increase in storage utilization. At 

least two-thirds of the available space is utilized. 

We might even look at both immediate left and right brothers be- 

fore splitting nodes. However, this also does not yield trees whose 

nodes are maximally filled when keys are inserted in ascending order. 

We show how trees can be made as dense as possible by looking at 

all brothers of a node before splitting it. We introduce classes of 

"dense" m-ary trees for arbitrary m~ 2 and design insertion procedures 

for these classes in a general framework. Though we look at all brothers 

before splitting nodes, surprisingly it turns out that in the "weakly 

dense" case the amount of work to be done is proportional to log N 

where N is the number of stored keys. Further iterative insertion of 

keys in ascending order produces trees whose nodes have as many sons as 

possible. 

It would be desirable also to estimate the average storage utili- 

zation after a sequence of random insertions for dense m-ary trees. But 

it turns out that Yao's analysis [Y] for B-trees cannot be applied except 

for the special case m= 2 (cf. [OW]). The reason for this fact is that 

(except for m= 2) looking at brothers before splitting nodes makes it 

impossible to predict the effect of a (random) insertion for subtrees 

of a given small height. 

When we allow multiple users to search and update a tree in parallel 

looking at brothers before splitting nodes turns out to be very messy. 

To look only upwards, as in the B-tree and f(m)-tree case, seems to be 

the better philosophy. That, nonetheless, node-splitting does not yield 

degenerate trees is assured in [BM], respectively [KW] by the require- 

ment that each node must have at least [m/2], respectively f(m) a 2 sons. 

In a final section we discuss the question of whether this requirement 

can be weakened in order to include also the case of binary trees into 

the general framework. 

2. Dense m-ary trees 

We define Glasses of m--ary trees where m ~ 2 is a fixed natural 

number. Each internal node in the tree may have j sons where I ~ j ~ m. A 

node which has the maximal number m of sons or which is a leaf is said 

to be saturated, otherwise it is unsaturated. 
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An m-ary tree T is said to be r-dense, where r is a natural number 

with I~ rE m-1 iff (I)...(5) hold. 

(I) The root of T is at least binary. 

(2) Each unsaturated node different from the root has either only sa- 

turated brothers and at least one such brother or at least r satu- 

rated brothers. 

(3) All leaves have the same depth. 

(4) Each node with i+I sons has i keys (0 ~ i < m). 

(5) The i keys k I .... ,k i of a node p with i+I sons ~ip, .... ~i+iP 

are ordered such that for all j, ! ~ j { i, the following holds: 

The keys in the subtree with root ~jp are less than kj, which in 

turn is less than the keys in the subtree with root 0j+iP. 

A class of m-ary trees is called dense if it is a class of r-dense 

m-ary trees for some r. In particular, we speak of weakly dense m-ary 

trees and strongly dense m-ary trees, respectively, if we have in mind 

the classes of l-dense and (m-1)-dense m-ary trees, respectively. 

Observe that there is only one class of dense binary trees. This class 

coincides with the class of I-2 brother trees [OW]. 

There are two classes of dense ternary trees. Figure I shows an 

example of a strongly dense ternary tree and an example of a weakly 

dense ternary tree each with 11 leaves and 10 keys. 

Figure I 

It is clear that for the given height h the complete m-ary tree 

(where each internal node has m sons) has the maximal number of leaves 

of all r-dense m-ary trees of height h. 

We can easily derive a recurrence formula for the minimal number 

of leaves of an r-dense m-ary tree of height h, Lmin(r,m,h); this re- 

currence formula can be solved using standard methods (cf.[COW] for the 
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details) and gives 

2; if h=1 

L . (r,m,h) = 
mln 

AI. h+1 + A2" h+1 

where 

a 1 = ~ ( r +  4 ( m - r )  + r  2 ) 

, 

1 r 2 
~ 2  = ~ ( r -  4 ( m - r )  + ) 

1 - ~ 2  ~1  - 1 

AI ~I - a2 ' A2 al - ~2 

; if h->--2 

This gives in the special case of binary trees (m= 2, r = I) the result 

that the minimal number of leaves of dense binary trees, (i.e. of 
h 

brother trees) of height h is about 1.171(1.618) • Further it is easy 

to show by induction on h that for every r-dense m-ary tree of height h 

L . (r,m,h) ~m [h/2] 
mln 

Hence, every r-dense m-ary tree with N keys and N+I leaves is of 

height h~ 2-1Ogm(N+1)+1. This shows that r-dense m-ary trees cannot 

degenerate into linear lists. 

3. Brother-tree splitting for dense m-ary trees 

It is clear how to search in a dense m-ary tree. In order to in- 

sert a new key into a dense m-ary tree we firstly search for the key in 

the tree. Since the key is not found we insert it in a node p at the 

father of leaves level and we create also a new leaf q (representing 

the new key-interval in between the sons of p). If the node p now con- 

tains fewer than m keys the insertion is completed. Otherwise (i.e. if 

p contains m keys) we call u_~ (p,q). 

The upwards restructuring procedure up will be designed in a uni- 

form way for all r-dense m-ary trees, where r is arbitrary in the allo- 

wed interval. Up may eventually call the subroutines right-shift or 

left-shift which we explain first: 

right-shift (p,q); 

On entry q is a right brother of p or o= q; p is at least binary. 

Case I [p # q] 

Let p be the i-th son of its father ~p and p' the (i+1)st son of ~p. 
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Let r be the rightmost son of p. Make r the leftmost son of p' and 

call right-shift (p~,q) 

Case 2 [p =q] 

FINISH. 

left-shift is defined similarly. 

In the above and all below designed procedures we pass over the 

question of how to locally transfer keys from one node to the other. 

However, we mention the crucial noint in the insertion-procedure 

for dense m-ary trees: The shifting of nodes may destroy the property 

of being an r-dense tree. Consider, for example, the following strongly 

dense ternary tree: 

The result of performing right-shift (p,q) is no longer a strongly 

dense ternary tree, since q obtains two unary sons. Therefore additional 

work has to be done in order to keep the tree in strongly dense form. We 

will return to this problem later and assume for the moment that right- 

shift and left-shift always yield r-dense trees when applied to these 

trees. 

Let us call a node a @-node if it is either the saturated root 

of an r-dense m-ary tree or a leaf. 

u~ is a recursive procedure with the following invariant condition: 

Whenever u_~(p,q) is called then 

- p and all of p's sons are @-nodes, 

- q is either a leaf or has a single son ~q which is a @-nodej 

q lies to the right of the leftmost son of p and to the left of the 

rightmost son of p. 

u~ (p,q) ; 

Case I [p has an unsaturated brother] 
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Let Bp be an unsaturated brother of p which is nearest to D. (That 

means, all brothers occurring in between p and Bp are saturated). 

Make q an additional son of p and call right-shift (p,~p), if p is a 

right brother of p, and call left-shift otherwise; FINISH. 

Case 2 [p has only saturated brothers] 

Case 2.1 [p has an unsaturated father] 

Make q an additional son of p; remove the leftmost son £ of p and 

make it the only son of a newly created node u; make u an additional 

son of the father ~p of p an~ FINISH. 

Case 2.2 [p has no father, i.e. p is the root] 

Then create a new root ~p with p as its only son and proceed as in 

Case 2.1. 

Case 2.3 [The father ~p of p is saturated] 

Assume first that p is not the rightmost son of its father ~p. Create 

a new immediate right brother q' of p which obtains as its only son 

the rightmost son of p; make q an additional son of p; call uD(~p,q'). 

If p is the rightmost son of ~p proceed analogously by creating a new 

immediate left brother of p. 

(Observe that the invariant condition is maintained.) 

end of up 

It is clear that in the worst case h (recursive) calls of un can 

occur where h is the height of the tree before insertion. Thus, the 

performance time of up is dominated by h and the time to carry out 

right-shift (resp. left-shift). If the shift procedures are of the 

above specified form where no further restructuring is required then 

their performance time is constant. Simple shifting without further re- 

structuring is sufficient for the case of binary and weakly dense ter- 

nary trees. For in these cases any call of left-shift or right-shift 

again yields a dense binary and a weakly dense ternary tree, respecti- 

vely. Thus, for these two classes total performance time of u_~ is 

O(h)=O(log N), where N is the number of leaves (or stored keys). It can 

be shown by quite involved combinatorial arguments that the same holds 

for any class of weakly dense m-ary trees: (Cf. [COW] for the proof.) 

Theorem I: 

It is possible to insert a new key into an N-key weakly dense m-ary 

tree in time at most O(m31og N). Moreover, the insertion procedure main- 

tains the order of keys and retains the weakly dense tree structure. 
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We do not know exactly for which other classes of dense m-ary trees 

insertion can be carried out in time O(log N) for fixed m ~ 3. It seems 

that in general almost the whole tree has to be restructured in order 

to maintain the r-dense tree structure after insertion. 

Very little is known about deletion of keys in dense m-ary trees. 

However, in the binary case deletion can be carried out in time O(log N), 

see lOW], and in the case of strongly dense ternary trees an O(log2N) 

deletion procedure is available. But the general case remains open. 

4. Storage utilization under brother tree splitting 

As already mentioned in Section I iterative insertion of keys in 

ascending order into the initially empty tree using the splitting-pro- 

cedure for B-trees or f(m)-trees yields trees which are very "sparse"; 

The storage utilization, i.e. the ratio of the number of storage cells 

(which is (m-l) times the number of internal nodes of the resulting 

tree) divided by the number of stored keys is about 50 % (or even less 

in the case of f(m)-trees). In contrast to this the above specified in- 

sertion procedure for r-dense m-ary trees yields trees with the maximal 

possible storage utilization: 

Theorem 2: 

Iterative insertion of (mh-1) keys in strictly ascending order be- 

ginning with the one-leaf tree of height I and with no key yields the 

complete m-ary tree of height h. 

The proof is by induction on h, cf. [COW], and holds uniformly for 

every class of dense m-ary trees. Furthermore, the "critical" shifting 

of nodes to unsaturated brothers passing several saturated nodes never 

applies when inserting keys in ascending order. 

We conjecture that Theorem 2 can be strengthened as follows: The tree 

which results by iteratively inserting a given sequence of keys approxi- 

mates the complete m-ary tree as better as the given sequence is more 

presorted. 

In order to estimate the average storage utilization after a 

sequence of random insertions Yao [Y] has developed a method for 2-3 

and B-trees. The very heart of his method is to compute precisely the 

number of all subtrees of a given small height (say 1,2, or 3) in the 

resulting tree after N random insertions and to estimate the nodes and 

keys on heigher levels. This approach requires that the effect of an 

insertion into a given small subtree be predicted precisely. It is a 

fortuitious circumstance that Yao's method is still applicable to dense 
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binary trees, see [OW], where an average storage utilization which is 

better than for 2-3 trees is obtained. Unfortunately Yao's approach 

already fails for dense ternary trees. Consider, for example, the sa- 

turated root of a height I subtree in a dense ternary tree: 

~=~ ~ and up(p,q) 

If the insertion of a new key applies to p we insert the new key 

into p, create a new leaf q as an additional son of p and call up(p,q). 

The effect of up now depends on whether or not the brothers of p are 

saturated or not. If all brothers of n are saturated p will be split 

and a new node on level I will be created. But no new node will be 

created, if p has an unsaturated brother, because one of p's sons is 

shifted to this unsaturated brother. Hence, we are unable to say what 

are the resulting subtrees of height I after an insertion into the sub- 

tree with root p when considering only this subtree. A nossible way out 

of these difficulties seems to be the following one: We define a modi- 

fied algorithm by performing brother-tree splitting as described in 

Section 3 up to a certain level £ above the leaves. At level ~ we do a 

B-tree splitting (cf. Section 5) i.e. we do not look at brothers at all 

before splitting nodes. Independent of what kind of splitting we choose 

at the levels higher (nearer to the root) than £ it seems to be plau- 

sible that the thus modified algorithm keeps at least as many keys at 

low levels as the original one on the average. 

Now we can compute the average number of keys at levels Z Z for 

the modified algorithm by Yao's method which gives us a lower bound for 

the original algorithm. 

5. B-tree splittin@ for binary trees 

In [KW] the B-tree splitting procedure has been modified by 

allowing an arbitrary split of an over-full node (with m keys and m+1 

sons) rather than a split into two equal parts as in the B-tree case. 

The resulting trees do not degenerate, because in [KW] the two new 

nodes must have at least one key and two (pointers to) sons. Clearly, 

this relaxed variant of B--trees still does not cover the case of binary 

trees. In order to obtain a splitting procedure which is also applicable 

in the binary case and which follows the strategy of only looking up- 

wards (to the father of the actual node) and not to brothernodes we 

allow an even more liberal splitting mechanism. 

If a node of an m-ary tree has m keys and m+l (pointers to) sons 

it can be split into two nodes with s-1 and m-s keys respectively, where 

1~ s& [m/21 . 
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As it stands this splitting procedure does not prevent degenerate 

trees. 

For, obviously~ the insertion of one new key may lead to a sequen- 

ce of node-splittings generating a long chain of unary nodes. If, for 

example, an overfull binary node is split into one unary and one binary 

such that the unary node is created always to the left of the binary 

node, iterative insertion of N keys in ascending order yields binary 

trees of height No 

But degenerate trees cannot occur if the following condition holds: 

(c) There is a fixed natural number k ~ o such that for both new nodes 
k' 

p there is a k~ ~ k such that ~ p is at least binary. 

k' 
Here J p is defined recursively by: 

o up=p 
n+1 n n 

s p = the only son of ~ p, if o p is unary. 

It should be clear that condition (c) is fulfilled for the case of 

m-ary trees where m ~ 3, since the splitting procedure of [KW] trivially 

fulfills it. The only problem is to find a strategy, which ensures con- 

dition (c) also holds in the binary case. The intended strategy, of 

course, should not include looking at brothers! An obvious strategy of 

this kind is to split an overfullbinary, i.e. a ternary node into one 

unary and one binary node such that the unary node has a binary des- 

cendant after the minimal possible number of generations. 

Let us call a node a Q-node if it is either a leaf or binary. 

Then it is easy to see that iterative insertion may lead to a ternary 

node p (which has to be split) only if at least one of its three sons 

is a Q-node° The above strategy now recommends a split of p such that 

the unary node obtains a Q-node as its only son whenever possible. If, 

unfortunately, both the rightmost and leftmost sons of p are unary make 

that son of p the only son of the unary fragment node which has a~-node 

as descendant in shorter distance. 

It is now easy to see that iterative insertion of keys in ascending 

order no longer yields degenerate trees. We conjecture that the resul- 

ting number of internal nodes and keys at the lowest h levels after a 

sequence of N random insertions does not differ very much from the 

corresponding number in brother trees (cf. Section 4 and [owl). 

Unfortunately however, we do not know how this dynamically defined 

class of binary trees (obtainable by iterative insertions according to 

the above splitting strategy) behaves. In particular we do not know 

whether the class contains degenerate trees. 
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ON THE GENERATIVE CAPACITY OF SOME CLASSES 

OF GRA~RS WITH REGULATED REWRITING 
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INTRODUCTION 

Since the computational power of context-free grammars is too 

weak and the context-sensitive ones "shed little light on the pro- 

blem of attaching meanings to sentences" ~3~ context-free grammars 

with restrictions in derivation have been introduced. Generally, such 

devices generate intermediate families of languages between the con- 

and the context-sensitive ls~uguage families (~9~). So far, text-free 

about twenty types of such grammars are known. 

A major problem in this area is that of the generative capacity 

of these grammars, compared to that of the unrestricted Chomsky gram- 

mars and to the computational power of other similar devices. The 

purpose ef the present paper is exactly to compare the generative ca- 

pacity of some well-known variants of matrix grammars: simple matrix 

grammars and right linear simple matrix grammars ~4~, matrix grammars 

of finite index t2S,~61, scattered context grammars ~3~. The index 

of matrix a~d of simple matrix grammars, the degree of simple matrix 

and of right linear simple matrix grammars, combined with the use of 

-rules, induce eight hierarchies of matrix languages. All these 

hierarchies are ir~inite (the result is known for some of them). We 
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prove that the ~-rules can be eliminated from right linear simple 

matrix grammars and from finite index matrix grammars, but cannot be 

removed from simple matrix grammars (of degree n or of index n). Con- 

sequently, there are only six distinct hierarchies. The relations 

between the families en the same level of these hierarchies are in- 

vestigated too. 

Another main result of the paper is the proof of the strict in- 

clusion of the family of simple matrix languages (generated with or 

without using ~-rules) in the family of ~-free generated scattered 

context languages. (Although in ~4] it is claimed - without proof - 

that any simple matrix language is a matrix language, we feel that 

true; ~ee arguments in ~6~.) this is not 

The results of the paper are summarized in the next diagram where 

the directed arrows denote strict inclusions (and n~4). The families 

in this diagram are:Y~= simple matrix languages,~(n) = simple 

matrix languages of degree no greater than n,~(ind n) = simple ma- 

trix languages of index not greater than n,~(n) = right linear 

simple matrix languages ef degree not greater than n , ~ =  right li- 

near simple matrix languages,~(ind n) = matrix languages of index not 

n,~f = simple matrix languages of finite index, ~f = greater than 

matrix languages of finite index,~= scattered context languages. The 

superscript ~ indicates that ~ -rules are allowed. The definitions 

of simple matrix grammars can be found in ~43, that of matrix gram- 

mars in ~9~, the index of grammars and languages is defined in [2 l 

and the scattered context grammars in [3]. The monograph t71 contains 

almost all the known results in the area of matrix and matrix-like 

restrictions in derivation. 
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RESULTS 

We assume the reader to be familiar with the basic results in 

regulated rewriting, particularly with the p~opers quoted above. Thus 

we omit all the definitions but that of the index. 

Let G = (VN,VT,S,~) be a matrix grammar. We denote by N(x) the 

length of the string obtained by erasing all terminal symbols in x, 

x~(VNtlVT)@. Let D be a derivation according to G, 

D : s = Wl~ w2~...~w n. 

We define 

ind(D,G) = max {N(wi) I i = 1,2,...,n}. 

For xEL(G) we put 

ind(x,G) = min {ind(D,G) ~ D is a derivation of x ac- 

cording to the grammar G}. 

Then, the index of G is 

ind(~) = sup (ina(x,a) I x~(~)} 

and, for a language L ~  '~, we define 

ind(~) = i ~  {ind(~) I L = ~(Q)}. 

In a similar way we define the index for simple matrix languages 

of any type. 
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In what follows we present the lemmas and theorems without proofs 

(the proofs - some of them are very tedious - will be published else- 

where). 

The inclusion ~ ~  is trivial for any family ~ in the above 

list. In [4] it is proved that ~A(n)~ ~(n+l), for any ~{~, 

~}. Similarly, ~(n) h ~(n+l), for these families. (~ denotes a 

proper inclusion. ) The inclusions ~(n)C~, T~(ind n)~_T~f, ~d 

~(ind n)~---~f are obvious. From the proofs in [5] it follows that 

~(ind n)C~(ind n),T%~(ind n)a ~A(ind n). These inclusions are 

proper since the language {anb nc n ~ n Ffl}@ belongs to ~(ind2 ) but 

not to F~[41. 

An algorithmic procedure can be constructed which eliminates the 

~-rules from right linear simple matrix grammars, that is, we have 

Theorem 1. Y~%(n) = T%%~(n), n~l. 

Such a result is not true for context-free simple matrix gram- 

mars. (This problem is not investigated in [4].) Indeed, the language 

= {~%na~lb~lJ2bk2...a~okma%n I n~l, m~l, ~-i~l fo~ ~ll i} 

belongs to ~(2) but not to ~. Consequently, we have 

Theorem 2. ~(n)C-~(n), n~l, and f~ ~ ~%~. 

As L~T~(ind 4), we have ~(ind n)a~%~(ind n) too for n~4. 

Clearly, ~(ind n) and T%~(ind n) define infinite hierarchies 

and ~(ind n)~%(n), ~%~(ind n)~ T~n). The last inclusions are 

proper since we have 

Theorem 3. The family f~(1) contains infinite index languages 

(according to simple matrix grammars of any degree). 

Such a language is 

~'= {c};~{c})+ 

where D is the Dyck language over {a,b} (D has ~n infinite index with 

respect to context-free grammars [8]). 
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T h e r s f o r e ,  a re  pro sr i n c l u s i o n s .  

Although the ~-rules cannot be removed from context-free simple 

matrix granumars~ the ~-matrices (the matrices containing only ~-ru- 

les) and the vocabularies of nonterminalsgenerating only one (null or 

non-null) string can be algorithmically eliminated. In this aim we 

use the "pure form" theorem from t5~ This theorem is also used in 

proving the inclusion ~ P ~  . (Let G = (V1,...,Vn,VT,S,M) be a sim- 

ple matrix grammar and let x = XlX2...Xn, x i ~(Vi~JVT)~ be a string 

which can be derivated from S in the grammar G. Let A i be the left- 

most nonterminal in each string xi, i = 1,2,...,n. The grammar ~ is 

said to be pure if for any matrix (B1 --~yl,...,B n -~ yn ) in N, 

either (AI,...,A n) = (BI,...,B n) or A i ~ B i for every i = 1,2,...,n. 

As it was proved in ~5~, for ~ny simple matrix grammar an equivalent 

pure grammar can be algorithmically constructed.) 

Lsmma 1. Any language in ~(n) is the homomorphic image of the 

intersection of n languages in~(2). 

The homomorphism used is a linearly erasing one. 

 emma 

Combining with the results in ~3~ concerning the closure proper- 

ties of the family Y, we obtain 

Theorem 4. T-~C~. 
The inclusion is proper since, contrarily to~ ~, the family~ 

contains languages with non-semi-linear Parikh image. 

In~6~it was proved that ~ =~. By a suitable reformulation 

of the proof of Theorem 4 in ~6~, we obtain 

Theorem 5.~(ind n) = ~(ind n), n~l. 

The main step of the proof is 

Lemma 3. Let G be a matrix grammar of index n. There is an equi- 

valent matrix grammar G' of index not greater than n+l, G' = (VN,VT,S,M) 

with V N = V~UV~U~S), V~ ~V~ = ~ and the matrices in E are of the 
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following forms 

a) (S > AB), AqV~, B~V~, 

b) (A 1 )Xl,...,A u > Xu,B >C), Ai~V~, xie 

+, 

c) (~ ~ ~), B~v~, 

d) (S .... ~ x), x~V~. 

(Then, attacking the symbols in V~ to nonterminals in V~, we ob- 

tain a ~-free matrix grammar of the same index as G or smaller.) 

Finally, in order to prove that~(ind n), n~l, is an infinite 

hierarchy, the following pumping lemma is used. 

Lemma 4. For any langaage L £~ind n), L c_.V @, there exists an 

integer p such that for 8~ny z£L, ~ zl>p, there is a string z' ~ L 

such that 

for all i, 

a) z I = = YlZlY2Z2...ytztYt+l , z ZlZ2...zt, yi,zi~V~ 

b) z' = UlVlWlXlU2V2W2X2U3...UkVkWkXkUk+l, k<n, ui,vi, 

wi,xi~ V W for all i and 

i) IVlXl...vk~ I >o, 
ii ) S S ~S S UlVlWlXlU2... ~ kWkX~Uk+l E L for any s~l. 

(~x ~ denotes the length of the string x.) 

Theorem 6. ~(ind n)~(ind (n+l)) is a strict inclusion for any 

n~l. 

(The langllage L n = {b(aib) 2n li~/l) is in ~ind n) --Bind (n-l)).) 

One can prove that every family~(ind n), n>/l, is a full semi- 

AFL not closed under concatenation, iteration +, substitution, inter- 

section and eemplementation. Moreover, ~(ind n), n~/l, have the "pre- 

fix implies regular" property defined in [i], as well as the families 

Y n), n >.l. 
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In the field of regulated rewriting there are a lot of significant 

unsolved problems. Many such problems are related to the above discus- 

sed families of languages. We formtulate only some of them: 

P1) Which is the relation between ~f and ~ ? (More specifi- 

cally, are there languages in ~ which are not in ~f ?) (We believe 

that 

P2) Is the family ~ included in the family of matrix languages? 

(We don't think so since ~ is closed under doubling, but we feel 

that there are context-free languages L such that {xx I x £L} is not 

a matrix language.) 

P3) Closure properties of ~ind n),~ind n), ~f,~f. 
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ABSTRACT 

The classes of languages definable by operator-precedence 

grammars and by Floyd's operator-precedence algorithms are studied. 

Operator-precedence languages are shown to be a proper superclass of 

languages accepted by Floyd's operator-precedence parsing algorithms. 

An algorithm is developed to decide equivalence of an operator- 

precedence grammar and the underlying Floyd's operator-precedence 

parsing algorithm, a result of possible practical significance. As 

a consequence a necessary and sufficient condition for an operator- 

precedence grammar to be valid grammatical characterization for the 

underlying Floyd's operator-precedence parsing algorithm is obtained. 

i. INTRODUCTION 

Recent work on the improvement in both the running time and the 

size of bottom-up parsing algorithms has been oriented in several 

directions. Much effort has been devoted to develop optimizing trans- 

formations to reduce the size and/or the time of parsing algorithms 

and in addition modified techniques have been proposed to produce 

parsing algorithms of practical size. The research on the validity 

of shift-reduce parsing algorithms also belongs to this area. 

The shift-reduce operator-precedence parsing algorithm is 

conceptually very simple and hereby a very effective technique for 

syntactical analysis. It is sufficiently general to handle the parsing 
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of a variety of the programming-language constructs. However, the main 

impediment for using this technique is that Floyd's operator-precedence 

parsing algoritIMn might accept strings not in the language of the 

underlying operator-precedence grammar. This is a consequence of using 

different means in the definition of both concepts. ~nile operator- 

precedence grammars use nonterminal symbols as well as unique operator- 

precedence relations to derive valid input strings, Floyd's parsing 

algorithms use only operator-precedence relations to recognize valid 

input strings. On the other hand, the great advantage of this method 

is the size efficiency because a copy of the grammar need not be kept 

to know which reduction to make by Floyd's operator-precedence parsing 

algorithms. 

Other parsing techniques are known in which it is necessary to 

overcome the same problem of invalid strings being recognized. Well 

known are canonical precedence parsing algorithms of Gray [53 , or 

skeletal LR parsing algorithms of E1 Djabri ~3 and Demers E2] , 

or Knuth's E73 top-down parsing algorithms with partial back-up used 

in Mc Clure's translator writing system TMG . Knuth has proved that in 

the case of top-down parsing algorithms with partial back-up it is not 

algorithmieally decidable whether a grammar generates the same language 

as it is accepted by the intended parsing algorithm. Demers presented 

an algorithm to decide whether a skeletal LR parsing algorithm accepts 

exactly the language of the underlying grammar. Demers further claimed 

that his validity test applies to skeletal canonical precedence parsing 

algorithms as well. We consider a similar problem for operator-precedence 

parsing algorithms and we solve it by presenting a decision test for 

the equivalence of au operator-precedence grammar and the underlying 

Floyd's operator-precedence parsing algorithm. 

In this paper we first show that languages accepted by Floyd's 

operator-precedence parsing algorithms form a proper subclass of 

operator-precedence languages. Then we present a validity test for 

Floyd's operator-precedence parsing algorithms. Finally we discuss the 

consequence of this result for the problem of Levy E8] . The problem 

of Levy is to state conditions imposed on the precedence grammar in 

order to eliminate the problem "of losing one's place in a parse '~. Our 

validity test states necessary and sufficient condition to ensure that 

an operator-precedence grammar which satisfies this condition can be 

parsed in a complete way by an operator-precedence parsing algorithm. 
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2. BACKGROUND 

In this section we present some basic definitions and terminology 

in the area of context-free languages and parsing theory. 

A context-free grammar is a quadruple G = (N,T,P,S > ~ where N 

is the finite set of nonterminal symbols, T is the finite set of 

terminal symbols, S is the start symbol from N , and p C_ N X V is 

a set of productions. Instead of (A,~) we write A ~ . A single 

production is one of the form A > B, where A and B are nonter- 

minal symbols. A grammar is backwards-deterministic if no two productions 

have the same right-hand side. 

Unless specified we use Roman capitals (A,B,C,...,Z,Y,Z) to 

denote nonterminal symbols, lower-case Roman letters at the beginning 

of the alphabet (a,b,c,...) to denote terminal symbols, lower-case 

Roman letters near the end of the alphabet ( x,y,z,w,... ) to denote 

terminal strings, lower-case Greek letters ( ~, ~,... ) to denote 

strings of terminal and nonterminal symbols. We use e for the empty 

string. 

We write ~ ~ in G if =Z =~l A~ 3 ,/3 =~1~2~ 3 , and 

A > ~2 is a production in P The relation * TM • / is the refle- 

xive and transitive closure of ~ , and ~ TM ~ is the transitive 

closure. The context-free language for the grammar G is 

L(G)= (wET* I S *~-w} . Aderivation ~I ~ 2  T M  
~k in G is called leftmost ( denoted as ~L ) if at the 

i-th step the leftmost nonterminal symbol of ~i is replaced according 

to some production of G to yield 
i+l " 

A grammar G is ambiguous if there is some string in L(G) for 

which there are two distinct leftmost derivations. G is otherwise 

unambiguous. Two leftmost derivations are similar if the corresponding 

derivation trees are identical up to relabeling of interior nodes. We 

say that G I is structurally equivalent to G 2 if every derivation 

in G I is similar to some derivation in G 2 and vice versa. We say 

that G 1 is equivalent to G 2 if L(G1)= L(G2). 

An e-free grammar is s context-free grammar in which no right- 

hand side of production is e . An operator grammar is a context-free 

grammar in which no productioa has s pair of adjacent nonterminal 
o 

symbols on its right-hand side. 0perator-precedence relations <o, = , 

~> are defined in the following manner: 

For a,b 6 T 
Q 

i. a = b if there is A > ~a B b/3 in P for B = e or 

BEN 
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ii. a ~b if A ~ a  B~ in P and B +-~--> C b~ for C = e 

or C EN 

iii. ao>b if A ~ % B  b~ in P end B ~ # a C for C = e 

or CqN 

An operator-precedence grammar is an e-free operator grammar in which 

operator-precedence relations <~, ~ ,~> are disjoint. 

An operator-precedence parsing algorithm works using an input 

string of terminal symbols, a parsing stack and the precedence relations 

from some operator-precedence grammar in the following way: 

Initially the input contains ala2...an~ and the parsing stack 

contains ~ . 

begin 

repeat forever 

if topstack = ~ and 

then ACCEPT 

else 

if topstack = a and 

then 

select 

a <~b o Er a = b : 

current-input-symbol = 

current-input-symbol = b 

shift b from the input onto the stack; 

a o> b : repeat pop the stack and put this topstack symbol 

to X 

until the topstack ~ X ; 

otherwise : ERROR 

end <select) 

fi 

fi 

end < repeet > 
end 

Floyd's operator-precedence parsing algorithm is <J~ ,M ) , where ~ is 

an operator-precedence parsing algorithm driven by precedence relations 

M from some operator-precedence grammar. 

We presume here that the reader is familiar with the LR(k) 

parsing as described e.g. in Aho and Ullman ElS . we use notations 

and definitions given in this reference concerning LR(k) parsing 

only in proofs of Lemma 2 and Lemma 5. 
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3- RELATION B~TKEEN LANGUAGE CLASSES 

In this section we investigate the relationship between operator- 

precedence languages and languages accepted by Floyd's operator-prece- 

dence parsing algorithms. The main result is that operator-precedence 

grammars have more generative power than is the acceptance power of 

Floyd's parsing algorithms. 

It has been already remarked by Fischer E43 that operator-prece- 

dence grammars suffer one serious drawback, namely that though Floyd's 

shlft-reduce operator-precedence parsing algorithm accepts all input 

strings of an operator-precedence grammar, there is no guarantee that 

such a parsing algorithm will not also accept invalid input strings of 

that grammar. To illustrate this disadvantage s simple grammar G with 

the following set of productions is chosen: S O > ~ S ~ , S > B a B, 

B > b . We see that L(G) = (~ b a b~ } . However, if one parses 

the string ~b~ , one finds that ~ <o b and b o> -~ and so the 

input string ~ b ~ is reduced to ~ B-~ . This sentential form 

now has ~ ~ ~ and if no check is performed to ensure that both 

terminal and nonterminal symbols match the right-hand side of some 

production, ~ b ~ will be accepted as a valid string of the language. 

Thus, we summarize our first observation about grammars. 

Fact I 
# 

There are Floyd s operator-precedence parsing algorithms which can 

also accept input strings not valid for the underlying operator- 

precedence grammar. 

Now, consider an arbitrary finite language L over one-letter 

alphabet ( a } containing a string of the length longer than one. It 

is certainly an operator-precedence language. Each Floyd's operator- 

precedence parsing algorithm accepting L has to be ruled by operator- 

precedence relations containing one of 

and thus it accepts an infinite language 

properly contains L . Hence, it holds 

Lemma 1 

a ~a , a -~ a , or ao>a , 

( an I n>/ 0 } which 

There are operator-precedence languages which cannot be accepted by 

any Floyd's operator-precedence parsing algorithm. 

It is not so obvious that language accepted by a Floyd's operator- 

precedence parsing algorithm is an operator-precedence language. We can 

see that it holds 
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Lemma 2 

any Floyd's operator-precedence parsing algorithm J~M Given driven 

b~ operator-precedence relations M , we can find an equivalent 

backwards-deterministic operator-precedence grammar G . Moreover, 

the start symbol S of G does not appear on the right-hand side of 

any production of G and if A > B is a single production of G 

then A = S . 

We present here only a rough sketch of the proof. Let us give some 

helpful notations first. Consider T to be a set of terminal symbols 

(operators) ~ ~ to be operator-precedence relations over T , and 

: { ( a , b )  I M(a,b) :  C__T×T.  (a ,b )  from R c be 
graphically represented as an oriented edge from a node a to a node 

b . Thus, R can be viewed as a digraph G R with possibly many starting 

and ending nodes. A path in G R is a sequence of consecutive nodes in 

G R . A cycle C is the path of the length greater than one in which 

from any node in C one can reach an arbitrary node in C . Each edge 

entering a node in C which does not belong to C points to the 

beginning of the cycle C . End node of the cycle C is a node from 

which starts an edge entering a node not in C . We say that 

contains a ~ - cycle if there is a cycle in G R . 

The idea of the proof is firstly to modify operator-precedence 

relations M to M 1 and then to give an appropriate grammatical 

characterization GM1 of the operator-precedence parsing algorithm 

If b is the beginning of a cycle and s is the end of the same 

cycle, then replace a ~ b in M by the relation a <ob . We call 

the resulting set M 1 . Then M 1 is the set of unique operator-prece- 

dence relations. We now let G'= <{S'},T,P',S'> where S" is the 

start symbol and 

P'= { S'-----> S la 1Sla2~ ... S lakS 1 I S 1 E {S',e} and either 

there are b,c 6 T such that M(b,al) = ~ , M(ak,C ) = o> , 

M(ai,ai+l) _ z for l~ i <k and a I .... ,a k does not 

contain a cycle~or al,...,a k is a path between two consecu- 

tive ends of cycle ( or between consecutive start and end/end 

of cycle or between consecutive end of cycle and end) } . 

In general, this grammar generates a superclass of L (~M) and it is 

often ambiguous, but it is still possible to generate a valid set of 

LR(1) tables for this grammar. We can begin by constructing the cano- 

nical collection of sets of LR(O) items for G'. The second step is 

to construct a set of SLR(1) tables from these sets of items. Since 
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the grammar is often ambiguous, the parsing action is not always 

uniquely defined for all looksheads and for all tables. We use the 

operator-precedence relations N 1 to resolve these conflicts. In other 

words, the action can always be uniquely defined by consulting operator- 

precedence relations ~l " Now, we can use machine description grammar 

~23 G 1 to obtain an operator-precedence grammar which is equivalent 

to #~M " Finally, following Fischer E4] for any operator-precedence 

grammar ~ one can find an equivalent backwards-deterministic operator- 

precedence grammar G M in which the start symbol S does not appear 

on the right-hand side I of any production in G M and if A > B is 

a single production, then S = A. This gives the I proof of Lemma 2 . 

Now, considering Lemma 1 and Lemma 2 we have the second observa- 

tion about languages. 

Theorem 1 

Languages accepted by Floyd's operator-precedence parsing algorithms 

form a proper subclass of operator-precedence languages. 

4. VALIDITY TEST 

It was already mentioned in the previous section that Floyd's 

operator-precedence parsing algorithm may accept a proper superset of 

the intended language. In this section we present an algorithm to decide 

whether an operator-precedence parsing algorithm accepts exactly the 

language generated by the underlying grammar. The principal idea behind 

this decision algorithm is the grammatical characterization of the 

operator-precedence parsing algorithm and the reduction of our test to 

the equivalence problem for two backwards-deterministic operator-prece- 

dence grammars with the same operator-precedence relations. The latter 

problem is shown to be algorithmically decidable. 

We begin with a technical assertion that a single production 

removal does not affect the operator-precedence property. 

Lemma 3 

Given an arbitrary operator-precedence grammar, one can find a 

structurally equivalent operator-precedence grammar without single 

productions. 

The key idea of our test algorithm is obtained in the following 

assertion. 
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Lemma 4 

Given two backwards-deterministic operator-precedence grammars G I 

and G 2 with equel operator-precedence relations, there is an algorithm 

to decide whether it holds LIGI) = L(G 2 ) • 

Proof: 

Let G 1 and G 2 be two backwards-deterministic operator-precedence 

grammars with equal operator-precedence relations. We first show that 

L(GI) = L(G2) if and only if G 1 is structurally equivalent to G 2 . 

1. Let L(G1) = L(G2) = L . By Lemma 3 there are structurally 

equivalent operator-precedence grammars G1 and G2 without single 

productions. We show that an arbitrary input string in L has the 

same derivation structure. Consider an arbitrary string w 6 L . Each 

string w = ala2...a n can be derived in G1 and G2 in a unique 

way. We can distinguish two cases: 

i. Derivation in G 1 : 

, ~ > a I. a n al'''aiAl l al'''akBl l .. 

Derivation in G 2 : 

, * = ~ >al... , $ 2 ~  al'''aiA2~2 L > al...asB2f2 L an 

where n >/s >k ~/i ~/i . From the derivation of w in G1 it holds 

8k ~ak+ 1 , but from the derivation of w in G2 it must be a k ~ ak+l, 

8 contradiction with the assumption that G1 and G 2 have equal 

operator-precedence relations. 

il. Derivation in G1 : 

UV l an 
Derivation in G 2 : 

S uB ~2 L "'an , 

where ~ 1 equa~ to ~ 2 up to renaming of nonterminal symbols. 

However~ G 1 and G 2 are backwards-deterministic grammars and have 

equal operator-precedence relations and thus G1 and G 2 are 

structurally equivalent. 

2. If G I is structurally equivalent to G 2 , then L(G I) = L(G2) • 

In order to characterize Floyd's operator-precedence parsing 

algorithm grammatically it is not possible to apply the construction 

from Lemma 2 because this construction does not preserve operator- 

precedence relations. Therefore, another construction is given. More 

precisely we show how for a Floyd's parsing algorithm a grammar can 
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be constructed which will generate the same language and in what cases 

it is backwards-deterministic operator-precedence grammar. We make 

the following claim 

Lemma 5 

Given any Floyd's operator-precedence parsing algorithm J~M ruled by 

operator-precedence relations M without ~ - cycle~ we can find 

an equivalent backwards-deterministic operator-precedence grammar G 

with the same operator-precedence relations M . 

Again we give only an idea of the proof. We construct a grammar 

= ( {S} ,T,P,S > , where S is the start symbol and 

p = {S----~ SlalS1...SlakS1 1 S1 E{S,e } and there are b,c E T 

such that M(b, al) =~ , M(ak,c ) =°> , M(ai,ai+l) = ~ for 

It holda L(6) D L Following the proof of Lemma 2 we can obtain 

a backwards-deterministic operator-precedence grammar G with operator- 

precedence relations M generating L (~M)" 

For any FloydPs operator-precedence parsing algorithm ruled by 

operator-precedence relations M containing ~ - cycle there does not 

exist an equivalent operator-precedence grammar with equal operator- 

precedence relations. 

bow, we are prepared to formulate the main theorem of this section. 

Theorem 2 

For any backwards-deterministic operator-precedence grammar G with 

operator-precedence relations M and for the Floyd's operator-prece- 

dence parsing algorithm A M ruled by operator-precedence relations 

M there is an algorithm to decide whether it holds L(G) = L (~M) " 

Proof: 

If ~ contains ~ - cycle, then LIG) # L (~M) . If M does not 

contain ~ - cycle, then following Lemma 5 we can find an equivalent 

backwards-deterministic operator-precedence grammar G 1 . Using 

Lemms 4 given two backwards-deterministic operator-precedence grammars 

G and G 1 with the same operator-precedence relations, there is an 

algorithm to decide whether it holds L(G) = L(G1) . 
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5. CONCLUSION 

Operatoi~precedence grammars are suitable especially for specifying 

a variety of programming language constructs using an information about 

the precedence and associativity of operators. However, operator-prece- 

dence parsing algorithms possess the curious property that one can 

accept inputs that are not in the language of the underlying grammars. 

We have answered natural questions concerning two classes of languages 

which are definable using the operator-precedence grammars and the 

Floyd's operator-precedence parsing algorithms and concerning the 

decidability of the equivalence problem for these two models. The latter 

result can be reformulated as the necessary and sufficient conditien 

for an operator-precedence grammar to be valid grammatical characteri- 

zation for Floyd's operator-precedence parsing algorithms. This result 

solves the problem stated by Levy La] . We have net yet looked at 

a modification of operator-precedence relations in order to obtain valid 

characterization of Floyd's parsing algorithms. A partial solution of 

this problem has been got by Henderson and Levy L63 by defining 

extended operator-precedence relations. 
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Introduction 

In this paper we investigate Petri nets under a prescribed token 

capacity of their places working with a transition rule which ensures 

that the token capacity of the places is not exceeded. We introduce 

the families of languages representable as the free terminal languages 

(of firing sequences) of such nets having the token capacity k in 

each place. By implementing the bounded transition rule to ordinary 

Petri nets it is shown that these families form a proper hierarchy. 

We characterize them algebraically by their closure properties. 

Finally, we give two remarks on the regularity of Petri net languages. 

I. Definitions 

In this section we define the basic notions to be dealt with in the 

sequel and give some examples and remarks. Following HACK [I] we call 

N = (P,T,F,m o) a Petri net iff P and T are finite disjoint sets (of 

place s and transitions resp.) with P u T ~ ~, F is a mapping from the 

set (Px T)u(T×P) into the set ~N of all natural numbers (including 

O) and m o is %he initial marking, i.e. a mapping from P into ~N. 

For markings m,m' ¢~Pwe define the markings m+m', m-m' and the 

relation m ~m' componentwise (pointwise). To each transition t E T we 

adjoin two markings t- and t + as follows: 

t-(p) = P(p,t) (the number of tokens, t takes from p) 

t+(p) = F(t,p) (the number of tokenS, t sends to p). 

The so-called transition rule describes the change of the mar- 

kings of a net under the firing of transitions, and, it can be given 

by a partial function of ~PxT into ~. We here a~e going to deal with 
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two kinds of transition rules, namely the usual one given by 

I m - t- + t +, if m2t-, 
~N(m,t) = (m~, tET) 

not defined, else; 

where a transition t has concession under the marking m iff m~t-, 

and the c-bounded transition rule (where c ~Pis fixed) given by 

I m - t- + t +, if t-~m~c and m-t-+t+~c, 
~(m,t) = 

not defined, else. 

The number c(p) is understood as the token capacity of the place p 

which should not be exceeded during the working of the net. 

Let us remark that in our net 

in Fig. I the transition t has con- ~ ~ 

cession iff c(p)~2. ~" 

Both functions, ~N and ~ , can be extended in the natural way 

to partial functions from the set ~xW(T) into ~P where W(T) deno- 

tes the free semigroup with identity e generated by T. The domain (of 
c resp. definition) of the extended functions is denoted by D N , D N 

Then the sets of markings reachable in N and the languages represen- 

ted by N are given as follows: 

RN(m) = ~N(m,q) : (m,q)EDN}; R~(m) = ~6~(m,q) : (m,q)~D~, 

LN(m) = ~q : (m,q)~ON}; ~(m) = ~q : (m,q)~D~}, 

LN(m,M) = {q : (m,q)~O N & 6N(m,q)~M~; 

L~(m,M) = ~q : (m,q)ED~ & ~(m,q)g M}, 
where M is a (in general finite) set of markings. 

Corollar~ I 

I. ~ is a restriction of ~N" 

2. m~R~(m o) --~ mERN(m o) & m~c. 

The converse of 1.2 does not 

hold as one can see easily from the 

net in Fig. 2. The marking m = (0,1) 

(i.e. m(pl)=0 , m(P2)= I) is reachable 

from m o = (1,0) by the firing sequen- 

ce abbb but for c = (1,1) m is not 

c-reachable. Fig. 2 
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We call the Petri net N = (P,T,F,m o) to be c-bounded (c ~) iff for 

all (reachable) markings m ERN(m o) we have m~ c. Now we can show: 

Theorem 2 

The following conditions are equivalent: 

Ca) o) = = o) (c) N is c-bounded. 

Proof. The implications Ca) -~ (b) and (b) -~ (c) directly fol- 

low from Corollary I. To show (c) -~ (a) we assume that there exists 

a word q G LN(m o) ~L~(m o) which is minimal with respect to the initial 

segment relation E • By e G~(m o) we obtain e # q = rt with t ~T, 

r ELN(m o) ~(mo) Let m = ~N(mo,r) c • = 6N(mo,r). Prom m ~RN(m o) and 

condition (c) we obtain m~c and by (m,t) eD N we have t-~m~c. More- 

over, ~N(m,t) = (m-t-+t +) E RN(mo) , thus, m-t-+t+~ c, and therefore, 

(m,t) eD~, which is in contradiction with q = rt~(mo). 

Remark. The so-called safe transition rule gives concession to 

a transition t in an ordinary Petri net (i.e. P:(P~T)uCT~P) -~ ~0,I~) 

iff all the preconditions p of t (i.e. PCp,t)=l) 

are fullfilled (marked) and no postcondition p' 

(P(t,p')=l) of t is fullfilled. Consider the net / . ~-~ 

in Pig. 3. Obviously t has concession under our ~ 

I ~bo~de ~ transition S~ but not under the rule 

safe transition rule 6~. Hence we have 

I~NCm o) = ~ t i :  i E ~ } ~  ~ l~(m o) = {e~, ~ ' ~  

while RNCm o) = ~mo~ = s RN(mo). Thus Theorem 2 does not hold true under 

the safe transition rule. 

2. Implementation of the bounded transition rule 

By adding to the given net N, for each place p, a so-called co-place 

which controls the number of tokens in p, we can construct a net N + 

which is bounded and which under a certain initial marking behaves 

under SN+ in the same way as N under S~ for a given capacity c. In 

this way the bounded transition rule can be implemented to an Petri 

net working under the usual transition rule. 

Let be N = CP,T,P,mo) and N' = (P',T',P',m~) Petri nets and 
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c E~ P , c'~ P~ . We call N and N' to be equivalent with respect to 
= ' M' 'C (c,c') iff {L~(mo,M) : Mg~PI {LN,(m o, ) : M c_~ }. 

Theorem 

For every Petrl net N = (P,T,F,m o) and every capacity marking c g~P 

with mo_~ c there exist a Petri net N + = (P+,T,F+,m +) and a marking 

c ++ E ~P such that 

(i) N and N + are equivalent with respect to (c,c++), 

(ii) N + is (++-bounded, 

(iii) the number of tokens in N + is constant. 

The construction of N + and c ++ is done as follows. Let be ~ -- 

={~ : peP} (with ~P = ~). We call ~ the co-place of p. For pE~, 

t ~ T we put 
S F(t,p) - F(p,t), if F(t,p)-F(p,t)y O, 

~(~,t) m~ 

I O, else, 

/ F(p,t) - F(t,p), if F(p,t)-P(t,p)~O, 
~(t,~) 

O, else. 

Moreover, we set P+ = PuP, F + = PuP, and, for mE~ P, let be m + 

the marking of N + with 

m(p), if p+ = p~2, f m+(p +) 
c(p)-m(p), if p+ ~. 

In this way, mo + is defined. For any set Mg~ P we put M + = {m+: m~M}. 

Finally, we set 

c++(p +) = c(p) for p+g {p,p~. 

Now one can show the following assertions: 
c ,+ ~N+(m+,t), (3.1) m ~  & (m,t)eD~--~ (m+,t)EDN +& (SN(m,t)~ = 

+ 

(3.3) q~W(T) & (m~,q)eDN+ ~ (mo,q)eD ~ & ( = g~Cm o, q) )+ + ~+(m o, q), 

(3.4) LN+(m +) = ~(m o) & RN+(m +) = ( R~(mo))+, 

(3.5) m'eRN+(4) & pep --~ m'(p) + m'(p) = c(p). 

Obviously, (3.5) implies (ii) and (iii), and, from (3.2), (3.3) and 

(3.4) we obtain (i) and 

= +) 
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3. A hierarchy of FL's 

In this section we introduce, for every k ~, the family of all (re- 

gular) languages which are representable by a Petri net the places 

of which all have the token capacity k. We shall show that these FL's 

form a proper hierarchy. 

Let be k ~ ~. Then ~ denotes (for any P) the marking which assigns 
~(k) k tokens to every p E P. By PN we denote the family of all langua- 

ges L such that there exist a Petri net N = (P,T,F,m o) and a finite 

set M- ~ ~P of markings with morn ~ and L = L~(mo,W). Then 

k~ ~ PN 

is the family of all languages which are representable by bounded 

Petri nets. ~PPN is properly contained in ~PN' the family of all 
(free terminal) Petri net languages. Obviously, we have 

~(o) = ~¢, ~e~,<x> : card(X)~, PN 

where ~>denotes the forming of the catenation closure. (In a net, 

representing ~X> all the places are isolated.) 

Theorem 4 

~(o)~ ~(I)~ c ~dpk) ~ T(k+l)~ 
P~ P~ --- p~ .-- ~ ~. 

Proof. Let be L- ~(mo,M)6 ~pk). By Theorem 3 we can construct 
the net N + such that 

I~ e(mo,M'l" ) ~ .~t -(k+l) T = (mo,M) = L N = (mo,W~ ~_P~ , 

hence S "(k)~ w-(k+1 ) PN- v PN and ~-PN ~- ~PN" To show that the inclusions are 
proper ones we consider the one-element languages ~a i} (i~ ~). Ob- 

viously, ~a i} ~ ~Kp(N i). Assume that ~ai+1~E~piN) , ~a i+I}= ~(mo,M) 

I for certain N,mo,W. Then (mo,a)~DI N and m o ~ 6N(mo,a) since we have 

~IN(moai)l~M but 6iN(mo,ai+1)*M. This implies that Aa = a- + a + ~0. 
Now, for p~P with Aa(p)~1 we have 

~IN(mo,ai+1)(p) = mo(P) + (i+l)~a(p)_~ i+1 

contradicting ~tmN ~ o'ai+l)(p)~i'-- and, for pEP with ~a(p)~ -1 we ob- 

tain by mo(p) _z i the contradiction ~(mo,ai+1 )(p) ~ 0. 

It is verified easily that there exists no one-letter language 
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L ~S-pN ~-p~, since a free terminal Petri net language with one let- 

ter only is either finite or the full semigroup generated by that 

letter. 

By Da, b we denote the DYCK-language D 1 over ~a,b~ and by D (i) a,b 
the sublanguage of Da, b containing all the formulae of depth less or 

equal i. Hence 

D(O) n(i+1) ~.D(~). 
a,b = ~e~, ~a,b = ~a ~b}~, a,b 

n(i+1) One can see without difficulties that ~a,b 

Da,b ~ ~PN " '~P~" 

, , ~(i) 
= ~.]~ 

Da'b iE]N a,b " 

..~(i) and e y-(~+1) , ~pN 

4. Closure properties 

In this section we give without proof some results on the closure 

properties of the FL's defined above. 

Theorem 5 

All the families ~-~)-- and ~-- are closed under intersection 

but are not closed under union and complementation. 

Theorem 6 

All the families s-(i)pN (i~I) and S'%~ are not closed under any 

of the following operations: catenation, catenation closure, home- 

morphisms. 

Theorem 7 
=t-(i) and E~ All the families ~PN PN are closed under inverse homo- 

morphisms, restriction, left derivatives and right quotient by finite 

languages. 

Remark. For a family of languages which is closed under inverse 

homomorphisms closure under restriction and closure under intersec- 

tion are equivalent. 

5. Characterization 

From our previous results it follows that cT'(i) contains the language --PN 
D(i) and is closed under intersection, restriction, inverse homomor- a,b 
phisms, left derivatives and right quotients by finite languages. We 
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shall prove: 

Theorem 8 

~(i) is the least family of languages containing D (i) PN a,b and which 
is closed under intersection, inverse homomorphisms, left derivatives 

and right quotients by finite languages. 

Proof. If L is a language let be X(L) the least alphabet such 

that Lc--W(X(L)). First we recall a usefull lemma from C2]: 

Lemma 8.1: Let for j=1,2 Nj -- (Pj,Tj,Pj,m j)_ be two place-dlsjoint 

Petri nets without isolated transitions and let M I,M 2 be finite sub- 

sets of ~I, ~2 such that X(LNj(mJo,Mj)) = Tj. Finally let be N = 

= N tun 2 the Petri net (P uP ,T uT ,F vF ,mlum2). Then 1 2 1 2 1 2 u u 
L N I ( m l , = I ) O L N 2 ( m o 2 , M 2 )  = i,N(ml u 2 mo,lm I ~ ½ :  mIE~ I • m2~M2}). 

Now let us consider an arbitrary Petri net N : (P,T,F,mo) , a fl- 

mite set M- c ~P and a natural number i. We are going to show that 

~(mo,M) is an element of every family which contains and D(i) 
a,b 

which is closed under restriction, inverse homomorphisms, left deri- 

vatives and right quotients by finite languages. 

In the first step we erase from N all the transitions t E T such 

that t S X(~(mo,M)). This is possible in an constructive way since 

~(mo,M) is regular. In the resulting net N' = (P,T',F',m o) we have 

L~T,(mo,=) = Z~l(mo,E) & T' = X( I ,N , (mo,M)) .  

If T' = ~ then ~,(mo,M)~,{e} }_c~ [i) since ~ = ~ D (i) and {e~ = 
b a,b 

= "~-S/n(i)~a,b" where h is the empty homomorphism h:¢ -~ W({a,b}). 

Consider the case T' ~ ~ and denote by T O the set of all isolated 

transitions of N'. If T O : ~ we denote N' by N" else we denote by N" 

the net obtained from N' by erasing all the isolated transitions. Clearly, 

Z~,(mo,=) = +,~,,(mo,m) ®W(~o). 
Since W(T O) = h -1 (D  ( i ) )  where h ( t )  = e for all t ETo,  it is sufficient 

prove that the languages L~,,(mo,M)~, is an element of ~(i) where N" to 

= (P,T",F",m o) contains no isolated transitions and T" = X(L~,(mo,M)) 
is fullfilled. 

Now for pEP consider the subnet Np = (~p},Tp,F~,mo(P))~ of N" 

consi@Ing of the place p and all the transitions connected to p: 
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Tp = ~t ; t~T" & F"(p,t)+F"(t,p)>OJ. 

One shows without difficulties that 

= X(~p(mo(P),~m(p): m6MJ)). Tp 

Now, applying the construction of Theorem 3 to N" and all the Np'S 

we obtain by N" = ~ Np and Lemma 8.1 (N") + -- ~ N; and 
p~P p~P 

~ , ( m o , ~ )  = L(N.)+(mo,~ +) = ~ L ~ + ( ( m ~ ( p ) , i - m ~ ( p ) ) , ~ ( m ( p ) , l - m ( p )  : 

= ~p LINp(mo(P),{m(p): meM}). 

Therefore it is enough to prove that all the "one-place" languages 

are elements of ~(i). 

Let be N = ({p},T,F,k) a one-place Petri net without isolated 

transitions, M = ~jl,...,jl~C_]N, k~i. Then one can see by straight- 

forward calculations that 

where h: T -- W(~a,b~) is the homomorphism with h(t) = bt-(P)a t+(p). 

6. Final remark 

Obviously, if a language L is representable by a bounded Petri ne~, i. 

LE~,z~ then L is regular and L~pN. But the converse is true too: e. 

Theorem 9: ~NnREG = ~p; 

Proof .  Let be L = ~(mo,M)E ~PN and c a r d ( ~ q L :  q~W(T)~) = kE]N. 
By M' we denote the set of all markings of N which are reachable from 

m o and from which a marking from M is reachable: 

M, =~m' : m ' 6 ~ ( m  o) • R~(m')n~ ¢ ¢}.. 
It is sufficient to show that M' is finite since in this case there 

exists a number i~ such that m'~ i for all m'EM' which implies that 

It is easy to verify that the following assertions hold: 

( i )  M t = ~N(mo ,q ) :  Er  qr~L}, 

(ii) (no,q) ~ D N --~ LN(gN(mo,q),M) = 8qLN(mo,M) 
(iii) ~LN(m',g). m'~g'} = ~qL: q6W(T)J~(~/. 

Markings m',m" from M' are called to be equivalent (m'.vm") iff 

LN(m',M) = LN(m",M). ~'/~ denotes the partition of M' induced by the 

equivalence relation ~, [m~ is the equivalence class containing m. 
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Now, from (iii), we obtain card(M'/~)& k. To complete the proof we 

show that, for m EM', card(/m])@ card(M) from which it follows that 

card(M') ~ k. card(M)6N. 

Let ml,...,m I be 1 pairwise different markings from fmJ and r 

~(m,M). Then, for j = I,...,1, m~ = ~(m~,r) = m~ +&r @M. Since 

m~ # m~ iff m i ~ m. iff i 4 j we obtain lecard(M). 
J 

Corollary 10 

LN(mo,M) 6REG iff for every m 6M, LN(mo,lm }) E REG. 

If LN(mo,M) is regular, then the set M' defined above is finite, 

therefore, M'(m) = ~m': m'~RN(m o) & m~RN(m')~ M' is finite from 

which the regularity of LN(mo,{m }) follows. 

Theorem 11 

LN(m o) e REG ---* Vm(m 61q P ~ LN(mo, Im }) e REG) 

Proof. Valk [3] has shown that, if LN(m o) is regular, then there 
exists a marking c such that 

YmYm'(m~RN(m o) & m'~RN(m) --~ m'2m - c). 
This implies for m'~ M'(m) that m2m'-c, i.e. m'~ m + c. Hence M'(m) 

is finite and, the~fore, LN(mo,{m}) is regular. 

The converse of Theorem 11 is not true. 
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DYCK LANGUAGE D 2 IS NOT ABSOLUTELY PARALLEL. 

Miron Tegze 
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INTRODUCTION. 

It is known that the family of absolutely parallel languages (APL) 

is not contained in the family of context-free languages (CFL),since the 

language {sibic i ; i>~O}, which is an APL, is not a CFL. In the present 

paper we show that the language D 2 (which is a CFL) is not an APL, hence 

CFL and APL are incomparable by inclusion. 

Moreover, it is known that the family of CFL equals the family of 

languages generated by stack transducers. Rajlich [1] has shown that the 

family of APL coincides with the family of languages generated by two-way 

finite-state transducers. Thus the result of the paper concerns the ge- 

nerative power of these machines, too. 

This paper is divided into three sections. In the first one we pre- 

sent some definitions and preliminary results. The second section invol- 

ves our main result. The proof of Lemma 3, which is omitted in the first 

section, is placed in the third one. The reader,who is not interested in 

technical details, can omit this proof. 

I. PRELIMINARY RESULTS. 

DEFINITION of CFG and CFL. A context-free grammar CCFG) is any 4-tuple 

H = (N,T,S,P), where N and T are disjoint finite sets of symbols, S E N, 

and P is a finite set of productions of the form p = A--ey with A ~ N, 

y ~ (NUT) $. w --~H~w" iff w = uAv and w'= uyv, where uvE (N~T) *. 

w ~Hw" iff there exists pEP such that w ~ w'. Then ~-~H is the 

reflexive and transitive closure of ~-----'2 H . The language generated by H 

is L(H) -- { wET* ~ S ----->~wT. 
The family of context-free languages is CFL = {L(H); H is a CFO~. 
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DEFINITION of D 2 . The Dyck language D 2 is the language generated by a 

7~ ~77{~,~ Y',c,),(~, s, i s ~ A ,  s ~ ( s ) ,  s---,cs~, s-- ,ss~).  
Thus D 2 is the language of "well-founded parenthetical expressions" 

constructed from two types of parenthesis. 

DEFINITION. Let wgT ~, T = ~,~,),(~. We say "in w all C,N-brackets 

are complete" iff : 

1. (the number of S in w) = (the number of r in w). 

2. Let w = uv. Then (the number of C in u) ~ (the number of ] in u) . 

Let w = u[ivS2x. We say " i n  Cr..~2-brackets of w all C,S-brackets 

are complete" iff in v all ~,~-brackets are complete. We say "the 

brackets Cl...S 2 ere spoilt" iff in CI...$2 of w all C,S-brackets are 

complete and the numbers of ) and of f in CI...J 2 are different. 

The following lemma is easily verified : 

LEMMA I. Let wE T ~, where T ={~,C,),( }. Suppose w contains some 

spoilt brackets Cl...]2 : w = u~v~2x . Then w ~D 2. 

DEFINITION of APG and APL. An absolutely parallel grammar (~APG) is any 

4-tuple G = (N,T,S,P),where N and T are disjoint finite sets of symbols, 

called non-terminal and terminal alphabet,respectively. Denote V = NuT. 

SgN is the start-symbol and P is a finite set of productions of the form 

q = (Ai,A2,...,Am)--*(yl,...,ym),where AiEN, YiEV *. Then w =>~w" iff 

w = UlAlU2...AmUm+l, w'= UlYlU2...YmUm+l with ui~ T*. w =>Gw" iff there 
# 4  

exists qeP such that w ~=>Tw'" Then =>@is the reflexive and transitive 

closure of -~@. The language generated by G is LCG)={w6T~; S =>jw} . 

The family of absolutely parallel languages is APL={LCG); G is an APG}. 

ILLUSTRATION. We can imagine the "work" of G as follows (uiE T w) : 

.q 
UlAlU~2U 3 ....... AmUm÷ 1 =--2 G Ul u 2 % ....... 

\i ...... J I I  ...... / 
(AI,A 2,...,A m ) ~f (Yl,Y2,...,Ym) 

um÷l 

q 
NOTE.We usually omit the symbol G in-~.Instead of w~w" we also 

we also write Wr= {ql,...,qr_l}(Wl). The left side of the production we 

call LSFT : LEFT(q) = (AI,...,Am). The ordered set of non-termlnals of a 

word we call NOT : NOT(w) =~AI,...,Am). 
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DEFINITION. Let G=(N,T,S,P} be an APG. We say "G is in the simple form" 

iff for any qE P the number of terminals on the right side of q is at 

most one. (This means that any qEP writes st most one terminalO 

LEMMA 2. There is an effective procedure to find, for any APG H.an APG G 

in: the simple form such that L(H) = LCG) . 

Proof Coutl[ne, for details see [2]). Each "wrong" production replace by 

a finite set of new productions as follows : Let for example 

q = (AI,A2,A 3) > (dld2Bld3B2,d4ds,B3B4d 6) , 

where Ai,Bi~N and diET. Replace this production by 6 new productions 

ql,...,q 6 with help of 5 new non-terminals YI,...,Y5 : 

ql = (AI'A2'A3)----->(YI'dlAI'A2'A3) 

q2 = (YI'AI'A2'A3) > {Y2'd2BIAI'A2'A3) 

q3 = CY2'BI'AI'A2'A3) >(Y3'BI'd3B2'A2'A3 ) 

q4 = CY3'BI'B2'A2'A3) .... > (Y4'BI'B2'd4A2'A3) 

q5 = (Y4'BI'B2'A2'A3) >(Y5'BI'B2'ds'B3B4A3 ) 

q6 = (Y5'Bi'B2'B3'B4'A3) > CA'BI'B2'B3'B4'd6) 

Then obviously (for er~y w,w'EV ~) w --~w" iff w ~I ...... =~6 w'. 

The new non-terminals guard that L(G) = L(H) . 

2. THE MAIN RESULT. 

THEOREM. The Dyck language D 2 is not absolutely parallel. 

The proof of Theorem follows with the aid of Construction and Lemms 3. 

CONSTRUCTION of CG_. Let G = (N,T,S,P) be an APG in the simple form and 

T-~{J,C,),(}. Denote p = max{IPI,2} and n = max~ILEFTCq)l ; qEP}. Let 

s k be the number Sk= C33pn4)k-12pn 2, where k = 1,...,n. We construct the 

words Cl,.~.,Ck,...,c n = c G by induction on k : 

k = 1 .  L e t  s = e = [ ( ( . . . ( ( ,  d = h = ) ) . . . ) ) ] ,  w h e r e  lal=ldl=le[= 
=lhI = Sl+l. Then define c I = adeh . Obviously Cl~D 2. 

k > i. Let Ck_ 1 be already defined. Let a = e =[((..((C, d = h = 

=]))..))~, where lai=idl=lei=lhl = Sk+2. Let b = c = f = g = Ck_ I. Then 

define c k = abcdefgh : 
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lCk 13  Ck-lCk-13 I s k 

Obviously it holds Ck6 D 2. 

Finally denote c G = c n. Clearly it holds CG~D 2. 

LEMMA 3. Let G=(N,T,S,P) be an APG in the simple form. If CG6 L(G),then 

there exists wE L(G) such that w contains some spoilt ~...S-brackets. 

We postpone the proof of Lemma 3 to the third section of the paper. 

Proof of the theorem. Suppose an APG G in the simple form can derive 

all the words of the language D 2 : L(G)~ D 2. Construct the word c G. It 

holds CGE D2, hence c G can be derived by G. By Lemma 3 there exists some 

w ~ L(G) such that w contains some spoilt ~...S-brackets. By Lemmn 1 

it holds w ~ D2, hence L(G)~ D 2. Hence none APG in the simple form can 

generate exactly the language D 2. 

By Lemma 2 each APG is equivalent to some APG in the simple form, 

hence none APG can generate exactly the language D 2. 

It means that D 2 is not absolutely parallel : D2~APL. 

3. PROOF OF LEM/~A 3. 

Let c G EL[G)o Let O~be a derivation of the word c G in the APG G : 

oC: S =~0 Wl __~i w2 __~2 ...... __~t CGE T ~. 

(In this section o r" is always this particular derivation) . We shall make 

precise concepts "this symbol of c G arises from this non-terminal of Ws" 

or "this symbol of c G is inw s already written and it is written on this 

place" or "this non-terminal of w s arises from this non-terminal of w r 

(where r< s)" or "the production qs writes this symbol of CG". Therefore 

we introduce "birth function", "copy function" and "change function". 

Important nots : Whenever we say "the symbol (subword) of the word 

CG" , we mean an occurrence of the symbol (subword) implicitly. 

The definition of new concepts follows : 
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DEFINITION of ~, ~, ~ and ~. Let r,s be any numbers, l-<r~<s-<t. Let 

Wr= UlAlU2,.AmUm+ 1 and Ws= VlBlV 2. .BhVh+l, where ui,vi6 T* and Ai,Bi6N. 
(By the definition of APG) w s and c G can be written also as follows : 

Ws= UlalU2..amUm+l, CG= VlblV2..bhVh+l, where die V @ and bi& T*. Clearly 

it holds NOTCala2...a m) = (B1,...,Bh). 
1. We define the birth function ~s and the copy function ~s as 

follows : Let z be any symbol of the word c G. Then 

If Z is contained in some vi, then ~s(z)=5~ and ?s('Z)=(the index 

of this vi). We say "z is in w s (already) written" . 

If z is contained in some bi, then ~sCz)=5"~ and ~s~Z)=(the index 

of this hi). We say "z is in w s not yet written" . 

We say "the production qs writes z" iff ~s['Z)i.Q_ and ~s+l(Z)=~q. 

2. We define the change function ~s : <l,...,m>--><l,...,h> as 
r i follows : ~s ~ )= j iff the i-th non-terminal of w a is contained in the 

subword aj of w s. It means that B i arises from Aj. 

3. We define the birth function ~s for subwords : Let x=x I. . .x k be 

a subword of CG, xi~T. Then ~s(X)= { ~s(X~ ~sCXi)#_Ci and l~<i- < k}. 

See also the example described in the following figure : 

FIGURE. 
S 

m . o , o o , e ® , , o ® . ~ o . , , ,  o . , ~ ® , , , , , ,  "~" S 
/ \ 

/ \ 
I \ 

/ \ 
/ \ 

//A 1 A2_ A3. \\ 
. ~ m ~ - - . -  q- - - ,<- -~. \  . . . . . . . . . . . . . . . . . . . .  = w r 

/ u L ~  ~ u 2 \ \ \u 3~\\u 4 \ \  

/ /  / /  ~ ~ \ \  \ \  \ \  \ 
/ / \ 

I \ \ k / . /  ~ - . - - q % .  ~.1 X. ,~.. ,,. \ . . . . . . . . . . .  w 

/ • k i 
/ / I I\" ..\\ ". . " / / \ \  \ I / / i I \ ', . \ \ . ". "'. k 

/ / I I \ ". . \ \ "" \ 
, .. / " k '. • \ V ~  

/ ., / z I I \ ', "., \ \ .. . .  y .  \ 
I /.ii~iiiiIm, I , I i \  ". . .l ~ I  x ". I. X , , = C G 

v I b ! v 2 b 2 v 3 b 3 v 4 

In this example it holds ~sCZ)=l, ~sCZ)=/l, /s(y)=5~, ~sCY)=4, ~rCZ) =I, 
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In the following Fact we state (without proof - for proof see [2] ) 

some consequences of the above definition. 

FACT. Consider the situation described in Definition of ~, ~, ~ and ~. 

Let z,y be symbols of c G and x a subword of c G. Then it holds : 

1. If ~s(y)#~ # ~s(Z) and ~y is in c G written on the left of z), 

t h e n  ~s(y)  ~ ~ s ( Z ) .  

2. I f  ~ s ( y ) = ~ = ~ s / Z )  t hen  ( y  i s  i n  c G on the  l e f t  o f  z )  i f f  ( y  i s  i n  

w s on the  l e f t  of  z )  . 

3 .  I f  ~ s ( y ) = ~ # ~ s ( Z )  t h e n  ( y  i s  i n  c G on the  l e f t  o f  z) i f f  ~ s / y ) ~  ~s(Z) 

i f f  ( y  i s  i n  w s on the  l e f t  o f  the  ~ s ( Z ) - t h  n o n - t e r m i n a l ) .  

4.  I f  ~ s (Z)=J~  t h e n  a l s o  ~ ( z ) : ~ .  

5.  I f  x = uv t hen  ~ s ( X )  = ~ s ( u ) ~ s ( v ) .  

6. I f  x = uzv and ~ s ( Z ) = ~ ,  t hen  ~ s ( u ) n  ~ s ( V )  = ~ . 

8. If ~s(y )#51 for any symbol y of x, then 

9. If ~s(Z)= ~r(Z)= j /5"I, then ~(j) = j . 

lO.If ~(j)= j, then aj = ajlBjaj2, where ajl,aj26V ~- 

ll.lf NOT(Ws)= (AI,...,Am)= NOT(w r) and ~r(Z) = ~sCZ) = j~n, then in 

both the words w r and Ws, Aj is the first non-terminal, which is writ- 

ten on the right of the symbol z. 

The own proof of Lemma 3 is divided into three sections : In the 

first two sections Induction assertion V k is proved for any k, l~ k@n. 

In the third one we show that V n implies Lemma 3. 

Induction assertion Vk ._/- Denote c k one fixed occurrence of c k in c G. 

If l~i(Ck) I ~ k for any i , l~<i%t , then there exists a derivation 

~': S ------>~w~T ~ such that w contains some spoilt ~...]-brackets. 

I. Basis k = I. We omit the proof of Basis, since it is the particular 

case of the proof of Induction step. CSee also notes 1,2,3) • 

II. Induction step I< k ~n. Assume that Vk_ I is true. Let c k = abcdefgh 

cf. Construction ). We distinguish two cases dependent on what happens 

during deriving the word c G by the derivation oC: 
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A. At least one symbol of de arises earlier than writing of one of the 

p a r t s  a~ h i s  f i n i s h e d .  

B. One o f  the  p a r t s  a,  h i s  f i n i s h e d  b e f o r e  any symbol o f  de a r i s e s .  

Roughly s p e a k i n g ,  i n  the case  A the  new symbol s e p a r a t e s  some 

two subwords Ck_ i i n v o l v e d  i n  bc and f g .  Then Vk_ 1 can be used,  s i n c e  

it is possible to prove l~i(Ck_l)~<k-i for some Ck_ I of c G and for 

any i, l~<i~<t. In the case B the APG G is not able to count all the 

symbols ) reap. ( involved in h reap. a. 

Note 1 : If k = 1 , then the case A can be eliminated. 

CASE A. 

Distinguish two possibilities : The first symbol arisen in bcdefg is: 

(A-i)) in cdef . 

./A_ii) ) in b or in g . 

CA-i) : Denote this arisen symbol z. Denote c k : uzv. Obviously b is a 

subword of u and g is a subword of v. We can assume that the part b 

arises earlier than g . 

Roughly speaking, before z arises, nothing in b is written. After 

z arises,at least one non-terminal is separated in the part g and before 

it can make itself free, b is finished. Since for the subword e k there 

are at disposal always at most k non-terminals, for the subword b there 

are at d'[sposal always at most k-i non-terminals, which is the sense of 

l~(b)l ~< k-l. And hence Vk_ ! can be used on b the assumption @ 

More formally , let w r be the first word of oCin which z is 

written : r = rain {i ~ ~i(z)=n~ . Let s = rain {i ; ~i(b) = ~}. Then : 

If s ~i<~t then ~iCb) = ~ • 

If r~i~s then ~i(b)(~i(g) = ~ , ~i(b) U~i<g) = ~i~Ck) and 

~i<g ) / ~ . Hence l~i(b)I~<k-i • 

If l~i~r then also I~i(b)I~k-l, since I~r(b)l~k-I and since 

it holds ~r(y) ~Q_ for any symbol y of b . 
e 

Hence i~i(b)i~<k-1 for any i, l~<i~<t, and Vk_ 1 can be used on b = Ck_ 1. 

We omit the proof of (A-ii), since it is similar. 

CASE B. 

Suppose that a is written earlier than h. Let 0<= min{i ; ~i(a) = ~. 

Denote I1 the left [ of s , ~2 the right [ of a , $3 the left ~ of d and 

~4 the right S of d. It holds ~iCy)#5~ for any symbol y of d and for 

any i, 1.<i.~. We distinguish 4 possibilities : 

(i) At least ~]~ symbols ( of s have arisen before [i or [2 arises. 
Sk 

(ii) [2 had arisen before ~-~ symbols ( of a arose; then at least 3 

symbols ( of a have arisen before ~l arises. 

Ci[i) The same as Cii) with changed I1 and 

(iv) Both I1 and ~2 have arisen before 2Sk ~ symbols ( of a arise. 
3 
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Note 2:1~%~e Basis there is only one possibility derived from (iii). 

The proof of all the cases is similar. We present only the outline 

of the proof of (ii).(By (ii)) in the part a, G writes the symbol [2,then 

it writes symbols ( "long enough" and then it writes [i" From B we know 

that during this part of oCno symbol of de arises. This enables us to 

choose the numbers r,s , l~r~s ~, so that : 

O ~ S -~Q~2 * R ~  Ke 
: w r ~ w s ~ c G , 

where Q,R,K ~ P~ and so that it holds : 

~) the production qr writes some ( into the part a . 

~r(74)=~s(]4)~ n . 
~) during the sequence of productions R no symbol of bc arises. 

Now we repeat the sequence R in the derivation on and define : 

OC;: R R_~ ,_~K ~ewG T ~*. s ~QQ>~w r ~-~w s~k w s 

From the definition of APG it follows that c G and w r differ similarly as 

w and w s. The "stabilization" of ~ and ~ warrants that the terminals 

of w arise on the "wanted" places. Hence if we denote C1,~2,73 and ]4 

the symbols of w which are written in w on the places corresponding to 

the places of [I,E2,]3 and w ] ~e cG' then it holds : 

(s) in the part ~l...C2 of ~h is st least one ( in addition to the 

number of ( in the part ~I...[2 of the word c G. 

(b) in the part ~1...[2 of w occurs none of the symbols ) , 7 or C. 

(c) the number of ) reap. ( resp. ] reap. [ is the same in both the parts 

E2"" "73 of the word w, and [2"'" ]3 of the word c G. 

(d) The part 73...J 4 is the same in both the words w and c G • 

The (a) follows from q,J3 , the (b) follows from ~, the (c) follows 

from J3,~ and the (d) follows from/3 with the aid of Fact 1,3,9,10,11 • 

Finally there are two possibilities : 

I. If in [I...]4 of w all [,]-brackets are complete, then the brackets 

[ ] are spoilt,since the numbers of ) and of ( in ~ ...] differ. 
I''" 4 . . 1 

2. Otherwise there exists ]5 In [1...74 such that in CI...]~ of w all 

[,]-brackets are complete. Since in [1...[2 of w and in "%...] 4 of 

w there is no ], this ]5 is contained in [2...73. Hence [i...]5 

contains at most 21Ck_l}=Ibcl symbols ) and at least Sk=la I symbols (. 

Since s k>21ck_II , in [1...75 of w the numbers of ) and of ( differ. 

Hence ~i...]5 is spoilt. 

Note 3. In the proof of Basis this possibility 2 can be eliminated. 



442 

Hence w involves some spoilt [,S-brackets in both the cases 1 and 2. 

This completes the proof of Case B and of Induction step, too. 

It follows from Basis and Induction step that V n holds. 

III. V n implies Lemms 3. Since ILEFT(q)I ~< n for any q ~ P, it holds 

..~i(CG)~-< n for any i, 1.<i~<t. Since c = c-, the assumptions of V n n ~ c-! 
are fulfilled. Applying V n we obtain s derivation d of a word w such 

that w contains some spoilt r...S-brackets. 

This completes the proof of Lemma 3. 
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Introduction 

In this paper we are studying two notions of continuity, both weaker than the 

well known and broadly applied notion of W-CO~;ILb~ty. Examples grouped in this paper 

show that there are natural situations when one is dealing with monotone maps, defined 

on "sufficiently" complete carriers which are not w-continuous but which still have 

a very pleasant property allowing to solve fixed pointsystems of equations within 

w steps ~f i t e r a t i o n .  

The first above mentioned generalization of w-continuity is obtained simply by 

requiring solvability of fixed point systems of equations with c~[bi/JA~Jty p~&%6 

from a carrier, within w steps of iterations (i.e. by taking the least upper bound 

of w iterations, which is assumed to exist). This is the notion of a r£g~_~ut ~.g£bra 

introduced by the author in Tiuryn [1977] . However the only examples of regular alge~ 

bras which are not w-continuous, known to the author till 1978, were based on the fact 

that a carrier is not w-complete but still all operations are w-continuous (e.g. the 

algebra of regular trees). This paper provides an example of a regular algebra which 

is not W-continuous due to essentially different reasons - the carrier is a complete 

lattice but operations are not w-continuous. 

But then a new phenomenon arises. It turns out that in some cases even the pro- 

perty of being regular is too strong, and the reason lies in "too arbitrary" parame- 

ters. This gives rise to a weaker notion than that of regularity. So the second gene- 

ralization of w-continuity is obtained by restricting solvability within ~ steps 

of iterations, only to fixed point systems witho~ p~/to2n~t&%6. This is the idea laying 

behind the notion of a S~/2L~ ~£b~a, originally introduced in this paper. It 

can be easily seen (the proof from Tiuryn [1977] applies to this case as well) that 

the algebra of regular trees is still initial in the category of semiregular algebras. 

However, we conjecture that there does not exist a free semiregular algebra generated 

by nonempty set of free generators. On the other hand there are confusingly many natu- 

ral examples (as we hope to show in this paper) of semireqular algebras which are not 

regular, proving this notion to be useful. 

The paper provides a useful reduction of questions about regularity (or semiregu- 

larity) of a given algebra to questions about a certain kind of continuity of basic 

operations which seems to link much better algebraic and order aspects of structures. 

This is done in the first part of the paper. The second part uses this results to in- 
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vestigate the properties of power-set algebras of finite and/or infinite trees, from 

the continuity point of view. 

There is another aspect of interest in infinite trees. This is connected with se- 

mantics of nondeterministic recursive program schemes (or equivalently with infinitis- 

tic behaviours of context-free tree grammars). In fact the author took the inspi- 

ration for writing this paper from the paper Arnold, Nivat [1977] . Theorem 4.5 fills 

a gap in the above mentioned paper in removing the assumption of being a Greibach 

scheme, which was used to prove that the greatest fixed point of an operator associated 

with a given grammar is obtainable as an intersections of w iterations (when starting 

with the top element). This justifies the author's interest in the present paper to 

the order dual to inclusion. Theorem 4.5 has been obtained independently in Arnold, 

Nivat [1978] for the case of OI substitution. 

Results obtained in this paper are grouped in a table at the end. 

i. Regular and semiregular algebras 

As the power set algebras of finite and/or infinite trees form many-sorted struc- 

tures - we formulate our definitions in this section for the heterogenu0us case. The 

reader may compare this with homogenuous notion of a regular algebra given in Tiuryn 

[1977] or in Tiuryn [1978]. 

I.i Let S be a nonempty set, called the set of sorts. The set S will be fixed 

throughout this section. Denote by S ~ the set of all finite words over S , the empty 

word will be denoted by I. Concatenation of two words w,v 6 S ~ is denoted by wv. 

An S-sorted signature ~ is an indexed family < Zw, s>(w,s) 6 S ~ x S of dis- 

joint sets. Elements of a Z are called function symbols of arity w, and type s. 
wts 

An S-sorted set A is an indexed family <As>s6S " If w = Sl...s n 6 S ~ , 

then by A w we denote the set A ×...× A 
s I s n 

In particular A s for s 6 S denotes As, and A l is a singleton. 

1:2 Let Z be an S-sorted signaturer and w = Sl...s n 6 S ~ . Denote~1 by TT(w) the 

S-sorted set of all finite terms over [ with variables among {~? ..... ~n}- ~ . The 

s. 
l < i ~ n , is supposed to range over the elements of sort s i. variable ~ i , o 

1.3 Let Z be an S-sorted signature. A E-algebra A is an S-sorted set A (the 

carrier of A) with interpretation of every function symbol U 6 Z as a function 
w1s 

A w ~ A s . If w~v 6 S ~ , t 6 TZ(W) v (i.e. t is a v-vector of w-ary terms) OA 

and A is a Z-algebra, then t A : A w ~ A v is the meaning of t in A. A map 

A w ~ A v is called a po_~nomial in A if there is t 6 Tz(w) v such that p = t~ P m 

A map f : A w ~ A v is called an algebraic ma~ in A if there exist u 6 S ~, a poly- 

A wu nomial p : ~ A v, and a 6 A u, such that for all x 6 A W, f(x) = p(x,a). 

1.4 We will deal in this paper exclusively with ordered algebras, i.e. the carrier of 

sort s is equipped with a partial order < and a bottom element Is, and all 
s 

operations are monotone. We frequently omit the subscript s when it does not lead 
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to a confusion. The same concerns products: A w (w = s1"''Sn £ s~) - the order relation 

in A w (defined component wise) will be denoted by ~, and the bottom element in A w 

will be denoted by I . The least upper bound of a set x , if it exists, will be de- 

noted by sup X. 

1.5 Let A be an ordered [-algebra, w £ S ~, and let f: A w ~ A TM be an algebraic map 

in A. Denote by Lf the set {fi(1): i 6 w} where fo = idAW ' and fi+1 = f ~ fi 

for i 6 ~ . Let s 6 S. A subset E c A is called an iteration if there is 
-- s 

sw 
w 6 S ~, and an algebraic map f: A sw ~ A sw such that E = e I (Lf). 

Here e~ w : A sw ~ A is the projection on the first component. A subset E c A is 
s -- s 

called a pure iteration if E = e~W(Lp) for some polynomial p: A sw ~ A sw 

Therefore pure iterations are iterations without parameters from the carrier A. 

1.6 An ordered [-algebra A is said to be a regular algebra iff for every w 6 S ~, 

and for every ~g~b~ZLLC Nap in ~ , f: A w ~ A w, all the following hold: 

(1.6.1) supLf exists in A w. 

(1.6.2) f (supLf) = supLf . 

From the above definition it follows that supLf is the least fixed point of f. 

It means that regular algebras are precisely those algebras where one can solve every 

finite system of fixed point equations with parameters , getting the least solution as 

the least upper bound of w-~t~Z~t~0~ . Every W-continuous algebra (i.e. with w-com- 

plete carrier and W-continuous operations) is a regular one, but the converse in ge- 

neral is not true. For example, the algebra of regular trees (cf. Tiuryn [1977] ) is 

a regular algebra which is not W-continuous due to the fact that the carrier is not 

M-complete (the w-operations are still w-continuous). In this paper we shall see 

another reason for not being w-continuous - there exist natural examples of algebras 

with complete carriers and monotone operations which are not W-continuous. It will 

turn out that when considering equations with arbitrary parameters ( as it has been 

done in definition 1.6), there are natural examples when in general w steps of itera- 

tions are not enough to get solutions, while without parameters w steps are always 

enough. This leads to the following generalization of the concept of regular algebra. 

I.__/7 An ordered Z-algebra A is said to be a semiregular algebra iff for every 

A w w 6 S ~, and for every polynom~ in A , p: ~ A w, all the following hold: 

(1.7.1) sUpLp exists in A w. 

(1.7.2) p(supLp) = supLp. 

I.__~8 Observe that if the carrier of A is ~-complete then A is a semiregular algebra 

iff (1.8.1) for every polynomial p: A w~ A w, sup { pn(±) : n E W } is a fixed 

point of p. 

There are some situations (cf.for example Arnold, Nivat [1977] ) where one is 

forced to prove (1.8.1) while polynomials are not w-continuous and the induction on 

the length of terms cannot be applied due to great complexity. For this reason we in- 
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troduce a weaker notion of continuity, showing that the above mentioned problem can be 

reduced to a usually simpler problem concerning only basic operations. 

To introduce not too many definitions we consider in this paper only the case of 

algebras with a A-complete carrier (in these algebras every iteration has a least 

upper bound). 

1.9 Let A be an ordered E-algebra with a A-complete carrier, let 

w = sl..s n 6 S ~, and s 6 S. A map f: A w ~ A is said to be algebraically continuous 
s 

if, for arbritrary iterations EI,...,E n with E i = { a~ : k 6 ~ } c Asi for 

i = l,...,n there exists an iteration E c A such that 
-- s 

(1.9.1) { f(a~ ..... a~) : k 6 ~ } c E. 

(1.9.2) f(snpE 1 ..... supE n) = sup{ f(a~ ..... a~) : k 6 ~ }. 

A map f is said to be algebraicall~ semicontinuous if it has the above proper- 

ty when restricting only to pure iterations. The importance of the above introduced 

notions lies in the following results. 

Ioi0 Theorem 

Let A be an ordered Z-algebra with a b-complete carrier. The following conditions 

are equivalent: 

(i.i0.I) A is a r ~ A  algebra . 

(1.10.2) All E-operations in A are ~gebr~bLco~.~y co~;I~oG£. 

1.11 Theorem 

Under the same assumptions about A as in 1. iO., the following conditions are 

equivalent : 

(I.Ii.i) n is a S~m/~T£gu~6U~ algebra . 

(I.!i°2) All E-operations in A are ~z~ebr~c~y s~ico~t&~o[b~ 

1.12 As we will deal in the sequel also with properties of greatest fixed points~ 

it will be convenient, for the sake of uniformity of presentation, to treat them at 

least fixed points in dual order. 

Therefore, if G is a property stating something about a poset ~ = (P,<), then we 

shall say that P has property co-~ if, ~ is true in the dual poset P~= (p,~), 

where p~ ~q if, q~p . For example, P is oo-~-complete if, every down-directed 

subset of P has greatest lower bound. Thus one has definitions of a co-regular alge- 

bra, of an algebraic co-continuity, of a co-iteration ,etc. 

2. The ~ower-set algebras: V[ Z and ~_ 

2.1 Let Z be a one so~L~£d signature, and let n 6 ~ • Denote by T Z (n) (resp. by 

T~ (n)) the set of all fi~/t£ (resp. of all fi~e or infi~e ) t/te~3 with 

variables among { Xl,...rXn} - 

2.2 Denote by D(Z) an 0J-sorted signature (derived alphabet of Z, cf. also Engelfriet, 

Schmidt [1977] ) defined as follows. For each n> i and for each i, 1 ~ i~ n, let ~n i 

be a new symbol (the i-th projection s~mbol of sort n); for each n 6 ~ , let U n be 



447 

a new symbol (the join symbol of sort n); and let for each n,k E~, Cn, k be a new 

symbol (the (n,k)-th compositio n s~mbol). We assume that all the symbols introduced 

above do not belong to Z. Then D(Z) is determined by the following conditions 

(2.2.1) D(Z) 1,o Zo' 

(2.2.2) for n~>l, D([)~, n = Zn U {~nl : 1~<i~<n}' 

(2.2.3) for n £ (0 , n%1, D(Z)nn,n = { U n} , 

(2.2.4) for n,k E ~, n#l or k# I, Dnk..k. k = {Cn, k } , 

n-times 

(2.2.5) D(Z) II,I = { UI,CI, I} 

(here 11 is a word over '~ of length 2) , 

(2.2.6) D(Z) = ~ otherwise 
win 

The signature introduced above should be called perhaps a nond6terministic de- 

rived alphabet of I in contrast to a deterministic one, introduced in Engelfried 

and Schmidt [1977] . 

2.3 FTz_ 

~T Z is going to be a D(Z)-algebra. Let X be a set, by P(X) we denote the set of 

all subsets of X. The carrier of sort n, PTT, n is P(Tz(n)). This is naturally ordered 

by inclusion relation. The meaning of O 6 Zn, for n~>O) is the one-element set 

{O(xl...x n)} (for n = O this is simply the set {O} E P(T Z (O))). K n i is interpreted 

as {x i} . U n is interpreted as binary set unioh (one for each sort). Cn, k is 

interpreted as a substitution of tree languages. In this paper we are only interested 

in IO and OI substitutions (cf. Engelfriet and Schmidt [1977] for definitions). There- 

fore, accordingly which substitution has been chosen, one gets D(Z)-algebras ~T IO 

and ~ I  . 

2-4 t~Z_ 
The D(Z)-algebra is defined similarly to 2.3. The carrier of sort n, PTZ, n , 
co 

is P (T~(n)),the order relation is inclusion. D (~)-constant symbols and U's are inter- 
n 

prated the same as in 2.3. Extension of OI substitution to infinite trees the reader 

may find in Arnold, Nivat [1977], an extension of IO substitution can be defined simi- 

laxly. The D (7)-algebra, obtained in this way, we denote by ~I and ~IO 

2.5 It can be easily checked that all the D(Z)-operations in algebras F[ Z and 

(for OI and IO) are monotone, and U's for n 6 .~ , are A-continuous and co-~0-con- 
n 

tinuous. Therefore by Theorem I. 10 and 1. ii it follows that the global properties of 

the above defined power-set algebras depend on properties of substitution. 

~or z 6 { OI,IO } by ÷ we denote the z-substitution. 
z 

2.6 Theorem 
IO 

(2.6.1) For every signature Z the D(Z)-algebra ~T z 

[0-continuous and co-(0-continuous. 

(2.6,2) The same holds for ~I. 

is 
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3. Examples 

3.1 Example (~I ~ n o t r e g ~  for a p o l ~ c s ~ n a ~ e  I) 

Let Z 0 = {a} p Z 1 = {s} ~ Z 2 = {~} , Z n ~ for n > 2. 

Consider the following tree t 6 ~(l): 

~ x X 

o e 

I t  i s  e a s y  t o  c h e c k  t h a t  t h e  s e ~ e n c e  {A , n  £ ~} , w h e r e  A = { a , s ( a ) ,  . . . .  s n ( a ) }  , 
n n 

is an iteration. Then the tree t' : 

belongs t o {t} ~ U A n, but it does not belong to U ({t} ~ An), 
n6O n6~  

This example shows that the algebraic mapping f : P(T[(o)) ~ P(T[(o)) defined by 

f(L) = {t} ~ L, is n0t algebraically continuous. Therefore, by Theorem I.IO 

~ I is not regular. It can be easily checked that the system 

~(o) { s(x)} (~o) U {a}) 
1 = ~! ' 

¢(o) {t} . (o) 
2 = ~ 91 ' 

needs exactly ~0+I steps of iterations to "achieve" the solution. One can easily 

prove the following 

3.2 Proposition 

(3.2.1) ~ I  is always semiregular. 

(3.2.2) ~IO is always 0~-continuous. 

(3.2.3) For a monadic signature 7, ~OI is ~0-continuous. 

3.3 Example ( ~ I  and ~IO are not co-regu lar  for  a polyadic s igna ture  X] 

Let [ be a signature like in Example 3.l,for every n6£0 let t 6 T~ (I) 
n 

denote the following tree: 

s(a) 

• ) 
o 

• "PS n+2 (a) 
6 

Let L = {t : n6£0} . For every n6~ ~ denote by A the set 
n n 

s p e c i f y  w h i c h  k i n d  o f  s u b s t i t u t i o n  i s  u s e d  h e r e ,  a s  

eo 

{sn(x)} + Tz(o) (we do not 

A n is the same for OI as well 
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as for IO substitution). ~{A : n6O} is obviously a co-iteration. Observe that the 
n 

tree t' from Example 3.1 belongs to n'~wQ(L+An)' but it does not belong to 

L ÷n~ An = L + {s ~} (since in each t n the variable x occurs exactly once, substitu- 

tions OI and IO in the above formulas coincide). The above example also shows that the 

system . (o) = {s(x)} + ~o) 

~(o) ~ (o) 
2 = L + ~1 

provides exactly ~+I steps of co-iterations. 

3.4 Example ( ~ I  a n d  P~7 IO a r e  not co-regular for a monadic signature £ co~tain- 

ing at leas t  two unary operation symbols) 
23 n. 

Let [i = {s,g }~ Z n = ~ for n # i. Let t n = sgs gs g...s gtx), for n6~ . De- 

fine2 ~n = {sn(x)} ÷ Tz(o) for n6~ . Let L = {t n : n6~} . Then the infinite word 

sgs gs g... belongs to n~(L÷An) but does not belong to (L÷D An) = L + {s ~} 

Again the system 
@i' (o) = {s (x) } + @~o) , 

(o) (o) 
2 = L + ¢1 ' 

produces ~+i steps of co-iterations. 

However in the case of one element monadic signature the situation looks different. 

3.5 Theorem 

If Z 1 = {s} , Z = ~ for n > I, then ~ is co-regular ~0t co-~-continuous algebra. 
n 

As the reader may guess, the essential reason for the phenomena produced by 

examples 3.3 and 3.4 lies in "too arbitrary parameters". The rest of the paper is devo- 

ted to investigate for what parameters co-iterations "stabilize" in ~ steps. In particu- 

we show that ~ is a co-semiregular algebra for OI and IO substitutions, and for lar 

arbitrary signature [. This we will do using topological methods. 

4. Fixed point systems of equations with closed parameters 

For simplicity of exposition we assume here that we are dealing with a finite sig- 

nature [. Howeve~ all results carry over for arbitrary signatures when adopting 

Myeie66ky-TayZoa topology on T Z which is always compact (cf. Mycielski, Taylor [1976]). 

For a finite signature [ we use a distance function d in the set T~ defined 

by d(t,t') = O, if t = t';e~e 2 -lwl, where w6~* is the shortest path ~ such that 

t(w) @ t'(w). It is well known that this function makes T~ into a com- 

plete metric space, which is compact if and only if the signature Z is finite. 

Results which we state here are valid for IO and OI substitutions~thus we will 

omit subscripts and denote substitution by + . 

4.1 Theorem (the main result) 

Let n,k6~ . 

T~ "A (i) m~} (4.1.1) If L ~ (n) is a closed subset and for every i = l,..,n,i m : 

is a decreasing sequence of closed subsets in Tz(k) , then 

L ÷ (n A ~ n A (n)-  ~ (~ ÷ ( A ~ I ) , .  On).,  
m m '''''m m ) = "''Am ) )  " 
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(4.1.2) If {L m : m6~} is decreasing sequence of closed subsets in T[(n), and 

AI,...,A n ~ T~(k) are closed subsets, then 

(2 Lm) + (AI .... An) = mn (L m + (A I ..... An)). 

Prpof In both cases it is enough to prove m-inclusion. We give a proof of both cases 

at once as it is based on the same argUment. Let ~ belong to the set standing on the 

right hand side of equality ((4.1.1) or (4.1.2)). Define 

÷ (i) A(n))} in the first casejand Fm = {t 6 L : ~ 6 t (Am ..... m 

F m = {t 6 Lm : ~ 6 t ÷(AI,...,An)} in the second case. Then we need the following 

technical lemmas. 

4.2 Lemma 

Let n, k£c0 

L ÷ (A 1 ~ . . . ,A n) 

4.3 Lemma 

Let 
co 

{t 6 T I (n) 

4.4 Lamina 

Let 

If L ~Tx(n), A 1 .... ,A n ~ Tx(k) are closed subsets, then 

is a closed subset of T~(k). 

n,k6~ . If ~ 6 Tz(k), ~,..,A n c T[(k) are closed subsets, then the set 

: ~ 6 t ÷(A 1 .... An)} is closed in T~(n). 

n,k6/0 , t 6 Tx(n), and let {A (1) : m6~} be a decreasing chain of subsets 
~(i) 

of Tz(k), for i = i, .... n, such that N # ~ for i = l,..,n. 
m m ~I 

Then t + (~ A (I) .... ~ A (n) n (t + (A ) (n)~% ,o..,Am iJ. m m m 

Continuation of 4.1 

obviously each F m Is nonempty and F m ~ Fm+ 1 for m6~ . By 4.2 and 4.3 each 

F is closed. Hence by compactness there exists t 6 2 Fm. 
m 

In the first case (4.1~i) it means that ~£~(t + (A~ I) ..... A(n)))'m 

Again by compactness, NA(i)# ~ for i = 1 .... ,n. By 4.4 ~ 6 t ÷(N A (I) ' ,A A (n)) .. J 
m m m m m m 

what completes the proof of 4.!.1 , 

In the second case it means that t 6 ~L m and thus ~ E( 2 Lm) + (A 1 .... An), 

completing 4.1.2. From 1.11 and 4.1 one immediately derives the following result 

(for the OI substitution it has been obtained by Arnold and Nivat [1978]). 

4.5 Corollary 

For every signature Z, the algebras ~ I  and ~IO are co-semiregular. 

Denote by CT~ OI (rasp. by CTZ IO) a D(Z)-algebra of all closed subsets, with OI-sub- 

stitution (rasp. with IO-substitution)0 By 4.2 we see that CTZ OI is a D(Z)-subalgebra 

of PTzOI ( CTxIO is a D(Z)-subalgebra of ~IO). By 4.1 one gets immediately the 

following corollary. 

4.6 Corollary 

For every signature [ the algebras C[~ I and C~ Z are co-w-continuous. 

To make the situation described in this paper more visible the results are grouped 

together and presented in the table below. 
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ON RELAXATION RULES IN ALGORITHMIC LOGIC 

B.A.Trakhtenbrot 

Institute of Mathematics, Siberian Branch, 

the USSR Academy of Sciences, Novosibirsk 630090, USSR 

§ 1. I~TRODUCTION 

Besides subtle analysis of program constructs many facilities 

that do not concern penetration in program-structure are widely used 

in the logic of algorithms. To such facilities that are rather of 

general set-theoretical and logical nature belong as well the rules 

we call here relaxation rules, e.g. 

P {G)'4,  P ,o  P, Q o Q, 
(1) 

P ' { G } Q '  

G' G 

 {G'J Q 

x ¢ lob G 

x P-[G} B:~¢ 

(2) 

(3) 

Rules I-2 are sound on the propositional level. Namely, one may in- 

terpret the metaprogram variables G, G' as state transformers (bi- 

nary relations) on an arbitrary set ~ , and pre-, post-conditions 

P, Q, P', Q' as arbitrary one-place predicates on ~ . Unlike I and 2, 

the soundness of rule 3, and even its very formulation are confined 

to the functional level, i.e. structural states s, t, ... are only 

considered, which map the set V of program identifiers into the se- 

mantical object-domain D. At the same time, to each condition P (to 
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each transformer G) a finite subset glob P ~ V (glob G~ V) ls relat- 

ed, such that the behaviour of P (of G) is completely determined by 

the values of the states on glob P (glob G). 

The status of the relaxation rules manifests itself by means of 

some specific strong statements. E.g. on propositional level the par- 

tial correctness statements P {G} Q belong to them, where P is the 

weakest precondition of Q, or Q is the strongest postconditicn of P. 

To some extent on the functional level a similar role is played by 

the statements we call accurate (§ ~). As a matter of fact, the tech- 

nique of accurate statements is a usual tool in axiomatizing algorith- 

mic l o g i c  (see  [2 3 , [3~, ~5J, [61); nevertheless, i t s  explicit  cha- 
r a c t e r i z a t i o n  is seemingly lacking. Maybe that circumstance explains 

some lack of coordination and also some inaccuracies in different 

versions of algorithmic logic. This paper is intended as a contribu- 

tion to the explicit presentation of the accurate statements techni- 

que. In § 2 notations and terminology are explained. The main facts 

and comments to them are in §§ ],4. 

2. TERMINOLOGY, NOTATIONS 

Let z=zl,..~,z k be an identifier vector, P - a condition, G - 

a transformer. Then, glob P~z, glob G ~z (verbally - "z is a sup- 

port for P","z is a support for G") are defined as below: 

glob P ~ z =d~f there exists p:Dk-~(true,false) s.t. 

Vs a Z (P(s)  ,-* p ( z ( s ) ) ) ,  

glob G ~ z =def there exists g:D2k-~(true,false) s.t. 

Vst  e Z (G(s , t )  * - ~ g ( z ( s ) ,  z ( t ) ) .  

The predicates p =def ~zSp(zS)' g =def ~ zszt' g(zS' zt) from 

the definitions above, are called the slice of P (respectively of G) 

over the support z. To avoid cumbersome notations we shall take some 

liberty in them hoping that will not lead to misunderstanding. The 

following examples are explanatory. Suppose, for instance, that 

glob P ~ zw (where z and w abbreviate identifier vectors zl..°z k 

and wl...Wk) and that the corresponding slice is ~zSwSp(zS,wS)~ 

then p(z,w) will be the notation for P. Particularly, such notations 
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are implied below in a) - b) where constructs are described that may 

be characterized respectively as information transfer from conditions 

to transformer and vice versa. 

Besides partial correctness statements (shortly - H-statements)~ 

P (G} Q correct accomplishment statements (shortly - M-statements) 

P <G> Q are considered as well, with the following semantics: 

P<G> Q =def Vs(P(s) ~ Bt (G(s,t) A Q(t)) (4) 

That is why we use everywhere below H and M-mnemonics to emphasize 

the situations when~though sometimes implicitely--H-statements, or 

M-statements are concerned. 

a) 
Given P =def p(z,w) and Q =def q(z,w) their H-transfer over the 

support z consists in constructing the transformer G with support z, 

such that 

g(zS'zt) =def VwS(p(zS'wS) °q(zt'wS))~ 

PQZ is the notation for that transformer. Similarly, the M-transfer 

over z yields the transformer denoted PQz with slice g defined thus: 

g(zS, zt) =def ~ wS(p(zS,wS) A q(zt,ws)) 

b) 
Given tranaformer G with support z = z I. .. z k and with slice 

~zSztg(zS,zt),its H-transfer conditions are PH' QH with supper~ zw, 

where w = w 1...w k and, besides, w n z = ~ . The slices PH and qH are 

defined by 

PH (zs'ws) =def zS=wS, qH(zS, ws) =def g(wS, zs) 

Similarly, the pair of conditions PMQ ~ is declared as the result of 

M-transfer, where 

PM (zs'ws) =def g(zS'wS)' qM(zS'wS) =def zS=wS 
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§ 3. RELAXATION RULES 

Given two pairs of conditions PQ and P'Q' with support z it may 

occur that 

VG<glob GO_ z A P{G} Q ~ P'{G}Q') (5) 

If so, the pair P~Q~ is said to be a H-relaxation of the pair PQ 

over the support z. Similarly, M-relaxations of the pair PQ over the 

support z are considered as well, and respectively notations 

H(PQ, P'Q', z) and M(PQ, P'Q', z) are used. In these terms what the 

soundness of the rule (I) (and its analogy for M-statements) really 

means is just the following: for arbitrary P, Q, P', Q', z 

P' m P A Q o Q~ --~ H(PQ,P'Q',z) (~-~) 

P'D P h Q m Q' --> M(PQ,P'Q',z) (6-M) 

What other relaxation rules are possible? The answer essentially 

depends on the additional requirements one may claim concerning the 

support of the conditions. 

THEOR~ q. If conditions P, Q, P', Q', are only considered with 

support z, then 

H(pQ,p,Q~,z) ~-~ (p~o pAQDQ') v (P' = false) 

v (Q' = true) 
(7-H) 

M(PQ,P'Q~z)~--~ (P~DPAQmQ') V (P' = false) 

v (P=true A Q=false) 

(7-~) 

Hence in the special situation above implications (6) are almost 

reversible. However, generally speaking, different relaxation rules 

exist that are precisely oharacterized in Theorem 2 below. Prelimina- 

rily, let us note that (unlike partial correctness) in the case of 

correct accomplishment for arbitrary PQ the existence of G with sup- 

port z such that P <G> Q is not obligatory. Hence, the following M- 

consistency criterion must be t~en into consideration. 
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M(PQ, z) =def VzSwS(p(zS'wS) D Bztq(zt,wS)) (8) 

Below, for definiteness, the pairs under comparison are assumed to be: 

P =def p(z,w), Q =def q(z,w) P' =def p'(z,v), Q' = q'(z,v) ' def 

THEOREM 2. 

H(PQ,P'Q',z) ( > VzSvS(p'(zS,vS) D 

D Vz t ~wS((p(zS,wS) o q(zt,wS)) o q'(zt,vS))) 

M(PQ, P*Q',z) 4 > V zSvS(p'(zS,v s) 

O (M(PQ, z) o ~wSVzt(p(zS,wS) ^ (q(zt,wS)o q,(zt,vS)))) 

(9-H) 

(9-M) 

Let us denote H(PQ, Q',z) and M(PQ, Q',z) the subformulas undez-- 

lined in (9-H) and (9-M). It is easy to realize that the predicate 

~zSvSH(pQ,Q',z) is the slice of the weakest precondition R 

such that R {G} Q holds for all G, where glob GC_z and P{G}Q. 

The meaning of M(PQ, Q',z) is similar if the additional requirement (8) 
is fulfilled for the pair PQ. 

Preserving the same notations H(PQ,Q',z) and M(PQ,Q',z) for the 

weakest preconditions defined above and taking into account that if 

the premises P <G> Q and glob G c z are true, so is M(PQ, z), we can 

formulate the general relaxation rules as follows: 

glob G C_z, P{G}Q, P' ~ H(PQ,Q',z) 

P , - [  G Q, 
(lo-~r) 

glob G ~ z, P <G> Q, P' ~ •(PQ, Q',z) 

2' /-,G> Q' 

(IO-M) 

R~iARKS 

I ° . The proof of Theorem I shows in fact that on the propositional 
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level the general H-relaxation rule becomes 

P{G}Q, (p,o PAQoQ') V (P' = false) v (Q' = true) 

P, (G) Q, 

i.e. only slightly differs from the consequence rule (1). The same 

remark holds for M-relaxation. However, on the functional level from 

(9-10) many special rules may be derived that are common in algorith- 

mic logic, for instance, rule (3). The following rule 

gZob GSz, p(z,w) {G} q(z,w) 

z=u {G)p(u,w) o q(z,w) 

(11) 

and its reverse are also worth noting. Clearly, they suggest why ini- 

tialization of global variables is frequently used as precondition in 

partial correctness statements. 

2 ° . For the first time general H-relaxation occurs actually (though 

in some other terms and notations) in Hoare's adaptation rule ~I ] 

Unfortunately, the explicit expression for what we denote H(PQ, Q',z) 

is incorrect in [I]. (See [6]~ we only learned later from [3] that 

this incorrectness was pointed out long ago by Morris in unpublished 

notes). Incidentally, Heare's expression coincides with that we re- 

ferred for M(PQ, Q',z); however, we have not so far come across any 

considerations of M-relaxation. 

§ ~. ACCURATE STATFA~NTS ABOUT PARTIAL CORRECTNESS 

AND CORRECT ACCOI~PLISH3gENT 

On the propositional level the H-statement P ~G} Q, where P is 

the weakest precondition of Q, is the strongest possible for given G 

and Q. On the functional level a similar rule is played by the fol- 

lowing statements: 

HI(P'G'Q'z)  =def glob G~z A V P ' Q ' ( P ' ~ G }  Q' 

H(PQ,P'Q',z)) 
(12-H) 



MI(P'G'Q'z) =def glob G~_z 

M(PQ, P'Q', z)) 
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^ VP,Q,(P, <G>Q' < 

(12-M) 

An alternative approach in pointing out "strong" statements is 

based on the monotonicity of H and M-statements, which on the propo- 

sitional level is reflected in rule (2) and its M-analo G . 

P <G> Q, G'~ G 

P <G,> Q 
(2-M) 

These are the precise definitions: 

H2(P'G'Q'z) =def glob G~z A VG'(glob G'~z 

(P{G'} Q < > G' ~ G)) 
(13-H) 

M2(P'G'Q'z) =def glob G_Cz A VG'(glob G'C z 

(P<Q'>Q < > G'_~G)) 
(13-M) 

Note that in Theorems 3-H and 3-M below the constructs PQz and 

PQz from ~ 2 are used. 

THEORE~ 3-H. For each support z the following three statements are 

equivalent: 

HI(P,G,Q,z), H2(P,G,Q,z),and (G = PQz) 

In what concerns M-statements, there are some additional peculia- 

rities. While in Theorem 2 the M-consistency requirement (8) was ta- 

ken into account, now a stronger one 

MI(PQ, z) =def VzSwS(p(zS,wS) D 3! z tq(zt,wS)) (8') 

will work. Given a pair PQ, condition PQ is defined: 



s s p(zS,w s) A 
pQ(z ,w ) =aef 

Obviously: 

PQ 
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~: z~q(zt,w s) 

~ A Mz(PQQ, z), M~(PQ, z) <-~ (PQ = P) 

THEOREM 3-N. For each support z the following three statements are 

equivalent: 

M~(P,G,Q,~), M2(P,G,Q,z),(G -- ~QQ~) ~P <PQQ~ } 

COROLLARY. If M!(PQz) holds, then the equivalence of 

MI(P,G,Q,z), M2(P,G,Q,z), (G = PQz) 

is implied~ 

Suppose HI(P,G,Q,z) holds and, hence, H2(P,G,Q,z) and G = PQz 

hold as well; then the pair PQ is said to be a z-accurate H-pair for 

G, and P <G} ~ is said to he a z-accurate H-statement. The similar 

terminology is used in what concerns accurate M-pairs and accurate 

M-statements - Theorems 3-H, 3-M, and accurate pairs may be useful in 

axiomatizing algorithmic logic because they allow us to confine to 

the inference of only accurate H and M-statements~ind~ed,~ ~the re- 

laxation rules (tO-H, tO-M) that provide the inference of all other 

true H-statements and M-statements. To justify this approach the fol- 

lowing two questions are to be answered preliminarily: 

(I) For what transformers G with support z z-accurate H-pairs 

(M-pairs) PQ do exist? 

(2) ~nat is the estimate for the supports of these conditions 

P,Q one may guarantee? 

THEOR~ ~. For each transformer G with glob G ~ z there exist z-ac- 

curate H-pairs and z-accurate M-pairs with support zw (z=z I. ..Zk, w= 

Wl...Wk). 

In p~icular, the pairs ~% ~d PM% i~ which the info~ation 
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of G is transferred (see § 2) do the job. 

Is it possible to improve the estimate for the support of the 

pair PQ? In some cases - yes, but in general obstacles arise that be- 

come clear by considering the following question: 

do 
(3) Let glob G ~ z; in what cases z-accurate pairs exist with 

suppo~ z? (u~like pairs PH% and PM%~ that require e~ra v~iab- 
les w). 

To confine to H-pairs, we remark that since G = P~ (see § 2) 

VzSzt(g(zS,zt) *-~ (p(z s) o q(zt)) (fl@) 

holds, that is the same as 

Vst(G(s,t) ~-*((P(s) o Q(t)) A s = t outside of z) (I~') 

But the analysis of (Ig') obviously shows that this is possible only 

in very special (and trivial) situations. For instance, if 7 P(So) 

and Q(t o) hold, then 

Vt(t=s o outside of z--~ G(s ,t))l 
O 

Vs(s=t o outside of z-~ s(S-to outside of z G(S,to) ) 

In particular, no single valued transformer (well, but just such 

transformers are described by deterministic programs) allows z-accu- 

rate pairs without extra variables. This is the reason why the analy- 

sis of partial correctness on the propositional level did not result 

in the notion of accurate H-statements though just the same analysis 

discovered"strong" statements P ~G)Q, with the weakest precondition 

P. On the other hand, the functional level allows the use of extra 

(relative to glob G) variables and by that the existence of accu- 

rate statements. Theorems 3,4 give evidence that in such statements 

the point is in transferring information there and back from trans- 

former to conditions and from conditions to transformer. 

It is worth mentioning that the role played by extra variables is 

actually - though in some other terms - clarified in [~, and that in 

axiomatizinE precedures all three characteristics of accurate state- 

ments are used ([2], [3], [6] ) . 
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L-FUZZY FUNCTORIAL AUTOMATA 

V~ra T2nkov~ 

Math. Institute of Charles University 

Praha 8., Sokolovsk~ ~3, 18600,Czechoslovakia 

I. Introduction. 

Finite sequential non-deterministic automata accept the same 

languages as the deterministic ones. This well-known fact was genera- 

lized by Santos in ~11. He proved that finite stationary maximin se- 

quential automata accept the same languages again. Another kind of 

generalization is given by Thatcher and Wright in E2S, where finite 

non-deterministic tree automata are shown to accept the same langua- 

ges as the deterministic ones. More generally, Ei!enberg and Wright 

~3~ investigate automata in varieties, but they prove the coincidence 

of the classes of languages only in varieties without equations, i.e. 

for the tree automata again. Maximin tree automata, more generally, 

maximin automata in varieties, form a straightforward generalization 

including all the above cases. 

In the present paper we investigate L-fuzzy automata in the va- 

rieties where the defining equations are in basic operations. Our no- 

tion of fuzziness is that of Zadeh C4,5~ and Gogue~ E6,71 and includ- 

es the maximin and minimax stationary automata. We characterize all 

those varieties in which finite maximin automata accept the same lan- 

guages as the deterministic ones. We prove that this is true only in 

rather special varieties: if redundant operations are omitted, then 

only a type of commutativity is permitted. 

In the paper, categorical language is used. Varieties with equa- 

tions in basic operations are described as categories of F-algebras 

with F:Set--~Set being a superfinitary functor (see III.c)). This ca- 

tegorical description makes the positive results extremely simple 

and lucid (see VII.). Nevertheless, the proof of the negative result 
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(only tree-group fuzzy automata accept the same languages as the de- 

terministic ones) requires a little routine in manipulating set func- 

tots. 

II. Arbib-Manes machines. 

A unified approach to many kinds of automata has been introduced 

by Arbib mnd Manes £ 81. Let us recall their basic notions. If ~ is a 

category and F: X-~ i~ a functor, an F-algebra (in ~ ) is any pair 

(Q,d,) where ~:FQ--~Q is a 9~-morphism. A homomorphism h: (Q,~) 

---~(Q',6 ~') is a j~ -morphism such that ~. h=F(h) • ~'. A free F-algebra 

over an object _I consists of an F-algebra (I#,$p) and a ~6-morphism 

:I--,I @ such that for every F-algebra (Q,9 ~) and every S~-morphism 

i:I--~Q there exists a unique homomorphism i@ (I@,9~)--~ (Q,~C) with 

~. i#=i (i@ is called the free extension of i). If free F-algebras e- 

xist over any object I, F is called a varietor (an input process in 

the terminology of tS]). An Arbib-Manes machine M consists of an F- 

algebra (Q,cO (Q is the state object of M,d" its transition), an ini- 

tial morphism i:i--~Q and an output morphism y:Q--,Y. We indicate M = 

=(I,i,Q,~,Y,y). If F is a varietor, then the behaviour beh M is defi- 

ned as i@. y:I@---~ Y, where i ~ is the free extension of the initial 

morphism i. As a minor modification, let us define an F-acceptor (see 

[9]) as ~ =(I,i,Q,~,T,t), where I,i,Q,~ are as above and t:T-~Q is 

a subobject of Q. The ~ ~(J~) of% i s  (i@)-l(T) (where the 

preimage is categorically modelled by a pullback). 

III. Examples, 

a) Let us denote by Set the category of all sets and mappings. 

If ~- is a set, the funetor F~:Set--~Set is defined by 

F~x= xx~ , F~f = f×l~ 

(where l~: ~--~ ~E denotes the identical mapping). F~-acceptors are 

precisely (complete deterministic) sequential automata with ~ being 

the set of inputs. For, ~ with the concatenation 9~:~x~[--~ ~ 

is a free F~-a!gebra over a one point ~]%~ (see ES~), i:~J%~--~ Q sen- 

ding the empty string ~ to an initial state qo extends to i @" ~ ~ 

--~ Q by the well-known formula ±@(sg)= cf(i@(s),~), TcQ is the set 

of terminal states (t:T--,Q is the inclusion), hence (i@)-l(T) is the 

set of all accepted strings. 

b) Let-gl be a ranked alphabet (= type or signature), i.e.]~ con- 

sists of a set ~ and an arity function ar: ~---y Acardinals~. The 
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functor F/~ :Set-,Set is defined by 

x x 

where LI denotes a disjoint union of sets (or mappings, resp.).Then 

F a -acceptors are precisely (complete deterministic) /I -tree automa- 

ta in the sense of Thatcher and Wright [ 21. Hence, let us call the 

functor F~ il -tree functor or simply tree functor. In [2], X and e- 

very ar(~) are always finite. /'l = {X,ar~ with this property is said 

to be superfinitar~. If there is no danger of confusion, we write 

F4n ~ instead of F~ whenever Jl =~ ,ar}, X consists of a single 

letter g and ar(~)=n. 

c) A functor F:Set--~Set is called superfinitar~ if there is an 

epitransformation ~ :F~---~F with/l superfinitary. Thus, F-algebras 

are precisely universal algebras of the type/)_ which satisfy equati- 

ons determining the epitransformation. E.g. commutative groupoids are 

F-algebras with ~ :F(2~--~F prescribed by (x,y)=(y,x). In this case, 

languages of F-acceptors, being subsets of free F-algebras, are sets 

of equivalence classes of binary trees, where the equivalence is ge- 

nerated by the exchanging of branches. 

IV. L-fuzzy relations. 

Let us recall (see Goguen [6,7]) that L is said to be a clos~ 

(= complete lattice ordered semigroup) if it is a complete lattice 

( V denotes supremum and/k infimum in L) and a monoid (with respect 

to an operation • ) which is sup-distributive, i.e. 

(k/ a i) • (k~. bj) = k~. (a i. bj). 

Examples of closg's: a) If L is a completely distributive comp- 

lete lattice, then it is a closg with a. b being the infimum aAb. 

Throughout the paper, L o denotes the distributive lattice ~0,15 with 

• being the infimum. 

b) The unit interval (0,1> with its usual order forms a complete 

lattice. It can be turned in a closg in at least three natural ways, 

namely 4 being the infimum, 2 being the supremum and 8 being the mul- 

tiplication. 

If L is a closg, thea L-fuzz,y relatiom from a set A into a set B 

is a mapping m:Ax ~--, L. The value m(a,b) is interpreted as the grade 

that aa A is related to B. Let us indicate m:A--~B an L-fuzzy relati- 

on from A into B. If ml:A--~ B and m2:B~d are L-fuzzy relations, 

their composition ml. m2:A~C is defined by 

(ml.m 2)(a,c) =~yB ml(a'b)'m2(b,c). 
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All sets and all their L-fuzzy relations form a category (see Goguen 

[8]). We denote it by L Rel. Clearly, for every sets A,B, the set of 

all L-fuzzy relations from A to B is partially ordered by 

ml~m 2 iff ml(a,b)6m2(a,b) for all (a,b)~ AxB. 

Let us notice that L o Rel is the category of sets and their binary 

relations as morphisms. The category Set of all sets and mappings is 

naturally embedded in L Rel such that any mapping f:A--~B is turned 

in an L-fuzzy relation mf:A~B by the rule 

mf(a,f(a)) = l, mf(a,b) = 0 otherwise. 

Thisembedding preserves the composition of mappings (i.e. mf.g = 

= mf.mg) whenever LoC L. It is fulfilled in all the above examples 

and, in what follows, we always suppose it. 

V. Fuzzy automata. 

Let F:Set--,Set be a varietor and L a closg. An L-fuzz~ F-auto~ 

maton is ~ =(I,i,Q,E,Y,y), where i:I--*~Q, o':FQ--mQ, y:Q--9~Y are L- 

fuzzy relations. It can be considered as an acceptor as well. The in- 

verse L-fuzzy relatio~ y-1 y >>Q, given by the rule y(a,b)=y-l(b,a), 

determines it. 

Examples: a) Lo-fUzzy F~ -automata are non-deterministic Q-tree 

automata in the sense of Thatcher and Wright [2~. More generally, L o- 

fuzzy F-automata are relational automata investigated by Trnkov~ ElO, 

ll3. 

b) If L=<O,l~ with a. b being the minimum of ~ and b, then L- 

fuzzy F~ -automata are stationary maximin automata in the sense of 

Santos Ill or fuzzy automata in the sense of Mizumoto, Toyoda and Ta- 

naka [12~. 

In analogy with the deterministic case and in accordance with the 

above examples, we expect the behaviour of an L-fuzzy automaton ~ = 

=(I,i,Q,~,Y,y) being an L-fuzzy relation i @. y:I@--* Y, where (I~,~) 

and ~ :I--~I ~ form a free F-algebra over I and i@:(I@,~)~ (Q,~) is 

a free extension of i:I~Q. We recall that the free extension i @ is 

defined by the equalities 

9" i@ = F(i@)" °~ , ~' i~ = i. 

The second equation causes no difficulty but, in the first one, there 

is the symbol F(i ~) which has not yet a meaning. It is necessary to 

extend F:Set--~Set to ~:L Rel---~L Rel, in a standard way, if possible. 

In [II], any F:Set--*Set is extended to F:L o Rel--~L O Rel. In the next 
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part, we show a standard constructionhow to extend an~ superfinita- 

ry F:Set--~Set to ~:L Rel--,L Rel for an arbitrary commutative closg 

L. But in both the cases, the extension Y does not satisfy all the 

requirements for being a functor: instead of the equation ~(~.~) = 

=F(~). F(~), only the weaker condition ~(~.~)~(~), ~(~). On the 

other hand, if ~ $ ~ then always ~(~)& ~(~). Let us call an exten- 

sion with these properties a semifunctor. Semifunctors are quite suf- 

ficient for the purpose to introduce the behaviour of L-fuzzy automa- 

ta. This follows from the theorem below. 

Theorem. Let F:Set--,Set be a varietor, let ~:L Rel--~L Rel be a se- 

mifunctor which extends F. Then for any pair of L-fuzzy relations i: 

:I--~Q, ~:FQ--,> Q there exists a un~gu£ L-fuzzy relation i@:I@--,> Q 

such that ~. i~=F(i$).~ and ~, i#=i (where (I@,~) and ~ :I--~I ~ is 

a free F-algebra over I in Set). 

Proof. Set is coreflective in L Rel, so the embedding Set--->L Rel 

preserves colimits. Then use VI.1. in [14]. 

VI. Behaviour of fuzzy automata. 

Let L be a commutative closg, F:Set--~Set be a superfinitary fun- 

ctor. We show the standard way how to extend F to ~:L Rel--, L Rel. 

a) For iI with precisely one letter ~ and ar(~)=n, let us write 

F~n ~ instead of F/~ . First, we extend G=F4n } as follows. If m:A~ B, 

we define G(m):A×...~A~B:x...~B by 

[G(m)] ((ao, ... ,an_ l) , (bo, ... ,bn_ i) ) =m (ao,bo) ..... m(an_l,bn_l). 

b) For arbitrary n = {• ,ar], we put ~zx =¢e~X F'~(~)- 

c) If F is a superfinitary functor, express it as ~ :F2--, F with 

a minimal possible /i (i.e. if for some Xl" there is also an epitrans- 

formation ~' :F~z.--* F, then ~# = ~% . ~ for an epitransformation ~% : 

:Fa, ~ Fj~ ). If m:A~B, define ~(m):FA~ FB such that for every 

aaFA, be FB, 

~ ( m ) ] ( a , b )  = V [ ( % ( m ) ]  ( x , y )  , 

where the  supremum i s  t a k e n  over  a l l  the  p a i r s  ( x , y )  w i t h  ~ ( x ) = a ,  

( y )=b .  

I n  a l l  t h e s e  c a s e s ,  ~ can be e a s i l y  shown to  be a s e m i ~ n c t o r ( i n  

the  e a s e s  a) and b) even  a f u n c t o r ) .  Thus,  the  above Theorem can  be 

a p p l i e d ,  and we d e f i n e  the  b e h a v i o u r  b of  an  L - f u z z y  F - a u t o m a t o n  J~ = 
=(l,i,Q,d',Y,y) as 
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b = i @, y:I~--m~ Y. 

Let us notice that in the special cases mentioned in V. (i.e. inves- 

tigated in [!,2,9,10,Ii,12] the new definition of the behaviour coin- 

cides with the old ones. 

VII. Languages of fuzzy automata. 

Let L be a commutative closg, F a superfinitary set functor, ~ = 

=(I,i,Q,~f,Y,y) an L-fuzzy automaton with Q finite and b=i@. y:I@--, Y 

its behaviour. As usual, for any threshold ~ L, put 

~(~,~) = {X~I# I b(x,z)> ~ for some z~Y}. 

For L-fuzzy F~ -automata with L= <O,1) and a. b being the minimum, e- 

very ~(A,L) is proved to be regular, in Santos Ill. In [2], the ana- 

logous result is proved for Lo-fUzzy F~-automata (here, there are 

only the possibilities ~(~ ,1)=~ and ~(~ ,0), the latter being the 

language of the non-deterministic -~-tree automaton ~ ). We show that 

both these situatior~s are special cases of the following simple idea. 

For every set X, denote by ex:L x X the evaluation, i.e. ex(f,x) = 

=f(x). For any L-fuzzy relatlo~ m;A~ B denote by m:A L the mapp- 

ing ~(x)=m(x,-). If F:Set--~Set is extended to F:L Rel--,L Rel as a 

functor, then ~ =(I,i,Q,~,Y,y) can be replaced by the F-automaton 

Al=(I,il,LQ,c~l,Y,y I) with il--~ , C~l=(F(e Q) .of), y!=eQ • y. ey. A simp- 

le running in the picture below shows that beh ~% =beh A I. 

o~V,,,,.~,.,,~ r(L Q) 
FQ F% I 

I ~ o  %', - o :,,, o y 

(The above situation, generalizing the classical power automata cons- 

truction, can be applied on every embedding of Set as a coreflective 

subcategory.) The automaton ~l is very near to being a deterministic 

F-acceptor: its initial morphism and its transition are already mapp- 

ings; hence to obtain a deterministic F-acceptor with the language 

~(~,~), it is sufficient to replace the output of A1 by the set T 

of terminal states with T={t~ LQ]Yl(t,z)> ~ for some z~ Yg. 

Unfortunately, A1 is far from being finite unless L is a finite 

closg. But if a threshold ~ ~ L is given and if there is a homomorph- 
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ism h:L--*L" with respect to • and V such that L" is finite and 

h(I')> h(~) iff 2' > ~ , we can replace the L-fuzzy relations by L'- 

fuzzy relations (by the rule sending ar~y m:A--~ B to m':A--~B with 

m'(a,b)=h(m(a,b))) and ~(~,I) is proved to be accepted by a finite 

deterministic F-acceptor. 

Let us call a closg L finitely reducible if, for every ~ s L, 

there exists a homomorphism with the above properties. This is rather 

restrictive condition. Nevertheless, every linearly ordered complete 

lattice with • being the minimum is finitely reducible (hence, the 

result of Santos C1] for maximin automata is included; minimax auto- 

mata are obtained by the investigation of h: ~ O,1) ~ ( O,l> , given 

by h(x)=l-x). 

VIII. Tree-group automata. 

Let F:Set--~Set be a superfinitary functor. We say that L-fuzzy 

F-automata have the same capability as the deterministic F-acceptors 

iff, for every finite L-fuzzy F-automaton J~ and every threshold ~ 

L, the language ~(~,~) is accepted by a finite deterministic F- 

acceptor. In this part we describe all the superfinitary functors F 

for which the capability of the L-fuzzy F-automata (with L being fini- 

tely reducible) is the same as the capability of the deterministic F- 

acceptors. There are precisely tree group functors described below. 

Let n= ~ O,...,n-1} be a natural number and G a group of permnta- 

tions of n. For ar~ set X denote by X (n'G) the set Xn/N, where the 

equivalence is defined by 

~ ~ iff ~ = g • ~ for some gmG. 

Since G is a group, ,v is really an equivalence. Clearly, for every 

mapping f:X--~Y, the mapping fn:xn--~Yn can be factorized on f(n,G): 
:x(n,G)__~y(n,G). 

Now, let/Z=~ ,ar~ be a group-ranked alphabet, i.e. ~ is a set 

and the arity function ar assigns to every ~ a ~ a pair ar(~) = 

=(n~,G~), where n 6 is a natural number and G~ is a group of permutati- 

ons of n~ . (If every G~ is trivial, /% is, up to a formal difference, 

a ranked alphabet in the usual sense.) We define again 

x = f 

The F~ is called a tree-group fu~mtor and the F~% -automaton (determin- 

istic, L-fuzzy) are called tree group automata. 
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Theorem. 

Let F:Set--,Set be a superfinitary functor. The following asser- 

tions are equivalent. 

(a) For every finitely reducible commutative closg L, L-fuzzy F- 

automata have the same capability as the deterministic F-acceptors. 

(b) Lo-fUzzy F-automata have the same capability as the determi- 

nistic F-acceptors. 

(c) F is a tree-group functor. 

Proof. (c) ~> (a). The extension F:L-Rel---~ L-Rel of any tree-group fun- 

ctor F (see VIa),b))is a functor again, so (a) follows by VII. 

(a)==~(b) is trivial. 

(b) ~ (c): Lo-fUzzy relations are precisely usual relations(let 

us indicate them like multivalued mappings) and Lo-fUzzy automata are 

relational automata. Since F is supposed to be superfinitary, there 
N F exists an epitransformation ~ :%~--I 4ni%---~ F with N and all the n i s 

minimal (see VII.c)), i.e., for every i=l,...,N, di= ~)(lni) fulfils 

(1) di~ Fn i \ ~k~= I ~ (F4nj}ni). 

~) Let us suppose that ~ glues together a part of F- ~ and of 
n I ~nl~ n 

F4n2% , i.e. there exists a set X and f¢ F4nl% X=X , g e F~n2%X=X 2,such 

that ~x(f)= ~x(g). We may suppose that nl-~ n 2 and f(nl)=g(n 2) has 
p:recisely one element. If X is a set, let us denote by (xo,...,xnl_l)l 

(or (Xo,...,Xn2_l)2) the fg F4n]%_ X (or the gGF~n2}_X) sending i to xi* 

Hence, we have 

(2) for every xgX, we have ~(x,°..,x) 1 = ~(x,...,x) 2. 

We construct a relational F-automaton J~ =(I,i,Q,~,Y,y) as follows. 

I=Y=Q=nl, i sends every element of I to the whole Q, y=lQ, o~:FQ~ Q 

sends d I (see (1)) to the whole Q, cC(x)=~ otherwise. Let iw:(I@,~)--~> 

(Q,~) be the free extension of i. Then, for every x~ I @ , either 

i@(x) is the whole Q (and then x ~(~)=~(J~,O)) or i@(x)=~. Moreo- 

ver, 

if ,Xnl_l are distinct elements of L(~), then (3) x°""" 

( ~)(Xo,...,xnl_l )I)) e L(7~) while ~(~;(Xo,...,Xn2_l)2))$L($h). 

For, if we denote el= 9(Xo,...,xnl_l)l, c2= ~)(Xo...JXn2_l )2, we have 
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(F(i@))(Cl)m d I while (F(i@))(c 2) c ~(F~n2}Q) so that d'((F(i@))(Cl)= 

=Q while ~((F(i#))(c2))=~. (3) also implies that ~(%) ~s infinite. 

Now, let ~ =(l,j,~,~,T,t) be a finite deterministic F-acceptor such 

that ~(%)=~(%). Since ~ is finite, there exist infinite Zc~(%) 

such that j@ maps Z on the same state qo~ ~. Choose the Xo,...,xnl_l 

in Z. Then ~(c I) m ~(~) iff g(c 2) ~ ~(~.) because (2) implies 

(F(j@))(Cl)=(F(j~))(c2). This contradicts (3). 
~) By ~) we may suppose that F= IN[ ' ~-- W (F4ni~)" Denote by G 1 

the set of all ga F~nl~n I such that ~(g)= ~(lnl). The minimality of 

n I implies that every g 6G 1 is a permutation of n I (otherwise, 

~(F~nl~ ) could be expressed as some ~'(F~m ~) with m~nl). Since 

is a transformation, G 1 is a group. We are going to prove that 

(F~nl~)=~(nl,G1) ~ . Let us suppose the contrary, i.e. 

(4) there exist f,h:nl--~n I such that ~o(f)=~(h) but f~g. h for 

all g m G 1. 

~!) Let us suppose that f(nl)\ h(nl):~. Hence, we may suppose 

h(nl)= ~0~, f(nl)= ~O,l~. More precisely, nl=AUB, A=40,...,k-lS, 

H= ~k,...,nl-l~ , k_~l and f sends A to 1 and B to O. We construct a 

relational F-automaton J4=(I,i,Q,c~,Y,y) as follows: I=nlx nl, Q=nl,Y= 

=A; i sends every a~ nlx A to A and every b~ nl,~B to B; ~':FQ~ Q 

sends d I (see (1)) to Q and every x~FQ\~dl~ to B; y sends every aaA 

to itself and every b m B to 9. We show that ~(J~) is not accepted by 

any finite deterministic F-acceptor. Let i @ :(I@,~)--, (Q,d3 be the free 

extension of i. Then for every xmI @, either i@(x) is Q (and then xs 

~(%) or i@(x)=B (and then x@~(J~)). Moreover 

(5) if Xo,,..,Xn _l are distinct elements of I@\~(j~) and 

zo,...,Zk_ 1 ~re distinct elements of ~(~) then 

( ~ (z o, • • •, Zk_l,Xk, ~. • ,xnl_l) ) ~ ~(j~ ) but ~ (~(xo,... ,xnl_l) )~ 

For, if Cl=~(Zo,...,Zk_l,Xk,...,xnl_l) , c2= ~(Xo,...,xnl_l), then 

d l~ (F(i@)) (c l) while d I $ (F(i @)) (c2) because i~(xj)=B for all j=O,... 

...,nl-1 and card B~n 1. Clearly, both ~(%) and I@\ ~(Jb) are infi- 

nite. Let us suppose that there is a finite deterministic F-acceptor 

=(I,j,~,~,T,t) such that ~(~)=~(J~). Since ~ is finite, there 

exist infinite ZlC ~(~) and ZoC I@\ ~(J~) such that j# maps Z 1 om 

a state ql m ~ and Z o on a state qo @~. Choose the distinct Zo,...,_Zk_ 1 
in Z 1 and Xo,...,x n -1 in Z o. Then ~(Cl)e ~(~L) iff ~(c 2) ~ ~(~) 

because (F(j @))(cl)l(F(j@))(c2). This contradicts (5). 



472 

2) If h(n!)\ f(n I)@~, interchange h and f in ~ I). 

~3) Finally, let us suppose h(nl)=f(nl). Denote B=f(nl). Clear- 

ly, card B~2 (otherwise f=h). Since h(n l) is also B, there exists 

:nl-->n I such that 2, f=h. We construct a relational F-automaton 

.g =(I,i,Q,~,Y,y) as follows: I=nl~ nl, Q=(nlxn l) u ~ , Y={9~ 
(where ~ is supposed not in nlx nl) ; i:I--,> Q sends every (k,j) to 
nl xf-l(f(j)); y:Q~y sends ~ to itself, y(q)=~ otherwi@e; now, we 

define o~:FQ~Q as follows: for every z ~ FQ choose x g&=~i 4 F4n ~ Q 

with 9(x)=z; if x=(ao,...,anl_l) G F4n ~ Q with ao,...,anl_l distinct, 
then put 

cC(z) = nlx f-l(b) whenever aj g nlx f-l(b) for som~ be B and all 

j=O,...,nl-l& 

~(z) = ~ whenever a~nl~f-l(f(g(~))) for some gag I and all 

j=O,...,nl-1; 

~z) = ~ in al~ other cases; 

(hence, in fact, ~ is independent on the choice of x m ~-l(z)). 

We show that ~(j~ ) is not accepted by any finite deterministic F-ac- 

ceptor. Let ie: (I#,~)--->> (Q,c[) be the free extension of i. One can 

prove that I @ is decomposed into the following disjoint sets: 

Z b =~z~l @ li@(z) = nlx f-l(b)}, b~B, 

Z~ = {z~ l@I i@(z) = Z]. 

All the sets Z b are infinite. (For, the sets nlx f-lib) are large en- 

ough - this is the rSle of the multiplying by the first factor n I - 

thus if Zo,...,Zn]_l~ Zb, then ~(~(Zo,...,z n _I ))GZ b.) Hence ~{(J~) 
is also infinite 5ecause the following assertion is fulfilled. 

(6) If Zo,...,znl_l are distinct elements of I @ such that 

zj~Zf(j) for all ~=O,...,nl-i , then 

~(~(Zo,.o.,Zn!_l)) e~(J{) but ~(@ (ZI(o),...,Z~(nl_l)))@~(~%). 

(The last fact follows from the definition of 2 and o". For, if ao,... 

.o.,anl_l are distinct elements of F~ni~Q such that ~(ao,...,~ 1 ) g 
1 l- 

(F(i @))(~) (Z~(o),..°,Z~(nl_l)), then necessarily ajg ~f- (f(~(g(j))) 

~e for some gE G 1 and all j=O,...,nl-l. But .~. f=h and g. h~g f for 
each g'g Gz~by (4). Hence, for each g'~ GI, there exists ~ such that 
f-l(f( -(j)))m f-l(h(g(j)))=Z. Consequently, never ct(~) (So,... 

• .-,an~-l]]= ~.) Now, let ~ =(I,j,~,~,T,t) be a finite deterministic 
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F-acceptor with ~(~ )= ~(~ ). Since ~ is finite, there exist infini- 

te ~b m Zb, b6 B, such that j4 maps each ~b on a unique state qb a ~. 

Choose zi~ Zf(i)" Then for c=9(Zo,...,z n 1 ), , ~= ~(z£(0), •.. 
...,Z~( n _i)), we have q(c) e ~(J~) iff ~q~) 6 ~(~) because 
(F(~))(~)=(F(j#))(~). This contradicts (6). 
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SCHF~MATICS OF STRUCTURAL ~ARALLEL PROGRA~ING 

AND ITS APPLICATIONS 

G.E. Tseytlin 
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252207 Kiev 207 USSR 

INTRODUCTION 

The advent of multiprocessor computing systems and elaboration 

of methods of parallel computations stimulated research on structural 

parallel programming in connection with the development of large paral- 

lel programs, in particular, systems of multiprocessor software. Since 

1965 the Institute of Cybernetics of the Ukrainian Academy of Sciences 

has been engaged in developing a formal apparatus suggested by V.M.Glu- 

shkov ~I~ to solve a number of important problems of automation of 

the logical computer structures design and programming. The basis for 

the given apparatus is the notion of a system of algorithmic algebras 

(SAA) which is in a complete agreement with the concept of structural 

programming. 

This communication is devoted to the theory of multiprocessing- 

oriented SAA which may be the basis for schematology of the structural 

parallel programming ~I-2 S • Principal results are solutions of prob- 

lems of axiomatization and equivalence of regular schemes in ~-algeb- 

ras oriented towards formalization of asynchronuus parallel computa- 

tions. Theorems from 2 to 5 formulated below are a natural generali- 

zation of results obtained in E2~ • ~±'~e considered schematology of the 

structural parallel programming found practical application in the 

solution of problems of artificial intelligence, of parallel transla- 

tion, of the development of a set of tools oriented towards the design 

of parallel programs ~I~ 

SYSTEMS OF ALGORITH~IC ALGEBRAS ORIENTED TO MULTIPROCESSING 

The SAA ~?~> is a many-sorted algebraic system ~] and consists 
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of two main sets: a set of operators ~ and a set of three-valued 

logical conditions ~ . Over the sets ~ and ~ is defined a 

signature of operations ~ = ~iO~ which consists of a system 

of logical operations, assuming values in ~; and a system ~ with 

operations assuming values in ~ . 

Among logical operations of the system ~ are the generalized 

Boolean operations [I] : disjunction (V), conjunction (A), negation 

(-). The system ~ has also an operation of left multiplication of 

a condition ~ by an operator A which generates a new condition 

=~ which coincides with the value of the condition o~ after 

application of the operator ~. 

The set ~ of logical functions, being superpositions of the 

operations entering into ~i , forms an algorithmic logic associated 

withS  . 

The system ~z contains the following operations: composition 

A x8 consisting in subsequent application of operators A~ ~ -  

-disjunction [~](AVB) which realizes the conditional transfer with 

respec~ to ~C~ to one of the operators A,~G~ ; o~ -iteration 

~A} consisting subsequent application of the operator for ~=0 in A 
until the condition o~ is true. 

Representations in SAA (~> of operators from ~ by superpo- 

sitions of the enumerated operations are called the regular schemes. 

Theorem 1 [1] • An arbitrary algorithm or a program are represen- 

table in SAA <~,~> by an equivalent regular scheme, A constructive 

procedure of regularization (of reducing to the regular scheme) is de- 

veloped for arbitrary algorithms and programs. 

It should be emphasized that the SAA apparatus is in a complete 

accordance with the concept of structural programming and can be the 

basis of the theory of schemes of structured algorithms and programs. 

To orient SAA towards formalization of parallel computations and in 

connection with the development of an apparatus of identical transfor- 

mations the following means of parallelism [I-2] were introduced into 

the signature of SAA: 

filtration which generates filtres-operators 

{ ~, if ~=J 
= N~ otherwise, 

where ~ is an identical operator and ~ is an indefinite operator; 

synchronous disjunction AV~ which is a partly defined operati- 

on consisting in the simultaneous application of the operators A and 

8 to a state ~6~ ; as this takes place A(~)=~(~) or one of ~he 

operators in the state ~ interrupts the computation and then the 
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transformation in ~ is executed by another operator; 

asynchronous disjunction A~ B consisting in an independent pa- 

rallel execution of operators A and B on various substructures of 

an operating structure P ; 

superpositions of operations, belonging to ~ , which generate 

operators from ~ and are called the parallel regular schemes (PRS). 

Relations which form the basis of identical transformations of 

PRS are characterized in terms of the introduced constructions ~I] 

Let us fix in PRS ~(A~)~ , with 

.... , 4 } ,  
sets of elementary operators and conditions, respectively, a certain 

collection of check points (spots at joints where operators occur in 

the scheme). Each check point ~ is associated with the condition 

which is false until the process of computations reaches the point T , 

true from the instant at which the given point T is reached, and ~u- 

certain in the presence of emergency halts in the way leading to the 

point ~ of the given scheme. This condition ~ will be called the 

condition of synchronization associated with the point ~ which here- 

after will be denoted by ~) . The condition of synchronization is 

used in PRS as filtering and iterative conditions. Let ~¢ be a lo- 

cal identical operator functioning over a substructure ~ such that 

~(~$)=~ for any condition ~ ~ ~ of the substructure ~ • 

Then, by definition, assume that the operator ~ operates in one time 

quantum tg~=~ while the check of conditions of synchronization, 

the passage through filtres and check points, do not require time ex- 

penditures (they are performed in time ~0 ). 

By synchronizer is meant an ~-iteration ~(~)=~)~ ~ ~ , where 

o~ is a logical function depending on conditions of synchronization 

associated with some check points of PRS. The synchronizer installed 

in some place of PRS delays computations in the given place of the 

scheme ~ up to the instant when its condition of synchronization 

(associated with the passage through the corresponding check points) 

becomes true. 

Theorem 2. In SAA with an extended signature of operations the 

synchronous- and asynchronous-type parallel processes and their various 

combinations a~e representable in the form of PRS. 

Thus, the apparatus of SAA oriented towards ~ormalization of pa- 

rallel computations may serve as the basis for schematology of the 

structural parallel programming. 
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CANONICAL FORMS IN ALGORITHMIC LOGIC 

We now turn to the discussion of the algorithmic algebra of logic 

being a component of SAA ~,~> . Let ~(0~) be a logical con- 

dition represented by the superposition of operations of the algebra 

~, where ~..=(OCl~,,,~O[:m.)~ ~:(A~..,~A,~)are sets of elementary conditions 
and variable operators, respectively. By 8-conjunction we shall mean 

the conjunction of the form 

"/2.~ : ~ : ~  ,..D::~k ( l - ~ n ) ,  
where ~ may be equal to ~ or ~ ~jE{-i~O,~} , and 

= Dg~j, if ~j=O 

The conjunction "~ is elementary if ~ and ~jEE2=~O~} for all 
j-~2,.,., M • A conjunction of the form 

will be called the ~ -conjunction if ~o is the 6-conjunction; 7~z=O 

or ~ is the E-conjunction; ~ is a composition of operators from 

. The A -conjunction ~ is elementary if all its ~-conjunctions 

are elementary. Non-elementary ~ -conjunctions have the coefficient 

n~j~ as a conjunctive co-factor. If for the ~ -conjunctions 
a the equality ~A~--~ ~ holds, the ~-conjunction ~ absorbs 
the ~-conjunction ~ . 

By ~-polynominal ~ is meant a disjunction of the finite number 

of various and mutually non-absorbing A-conjunctions 

~:~z~ is a disjunction of elementary ~-conjunctions occu- where 

rring in the Q-polynomial ~ , ~=~'~ is a disjunction of the 
• ~, ~ 

rest of /I-conjunctions of the give~ ~-polynomial. 

Lemma ft. Any logical condition ~(~;~)representable in the algebra 

is reducible to the ~-polynomial G ; ~(~;~)--~ . By 6-con- 

stituent ~-~) is meant the ~-conjunction ~°(~/-~)containing all 

variables from the set ~ . 

By a generalized constituent is meant a ~ -conjunction 

~--~A~A...A~÷~ where ~{0=~ ~{~{O,~J ~} (~o~ 6{0~-~}~{=~ ..... ~), ~° ~JY~ 
are ~-constituents, ~=~.Bi./{=].,2,~.,{} is ah ordered collection of all 

operator compositions occurring in the ~-polynomial ~ • The Q-po- 

lynomial C¢=C~VC such that ~ =~i ' where ~i is a generalized 

constituent of the S-polynomial ~ for an~ ~--~,~,../z ,will be called 
the perfect polynomial. 

Lemma 2. Any ~-polynomial ~ can be transformed to the equiva- 
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lent perfect ~-polynomial ~ G =Go • Valid is the following asser- 

tion. 

Theorem ~. Any logical condition ~(~) of the algebra ~ is 

naturally representable in the form of the perfect ~-polynomial 

Gc(~)=~ V~ ~ . The ~-polynomial Gc(~)=~i representing the disjunction 

of elementary ~ -conjunctions will be called the simple polynomial. 

Corollary I. If the condition ~ in the algebra ~ is represen- 

table by the simple S-polynomial Gc(~)=G~ ,such representation is 

unique. 

A special case of the simple ~-polynomials is disjunctive normal 

± K ~ where ~ are elementary conjunctions. form (dnf) ~e:~ 

Corollar~ 2. If the condition ~ in the algebra ~ is represen- 

table in dnf,such representation is unique. 

This fact discriminates, in principle, between the representabili- 

ty in dnf of conditions from the class ~(E~C~ of three-valued func- 

tions and the similar results of algebra of logic. In particular, for 

the class ~(E~ the problem of dnf minimization is unfeasible in view 

of the single-valued representabillty in dnf of functions of the given 

class. For the algorithmic logic ~ the finite complete axiomatics 

with the unique rule of inference - traditional substitution - is con- 

structed and the problem of identities is solved. 

Let ~(~) be a function in the algorithmic logic ~ . The func- 

tion ~(~i~) is dual to the function ~(~j~) if it can be obtained 

from the function ~ as a result of substitution of: 

I. Each occurrence of the operation V in the function ~ by 

the operation A , and vice verse; 

2. Each occurrence of the symbol I in the function ~ by the 

symbol O, and vice versa. 

Theorem ~. (Duality principle). Let ~=~(~) be an arbitrary 

identity in the algorithmic logic ~ composed of conditions and ope- 

rators occurring in collections ~ and ~ , respectively. Then the 

expression ~*=~*(~A)is also the identity in ~ . 

On the basis of this principle methods of representation of logical condi- 

tions by conjunctive forms dual to ~-polynomials can be developed 

for the algorithmic logic ~ . To provide for the functional comple- 

teness of logical means of SAA in the three-valued logic and in connec- 

tion with the necessity of a more flexible control of computing proces- 

ses the unary operations ~(c) such that 

e = C otherwise, 

<9, c~ = o, ~,,1.; c ~o,~) 
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were introduced [I] • 

IDENTICAL TRANSFOP~gATIONS IN S-ALGEBRAS 

In connection with the formalization of problems of system multi- 

processing the study of S-algebras, i.e. the modified SAA with closed 

logical conditions [21 , is of interest. Let ~={~} be an information 

set on which the operators and conditions of SAAL~,~> are defined. 

Each condition ~ e~ we shall put into correspondence with subsets 

M°(~), M~(~) ~ 02 such that M°(~)={~I~(~)~)~}o M~)={~I~(~)=~} ~ M°(~). 
The set M~(~) we shall call the domain of definiteness, and M~(~) 
the truth domain of the condition o~ . 

Let us introduce into the set ~ a specific "devil" state~J~ 

such that A(I~)=~ if the operator A is not defined in the state 

T~ ~; here A(qD)=~O for any A 6~ Assume that ~o(~) i.e. 

~(~)=~ for any ~G~ • The subset MIE~ is closed if for any 

A~ A(~)~Mi(for any ~eM i such that A(~l)~tO) holds. The set 

M i is isolated if its complement ]M~=~kM i is closed. 

The logical condition ~g~ will be called closed if the set M°(~ 

is isolated and Mi(~) is closed. In other words, the closed conditi- 

ons characterize situations whose existence does not depend on the fur- 

ther development of the process. This manifests itself in the fact 

that the closed conditions, being true at some instant, continue to 

be true later on. The notion of the closed logical condition is very 

close to the property of monotonicity of operators. 

The apparatus of closed conditions may be used when organizing 

the problem interaction in operational systems [ 1 ] . 

Thus the condition 

I i, if the ~ th problem is solved; 

O~ if the ~ th problem is in the process of 

ol~: solution; 

~, when in the process of solution of the ith 

problem the emergency halts arise 

is associated with the C th problem. 

The condition ~ is closed since its truth at the instant ~ of 

the ~ th problem does not depend on the state of a computing system 

at succeeding instants ~>~ . Closed are also the conditions of syn- 

chronization, considered earlier, associated with check points in the 

asynchronous PRS. Thus, the closed conditions may be used as landmarks 

when organizing control schemes in large programs oriented towards 
multiprocessing. 
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Let ~J~ ~> be SAA with a system of generators Z=~0Zz, where 

~ G~ are elementary operators, ~2e~ are elementary logical con- 

ditions. By S-algebra is meant SAA <~,~> in which the subsystem 

~2 G~ consists of closed logical conditions. For S-algebras the prob- 

lem of axiomatization and the problem of equivalence are solved. 

The method of reducing an arbitrary PRS to the standard parallel 

polynomial D¢=Ot0~ , where~=~DJ is a ~ -branch consisting 

of asynchronously interacting compositions ~=~ICj~,,~ Cj~ being 

an elementary operator or the standard ~-iteratlon (~=i~,_~ ~), 

underlies the obtained results. 

Among intermediate results which themselves are of interest is 

the development of an apparatus of canonical representations of PRS, 

a criterion of clinch, of asynchronous branches in PRS, a criterion 

of fictitiousness of iterative structures, etc. 

The axiomatic system constructed for S-algebras contains, along 

with the traditional substitution, the rule of inference connected 

with the solution of equations by analogy with axiomatics for the al- 

gebra of regular events [3] • The distinguishing feature of the solu- 

tion of the problem of axiomatization of S-algebras is the use of the 

method of localization of the given rule which is used only when esta- 

blishing auxiliary identical transformations and which does not influ- 

ence the proof of the main result about reduction of arbitrary PRS to 

their canonical representation. Thus, the validity of the following 

important assertion is stated. 

Theorem ~. For S-algebras a complete axiomatics is built which 

characterizes the set of all true identities in the given algebras 

and contains only the substitution as a rule of inference. Here the 

given axiomatics contains schemes of axioms which parametrically de- 

pend on the natural numbers ~=1,2, .... 

It should be emphasized that the problem of axiomatization of 

the algebra of regular events with the use of substitution as the only 

rule of inference is one of the most complex and interesting problems 

of automata theory. 

The SAA apparatus was in use when solving the following important 

problems of theory and practice of computing science [1 ] • 

Formalization of Semantics of Programming Languages. Semantic 

penetration of the programming language into algorithmic algebra is 

connected with the search for a basis and a system of generators orien- 

ted towards representation of its programs. Base operators are inter- 

preted as machine facilities in terms of which the principal language 

constructions entering into the system of generators of algorithmic 
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algebras are represented in the regular form. 

Semantics of the language penetrated into algorithmic algebras 

is defined as closure of the corresponding system of generators by 

superposition of operator functional and logical structures entering 

into it. The given approach has been used when constructing the seman- 

tic penetration for address language. 

Artificial Intelligence. On the basis of the developed apparatus 

of identical transformations and axiomatization of SAA oriented towards 

formalization of parallel computations some experiments were performed 

on automation of proof of theorems (identities) in appropriate automa- 

ted systems. In particular, for a MIR-2 computer a program package 

ANALIST is developed which performs automatic proof in S-algebras by 

reducing the regular schemes composing the left and right parts of the 

identity to a polynomial form. The package consists of a control prog- 

ram, a system of subprograms which perform canonization of left and 

right parts of the theorem being proved,and an identity archives used 

when proving the theorems in S-algebras. The modularity of structure 

and the possibility of parametrization of individual components of the 

package permit its further extension and reorientation towards various 

classes of SAA. 

System Parallel Programming. Clear definition of mechanisms of 

checking the control conditions and execution of operators in PRS make 

it possible to accomplish level-by-level transfer to families of prog- 

rams defined by the given schemes. This level-by-level transfer may 

be also formalized by varying the system of generators of SAA in the 

direction of elaboration (enforcement) of elementary operators and 

conditions according to the concept of up-to-down (down-to-up) program- 

ming. 

The SAA apparatus forms the basis for a set of tools of system 

parallel programming which serves for the development of systems of 

parallel translation of distribution of free resources of multiproces- 

sors, control of flows of problems being solved, etc. 
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ON AXIO~TIZATION OF DETERMINISTIC PROPOSITIONAL DYNAMIC LOGIC 

M.K.Valiev 

Institute of Mathematics, Novosibirsk-90, USSR 

I. The language of propositional dynamic logic (PDL) with Kripke 

type semantics for it was introduced by Fischer and Ladner [I] , 

following Pratt /2] . ~auy assertions about nondeterministic single 

variable programs (equivalence, correctness, etc.) may be expressed 

in PDL. In ~I] the decidability of satisfiability problem for PDL 

is proved and the problem of "good" axiomatization of PDL is posed. 

Segerberg ~3] proposed a Hilbert type axiom system for PDL. The 

completeness of this system was proved by Parikh [4] , Gabbay C5] 

and Segerberg ~-6] . A Gentzen type axiomatimation of PDL was proposed 

by Pratt ~7) , however, this system and the proof of its completeness 

contain some flows and inaccuracies. The object of this note is to 

give the corrected version of Pratt's system for PDL and to construct 

on its base a complete Gentzen type axiom system AxD for determinis- 

tic variant of PDL (DPDL). The language and semantics for DPDL coin- 

cide with the ones for PDL except for semantics of atomic programs 

which are interpreted as functional relations (partial functions from 

states to states) rather than as arbitrary binary relations as in PDL. 

A Hilbert type axiom system for DPDL may be easily deduced from AxD , 

as indicated by Pratt 17~ for PDL. It should be noted that the proofs 

of the completeness of PDL given in [4] , ~6] (we do not know the 

contents of i-5] ) substantially use nondeterminateness of atomic 

programs. In the concluding part of the paper we briefly consider an 

extension of PDL by some asynchronous progr~ing constructions and 

show that this extension cannot have a complete axiomatization. 

The usual progr~m~ng constructs " if P then a else b ,, 

"while p do a " may be readily expressed in the language of PDL 

(DPDL). Therefore, the single variable fragment ALI (without the 

construction ~K~) of the algorithmic logic (AL) of Salwicki fS] may 

be ~mbedded in DPDL~ A finitary axiom system for AL I (rather than infi- 

nitary system given by ~irkowska L-9~ for the full AL) may be easily 

derived from AxO . 
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A language G which resembles much A11 has been earlier introduced 

by Glushkov ~1OS (cf. also E113). However, propositional variables in 

G are three-valued (may have undefined value) , ~herefore the axiom 

system for DPD~ does not imply any natural axiom system for G. The 

decidability of G was proved by Semjonov ~12S , and also follows 

from the decidability of DPDL (it was pointed out by B.A.Trachtenbrot 

in his lectures on the algorithmic logic) which may be easily derived 

from ~7~ . My interest to DPDL is due to the listening of the above- 

mentioned course of Professor Trachtenbrot, whom I would like to ex- 

press my gratitude. I also thank ~I.!.Dekhtjar for useful discussions. 

2_. Let us define the language of PDL (DPDL). It contains two 

sorts of variables~ propositional variables P ,Q,... and program 

variables (which we call atomic programs as well) A,B, .... The no- 

tions of formula and program are defined by simultaneous recursion. 

Definition I. Every atomic program is a program, every proposi- 

tional variable is a formula. 

2. If a and b are programs, p is a formula, 

then a; b, aUb , a ~, p? are programs, ip, ~a~ p are formulas. 

We next use letters a, b,... to denote programs, and letters 

p, q ... to denote formulas. 

Here we give the informal semantics of programs and formulas 

only. An interpretation of PDL(DPDL) is defined by using a set M 

(of states). Atomic programs are interpreted for PDL as binary rela- 

tions over N and as partial functions over M for DPDL. a;b de- 

notes the composition of programs a and b , a U b denotes nondeter- 

m~nistic choice of a or b for executing, a* = IdUaUa 2V ... , 

where Id denotes the identity program, p? is the program which defi- 

nes the identity transformation of a state s , if p is true in s, 

and undefined, otherwise. The formula ~aSp is true in a state s , 

iff p is true in all the states which may be reached from s by 

the program a . 

It follows immediately from the definitions that ~p?S q is equi- 

valent to p~ q , and, consequently, disjunction and cbnjunction may 

be also expressed in PDL. We also have, "if p then a else b" 

and "while p do a " are equivalent to p?; aU~p?;b and (p?;a)*;~p?, 

respectively. 
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3_- The complete Gentzen type axiom system Axfor PDL has the follo- 

wing rules ( it differs from the system given in [9~ in two small 

details). 

P ~P 
-~p p-~ 

~p -~ ~lP 

~P q-~ P -,q 

~p?~q-~ -~[P?] q 

~IP, ~b]p _~ -~a]p -~[b ] p 

CaUb]p~ ~b]p 
2a] fb] P ~ -~2a] ~'b] P 

7a~b] p ~ ~Ca,bJ p 
p, ~a~Fa~]p~ U~p,V P~EalP P~q 

(Ina) 
ffa ~] p -~ U -~a*] q, V 

PI''''' Pk ~q (M) 
#AJpk  Jq,V 

Let us explain the notation. The rules are written in the form 

"from zero or more premise sequents infer a conclusion sequent". A 

sequent U-~V, where U and V are sets of formulas pl,...,pk and 

ql,...,ql, respectively, is equivalent to the formula p1~p2&...&pk ~ 

~ql vq2v''* V ql ~ Al~the rules except for (M) and (Ind) must be 

thought as abbreviations for schemes of rules which may be obtained 

by adding sets U (and V, respectively) to the antecedents (and, con- 

sequents, respectively) of the conclusion and all the premises of the 

rule considered. 

The original Pratt's system contains the rule - ~  instead 

of P----~ (it may be easily shown that in this case e.g. the sequent 

ffa*]p,[a ~] p cannot be deduced). The first premise of the Pratt's 

rule (Ind) does not contain V (in this case, e.g., ~ I P?)~3]P,P 

fails to be deduced). The necessity of the first correction of Ax 

was also observed by Pratt himself (private communication, cf. also 

D3 >. 

4. The rules of the axiom system AxD for DPDL coincide with the 

rules of Ax except for the rule (M) which must be replaced by the 

rule 
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(MD) PI'"''Pk ~ql"'''ql 

U, ~A]Pl,... , /A~pk~/A S ql '"'' [A] ~I' V 

where k $ O, i $ ~. 

It may be easi].y deduced from the completeness of AXD that the 

axiom system for PDL from ~3] supplemented by the scheme of axioms 

is complete for DPDL. We announced this axiom system for DPDL in ~4]. 

5. The proofs of the completeness of Ax and AxD are similar, 

and we sketch here the proof for AxD only. The firs~ part of the proof 

deals with the concept of tableau and coincides in essence with the 

analogical part of the proof in /7] • 

Definition ~7] A structure is a triple<M, S , ~ where M 

is a set (of states), ~ is a function which associates to any s 

in M a set of formulas which are true in s (we write s ~ p, if p 

is true in s ), ~ is a function which associat~to any atomic prog- 

ram A a binary relation over M . A structure is deterministic, if 

for any A ~ (A) is a (partial) function. 

The concepts of mo~el and satisfiability of formulas are defined 

as usual. 

Definition [7] • A structure is a tableau, if the following pro- 

perties hold~ 

(S) s ~lp@non s~p (2) 

(3) s ~/avb]p@s~ /aSp and s~b]p (4) 

(5) s ~/a;b]p -~ s ~ EaJ Lb]p (6) 

(7) s~p?Sq~s~Ip or s~q (8) 

s ~11 p=~ s~p 

s ~1[aUb]p~s~l[a]p or s@i/b]p 

s ~IEa;b]p~ s~7~]Eb] p 
s~l~p?Jqss~p and s~lq 

(9) s~a*]p@s~p and s~a~*Jp (10) s~I/a*]p~s~ip or s~7/a]~a*]p 

(11) s~A]p=~ V s' ((s,s') 6 A ~ s'~ p) 

(12) s~l~A~pr$ ~ s' ((s,s')e A & s'~Ip) 

(13) s~i/a*Jp~ 3s' ((s,s') ~ a* ~ s'~Ip) 

The following proposition is essentially contained in #7] • 

Lemma I. A formula p of PDL (DPDL) is satisfiable iff there exists 

a tableau (a deterministic one) which contains p . 

6. Definition LIJ . A set 

lowing properties hold : 

(1) if 1P E U, then p~U, 

U of formulas is closed if the fol- 
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(2) if /avb~p~U, then CaSp~U, EbJp~U, 
(3) if ~a; b]peU, then [aS[bjpeU,~b] peU, 

(4) if ~a~SpeU, then p~U,~a]~a~ p~U~ 

(5) if ~p?SqeU, then peU, qeU~ 

(6) if ~A~peU, then peU. 

Lemma 2~I~. For any set U there exists a finite closed set U'~U. 

7. In the main part of the proof we restrict ourselves to the 

case when formulas have the following property;for any expression of 

form a • the regular set which corresponds to expression a does not 

contain the empty word and words which consist of tests solely. For 

such a formula we s~ it doasnot have the empty word property (e.w.p.). 

This restriction is adopted because I) it gives an essential simpli- 

fication of the proof, 2) any formula is equivalent to a formula wi- 

thout e.w.p., 3) constructions "if" and "while ~' are naturally ex- 

pressed by such expressions. In the concluding part of the proof we 

briefly discuss alterations and complementations which are needed for 

the general case. 

8__. For any set U of formulas we denote by Uo the set of prog- 

ram-free formulas of U, by U~ - the subset of all the formulas of 

the form [A~p,I~A~p in U, and the subset {pl,...,pk, qql,-..~uql: 

~A]piC-U,l[A]qj eU } by U A - U~ i s  essential, if it contains,. - a t ' l e a s t  
of the form v~AJq. A set U is cleau ifU = UoV~UA one formula @ 

We shall often identify a set {pl,...pk~ with conjunction p1&P2~-..~pk, 

Lemma 3. Any formula p without e.w.p, is equivalent to a dis- 

junction of clean conjunctions Pi " ~oreover, any sequent of form 

U, p-~V may be deduced in AxD from the sequent$ U, pi-~V. 

Proof (sketch). Consequently applying,as far as possible, equi- 

valences which correspond to properties (2)-(10) in the tableau de- 

finition ( such that ~a V b] p =_ ~a] p ~[b~ p, l ~a~ q --- q q v 7 ~l [a~ q ) we 

construct a tree whose nodes are marked by sets (conjunctions) of 

formulas. From the absence of e.w.p, for p it follows that this 

tree is finite audits leaves are marked by clean conjunctions Pi ° 

From this tree we easily obtain the needed deduction of U, p -~V. 

Lemma 4. For any U the following properties hold: 

I) any essential set U~ is satisfiable iff U A is satisfiable, 

2) if U is clean, then U is satisfiable iff Uo and all 

essential U~ are satisfiable; 
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3) if U is clean, then there exists a proof of sequent U-~ from 

U O~ or from UA-~ for a program A for which U~ is essential. 

The proof easily follows from the tableau definition and (MD). 

The following proposition is also useful. 

Lemma 5. The following rules are derivable in PDL (DPDL): 

(I) P "P ga]q (2) p_~q, r p~] ~a~ q,r 

p ~[a] (q~ r) p ~ ~a~ q,r 

Rule (I) may be proved by induction on complexity of a, rule (2) 

follows from (I) and (Ind) by choosing of (p~1 r) v ~a~Sq as an invari- 

ant for a. Notice that rule (2) is used in the proof of lemma 3. 

9. For any set U of formulas we define a tree T(U) whose nodes 

are labelled by sets (conjunctions) of formulas by the following induc- 

tive process. At stage 0 we label the root of T(U) by U. At stage 2i+I, 

i~0, we apply the following procedure to all the leaves of the tree 

constructed. Let s be a leaf, its label L(s) be p=Vpj, where pj are 

clean conjunctions (cf. lemma 3), ~j be the path which leads to pj in 

the tree of lemma 3, an~ qj be set of all formulas which appear in e~j. 

Then, for any j such that qj does not contain formulas of forms r,~ r 

simultaneously;we add a node sj with label qj to the tree and connect 

it to s by an edge. At stage 2i,i•O, for any leaf s of the tree cons- 

tructed with L(s)=q and any A such that q~ is essential we add a node 

s' with label qA to the tree and connect s' to s bF an edge with label. 

Introduce the following definitions, having in mind similar defi- 

nitions of ~3]. A node of T(U) is full if it appears at a stage 

2i+I, i~ O. All other nodes are partial (notice that if a partial node 

s is a leaf of T(U), then L(s)m false). A fat path is a subtree Z of 

T(U) with following properties: I) if a full node appears in Z, then 

all its (immediate) successors appear in Z, 2) if an internal partial 

node appears in Z, then exactly one its successor appears in Z. 

Considering the set of all full nodes of Z as a set of states, 

we see tha~ Z defines a structure which satisfies conditions (I)-(12) 

of tableau definition. Then Lemma I may be reformulated as 

Lemma 6. U is satisfiable iff there exists a fat path in T(U) 

which defines a structure for which condition (13) holds. 

qO__. Concept of teachability of a node in T(U) from another one 

by a word in the alphabet of atomic programs and tests is defined 

naturally (in particular, s is reachable from s by p? iff pg L(s)). 



488 

Let U=~W, 7~a]q} and U'= ~W, 7~a]R~, where R is a new propositional 

letter. We denote by M(W,a) the set of all the full nodes s in T(U~ 

with following properties: I) L(s) contains ~R, 2) any predecessor 

of s does not contain 7R. It may be shown easily that if s is in M(W,a), 

then s is reachable from the root by a word w in a. 

For any s in T(U') we denote by ~(a,s) conjunction of all the 

formulas in L(s) except for ones which contain R, and by W(a) disjunc- 

tion of all the W(a,s), s in M(W,a). 

Lemma 7. For any program a and formula W sequent W ~Ea]W(a) is 

provable in AxD. 

Proof. Proceeds by induction on complexity of a. 

a=A. LeG W= VWi, where W i are clean. Then, by lemma 3 W~A]W(A) 

is reduced to W i ~[A~W(A), and by (MD), to WiA~W(A) which is provable. 

a=p?. We omit a simple proof of W~[p?]W(p?). 

a = b V c. By induction hypothesis, sequents W~/b]W(b), W-~$c]W(c) 

are provable. Then, since W(b J c) contains W(b) and W(c), we obtain 

provability of W $~b~ cSW(b U c) using rule (1) of lemma 5 and Q-z~ale. 

a=b;c. In this case we proceed by induction on complexity of b 

with assumption that b is not of the form d~e. Consider the case 

a=b*; c only (other cases are simple). Apply to W~[b~/c]W(b*;c) rule 

(Ind) by choosing W(b*) as an invariant for b. 
The first premise cf rule is provable easily. The second premise 

may be reduced to sequents W(b ~,s)-~b]W(b~), s in M(W,b*). Denote 

W(b~,s) by V. By induction hypothesis we have provability of ¥~b] V(b). 

Then, the second premise would be proved if we prove that for any 

node x in M(V,b) there exists such a node x'in M(W,b ~) that V(b,x) 

coincides with W(b*,x~). 
Let y be the immediate predecessor of x in T(V,I[b]R), and z be 

the successor of the root connected to y by a path ~ . Let z'be a node 

in T(W,I~b*~R) such that 1) the clean part of L(z') may be obtained 

from the clean part of L(z) by replacement of occurrences of R by~b*~R, 

2) s and z'have a common immediate predecessor (such a node exists). 

Then, going alon6 path ~from z'we access such a node y'that label of 

y contains l[b*~ R, and V(b,y)=W(b ,y ) (notice that since b does 

not contain empty word, formula IR appears in y). Then, a successor 

of y" satisfies conditions needed. 
The third premise is trivial if c is void. This gives induction 

step for a=b *. In the general case by induction hypothesis we have 

provability of V ~c]V(c), where V is W(b*,s), s in N(W,b ). Then, 

since V(c) is contained in W(b~,c), we obtain provability of 

V ~[c]W(b~;c) which shows prevability of the third premise of (Ind). 
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Remark. Idea of lemma 7 is due to ~7S, however, its realization 

in E7 ] contains a number of flows and incorrectnesses. 

11. Lemma 8. If sequent W~EaSq is not provable, then a full node 

s exists in T(W,~aSq) with following properties: 1)s is reachable 

from the root by a word w in a, 2 L(s) has the form~V~q}, 3) V-~q is 

not provable, $) for any s' on the path leading from the root to s 

L(s') is not provable. 

Proof. First we show by induction on complexity of a the exis- 

tence of s with properties I)-3). Cases a= A, p?, bU c, b;c are simple. 

Let a=b*. Apply rule (Ind) to W@~h~ q with the invariant W(b*). The 

first and second premises are provable (see proof of lemma 7). Since 

W~b*Jq is not provable, then a sequent W(b',s)@q, s in M(W,b'), is 

not provable. Then, a mode s' im T(W,1~b'Sq) corresponds to the node 

s in T(W,I[b'SR) which satisfies properties 1)-3). 

Let T' be a (finite) subtree of T(W,~aSq) whose leaves corres- 

pond to nodes of T(W,~aSR) from M(W,a). Then existence of a node s 

with properties I)-$) may be proved by induction on the height of T'. 

Namely, let W&1~aSq~Vpj, where pj= ~Wj, 1~c]q} are clean, c ~ a, and 

Pi is not provable. Then we may choose as s the node in T' with pro- 

perties 2)-4) and reachable from the node with label Pi by a word in c 

(such a word exists by induction hypothesis). 

12__. Now we get to the proof of completeness of AxD for formulas 

without e.w.p. Further we assume for simplicity of exposition that 

AxD contains an additional rule N p, q@r~q~p,r. Hence, we may restrict 

ourselves to proving formulas of form ~p. Applications of this 

rule may be eliminated from the proof (the strenghtened form of the 

rule (Ind) is needed for this elimination, namely). 

Let p be a formula such that W P is not provable. Then we show 

that p is satisfiable. Thus, our proof of completeness is mot const- 

ructive in the sense that it gives no proof for a given valid formula. 

We think that it is essential, in contrary to the failing attempt 

of ~7Jto give a constructive proof. 

In order to show that p is satisfiable we define the following 

inductive process of constructing a fat path D in T(p) which satisfies 

condition (13) of the tableau definition. At first stage we include 

in D an edge leading from the root to a node s such that ~L(s) is not 

provable (see lemma 3) and all the edges which lead from s. 

Let a (finite) subtree D 1 of T(p) be constructed up to a moment. 

Them, for any statement s ~l[a*Jq, s in DI, we add to D 1 a path ~(s) 
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from s to a node s~ with properties 1)-4) of lemma 8 (maybe ~(s) lies 

yet in D1) with all the (immediate) successors of full nodes in~(s), 

and after this apply the procedure of the first stage to all the leaves 

of the subtree constructed. 

It is clear from the description that the fat path D obtained as 

the limit of this construction satisfies conditions (1)-(13) of the 

tableau definition, i.e. p is satisfiable. 

13_. Now we discuss briefly provability in AxD of formulas with 

empty word property. This may be shown by induction on k(p), where 

k(p) denotes cardinslity of positive occurrences of * in a formula p 

such that there exist occurrences of * with e.w.p, which are subordi- 

nate to the first occurrences. First, the proof given above may be 

generalized to formulas with k(p)=0. The general case (k(p)> 0) may 

be reduced to provability of sequents of form U@~a*~q,V, where~a*~q 

has e.w.p. ~a*~ q is equivalent to a formula r without e.w.p. Then, 

induction step is established by applying rule (Ind) to U-P~a*~q, ¥ 

with the invariaut r. 

14. Let ~ be an extension of language of regular expressions 

by adding operations +, # where a+b= ~VlWlV2W2...VkWk: VlV 2...vk~ a, 

WlW 2. • -w k G b), and a~= Id¥ a V (a+a) V (a+a+a) ~ .. • These operations 

were used by Kimura in ~15~ for describing asynchronous programs. 

The following proposition may be proved. 

Proposition. The set of all the expressions in ~ which are equi- 

valent to (A(IB)* is not recursively enumerable. 

This shows that an extension of PDL (DPDL) by adding of +, ~ is 

not axiomatizable. Moreover, the finitary system of equivalent trans- 

formations of expressions in 01 proposed in ~5J (as a~7 finitary 

system, certainly) cannot be complete. 

A mere weak result, namely, that PDL(DPDL) supplemented by +, 

has not finite model property, follows from the fact that formula 

~AB)~JP ~ E(AU B)*--(AB)@j3 P &~AU B)*~ I (~A~falsev~]false) 

is satisfiable, however, has no finite model (notice that (A~ B)*-(AB)# 

may be expressed in ~ ). A similar formula for context-free PDL was 

proposed by R.Ladmer. 
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BOUNDED RECURSION AND COMPLEXITZ CLASSES 
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1. INTRODUCTION 

Alzeady in the sixties the intorest in machine-independent 

chazacterizations of important complexity classes by moans of ze- 

cumsion theory arose (see Ritchie [I] and Cobham [2]). Up to now 

theze is a series of such results (see furthe~ Thompson [3] and 

Monien [4]) but those results concern only single complexity classes. 

The~e are no zesults on general relations between complexity classes 

and classes of functions genora%ed by several types of bounded ze- 

cuzsion. In this papez we pzesent such general zelations for bounded 

syntactic zecursion~ boundod weak recu~sion, bounded primitive recu~- 

sion and bounded ~ecursion by two values (Weztevezlaufszeku~sion). 

For the p~oof of those zesults we generalize some mothods used in 

the litezatu~e for the corzesponding single zesults. The most impor- 

tant step is to find a very simple ayithmetization by means of the 

present type of bounded ~ecuysion. As special cases of these zesults 

we get the known single zosults as well as a series of new chayacte- 

rizat$ons of time and tape complexity classes. Because of the limita- 

tion on the nambe~ of pages all proofs aze omitted. 

2. Definitions 

Let ~ = ~0,1,2,.o. ~ be the set of natural numbers. We use in what 

follows the dyadic presentation of natural numbers, i.e. the p~ssen- 

tation given by: empty wozd --) o, xl ~ 2x+1 and x2 ~ 2x+2. Thus 

we have a one-one mapping from the set ~I ,2~ ~ of all words over the 

alphabet (1,2} to ~ . For xa~ let Ix| be the length of tho dyadic 

presentation of x. We genezalize: Ixl o =dr x, IXlk+ 1 =dr llXlk I. If 

f is a function from A to B we wzite ~:A~ B. We define the fuac- 
x ~  n x tions 0, I n S, [~j, ~ and ~i by 0 =df o, Ira(1'''''xn) =dr Xm fo~ m ~ 

I- ~ m.~n (by I we denote the set of all theses In)~ S(x) =dr x+l, [-~] 
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=df the largest natural numbez not gmaate~ than ~, x - y =dr 

x-y, if x~y and M(x,y) max (x,y) We zenounce Church's ~-no- o, otherwise ~ =dr " 

tation of functions. Let Lin be the set of all unazy lineaz functions, 

and let Pol be the set of all unazy polynomials. Fo~ t~t':IN~-~ we 

t" V ~ t(y)~t'(y). Foz t:~let t°(x) =dr x, define t ~ae ~df 
x y~x 

tm+l(x) =dr t(tm(x))" The algebzaic closure operator, given by the 

partial operations 01,...,0 z on If; Vf:~n~-)~ , is denoted by 

rOl,...,O ; fo~ shozt: pol, . . . ,0 ( f l , . . . , f s )  =dr POi,...,O ( f f i , . . .  
.~fs~ ). The complexity class SPACE(s) (SPACE-TI~£B(s~t)~ TIME(t~s) ) 

consists of all functions computable by a multitape Tu~ing machine 

which wozks within space s(n) (space s(n) and time t(n), time t(n) 

and length of result not gzeatez than s(n) ), wheze n is the length 

_ U SPACe(s) ,SPACE-~I~ (i,B) of the input. Fo~ A,Bm~ ~ let SPACE(A) =dr sEA 

SPACE-TI~(s,t), and TIME(A,B) =df t~A =df saA L~ TTME(t,s). Fuzthe=, 

taB s~B 
let P=~TI~v~(PoI,Pol), LINSPACE =dr SPACE(Lin), and POLSPACE =SPACE(Pol). 

The n-th Gmzego~czyk class is denoted by E u and we choose unazy func- 

tions fn in such a way that E n = ~SUB,BPR(0,I,S,M,fn) and fl(x) = 2x, 
f2(x) = x 2 and fj(x) = 2 x. 

3. Sevemal types of bounded zecursion 

First we define the relevant operations. 

The substitution (SUB): 

h=SUB(f'gl"'''gk) ~-~ df there is an n@~ such that 

a) f:~ kw'e ~, 
b) gl"'''gk: ~ n ~_~ ~, 
o) h:~n~-e~ is defined by 

h(x~ ,... ,xn)=f(g~ (x ~ ,... ,Xn) ,... ,gk(x~ ,... 

• . .  ,xn)). 
The usual type of bounded pzimitive zecu~sion (BPR): 

h=BPR(f,g,k) ~ df the~e isan n~ such that 

a) ~:~n~_~ ~ , 

b) ~: ~n+2 ~,  ~ , 

c) h:~n+l~-~ ~ is defined by 

h(x I ,... ,x n,o)=f(x~ ,... ,xn), 

h(x i , ... ,x n ,y+l )=g(x I ,... ,x n ,y ,h(x I , ... ,x n ,y)), 
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d) k: ~n+1 ~ N with 

h(x I , . . .  ,x n,y)Ik(x 1 , . . .  ,xn,y) - 

The bounded weak r s c u r s i o n  (BWR). Here the l e n g t h  of the a rgument ,  

not its va!u% determines the number of steps of the ~ecumsion: 

h=BWR(f,g,k) ~dftheze is an n6~ and a f~nction h': ~n+Iw-~ 

such that 

a) h'= BPR(f,g,k), 

b) h: ~n+1 ~_~ ~ is defined by 

h(x t , . . . , x n , y )  = h'(x t , . . . , x n , l y l )  

The bounded syntactic reoursion (BSR) uses the dyadic presentation 

of the numbers. Thus also in this case the length of the argument 

determines the number of steps of the recursion: 

h=BSR(f~gl'g2'k) ~ df there is an n e ~ such that 

a) f : ~ n ~ N ,  

b) gl 'g2: ~n+21_~ ~ , 

c) h: ~ n+1~_~ ~/ is defined by 

h(x 1,-..,x n,o)=f(x 1,...,x n) , 

~(x I , .... ,x~ ,y+l)=g1(x I ,,.. ,Xn ,Y,h(x I ,... ,xn ,Y)) , 

h(x I ,... ,x u,y+l)=g2(xl ,... ,x n,y,h(x I ,... ,x n,y)) 
d) k: ~ n+'!~.~ ~ with 

h(x I ,.. • ,x n,y) • k(x I ,--. ,x n,y) 

The bounded recu~sion by two values (BVR, Wertevezlaufsrekuzsion) 

takes into consideration not only the last value but also an earlier 

value of the computed function: 

h=BVR(f,g,s,k) @@df there is an n~ such that 

a) f: ~n I-') N ,  
b) g: ~ n÷3w.~, 

o) s: ~ n+l~ ~ with 

s(x I ,... ,x n,y) _~ y 
d) h" ~n+l ~_~ ~ is defined by 

h(xl ,... ,x n ,o)=~(xl ,..- ,xn), 

h(x I ,... ,x n ,y+l)=g(x I ,... ,x n,y,h(x I ,. • • ,x n,y) , 

h(x I ,... ,xn, s(x ~ ,... ,xn,y))  % 
e) k: IN n+t~_~ l~l with 

h(x~ ~... ,x n,y) ~ k(x I ,. •. ,x n,y)- 

Between the several types of bounded recursion we have the follo- 

wing ~elations° 
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Lemma I If 0,I,S e ~SUB,BSR(A), then 

rSUB,BWR(A) S PSV~,BsR(A) • 

Lemma 2 If 0,I,S,M,2x,[~], -G rSUB,BWR(A), then 

Consequently, the BSR and the BWR can do the same, if only some 

simple functions can be generated. However, the BPR seems to be more 

powerful, because we have 

Lemma 3 If O,I,S,M,2x m rSUB,BPR(A), then 

PS~,BwRCA)-~ USUB,BPR(A) 
but for the converse inclusion we need the fast increasing function 
2x: 

Lemma 4 If 2xE ~SUB,BWR(A), then 

~SUB,BPR (A) ~ FSUB,BWR (A)" 

Similarly, the BVR seems to be more powerful than the BPR: 

Lemma 5 If I~ rSUB,BvR(A), then 

Lemma 6 If 0,I,~,s,2X~ ~SUB,BpR(A) and evexy function of A can be 

bounded by a monotonic function from ~SUB,BPR(A), then 

~SUB,BvR(A) c_ ~SUB,BpR(A) . 

2 x Coxollar.y I If O,I,M,S,2x, [-~1, -" , ~A, then 

gs~,BsR(A) -- Ps~,BwR(A) = ~S~B,Bp~(A)-- S~,BvR(A) • 

4. Bo,~nded syn tac t i c  r e c i s i o n  (BSR) and bounded weak recu~sion(BWR) 

General izing methods used by Cobham [21 and Thompson [3] we get 

Theorem I If a) t: N~'@ ~ monotonic~ 

b) there is a c>I such that t(n) ~ c.n , 

c) there is a mE~ such that 
t @ SPACE-TIMN(tm(2 n) ,Pol(~m(2n))), 

t he n 

SPACE-TIME(~SUB(t) ,Pol(~SUB(t))) = ~SUB,BSR (O' I 'S  ,+,2 t ( | ~ | ) )  = 

--FS~,BW~( o ,~ , s ,~ ,2x , [~ ] ,~ ,2  t('  ~ ' ) )  . 
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Theozem 2 If a) t:~-~ monotonic , 

b) theze is an z~ ~ such that t(x) ~'ae x~ 

o) t E SPACE-TI~( PSUB( It(2n)I ) ,eol(rSUB( |t(2 n) I))), 
then 

SPACE-TI~( ~UB( It(2n)1 ) ,Pol( ['SUB ( |t(2n)I )))= CSUB,BSR(0 ,l,S ,+, t) : 

:[ISUB,BWR(0,I,S,M,2x,[~] , "- , t). 

Theozem 2 implies directly 

Cozolla~,7 2 I.(~0~PS0~ [3] ) 

SPACE-~I~(Lin,~o~) = CsuB,~s~(o,~,s,+,~) 
. X2 

2.  (COBKAN [2] ) 

P = SPACE-TI~(PoI,Pol) = ~SUB,BSR(0, I,S ,+,x |x|) 

= r S ~ , B w ~ ( O , ~ , s , ~ , ~ x , [ ~ l  ' ._ , ~x,) 
3. SPACE-TIC'IN(n- Pol(iogkn) ,Pol)= ~SUB,BSR(0,I ,S ,+, x IX|k+J ) 

I"SUB,Bw~(O,~,s,~,~x,t~], - ,~lxi k+~ ) 

5. Bounded primitive ~ecu~sion ~BPR) 

Genezalizing methods used by Ritchie [I] and Thompson [3] we get 

Theorem 3 If a) t:~-~ ~4 monotonic, 
b) there is a e~1 such that t(n))c.n , 
c) theze isan m@~ such that t ~ SPACE(tm(2n)), 

the n 
space(Psi(t)) = Fs~,Bp~(o,l,s,M,2 t(l xl)) 

Theorem 4 If a) t:~-~ ~ monotonio , 
x ]~ b) there is an ~)I such that t(x) )*ae ' 

c) t¢ SPACE(quB(~t(2n)~)), 

the n 
SPACE(VSUB( It(2n)l )) = PSUB,BpR(O,I,S,~,t) . 

Theorem 4 implies dizectly 

Co~olla~ 3 I. (RITCHiE [11 ) LiNSPACE = FSUB,BPR(0,I,S,M,x2) . 

2. (THOMPSON [3] ) POLSPACE = PSUB,BPR(0,I,S,M,x~X}) . 

3. SPACE(n-Pol(!ogkn)) = --.,~eUB,BPR(0,I,M, x;xlk+1 ) • 
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4. (RITCHIE [1] foz n = 3) SPACE(E n) = SPACE(~SUB(fn))= 
~SUB,BpR(0,I,S,~I,f n) = E n for n ~ 3 8 

6. Bounded reoursion by two values ~BVR) 

Generalizing methods of Monien [4] (note that there are considered 

characteristic functions only) we get: 

Theozem 5 If a) t: ~-~ ~ monotonic, 

b) there is a c,I such that t(n)~ c.n, m , 
c) the~e is an mG~ such that t £TIME(2 t (~) ,tm(2n)), 

then TIME(2~SUB(t) ~SUB(t)) --~SUB, BVR(0'I'S'M'2t(|x|))" 

Theorem 6 If a) t:~w-~ monotonic, 
x r b) there is an r~1 such that t(x) ~ae P 

c) te SPACE(~SUB(~t(2n)~)), 

then TIME(2 rSUB( ~ t(2n)1 ), PSUB ( I t(2n) ~ )) = %UB ,BVR (0 ,I ,S ,~I,t). 

Theorem 6 implies directly 

Corolla~ y 4 I. (~0NIEN [4] ) TI~E(2Lin,Lin) ~ ~SUB,BVR(0,I,S,M,x2). 

2. TI~(2P°I,Pol) = SUB,BVR(O,I~,~,xlX|). 

3. TIME(2 n" Pol(logkn), n. Pol(logkn))= %UB,BVR (0' I,S ,M,x Ix| k+l) . 

4. TIME(E n) = TIME(En,En)= SUB,BVR(0,I,S,}~,fn)= E n for n~3 . 

Taking into consideration the known relations between time and space 
for Tu~ing machine computations,the theorems 2, 4 and 6 imply 

Corolla~ 5 If a) t: ~ ~-~ @4 monotonic, 
b) t(x) > 2 x, 

c) t a SPACE-TIME(~SUB(It(2n)I ) ,POl~suB(It(2n)l ) ) ) ,  
t he n rSUB,BwR(O,I,S,  ,2 ,[ I, 

= ~SUB,BPR(O, I,S ,M,t) 
= ~SUB,BVR(O,I,S,M, t) 

7. Conclusions 

The types of bounded recursian considered in this paper are not 

sensitive enough to chazacterize time complexity classes fo~ which 

the set of names is not closed under polynomials, for example such 
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classes like TiME(Lin) and TIME(nY). Fo~ this one has to use more 

zest~icted types of zecu~sion and substitution. Investigations in 

this spizit aze done by Monien ~5~. Fuzthezmoze, it would be inte- 

resting to study the powe~ of such types o f  bounded ~ecuzsion like 

bounded summation and bounded pzoduct with zespect to complexity 

classes. Fo~ a single zesult in this direction see Constable [6~. 
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CHARACTERIZATION OF RATIONAL AND ALGEBRAIC POWER SERIES 
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q. Introduction and basic notions 

Let R be a semiring and let M be a monoid. A mapping s from M 

into R is called a (formal) power series and s itself is written as 

formal sum 

s = r. (s,m)m, 
meM 

where (s,m) is the image of m ¢ M under the mapping s. The values 

(s,m) are referred to as coefficients of s. R<~M>> denotes the set of 

all such mappings. The support supp(s) ef a power series s is the set 

supp(s) = {m ~ Ml(s,m ) ~ 0). Any power series with a finite support 

is called a polynomial. The set of all polynomials is denoted by R<M>. 

In this paper a new characterization of algebraic power series 

will be presented. The known characterization of rational power series 

shall also be established in our framework in order to emphasize the 

analogy of both kinds of characterization. Te prepare such a charac- 

terization some necessary concepts from the representation theory of 

monoids and from an appropriate generalization ef module theory must 

be introduced. 

A commutative monoid A with the operation + is called an R-semi- 

module if, for each r of a given semiring R and each a of A, a scalar 

product ra is defined in A such that the usual axioms are satisfied: 

r ( a  * a | )  = r a  . r a ' ,  ( r  . r i ) a  -- r a  + r ' a ,  ( r . r ' ) a  = r ( r ' a ) ,  l a  : a 

0a = 0 and rO = 0 for r,r' e R, a,a' ~ A. Obviously, R<<M>> forms an 

R-semimodule with respect to the usual operations. 

An R-semimodale is an algebraic structure in the sense of uni- 

versal algebra. Therefore, the notions of an R-subsemimodule, of a 

generated R-subsemimodule and of an R-homomorphism are fixed in that 
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sense and we can skip their definitions here. In order to define one 

of our main concepts we have to consider the regular representation of 

a monoid M. Let HomR(R<<M>>,R<<M>> ) denote the set of all R-homomor- 

phisms from R<<M>> into itself. The regular representation of M is a 

monoid homomorphism from M into HomR(R<<M>>,R<<~>> ) assigning a map- 

ping Qm to each m of M, where Qm is defined as follows 

Qm s = ~ (s,m.n)n 
n~M 

for all s of R<<M>>. 

We say that an R-subsemimodule A of R<~M>> is invariant if, for 

each m of M, s ~ A implies ~m s ¢ A. By means of invariant R-subsemi- 

modules of R<~M>> rational power series can be characterized (el. [2]). 

To do the same for algebraic power series invariant R-subsemialgebras 

are needed. An R-semimodule A is said to be an R-semialgebra if A is 

additionally a semiring. R<<M>> forms an R-semialgebra provided a 

(Cauchy) product of power series can be defined. For that reason it 

has to be assumed that each m of M possesses only finitely many fac- 

torizations m = m 1.m 2. This condition is satisfied for a monoid with 

length-function, which is a mapping k from M into the natural numbers 

~ such that, for each n ¢ ~, k-l(n) is a finite set, k-l(0) = (1) 

(1 denotes also the unit element of M), and k(m.m i) >-- k(m) + I as well 

as k(m u.m) >= k(m) + 1 for all m ¢ M and m I ¢ M - (1} ~1]. Clearly, 

the free monoid generated by a finite set is a monoid with length- 

function. If M is a monoid with length-function, then R<<M>> is an 

R-semialgebra with respect to usual operations. An R-subsemialgebra 

of R<<M>> is called invariant if it is invariant as R-subsemimodule. 

2. Matrix representations of a monoid 

In this section we intend to introduce representations of a 

monoid by matrices over a semiring. Let n be a natural number. The 

set of all n × n matrices A = (aij) with aij ¢ R, i,j = q,...,n, is 

denoted by (R)n. Obviously, (R)n forms a monoid with respect to 

matrix multiplication. 

Definition. Let ~ be a monold and let n be a natural number. A 

homom0rphism 8 from M into (R)n is called a finite matrix represen- 

tation of M. 

We are now going to consider infinite matrices. Let N be a set. 

(R)N denotes the set of all mappings from N x N into R, which will be 

written as (possibly infinite) matrices A = (aij) with aij = A(i,j) 
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for i,j • N. In order to generalize the matrix multiplication in that 

case we state the following requirement: in each row of A there are 

all but finitely many coefficients equal to O. Under this assumption 

(R)N forms a monoid with respect to (generalized) matrix m~ltipli- 

cation. 

Definition. Let M be a monoid with length-fumctien and let N be 

a finitely generated monoid. A homomorphism 6 from M into (R)N is 

called a locally finite matrix representation of M if the associated 

mapping [ ]: N ~ R<<M>> defined by 

In] = ~ 5(m)n,e m (e is the unit element of N) 
m ¢ M 

is a homomorphism from N into the multiplicative monoid of R<<~>>. 

Since matrix representations shall be used as acceptors the 

question arises: Under which conditions is a locally finite matrix 

representation determined by finitely many datas. Assume that M and 

N are free monoids generated by finite sets X and P, resp. For each 

pair (x,p) of X x P let a finite set of elements d(x,p,q) of R be 

chosen, where q ~ P*. Define a mapping 5: X ~ (R)p. by 

~ d(x,p,q) if there are p ¢ P and q,q' ¢ P* 
such that ql = pql and q2 = qql 

o(x)q~ ,q~ ='[o 
o t h e r w i s e .  

The unique extension 6": X* ~ (R)p. of 5 is a locally finite matrix 

representation. It is easily seen that the associated mapping 

[ ]: P* ~ R<<X*>> is a homomorphism. On this basis generalized ac- 

ceptors for algebraic power series are introduced in [3]. 

3. Recognizable power series 

Let M be a monoid and let R be a semiring. Our first aim is the 

definition of two kinds of recognizable power series using finite 

resp. locally finite matrix representations. It will be shown that 

recognizable power series can be characterized by means of invariant 

R-subsemimodLules resp. R-subsemialgebras of R<<M>>. 

Definition. A power series s of R<<M>> is said to be f-recogniz- 

able (or shortly recognizable) if there exist a finite matrix re- 

( ) > (~1 ) presentation 5: M ~, R n' n = 1, a row vector ~ = ,...,an and a 

column vector ~ = (61,...,~n )T such that 

(s,m) = ~.5(m).~ for all m • M. 
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If s ~ R<<M>> is recognizable, then the n power series s i 

defined by (siam) = (6(m).~)i for i = 1,...,n generate an R-subsemi- 

module 

A = Z ~s i 
i=1 

which contains s because of s = ~1Sl + ... + ~nSn . An easy calculation 

shows that A is invariant. Therefore, we get 

Theorem 1. Each recognizable power series s of R<<M>~ belongs to 

an invariant finitely generated R-smbsemimodule of R<<M~>. 

In the case of free monoids the derived condition is necessary 

and sufficient. 

Theorem 2 [2]. Let M be a free monoid generated by a finite set. 

A power series s of R<<M>> is recognizable if and only if s belongs 

to an invariant finitely generated R-subsemimodule of R<<M>~. 

Next, we are going to introduce if-recognizable power series, 

which will be characterized in a similar way. 

Definition. Let ~ be a monoid with length-function. A power 

series s of R<~M>> is said to be if-recognizable if there exist a 

locally finite matrix representation 6: M * (R)N , a row vector 

= (~n)n~ N with all but finitely many coefficients equal to O, and 
T 

a unit column vector ~ = (~n)n¢ N with B e = fl and ~n = 0 for n # e 

such that 

(s,m) = ~.8(m).~ for all m ¢ M. 

Theorem 3. Let M be a monoid with length-function. Then each 

if-recognizable power series s of R<<M>> belongs to an invariant 

finitely generated R-subsemialgebra of R<<M>>. 

Proof. Assume that s is an if-recognizable power series of 

R<<M>>. Then there exist a locally finite matrix representation 

8: M * (R)N and finitely many ~n ¢ R such that 

(s,m) = ~ ~n-8(m)n,e. 
n ~ N 

By definition, N is finitely generated. Thus, the R-s~bsemialgebra 

A of R<<M>~ consisting of all finite sums 

s = ~ rn[n ] where r n ¢ R 
hEN 

is finitely generated too. Take into consideration that [ ] is a 

homomorphism. Evidently, s = ~ ~n[n] is contained in A. 
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It remains to show that A is invarianto Let a be an element of 

A. For an arbitrary element m of M we derive 

(Qma'm') = n ¢ N~ rn(Qm[n]'m') = n ~ N rn~[n]'m'm') 

= ~ rnS(m)n,n n I - N (nEN~ ')([n']'m|) ' 

where all sums are finite. Hence 

@m a = ~ r~[n] with 
nEN 

and, consequently, Qm a ¢ A.~ 

' = ~ '8(m)n rn n' N rn ',n 

Theorem 4. Let M be a free monoid generated by a finite set. A 

power series s of R<<M>> is if-recognizable if and only if s belongs 

to an invariant finitely generated R-subsemialgebra of R<<M>>. 

Proof. By Theorem 3 it suffices to show that each element of an 

invariant finitely generated R-subsemialgebra A of R<<M>> is an if- 

recognizable power series provided M is the free monoid X* generated 

by a finite set X. Assume that A is generated by {Spl p ¢ P}, where P 

is a finite set. Since A is invariant we get 

@xSp q ~ P* rpq(X)q[p/Sp] with rpq(X) ¢ R , 

whereby the sum is finite, q[p/s~] denotes the substitution of each 

p of P by the corresponding Sp in q ~ P*. Now we define a mapping 

8: X * (R)p, by the rule 

S(X)ql ,q2 
if there are p ~ P and q,q' ¢ P* 
such that ql = Pq' and qz = qq' 

otherwise. 

We assert that the unique extension 8": X* * (R)p. of 8 is a locally 

finite matrix representation of X*. For that reason it must be shown 

that the associated mapping [ S from P* into the multiplicative 

monoid of R<<X*>> defined by 

[ql = 7 8*(w) for all q ~ P* 
w ¢ X* q,eW 

is a homomorphism. Evidently, 

[el = ~ 8*(w) w = I 
w ¢ X* e,e 

by d e f i n i t i o n .  In  o rder  to show [ q q ' ]  = [ q ] . [ q ' ]  f o r  q , q '  
the statement 

¢ P* we use 
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8*(W)qq~,q, = uv~=w qlq2~=q, 8*(U)q,q1.8*(V)q,,q 2 

for all non-empty words w over X and all q,qZ,q. ~ P*, which may be 

proved by induction over the length of w. Let q and q l be elements 

of P*. Now we conclude 

[qq'] = w 7,E X* 8*(W)qql,eW = w ~ X *(c uv=wT' 8*(U)q,e°8*(V)q,,e)W 

= ( q ] . [ q ' ] .  

Without loss of generality we suppose that (so,i) = 0 for all p of P. 

We are now going to prove that each element a of A is if-recognizable 

by that 6*0 First we state 

Sp = [p] for p ¢ P. 

Obviously, it holds 

(Sp,X) = (QxSp,1) = q ~ E P* rpq(X)(q[p/Sp],q) = rpe(X ) 

= ( [ p ] , x )  

for all x ¢ Xo Let w ~ X*. Then 

(Sp,X~V) = (~xSp,W) = ~] r p q ( X ) ( q [ p / S p ] , W ) .  
q c P *  

Together with 

( q fp /Sp ] ,W)  = 8*(W)q,e (~ )  

we get 

= ~ 6 * ( X ) p , q ' 6 * ( W ) q ,  e = 8*(xW~)p,e (Sp ,xw) q ~ P* 

= ( [ p ] , x . ) ,  

that means Sp = [p]. Each a of A can be represented as follows 

a = ~ rqq[p/Sp~_ I 

qcP* 

whereby the sum is finite. Because of (~) we obtain 

( s ,w)  = }] P* r q ( q [ p / S p ] , W )  = }] q ~ q ¢ p* rqg*(W)q,e 

which proves that a is If-recognizable. 
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4. Characterization of rational and algebraic power series 

Throughout this section M is always assumed to be a free monoid 

generated by a finite set X. As a conclusion ef the well-known 

Sch~tzenberger Theorem (cf. [2]) we obtain 

Theorem 5 [2]~ A power series s of R<<X*>> is rational if and 

only if s belongs to an invariant finitely generated R-subsemimodule 

of R<<X*>>o~ 

Algebraic power series are defined as solutions of systems of 

equations. Let Z = {Zl,...,Zn} be a finite set of variables disjoint 

from X. An algebraic system S is a set of equations 

zi = @i i = 1,...,n, 

where @i e R<V*> with V = X U Z. S is called proper whenever (@i,I)=0 

and (@i,zj) = 0 for each i and j. It is known (cf. [2]) that each 

proper algebraic system S has a unique solution ISI = (ql,...,en) 

with u i e R<<X*>> for i = 1,...,n. 

Theorem 6. A power series s ef R<<X*>> is algebraic if and only 

if s belongs to an invariant finitely generated R-subsemlalgebra of 
R<<X*>>. 

Proof. (1) Let s be an algebraic power series of R<<X*>> deter- 

mined by a proper "algebraic system S. Without loss of generality we 

may assume that S has the following form 

n n 
z i = ~ x(ri (x)x + ~ rij(x)xz j + ~ rijk(X)XZjZ k) 

x j=q j,k=l 

for i = 1,...,n, where ri(x), rij(x ) and rijk(X ) are elements of R 

(cf. Theorem 2.3 [2], p. 128). Let ISI = (Cl,...,gn) be the solution 

of S. Define A to be the R-subsemialgebra of R<<X*>> generated by 

{el,...,~n}. Evidently, s belongs to A because of s = (s,1) + ei for 
some a i of the generator set. 

It remains to prove that A is invariant. Since each a i obeys the 
equation 

n n 
(ri(x)x + ~ rij(x)x~ j + ~ rijk(X)X~ja k) 

x e X j=l j,k=l ' 
~i = 

we derive 

~x~i 
n n 

= ri(x ) + ~ rij(x)~ j + ~ rijk(X)aj~ k 
J=l j ,k=q 

which implies 



506 

Qxqi ¢ A for x ¢ X and i = 1,...,n. 

Notice that an arbitrary element a of A is a finite sum a = ~ rE~ , 

where r E ~ R and ~ ~ (ql''°''~n)*" If we prove that @x ~ belongs to 

A for each non-empty word ~, then Qx a = 7 rEQx~ belongs to A too, 

which implies that A is invariant. Now, assume that ~ = ~i El, where 

~' is an arbitrary word over (~l ,... ,an}. Observe that (~i,I) = 0 

for i = 1,~.,n. Because of 

Qx(~i~') = (~x~i)~ ' + (~i,1)~xE' 

we thus derive 

Qx(~i ~ ' ) = (~x~i)~" 

Since QxGi ¢ A and ~' ¢ A, the required condition Qx w g A follows. 

(2) Conversely, let A be an invariant R-subsemialgebra of 

R<<X*>> generated by the set (Sl,.°.,Sn}. It has to be shown that 

each element a of A is an algebraic power series. For that reason 

a proper algebraic system S must be constructed. Without loss of 

generality we may assume (si,1) = 0 for i = q,...,n. Since A is in- 

variant we derive 

= Z z* ri'v(X)V[~-l-~]' QxSi v ¢ 

where Z = {Zl,...,Zn} and v[z_/_~] denotes the substitution of each z i 

by ~i in v. Define S as follows 

zi= ~ ~ i=1, ,n. x X v Z* ri'v(x)xv ... 

Take into consideration that (si,1) = 0. Then we conclude 

s i = Z ~xSi = E ~( Z z* ri'v(~)v[z/-a]) 
x~X x ~X v¢ 

= Z ~ ri,v(X)(XV)[J_c] = ~'i[z/_ ~] 
xcXv Z* 

~i ~ 

Therefore, each s i is an algebraic power series. Since the set of all 

algebraic power series is closed under scalar product, sum and pro- 

duct, each a of A is algebraic. [] 
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A CROSSING MEASURE FOR 2-TAPE TURI~G MACHINES 

Gerd Wechsung 

Sektion Mathematik der Friedrich-Schiller-Universit~t Jean 

Jena, DDR 

We define a complexity measure for 2-tape Taring machines 

(2TM) that generalizes the usual crossing measure for l-tape Turing 

machines (ITM). We prove that the constant resource bound functions 

yield an infinite hierarchy of complexity classes of the new measur~ 

This shows a completely different behaviour of the new measure 

compared to the crossing measure for ITM. In a similar way as in the 

l-tape case the new measure allows to prove lower time bounds on 

2TM computations. 

4. Crossing sequences for 2TM 

One could try to define a crossing measure C for 2TM as the 

maximal number of crossings of the boundaries between adjacent 

squares performed by one of the two heads. This seems to be the 

most natural generalization of the crossing measure introduced by 

B. A. Trachtenbrot [~ and F. C. Hennie [2] for ITM. We start with 

Fact I: C is net a measure in the sense of Blum [31. 

To prove this statement we show that every computable function 

can be computed with C-complexity not greater than 3. Let M I be a 

ITM. We ccntruct a 2TM M 2 that works as follows (having as initial 

tape content on tape I the input of M I whereas tape 2 is initially 

empty). Step I: Using the input on tape I M 2 generates on tape 2 

the second configuration K 2 of M I and returns the head of tape 2 to 

the first square of K 2. Step 2: Using K 2 M I generates K 3 om tape I 

on the right hand side of the input word and returns the head of 
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tape 4 to the first square of K 3. And so on. 

It is obvious that no boundary is crossed more than three times. 

Thls shows that C fails to be a Blum measure. ~1 

However, also for 2TM a crossing measure can be introduced In 

a reasonable way. We consider a tessellation of the Euclidian plaae 

in congruent squares provided with a coordinate system such that 

every square has a pair of integers as coordinates. If we take the 

positions of the heads on tape 4 and tape 2 of a 2TM M as square 

coordinates with respect to our tessellation, every computation of 

M gives rise to a sequence of pairwise neighbourlng squares. The 

curve connecting the centres of consecutive squares of this sequence 

will be taken as representation of the considered computation. An 

illustration is given by figures 4 and 2. 

2 

3 

t i m e  

1 2 3 tape 1 

k~ ~./~, 
I 

,~/ .  ¢I, ' 

I 

V , z g . > ~  
' ' k J  ~ Z  
I I 

,' ,' ~ I c ; ' Z  
I I / , ,%/. 
, I ,/;.~ 
I i ' /  
, , ~ 
I I 
, /I,D; ~. 
l I 
I I < 11 

, , ~ 

I I 
, , r ~  

t i m e  

1 2 3 tape 2 

Xw.~ ' 

I 
, 

< K4 
I 

X/.~ : 
' / /~<'~, 'f'A'/I 
~/.x2\ ~'/. 
I I V 

I 
I I 

I I 9 "  

Figure I Records of the work of the heads of a 2TM computation 



510 

f~Z ' ' 
I I 
i I 
1 I 

i ' ' 
- - 4  - ~ -  

! ! 
i i 

I I 

! I 

428 • 

Figure 2 

Next we 

introduce the notiop 

,'4~//~, of crossing sequence. 

'/~x~. This will be done 

in such a wa, that 

we oao prove a 

--~" lemma similar to 

, that of 

I Trachtenbrot [4] 

- - - ~ ~  and Hennie [2j about 

r ~  /-'/ the possibility of 

'~/~i~ mixing two different 

~_ I~G~L~ computations having 
a common crossing 

V I ~ sequence. 

~ Let c be a 

curve representing 

a computation of 

some 2TM M. A cut 2-dimensional representation 

point A of c with a grid line corresponds (in general) to a crossing 

A' of a boundary between two squares on tape I and to a crossing A" 

on tape 2. It may happen that one of the heads meets this boundary 

once more whereas simultaneo~ly the other head crosses quite a 

different boundary than the first time. This phenomenon may occur 

repeatedly. In this way one boundary gives rise to a set of 

-+ 

boundaries which are in some sense 

interrelated. In the example of 

figure 2 the crossing A 4 yields 

the system {A 4, B 4, C 4, D~, El} 

of cut points. If another 

computation of the same machine 

has the same crossing pattern it 

can be combined piecewise with 

the computation to yield a 

reasonable possible computation 

of M provided that M performs 

corresponding crossings in states. 

Figure 3 
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- + + - 

I  g/l 

I , \, 

Figure 4 

Example: Figure 3 shows a crossing system {A2, B2, C2, D2, E2~ 

of the same structure as that of figure 2. Assume that the crossing 

of X I is performed in the same state as the crossing of X 2 

(X = A,B,C,D,E). Then, replacing the hatched parts of the first 

computation (fig. 2) with the corresponding parts of the second one 

(fiE. 3) the computation of figure 4 can be constructed. 

This leads to the idea to take such sequences of cut points 

together with the corresponding states as crossing sequences for 

2TM. 

We need some preliminary notions for the definition of 

crossing sequences. Let c be a curve representing a computation of 

a 2TM. By f,g,.., we denote gridlines or one sided infinite parts of 

such gridlines (rays). 

Definition 4. A system B of gridlines or rays is called closed with 

respect to c ~ df 

(I) Whenever f and g have their cut point on c and 

f ~ S, then g ~ S. 

(2) Let c' be a maximal horizontal or vertical part 

of c. Let S'= gl,...,gm be the subset of S of those 

lines having a out point with c'. Then either 

mm o(2),or there is a gi 6 S' such that S contain~ 

two rays h,h' with the following properties: 
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(a) h, h' begin on g. 

(b) h, h' are perpendicular to g. 

~c) h and h' are situated 

on different sides of 

g and on different 

sides of C'o 

(d) h, h' contain edges 

of squares in which 

c' is situated. 

(of .  f i g .  ~) 

I 

Figure 

Examples of closed systems are 

given in figures 2, 3 and 4. 

A further example (fig. 6) 

illustrates the case that 

vertical and horizontal parts 

o c c ~ r  in C~ 

I ! 

i I 
I I 

I .... J I 

Figure 6 
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Definition 2. Let c represent a 2TM computation and let 8 be a 

system closed with respect to c and minimal with this 

property. S is called a crossing system of c. Let 

further S= (hl,...,hk, pl,...,p~ where h i (pj) 

denote the horizontal (vertical) gridlines. Then 

~S,c = (Zl'tl) "'" (Zs,ts) 

is called the crossing sequence of o on S ~==~df 

c crosses S exactly s times, and for all~= I ,...,~ it 

holds: If c crosses S for the ~th time (in 

chronological order) then M has in this moment the 

state Z¢ , and the crossing takes place 

(a) across the out point of hi~ and pj~ if 

(b) across hi~ between pj~ 

t~ = ( ~ jj~,j~ ), 

(e) across pj~ between hi~ 

t~ = (~, i~ ; J~ ). 

s ist called the length of 

s = I ~S,c[ " 
pattern of S. 

and oj~ if 

and hi~ if 

~S,c" We write for short 

(t I, ..., ts) is called the crossing 

A difference to the l-tape case consists in the fact that 

according to (2) of definition I a crossing of c may belong to many 

different crossing sequences. 

2. The crossing measure for 2TM and the combining lemma 

In the following we confine ourselves to 2T~ M with the property 

(I) If zxy--+z'x'y'o m is an instruction of M then x' = x and 

for every 

z~y--,z'~y' o m is also an instruction of M. 

(2) If zxy---~z'x'y' m o ~s aa instruction of M,then 

y' = y and for every 

zx~--,z'x'~ m o is also an instruction of M. 

(This means: A nonmoving heao does not write, and the behaviour of 

the machine does not depend on what that head reads.) 
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WJ~hout this additional property which does not restrict the 

generality and which has no influence on time and tape complexity 

lemma 3 is not true. We could avoid the restriction of the machine 

model on the cost of a more complicated definition of crossing 

sequences, but we find our way preferable. 

The measure 2T-CROS for 2TM is defined as follows 

Definition 3. Let M i be the i th 2TM of a fixed GSdel numbering of 

all 2TM. Let c w be the 2-dimensional representation 

of the computation of M i on input w. 

owl ion crossing 
system of c w) 

2T-CROSi(w) =dr if M i halts on input w ; 

usdefined otherwise. 

Proposition 2: 2T-CROS is a measure in the sense of Blum. 

The possible occurrence of horizontal or vertical parts in a 

computation curve makes the desired combination lemma a little bit 

more complicated than suggested by the example in section I 

(fig. 2, 3~and 4). The notion of colourability introduced next will 

allow a precise formulation of our combining lemma. 

Let S be a crossing system of a curve c. By S together with the 

four border lines(that correspond to the borders of the workspacs of 

the two tapes) the minimal rectangle containing c is decomposed into 

rectangles. These latter ones can be considered as being arranged in 

rows and columns like the elements of a matrix. They induce a 

decomposition of c. Let ci, ..., c n be the order in which the parts 

of c occur when c is run through. These terminology is used in the 

next definition. 

Definition 4. c is colourable with respect to S <--g dr there exists 

a mapping 

(F(ci) is called the colour of c i) 

such that the following conditions are fulfilled 

n-1 

(a) A Kci) * F(ot+1) . 
i=l 
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(b) All o i belonging to the same row (with possible 

exception of those which are completely 

horizontal) have the same colour. 

(c) All cj belonging to the same column (with possible 

exception of those which are completely vertical) 

have the same colour. 

Figures 2, 3, and 6 show colourable computations. Colourlng 

is indicated by hatching. 

This is a general fact. We can oasily prove: 

Lemma 5: If S is a crossing system of a computation c then c is 

colourable with respect to S. 

Now we are ready to state our combining lemma. 

Lemma 4: Let c and c' be two (not necessarily distinct) 

computations of a 2TM M, and let S and S' be crossing 

systems for c resp. o'. 

If ~S,c = ~S',c' and (el,... , On) and 

(c I' ,..., On') are the decompositions of c resp. ©' 

induced by S resp. S' , then the curves 0 4 c~ c 3 c~ ... 

and c{ c 2 oj c 4 

represent possible computations of M. 

Proof (sketched).The conditions (b) and (c) of definition 4 ensure 

that whenever a skip is made from one computation to the other one 

such that at least one of the heads enters a square that it had left 

previouSly then on both tapes the heads flnd exactly those 

circumstances which they have left by the last skip. The coincidence 

of the sequence of crossing states guarantees the correct continuation 

of the computation. As far as horizontal or vertical parts of c and 

c' are concerned the correctness of the mixing follows from the 

special properties of the machines discussed at the beginning of this 

section.~ 



516 

3. An infinite hierarchy of 2T-CROS classes 

Complexity classes with respect to 2~-CROS are defined in the 

usual way. Let c A denote the ehar~terlstic function of the set h 

and let ~ i be the function computed by the i th 2TM M i. For 

recursive t we define 

2T-CROS(t) =df { A : %/ i ( ~i = CA A 2T-CROS i ~ae t)} . 

If k Is an integer then the symbol k is also used to denote the 

function with the constant value k. 

Theorem 9: For every natural number k >~I it holds 

2T-CROS ( k )  ~ 2T-CROS (k+1). 

Proof (sketched) The set 

Ak+S =df 
a n b n a n b n . . ,  : n ~ [ N ~  

n(k+1) symbols 

belongs to 2T-CROS (k+1) as is easily verified. If it were 

accepted by a 2TM M within 2T-crossing complexity k then using 

lemma 4 we could find words accepted by M but not belonging to Ak+S.Q 
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1. INTRODUCTION 

Let UI,U2,...,U k be totally ordered sets and let V be a set of 

n k-tuples in the Cartesian product UlXU2X...xU k. For any k-tuple v 

in V, let ci(v ~ denote the i-th component of v. 

A lexicographic ordering ~ is defined on V in usual way, that 

is, for v,uCV, v<u if and only if either Cl<V)<Cl<U 1 or there 

exists l~j<k such that ci<v > = ci<u > for i = 1,2 ..... j and 

Cj+l<Vl<Cj +l(U) ; where<is the total ordering on each Uj. 

We shall consider the problem of lexicographic sorting k-tuples 

of V, as well asthat of searching for a k-tuple in V. 

The computational complexity of both problems will be measured 

by the number of ~ee-branch component comparisons needed for solving 

these problems (i.e. two components ci(v ) and ci(u > will be compared 

yielding ci(V ) > ci(u ) ~ ci(v ) = ci(u)~ or ci(v ) ~" ci(u ) as an 

>. We shall be interested in obtaining the " [worst case> answer upper 

and lower bounds on the complexity, as a function of both n and k. 

Note that the problem of lexicographic sorting can be straight- 

forwardly solved by applying any "onedimensional" sorting algorithm 

directly to the k-tuples of V which are in this case viewed as 

"unstructured" elements with respect to the lexicographic ordering 

< . However, this approach would require about ~ (n log n 1 

"lexicographic" comparisons, which can need as much as 8 ~ <kn log n > 

component comparisons, because in the worst case the lexicographic 

order of two k-tuples cannot be detected until all k component 

comparisons have been performed. 
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In a slmilar manner the lexicographic search can be done in 

(k log n) steps. 

In contrast to these "trivial" upper bounds we shall show that 

making use of the particular structure of lexicographic ordering the 

lexicographic sorting and searching can be accomplished using 

(n (log n + k )) and ~og (n+l~+ k~l component comparisons, 

respectively, and that these bounds are asymptotically optimal in the 

case of sorting and optimal in the case of searching. 

In the conclusion of the paper we shall point out some 

applications of the previous results~ mainly in the databases and also 

in the theory of sorting. 

2. LEXICOGRAPHIC SORTING 

When it comes to finding a good algorithm for lexicographic 

sorting the set V of n k-tuples, divide-and-conquer strategy works 

well: 

recursive procedure LEXICOSORT (S,i); 

comment S is the set of k-tuples to be lexicographically sorted; 

it is supposed that first i-1 components of all k-tuples of S 

are equal, with 1 ~ i ~ k; 

be~in 

i_~ Isl° 1 
then return(S) 

else let C be the multiset of all i-th components of k-tuples 

of S; 

1. find the median m of the set C; 
£ 

let S1 = i v ~ S 

S2 = 1 v@S 
S 3 = v ES 

2. if ~Sl! ¢ 

3° if i : 

O then 

k then 

else 

fi; 

4. if, ,Is31~°the~ 

I c i (v><m} 
I c i (v)= m }, 

°i (v>> ~ }, 
return(LEXICOSORT (Sl,i)) fi; 

return<S 2) 
return(L~X~COSORT <S2,i ÷ 1)) 

return(LEXICOSORT < S3,i)) f i 

fi 
end 
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The procedure is activated by calling LEXICOSORT(V,I) . 

The time complexity T(n,k) of LEXICOSORT, applied to the set 

of n k-tuples, is expressed by a recurrence relation 

T(n,k)~cn+T(nl,k ) +T(n2,k-l)+ Tin3,k ), 

T(l,k) = T(n,O) = 0 for k~l, n~l, 

where the four terms in the right side of the relation correspond 

to the complexity of steps 1 through 4, respectively, in the 

algorithm LEXICOSORT, with n I ~ ISII , n2 -- I $2 I' and n 3 = IS31 . 

Taking into account that nl+n2+n 3 =n, nl~n/2, n3~<n/2, it is 

not difficult to verify the solution of the recurrence in the form 

T(n,k) ~ OCn (log n+k)) . 

The example of n k-tuples which differ solely in the last 

component shows that about !l(n (log n + k)) comparisons are indeed 

necessary for lexicographic sorting: we surely need at least (n-l). 

k-l) comparisons to detect the equality of the first k-i components 

of all n k-tuples, and it takes f~ log n) more comparisons to 

complete the sort with respect to the last components. 

Thus we have established the following theorem: 

THEOREM l: The lexicographic sort of n k-tuples can be performed in 

@ (n (log n + k)) 

three-branch comparisons. 

We see that if k =/')_(log n)~ the complexity of the lexicographic 

sort is linear in the size of the input, i.e. in the number of the 

components of all k-tuples. 

3. LEXICOGRAPHIC SEARCHING 

Any lexicographic search algorithm, based on three-branch 

comparisons, can be viewed as a ternary decision tree. In this tree 

the components of k-tuples are stored in its vertices. 

The search for an unknown k-tuple v starts in the root by 

comparing the value of c1(v )~_ with the value clIr ~. ~ stored in the root. 

If c I (v)<Cl(r) (Cl~) ~ cl(r )), the search proceeds in a similar 
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in the left ,rightjsubtree by comparing Cl(V ) with the root of way 

this subtree; if Cl(V ). - = cl~) ,_. then the value of the first conloonent 

of v has been found and the search for the next component c2~ ) 

proceeds now in the middle subtree in an analogous manner. 

The search is successful if all k components of v are found in 

the tree; otherwise the search ends unsuccessfully. 

Consider now the problem of constructing the appropriate 

lexicographic search tree for given set V of n k-tuples. 

There is an alternative way to see the algorithm LEXICOSORT as 

an algorithm which constructs recursively a lexicographic search tree 

for the set S of k-tuples with first i-1 components equal, for 

l~i~k. 

In the root of this tree the value m found in the step 1 of 

the algorithm is placed, and the left, middle, and right subtree is 

the lexicographic search tree for the set S I, S 2, and S 3 of k-tuples, 

respectively, in which the first i-l, i, and i-i components, 

respectively, are equal (this corresponds to steps 2, 3, and 4, 

r e s p e c t i v e l y )  . 

We shall call the decision tree, constructed by algorithm 

LEXICOSORT, an optimal lexicographic search tree (the reason why will 

become clear l a t e r ) .  

When performing the comparisons as dictated by this tree, each 

unsuccessful comparison ci(v ) : ci~ ) (with an answer "< ~ or "~') 

halves the space of the remaining possibilities for v (it always 

holds ISll ~< ~sj /~, Is31 ~ ~sl /2j ) . On the other hand, the 

successful comparison need not decrease the cardinality of the space 

of remaining possibilities for v ( i f  IS21 = I SI ) , b u t  i n  any c a s e  
it makes the step toward the termination of the algorithm by 

determining the value of one component of v and thus decreasing the 

"dimensionality " of the remaining search space. 

if T (n,k) denotes the number of three-branch Hence, 

comparisons sufficient to find the k-tuple v in the set of n k-tuples, 

it obviously holds 

, ,  

T ( n , O )  = 0 f o r  n ~ l  , 

T {l,k ) : k for k~l 
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The solution of this recurrence is given by 

(n,k) ~__ ~og(n~l)~ ÷k - 1 , T 

but again the example of n k-tuples with all but the last components 

equal shows that in the last expression in fact the equality holds. 

This implies the next theorem: 

THEOREM 2: The lexicographic search in the set of n k-tuples can be 

performed in the optimal lexicographic search tree in 

Flog ( n - F 1 ) I - F  k - 1 
three-branch comparisons, and this number is optimal. 

The somewhat weaker form T(n,k) ~ log n + 2k of the last 
% 

result was originally obtained by Fredman [i~ and van Leeuwen F3~. 

Our construction of the optimal lexicographic search tree differs 

from their constructions by more careful selection of the component 

around which the set of k-tuples is partitioned. 

An alternative construction of the optimal lexicographic search 

tree is given also in {4~. 

4. APPLICATIONS 

It is quite natural to view the set V of n k-tuples as a file F 

of n records, each record consisting of k attributes (keys). Then 

the lexicographic search in the set V corresponds to the search 

for the answer to the exact-match query in the file F [2~. 

Another interpretation of the set V is to consider it as 

a k-ary relation on UlXU2x...xU k. Given two k-ary relations V and W 

on UlXU2x .... xU k, with IWI = m and IVI = n, m ~n, we can 

compute their intersection V ~ W as follows: first, we 

lexicographically sort the set W in O~ (log m + k)) comparisons, 

and then in the resulting optimal lexicographic search tree we 

perform n succesive searches for elements of V; this consumes another 

0 (n (log m +k)) comparisons. 

Thus the intersection of two k-ary relations V and W can be 

found in O((m +n) (log m + k)) three-branch comparisons. 

Theorem 2 can also be used to improve on Fredman's result about 

the complexity of sorting Xl,X2,...,Xn, provided we know the subset 
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G of all the n~ orderings on Xl,X 2 .... rx n to which the resulting 

ordering belongs ~i ~ . Then, following Eredman (and using theorem 2 ) 

it can be shown that [iog <IG! ~ 1 ~+ n - 1 comparisons suffice 

to determine the resulting ordering of Xl,X2,...,x n (the original 

result was log IGI + 2n). 

As a further application of this result we can show that if X 

) and Y are n element sets of real numbers, then n 2 + O<n log n 

comparisons suffice to sort the n 2 element set X+Y, thereby saving 

a factor of two over the original Fredman's bound 2n2+ 0 In log n) 

[i'. Moreover, in the same paper Fredman has shown that (n-l) 2 

comparisons are in fact necessary, so the complexity of sorting X +Y 

is known to within the lower order terms. 
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I n t r  oduot io~  

One of the ways t o  describe a system is t o  specify its actions and how they 
can he composed. This loads to some algebraic structures. 

If only states of the whole system and their changes are considered then 
there is essentially one way to compose actions that corresponds to  executing 
them one after another. Thus the suitable algebraic structure is a category, a 
monoid, or something similar. 

If also concurrence (independence) of the states of some parts of the sys- 
tem and of actions has %o be reflected~ than some more information is necessary. 
The idea t o  apply monoidal categories (X-categories) for that purpose has been 
suggested by Hotz [I] • Another idea is due %o Mazurkiewicz ~2] who suggested %o 
consider an independence relation. Our approach (Winkowski [5]) is %o apply 
categories with an additional operation reflecting concurrence (partially mono- 
idal categories). 

We exploit the fact %hat some special partially monoidal categories (al- 
gebras of partial sequences) can be constructed which are closely related to 
Patti nets and play the role of free objects. The algebras of partial sequen- 
ces will be introduced generalizing the concept of. string %o that of partial 
sequence, and replacing the string comcatamation by two binary partial opera- 
%ions on partial sequences, called the sequential composition and the parallel 
one. Then we shall show that mappings defined on the generators of an algebra 
of Partial sequences can, under certain conditions, uniquely be extended %o 
homomorphisms of partially monoidal categories. The obtained result will be ap- 
plied to define interpretations of concurrent schemata corresponding to safe 
condition-event Patti nets of a class. This will be done assigning an algebra 
of Partial sequences %o a scheme and defining the interpretations as homomor- 
phisms defined on such an algebra. 

A part of the material has been the subject of the paper ~5] which con- 
rains however some errors and thus can be consulted for some proofs only and 
with a certain criticism. 

I. Partially monoidal categories 

1.1. Notions 

A partiall~ monoidal category (p.m. category) is A=(U,dom,cod,~,+,O) such 
that: 

(A1) ca~(A):=(U,dom,cod,.) is a (morphlsms-only) category (x.y denotes the com- 
position of x and y, don(x) and cod(x) denote the domain and codomain 
identities of x), 

(A2) + is an associative and commutative partial binary opera~ion in U 
(x+(y+z)=(x+y)+z and x+y=y+x whenever either side is defined), 

(A3) 0 is a constant which is a neutral element of + (O+x=x+O=x for every 
xgU), 

(A4) if x+y is defined then dom(x)+y and ccdCx)+y are defined, 

(A5) if x+y is defined then dom(x+y)=dom(x)+dom(y) end cod(x+y)=cod(x)+cod(y), 
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(AG) if x.y, z.t, x+z, x+t, y+z, y+t are defined then (x.y)+(z°t) and 
~x+z).(y+t) are also defined and identical. 

Given such a p.m. category A, we say that a set V~U is admissible iff 
x 6V implies d om(x) e V and cod(x)e V. By closure(V) (resp.: +closure(V)) we 
denote the closure of V with respect to the operations .,+, and 0 (rasp.: the 
operation +). An admissible set V~U such that clesure(V)=U is called a set of 
~enerators of A. If clasure(W)~U for every proper part W of V then V is said 
to be a minimal set of generators of A. 

A mapping h:V----~U ~ from an admissible set V of A into the carrier U' of 
a p.m. category A'=(U',d__o_~mom',co__~d',.I,+',O ') is said to be admissible iff 
h(dom(x))=do__.mm' (h(x)), h(co____d(x))=co___d' (h(x)) for every x ~ V and h(x)+' h(y) is de- 
fined and identical with h(x+y) for every x,y ~ V such that x+y is defined and 

A' belongs to V. A homomo~hism h:A----* is an admissible mapping h:U AU' which 
is a functor from cat(A) into cat(A') and transforms 0 onto O'. 

1.2. Examples 

Let us consider a memory E em=(Loc,Oont) cor~sisting of a set Loc of lo- 
cations and of a set Cent of contents of locations. Let Fields be the set of 
fields of the memory, i.e. of the subsets of Lo___cc. To every field f~Field~ the 
set States(f) of states s:f ~Con____~t corresponds (Sta~es(~)=~). 

Actions on the memory Mem are triples (f,g,R), where f,g ~Fields and R is 
a binary relation between the states of f (data) and those of g (results). 

By U we denote the set of actions on Mem. Next, we define: 

do_ m(f,g,R)=(f,f,the identity in States(f)), 

co_~d(f,g,R)=(g,g,the identity in StatesCg)), 

(f,g,R).(h,i,S)=(f,i,ROS) whenever g=h, 

where s(ReS)t iff sRu and uSt for some u~StatesCE), 

~f,g,R)+(h,i,S)=(fvh,gvi,RIIS) whenever (fvg)n(h~i)= ~, 

where s(RIIS)t iff (slf)R(tlg) and (s~h)S(tli) (slf, tlg, slh, tli denote the 
corresponding restrictions of s and t), 

0=(~,~,~). 
Then A=(U,do_.~m,co__dd,.,+,O) is a p.m. category (the p.m. category of actions on 
Mem). 

Usually, only a set V of elementary actions is given (including necessary 
actions of the form Cf,f,the identity in States(f))) and we can execute them 
sequentially or in parallel obtaining thus a set U' of available actions. Re- 
strictin@ A to such a Set U f we obtain a p.m. category A' of available actions 
with V as a set of generators. The inclusion U'~ U is a homomorphlsm from A' 
into A. 

In what follows we shell give a method of constructing a sort of free p. 
m. categories. This will be done introducing the concept of partial sequence 
and suitable operations on partial sequences. 

2. Partial sequences 

The concept of partial sequence is a generalization of the string concept. 
We shall define p~rti~l sequences as isomorphism classes of labelled partially 
ordered sets satisfying certain conditions. 

2.1. Notions 

Given a partially ordered set (X,~), by an antichain we mean a set of 
mutually incomparable elements of X. Any maximal antichain Y ~X determines two 
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subsets of X: 

Y-:={xEX: x~y for some yEY} and Y+:={xGX: y~x for some yEYJ. 

We deal with labelled partially ordered sets (1.p.o. sets) H=(X, (,1) 
such that: 

(HI) (X,~) is a partially ordered set, 

~H2) every chain Z~X is finite, 

(H3) I=X -L is a mapping (a labelling) assigning elements of a certain fixed 
set L (of labels) to the elements of X, 

(H4) l(x)=l(y) implies x ~y or y ~x, 

(HS) given a maximal antichain Y and a maximal chain Z, for every x~ ZAY-, 
y~ZAY + there are p~Z~Y-, q~ZnY+ such that x~p~q ~y and l(p)=l(q). 

An occurrencQ f:H ~H' of H in another l.p.o, set H'=(X', ~',I') is an 
injection f:X---*X' such that: 

(01) x~y iff f(x),~'f(y), 

(02) l(x)=l'(f(x)) for every xEX, 

(03) f(x)~' z'~' f(y) implies z'=f(z) for some zEX, 

C04) there is an antiehain Y' ~ X w such that for every maximal antichain Y ~X 
the sets f(Y) and Y' are disjoint and f(Y) vy' is a maximal antichain. 

If f:X~X' is a biJection (in this case (01) implies (03) and ~4)) then 
f:H ~ H' is said to be an isomorphism end H,H' are said to be isomorphic. 

Every class of all the l.p.o, sets which are isomorphic with an l.p.c. 
set H is called s partial sequence (p. sequence) and is denoted by ~H]. 

Given l.p~o@ sets H,I,J,K, we say that occurrences f:H ~I, g:J ~E are 
equivalent iff there are isomorphisms h:H---*J, i:l ~ K such that foi=hog. 
Every class of all the occurrences which are equivalent with an occurrence 
f:H )I of an l,poo, set H in an 1.p.o. set I is called an occurrence of the 
p. sequence [H~ in the po sequence [I~ and is denoted by [f]:[H~---*~]. 

Given p. sequences P,Q,R, we define the composition W=P--*R of two occur- 
rences U:P---~Q, VtQ---*R choosing l.p.oo sets H EP, I EQ, J EQ, K ER, some 
occurrences f:H---~I, g:J ) K such that f EU and g EV, an isomorphism i:I--*J, 
and taking W=~foiog~ (such a composition depends on P,Q,R,U,V only so that our 
definition is correct). 

2.2. Examples 

Let us consider the 1.p.Oo sets in Fig.2.2.1 and in Fig.2.2.2 (the arrows 
resulting from the transitivity of the orderings are omitted). 

I 2 

1 2 ~ 5  
3 4 2 

H I 

Fig.2.2.1 Tig.2.2.2 
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One may interpret the l.p.o, set I in Fig.2o2.2 as a history of a process 
of activating certain resources denoted 1,2,3,4,5. The history consists of par- 
ticular activations: x,w of I, y,v of 2, z of 3, t of 4, and u of 5. The or- 
dering of the activations reflects a causal relation between them. The activa- 
tions z and t are direct consequences of x and y. The activation w is a direct 
consequence of z and ~. The activation v is a direct consequence of u and of 
the (hidden) passivation of 2 separating the activations y and v of 2. The 1.p. 
o° set H in Fig.2°2.1 may be interpreted as a part of such a history. There is 
e unique occurrence (inclusion) of H in I. 

The l.p.c, sets H and I determine two p. sequences (1.p.o. sets with "un- 
named elements") which are shown in Fig.2.2.3 and in Fig.2.2.4, respectively. 

I 2 

3 4 

P 

~ig.2.2.3 

I 2 

X 
3 

~ig.2.2.4. 

3. Operations on partial sequences 

The needed operations on p@ sequences can be introduced considering two 
internal structures of l.p.o, sets. One structure is determined by maximal 
antich~ins. Another is determined by suitable partitions. 

3.1. Notions 

The restriction of an l.p.o, set H=~X, ~ ,I) to a maximal sntichain Y~X 
is an l.p°o, set called a cut of H. Such a cut c determines two l.p.o, sets: 

head(H~c ) :=(Y-, ~IY-,IIY') and tail(H,c):=(Y+,~IY+,llY +). 

The set of cuts of H with the ordering: 

cEd iff c is a cut of head(H,d) 

is called the cut s~ructure of H. To the set of minimal (resp.: maximal) ele- 
ments of X the least cut denoted by origin(H) (resp.: the greatest cut denoted 
by en_~d(H)) corresponds. 

To every cut c of H the p. sequence [c] corresponds, called a ~$ate of the 
p. sequence [HI, which can be identified with the set of labels of the elements 
of c. The state [origin(H)] (resp.: [en__~d(H)]), depending on the p. sequence [HI 
only, is called the domain (reap.: the ccdomain) of [HI end denoted by do___mm([H~) 
(resp.: cod([HI))° The p. sequence [HI is said to be proper iff every two com- 
parable cuts c and d of H with the same states [c]=[d] are separated by a cut e 
whose state [~ differs from ~c] and [d]. 

A pair s=(U,V) of disjoint subsets of X such that U uV=X and x is incom- 
parable with y for every x~U and y ~V is called a snlitting of H. Such a 
splitting e determines two 1.p.o. sets: 

left(H,s)~=(U, ~IU,11U) end ri~(H,m):=(V, ~IV, IIV). 

The set of splittings of H with the ordering: 
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(U,V) ~ (UI,V I) iff U ~U ! 

is called the splittinz structure of H. 

Given two p° sequences P=[H] and Q=~], due to (HS) there may he a% most 
one p. sequence R=[J] such that there is a cut c of J with hesd(~,c) EP and 
%ail(J,c) E Q. Such a p. sequence is called the sequential composition of P and 
Q and denoted by P.Q. The occurrences corresponding to the inclusions 
hesd(J,c) ~ J and teil{J,c) c J are celled the canonical occurrences of P and Q 
in P.Q, respectively. 

Given two p. sequences P=[H] and Q=~], there may be at most one p. sequen- 
ce R=[J] such that there is a splitting s of J with lef$(J,s) ~ P and riFyht(J,s) 
E Q. Such a p. sequence is celled the parallel composition of P and Q and de- 
noted by P+Q. The occurrences corresponding to the inclusions left(J,s) ~ J and 
righ%(J,s) ~J are called the canonical occurrences of P and Q in P+Q, respect- 
ively. 

Let P= [(X, ~,I)S be a p. sequence. We say that P is a one-element p. se- 
quence iff X contains exactly one element (such a p. sequence can be identi- 
fie~ with the label l(x) of x~X). We say that P is a prime p. sequence iff all 
the elements of X are minimal or maximal, every minimal element is comparable 
with every maximal element and vice-versa, and at least two elements have dif ~ 
feren% labels. One-element and prime p@ sequences are said to be e!ementary. 

3.2~ Properties 

I. The cut structure of an l.p.c, set is a lattice. 

2. The splitting structure of an l.p.o, set is a Boolean algebra. 

3. Given two p. sequences P and Q, the sequential composition P.Q exists iff 
cod(P)=do~(Q). 

4. Given two p. sequences P and Q, the parallel composition P+Q exists iff the 
sets of labels occurring in P and Q are disjoint. 

5. Given two p. sequences P end Q, the parallel composition P+Q exists iff for 
every state s of P and every state % of Q there exists %he parallel com- 
position s+t. 

6. The class of p. sequences, when endowed with the operations of taking do- 
mains, codomains, sequential compositions, parallel compositions, and the 
constant 0:= [(~,~,~)] , is a p.m. category. 

7. Given p. sequences P,Q,R~S, if (P.Q)+(R.S) exists then P+R, P+S, Q+R, Q+S, 
(P+R)-(Q+S) also exist and (P.Q)+(R.S)=(P+R)-(Q+S). 

8. If P.Q=R+S then there are T,U,V,W such that P=T+U, Q=V+W, R=T.V, S=U.~. 

9. If P+Q=R+S then there are T,U,V,W such that P=T+U, Q=V+W, R=T+V, S=U+W. 

10. If P.Q=R-S then there ere T,U,V,W such that P=T.(dom(U)+V), Q=(U+cod(V)).W, 
R=~.CU+domCV)), S=(co._.g~ (U)+V).W. 

11. Every P~closure({P1,...,Pm}) can be represented in the following "sequen- 
tial" form: 

P = (PII+'''+PInI+Pil)" "'" "(Pm1+"'+Pmn +Pi ) , 
m m 

whore Pi1'''''Pim is a permutation of PI,...,Pm and P11,...,PIn1,...,Pml, 

• ""Pmn are of the form do_._mm(Pk) or cod(Pk) for some k ~{I ,...,m}. 
m 

12. Every proper p. sequence which is finite (corresponds to a finite l.p.o. 
set) can be decomposed into elementary p. sequences. 

13. If there is an occurrence FzP ~Q of a p. sequence P in a p. sequence Q 
then there are p. sequences R,S,T such that Q=R.(P+S)-T. 
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14. Every occurrence U:S---~R of a prime p. sequence S in a p. sequence R which 
is the sequential or the parallel composition of two p. sequences P and Q 
with the canonical occurrences P:P ~R and G:Q ~R can uniquely be re- 

presented either as S V ,p F__2_,R with an occurrence V:S---~p or as 

S W ~ Q__~,G R with an occurrence W:S ~Q. 

Property I is due to (H2) and (KS). Property 2 is simple to verify. The 
sequential composition P.Q in 3 can be obtained identifying every final element 
of P with the initial element of Q that has the same label, and extending the 
orderings of P and Q to the weakest ordering such that the result is a p. se- 
quence. The parallel composition P+Q in 4 can be obtained taking the p. sequen- 
ce which consists of two independent parts P and Q. 5 is s reformulation of 4. 
Proving the axiom (A6) of p.m. categories in 6 and proving properties 7,8,9,10 
needs only manipulating with cuts and splittings of an l.p.o, set. Property 11 
can be proved transforming (with the help of 6 end 7) the tree which describes 
the way of obtaining P from PI,...,P . To prove 12 it suffices to consider a 
maximal chain of outs. Prcvin~ 13 a~d 14 is just a verification. 

3.3. Examples 

The p. sequence Q in Fig.2.2.4 can be obtained composing the p. sequences: 
P in Pig.2.2.3, and R;S,do___~m(S) in Pig.3.3.1. Namely, it can be represented as 
(dom(S)+P).(R+S). Applying properties 6 and 7 we can reduce such an expression 
to the sequential form (do___mm(S)+P).(dom(R).+S).(co__dd(S)+R) or to another sequen- 
tial form (do.__m(S}+P).(do_..mm(S)+R).(co__~d(R)+S). P,R,S are prime p. sequences and 
have one occurrence each in the resulting p° sequence Q. These occurrences de- 
termine uniquely the corresponding occurrences in one of the components: 
do__~m(S)+P or R+S. 

R S 

Q5 

do mm(s) 

Fig.3.3.1 

4. Algebras of partial aequences 

Now we shall concentrate on restrictions of the p.m. category of p. sequen- 
ces to some sets of p. sequences. We are interested in those restrictions which 
are p.m. categories. 

4.1.  Notions 
Given a set U of p. sequences, by the restriction of the p.m, category of 

p. sequences to the set U we mean the partial algebra A=(U,dcm',co~,~,+~,O'), 

where do ml,co_~dJ,.',+t,O I are the intersections U2~dom, U2~cod, U3~ , U3~+, 
U~O, respectively. Such a restriction is called an algebra of p, sequences iff 
it is e p.m. category. To simplify denotations we shall use the symbols dcm, 
co____d,.,+,O also for the restricted operations do__~mr,codl,.~,+',0 l, respectively. 

A set U of p. sequences is said to be complete iff P~U and P=Q*R or P=Q+R 
implies Q EU end R EU. 

An algebra A=(U,dom,co__~d,,,+,O) of p. sequences is said %o be complete iff 
its carrier U is complete. 
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4.2. Properties 

I. If V is a set of elementary p. sequences such that dom(x) and cod(x) are in 
+closure(V) for x EV then U~closure(V) is complete. 

2. Let A=(U,dom,cod,.,+,O) be a complete algebra of p. sequences which has a 
minimal set V of generators such that every P EV is an elementary p. sequen- 
ce or is a parallel composition of one-element p. sequences belonging to V. 
Let h:V ~U' be an admissible mapping from V into the carrier U' of a p.m. 
category AI=(U',doml,codl,.',+',0 ') . Then h:V ,U l can be extended t o  a 
(unique) homomorphism H:A , A' iff it has an admissible extension 

: +closure(V) )U'. 

Property 1 can be proved by induction on the number of occurrences of ele- 
mentary p. sequences from V in a p. sequence from U. Property 2, which is one 
of our main results, can be proved reducing every P~U to a sequential form= 

P = (P11 +.. "+PInI+PI) ..... (Pal +" "'+PmnjPm ) , 

and defining: 

H(P) = h l(P11+.,.+P1n1+P11 .' .... ~h~(Pm1+...+Pmnm+Pm). 

By induction on the number of occurrences of prime p. sequences in P it can be 
shown (due to properties 7 - 10,3.2) that H(P) does net depend on the particu- 
lar representation of P. That the obtained mapping is a homomorp~iem is almost 
immediate. 

4.3. Examples 

Let A=(U,dom, cod,.,+,O) be a complete algebra of p. sequences with a mini- 
mal set V of generators as in 2,4.2, and let A'=(U',dom',cod l, .',+',0') be a 
p. m. category of actions on a memory Mem as in 1.2. Let C be the set of those 
parallel compositions of one-element p. sequences from V which belong to V. 

Suppose that we are given an allocation Field:C ~ields such that 
Field(c)~ Field(d)=~ and Field(c+d)=Field(c) u Field(d) whenever c+d E C. Suppose 
that we are also given binary relations= 

R(P) ~ States (Field (dom (P))) x Star es(Field (cod (P)) ) 

for prime PEV. Then defining h(P):=(Field(dom(P)),Field(cod(P)),R(P)) we 
obtain an admissible mapping h=V )U' which can uniquely be extended to an 
admissible mapping h': +closttre(V) ~U', and ~hus to a homomorphism H:A >A' . 

5" Concurrent schemata and their al~ebras 

A class of algebras of p. sequences with minimal sets of generators and 
admitting homomorphic extensions of admissible mappings defined on sUch sets 
can be defined by means of concurrent schemata (cf. ?~zurkiewicz [2~) which 
correspond t o  finite bondition-event Petri nets with certain classes of safe 
initial markings (cf. Petri [4], Paterson [3]). 

5 . 1 .  N o t i o n s  

A Petri net is a triple N=(B,E,F) such that: 

(~1) B n~=~, 
(N2) F ~B~EUExB, 

(N3) domaln(F) V range (F) =B u E#~. 

Each b E B (resp.:• ~ E~ is called a state element (resp.: a transition element) 
of N, and F is called the flow relation of N. Every subset of state elements is 
called e constelletibn. 

Let FU=={b EB: bFe for some e E U}, UF:={b GB: eFb for some e E U}, Fe:=F{e}, 
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and eF:=~e}F. We say that a constellation I is reachable in one step from a con- 
stellation k iff there is U_E such that: (Fuuu~)~(Fv~vF)=~ for distinct 

u,v~U, ~J~_k, UF ~_I, and k-F~=I-U~. Then we write k U--~I and call this triple 
a teachability s~ep. We say that a constellation 1 is reachable from s constel- 
lation k iff there is a finite sequence of reschability steps : 

U I U 2 U 
= k o - - - - - - ~ k  I ~. . . .  - - - - = - ~ I ~ - -  i .  

A concurrent scheme is a quadruple S=(B,E,F,0) such that: 

($I) N=(B,E,F) is a finite Petri net, 

($2) Pe~ and eF~ for every e E E, 

($3) there is no e EE such that eF=Fe, 

($4) Pu=~v and u~vF implie~ u=v for every u,v E E, 

(S5) C is a set of constellations of N, 

($6) ¢EO and dc_c implies dEC, 

($7) PeEC and ePEC for every eEE, 

(38) for every constellation k and every eEE: 

(Fe ~k=~ and PeukEC) iff (eF~k=~ and eFvkEC). 

The constellations belonging to C are called configurations. ~aximal configura- 
tions are called cases (thus C is the set of parts of cases). 

A process P(b~ corresponding to a state element b. of S (i.e. of N) is the 
one-element p. sequence (b} with the label b. A process P(e) corresponding to 
a transition element e of 3 is the prime p. sequence whose domain is ~e and 
whose codomain is oF. 

Given a subset A--~BuE, by P(A) we denote the set of processes correspond- 
ing to the elements of A. By a process of S we mean every p. sequence 
P E closure (P(B vE)) satisfying the conditlon: 

(PI) for every states u,v of P we have: u,vEO and for every constellation k: 

(unk:~ and uukEO) iff (vnk:~ and vuk~0). 

The set of processes of S is called the behaviour of S and is denoted by 
processes(S). The corresponding algebra of p. sequences (observe property 8, 
5.2) is called the algebra of the scheme S. 

A set U of p. sequences is said to be refiular iffz 

(RI) all the p. sequences belonging to U are finite and proper, 

(R2) the labels of all P ~U are from a finite set L, 

(R3) U is complete (if P E U and P:Q.R or P=Q+R then Q E U end RE U), 

(R4) if P,QEU and P.Q exists then P.QgU, 

(R5) given P,Q EU, the parallel composition P+Q exists and belongs to U iff 
c+d EU for e state c of P and a state d of Q. 

An algebra of p. sequences is said to be regular iff its carrier is re- 

gular. 

5.2. Properties 

I. If a constellation of a scheme S is reachable from a constellation k and one 
of the constellstions is a configuration then the other is also a configura- 

tion. 

2. C UP(E) ~nroceSSemS(S) • 

3. If PEclosur_ee(P(BvE)) and doe(P) Ec or co d(P)EC then PEprocesses.(S)- 



531 

4. If P.Q exists then P.Q6processes(S) iff PEprocesses(S) and Q Eprocesses(S). 

5. The parallel composition of P,Q E processes(S) exists and is in processes(S) 
iff there is a state c of F and a state d of Q such that c+d exists and be- 
longs %0 C. 

6. If F=[~ with H=(X, ~ ,I) is a proaess of S then P is proper and for every 
maximal antichain Y ~X and every maximal chain Z ~X the intersection Y n Z 
is non-empty. 

7. A configuration dGC is reachable from a configuration c EC iff there is a 
process P of S such that dom(P)=c and ood(P)=d. 

8. A set of p. sequences is the behaviour of a scheme iff it is regular. 

9. An algebra of p. sequences is the algebra of a scheme iff it is regular. 

Properties 1,2,4 are easy to prove. Properties 3,5,6 can be proved by in- 
duction on the number of occurrences of prime processes in suitable p. sequen- 
ces. Property 7 can slso be proved by induction. From I - 6 it follows that the 
behaviours of concurrent schemes are regular. The converse can be proved con- 
structing a scheme S for a given regular set U. Due %o 12,3.2, one can find one- 
-element and prime p. sequences generating U and take them as the state ele- 
ments and the transition elements of the constructed scheme. Configurations can 
be defined as the states of p. sequences from U. 

5.3. Examples 

Let us consider an iterative procedure of solving the following set of 
numerical equations: 

X = F(X,Y), 

Y = G(XJ). 

Such a procedure starts with some initial values X0,Y 0 of X,Y end computes 
successively: 

Xn+ I = F(Xn,Yn), 

Yn+1 = G (Xn,Y n) • 

Suppose that there are independent processors F and G capable to execute the 
operations (x,y):=(F(x,y),y) and (z,t):=(z,G(z,%)), respectively, in disjoint 
fields fF={x,y} end fG={z,%} of a memory ~em, respectively. Suppose that there 
is e processor D which takes care of the data and the results of the computa- 
tion, and distributes the work among the processors F and G. Then the procedure 
can be described by the scheme shown in Fig.5.3.1 with a suitable interpreta- 
tion corresponding to the exhibited intended meaning of the transition elements, 
where the configurations are ~,{IJ,{2},{3],{4},{1,2},{I,4},{2,3},{3,@}. To such 
a scheme its algebra corresponds with the following minimal set of generators: 

V = ~I,2,3,4,1+2,3+4,P(F),P(G),P(D)}, 

where P(F),P(G),P(D) are as in Fig.5.3.2. 

The algebra of the scheme contains those elements of closure(V) which have 
not the states {1,3} or {2,4~. 

Now we can take ~he allocation: 

Field (I) =Field (3) ={x,y}, 

~i~Id (2) =Fie Id (4) = {z, t}, 

Field (I+2)=Field (3+4)=Field (I +47 =Field (2+3) ={x, y, z, %], 

the relations: 

R(F)=~((x,y),(x',yg~= x=F(x,y), y'~y], 

R(G)={((z,t),(z',tg) , t=G(z,t), z=zL 

~(D)=[((x,y,z,t),(x',y',s',t')J: x'=x, y'=t, z'=x, t'=tJ, 
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and define en admissible mapping h from V into the set U e of actions on ~ as 
in 4.3. Such a mapping can uniquely be extended to a homomorphism H from the 
algebra of She scheme into the p.m. category of actions on Mem. This homomor- 
phism is the interpretation corresponding to the intended meaning of the tran- 
sition elements. 

! 2 0 -  

J -  1 " 

Fig.5.3.1 

Fig.5.3.2 
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i. Introduction 

The notion of an n-tape deterministic (one-way) automaton was in- 

troduced by Rabin and Scott [i] and it has been shown by Luckham, Park 

and Paterson [2] that the equivalence problem for n-tape deterministic 

automata is reducible to the strong equivalence problem for independent 

location schemata with n locations and vice versa. Bird [3] has shown 

that the equivalence problem for 2-tape deterministic automata is de- 

cidable. As for the cases of more than two tapes, Lewis [4] has shown 

that the equivalence problem is decidable for a restricted class of n- 

tape automata, i.e., for those with each state being in at most one loop 

in the state diagram. 

But it is still open and seems to be hard whether the equivalence 

problem for arbitrary n-tape deterministic automata (n ~ 3) is decidable 

or not. In passing we note that the inclusion problem for n-tape deter- 

ministic automata is undecidable and so is the equivalence problem for 

nondeterministic ones. (These are direct consequences of the undecida- 

bility of the Post correspondence problem.) As a way to apDroach the 

problem we derive certain reducibility results ~r n-tape automata, 

including those from the open question stated above. 

In this paper we consider n-tape automata which move nondetermin- 

istically in the following sense; namely those which may have several 

available tapes to read in each state, but after selecting a tape the 

move is uniquely determined by the symbol on that tape and the current 

state, We mostly concentrate our study on n-tape automata with an addi- 

tional property which guarantees deterministic behavior in the weakest 

sense. We call these automata determinate (after Karp and Miller [5]). 

Informally speaking, a determinate automaton may reach many 

states after it has processed an input n-tape word, but they must be 
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all contained either in the set of final states or in its complement. 

Then among others we can show that two deterministic automata are 

equivalent iff they can be mapped into a determinate automaton in a 

reasonable manner. Our main result is that the following three decision 

problems are reducible each other: (I) Whether two n-tape deterministic 

automata are equivalent or not. (2) Whether two n-tape determinate 

automata are equivalent or not. (3) Whether an n-taoe automaton is de- 

terminate or not. 

We give basic notions such as determinate automata in section 2, 

and introduce some auxiliary notions being useful to prove our main 

result in section 3. Then we establish the reducibility result in section 

4. Concluding remarks are in section 5. 

2. Definitions and Properties of Determinate Automata 

We will define an n-tape automaton as a special type of automaton 

over ziuz2u...UZn,where each E i is a finite alphabet for the i-th tape. 

First we will define n-tape words and n-tape languages. Let Z = 

ZlUZ2u...UZn~where Z i ~ Zj = ~ if i ~ j. Let us denote the direct product 

Z~xZ~x...xZ~ by EZ~. Each element of HZ~ is called an n-tape word over 

Z, and a subset of 5Z~ is called an n-tape language over Z. The concate- 

nation of ~ = <~l,~2,...,an> and ~ = <BI,B2,...,Bn > in ~Z~ is defined 

by ~B = <~IBI,~2B2,...,~nBn >. (~)i denotes the i-th component of ~. We 

use X to denote the unit element of Z~,for i = 1,2,...,n. We also use 

to denote the unit element <A,X,...,~> of 5Z~. 

Next we define a mapping p : Z ÷ {l,2,...,n} to assign to each 

symbol the name of the alphabet it belongs to, by ~p = i iff ~ ~ Z i. 

(We write xf or sometimes f(x) for the value assigned to x by function 

f.) We also define homomorphisms h i : Z* ÷ Zi,* for i = Z,2~...,n ~ by 

oh i = ~ if o E Z i and ~h i = ~ otherwise. Then for each w ~ Z* we write 

<w> for the n-tape word <Whl,Wh2,...,Whn >. The derivative of an n-tape 

language L with respect to ~ ~ HZ~ is defined similarly to the l-tape 

case. That is, ~ \ L = {Bi ~B ~ L). 

DEFINITION I. An n-tape automaton A is a quintuple (Q,z,~,s,F),where 

(i) Q is a (finite or infinite) set of states, (2) s ~ Q is ~alled the 

initial state, (3) F m Q is the set of final states, (4) ~ : Q x Z ÷ Q 

is a partial function called the transition function. When ~(P,o) = q 

with o ~ Z i, we say that q is an i-successor of p. The partial function 

6 is either totally defined or totally undefined on each {p} x Z i. 

That is, if p has an i-successor then ~(p,~) is defined for all a ~ Zi. 
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The transition function ~ : Q ×Z ÷ Q can be naturally extended to 

the partial function 6 : Q x Z* + Q. When ~(p,w) = q, we write p W~q. 

If Q is finite, we say that A is a finite n-tape automaton. In the sequel 

we sometimes omit the modifier "n-tape" for n-tape automata and n-tape 

languages. 

DEFINITION 2. Let A = (Q,Z,6,s,F) be an automaton. For each q ~ Q we 

define TA(q) c Z*~ and TA(q) c HZ~, by TA(q) = {w I ~(q,w) e F}~ and TA(q) 

= {<w> I w E TA(q)}. Then we define T(A) = TA(S). The set ~(A) is called 

the language accepted by n-tape automaton A. 

DEFINITION 3. Two automata A and B over the same alphabet are equivalent 

iff they accept the ~elanguage, i.e., T(A) = ~(B). 

DEFINITION 4. Let A = (Q,Z,6,s,F) be an automaton, and define I = {i I 
P 

p has i-successors},for each p E Q. Then a state p E Q is (i) determin- 

istic, (2) closed, or (3) determinate, respectively, if (i) I is either 
c w 

a singleton or the empty set, (2) p~q and p --->q' with ~0 ~ ~'P imply 
c v 

the existence of r £ Q such that q---~r and q'-~ r, or (3) P~q implies 

TA(q) = <~> \ TA(p). An automaton A is deterministic, closed, or deter- 

minate, if all states of A are deterministic, closed, or determinate, 

respectively. 

EXAMPLE. Let A be the automaton in Fig. i, where the initial state is i, 

the final state is 2, Z I = {a}, z 2 = {b}, and Z 3 = {c}. Then T(A) = 

{<an,bm, cn+m-l> I n+m ~ I}. The automaton A is determinate, but not closed. 

c 

Fis. i. The 3-tape automaton A 

Clearly, if an automaton A is deterministic then it is closed. If 

A is closed then it is determinate. Indeed, if A is closed, p-~q in A, 

and ~ e Zi, then TA(q) = <0> \TA(p) since ucv e TA(P) and uh i = X 

imply uv e TA(q) for all u,v e Z*. 

DEFINITION 5. For two automata A = (QA,Z,~A,SA,FA) and B = (QB,Z,SB,SB, 

FB), a mapping f : QA ÷ QB is called a morphism from A to B and written 
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as f : A ÷ B if sAf = SB, FBf-I = F A and pf ~-~qf in B for each p ~-~q 

in Ao If a morphism f : A ÷ B is a mapping onto Q~, and for each p' J~q~ 

in B there exists p__~q in A such that pf = p' and qf = , then we say 

that B is the morphic image of A by the morphism f. 

Note that if f : A ÷ B and g : B ÷ C are morphisms, then the com- 

position fg : A ÷ C is a morphism. Let A and B be automata and f : A ÷ B 

be a morphism. Then ~A(p) c TB(pf ) for each state p of A. We will use a 

notation T A C f~B to mean that TA(P) C ~B(pf ) for each state p of A. 

Likewise we write ~A ~ fTB if ~A(p) = ~B(pf) for each state p of A. 

THEOREM i. An automaton A is determinate iff there exist a closed autom- 

aton C and a morphism f : A ÷ C such that T A = fT C. 

Proof. If: Clear. Only if: If A is determinate, we can construct a 

"universal" automaton U such that T A : A ÷ U is a required morphism, as 

follows: Let U = ((L I L c ~Z~},~,~,T(A),(L I X ~ L c ~Z~))~where ~(L,a) 

= <~> \ L. Clearly, U is closed and ~A is a morphism from A to U. Since 

~U is the identity mapping, T A = TAT U. 

THEOREM 2. Let f : A ÷ B be a morphism from an automaton A to a determi- 

nate automaton B. A necessary and sufficient condition for T A = fT B is 

that for each state p of A, if ~ e TB(pf) - (X) then (~)i ~ X for some 

i E I = {i I p has i-successors in A}. 
P 

Proof. It is enough to show that ~A ~ fTB iff there exist a state p of 

A and ~ e TB(pf ) - {~} such that (~)i = I for all i ~ Ip.'elf"part is 
• II 

clear. To prove"only if part, let ~ be a shortest word in TB(pf) - TA(p) p 

for some state p of A. (The length of ~ E ~ is defined to be the total 

number of symbols which appear in ~.) Clearly ~ ~ X. Assume (~)i # X 

for some i ~ Ip, and ~ = <a>B with ~ • ~* and ~ • Z i. Let p ~q in A. 

TB(pf) TB(qf)~ Then pf--~qf in B, and we have ~ • <~> \ = since B is 

determinate. As 8 is shorter than ~, it follows that ~ ~ TA(q), which 

however conflicts with our assumption that ~ ~ ~A(p). Thus (~)i = I for 

all i e I . 
P 

COROLLARY. In theorem 2~ if both A and B are finite, then it is decidable 

whether ~A = fTB or not. 

Proof. Since TB(Pf) - (I~ is a regular set over Z, it is decidable 

whether for each we TB(pf) - {X} there exists an i • Ip with wh i ~ X 

or not. 
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3. Schemes 

Theorem 2 gives a condition for a morphism f from A to a determinate 

automaton B to satisfy T(A) = ~(B). In this section we consider a 

certain type of automata, called schemes, which guarantees the equality 

T(A) = T(B) for any morphism f from a scheme A to a determinate scheme 

B. The notion appears to be a useful tool for the proof of our main 

theorem. 

DEFINITION 6. An(n-tape)scheme A is an n-tape automaton such that: 

(I) For each state p of A, if ~ ~ TA(p) then (~)i ~ ~ for all i E Ip. 

(2) Any state except the final states has successors. 

Note that the final states of schemes cannot have successors. 

COROLLARY. It is decidable whether a finite automaton is a scheme or not. 

THEOREM 3. Let f : A + B be a morphism from a scheme A to a determinate 

scheme B. Then T A = fT B and A is determinate. 

Proof. If p is a final state of A, then ~A(p) = TB(pf) = {~}. If p is 

not a final state of A, then p and pf have i-successors for some i. Since 

B is a scheme, (~)i ~ ~ for all ~ ~ TB(pf). Therefore T A = fT B. It follows 

that A is a determinate scheme. 

THEOREM 4. Let B be the morphic image of a determinate automaton A by a 

morphism f : A ÷ B. Assume that pf = qf implies TA(p) = TA(q) for all 

states p and q of A. Then T A = fT B and B is determinate. 

Proof. Let U be a "universal" automaton for A which is defined in the 

proof of theorem i. We define a mapping g from the states of B to the 

states of U, by (pf)g = TA(p). By the assumptions, g is well defined. 

Furthermore, g is a morphism from B to U. Since ~A c f~B c fgT U = TA, 

T A = fT B and B is determinate. 

COROLLARY. Let A k = (Qk,Z,6k,Sk,Fk) , k ~ K, and B = (Q,Z,~,s,F) be schemes 

where K is a (finite or infinite) index set. Let fk : Ak ÷ B be morphisms. 

Assume that for each p ~---~q in B, there exists pk ~_q~qk in A k with Pkfk 

= p and qkfk = q for some k ~ K. Then the following two statements are 

equivalent. 

(i) B is determinate. 

(2) A k is determinate for all k in K, and if Pifi = pjfj then 

• A.(Pi ) = ~A.(Pj). 
l j 
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~oof. (I)~(2): Immediate from theorem 3. (2) ~(i): We assume Qk 

(k e K) are pairwise disjoint and let A = (U K Qk,Z,6',S',k~U K_ Fk) ,where 

s' is one of the intial states of Ak'S , and ~'(p,~) = 6k(p,~) if p e Qk" 

Define a morphism f : A ÷ B, by pf = Pfk if p e Qk" By the assumptions 

these are well defined, and A is a determinate scheme. We may assume 

that B is the morphic image of A by the merphism f. Thus the scheme B 

is determinate by theorem 4. 

This corollary asserts that a "union" of a class of morphic images 

of schemes is determinate~ providing the schemes are all determinate 

and "mutually consistent"; conversely if the "union" is determinate then 

the component schemes must be determinate and "mutually consistent". 

We close this section by showing that for any finite automaton A, 

we can construct a scheme that accepts precisely the words in T(A) fol- 

lowed by an endmarker on each tape. Let $i be an endmarker for the i-th 

which does not belong to Z. Let E~$ ~ = Ei u {$i] for i = 1,2,...,n tape 

and Z$ ESu~$u .uZ $. For each subset I -- " {1,2, = I L2 "" n {il,12,...,ik} of N . . . .  , 

n}, let $! = <$ii$i2"''$i k" We will write $ for SN" 

Now for any automaton A = (Q,Z,6,s,F), we construct a scheme AS = 

({qll q E Q and I c N] u {d}, Z$,6$,SN,F$)~where F$ = {q~I q e F) and 

85 is defined as follows: 

(i If q has i-successors in A and i e I~ then 

6$(ql,q) = 6(q,~) I for each q e Zi, and ~$(qi,$i) = ql-{i}" 

(2 If q E F has no i-successors in A for any i ~ I, then 

~$(ql,~) = d for each ~ ~ ielU Zi, and 65(qi,$ i) = q!-{i} for each 

iel. 

(3 If q ~ F has no i-successors in A for any i e I, then 

65(qi,~) = d for each ~ e iUel Z $ and 6 (q%,q) = d for each ~ e Z$ i' $ 
(4) 6$(d,a) = d for each q ~ Z$. 

EXAMPLE. Let A be the automaton in Fig. I. Then the scheme A$ is shown 

in Fig. 2. The states not reachable from the initial state 1(1,2,3 ) are 

deleted for simplicity. 

By the construction of AS, ~$(ql,Ul$ilu2$i2--.Uk$ik) = P~ e F$ 

implies 6(q~ulu2...u k) = P E F, <$ii$i2...$ik > = $I' and (UlU2...Uk)h i =X 

for all i E N - I, which however imply 6$(ql,UlU2-.-u k) = Pl and 

6$(pl,$il$i2...$ik) = p% e F$. 

Hence TA$(q I) = (Ti(q) n {~I (~)i = I for all i e N - I}){$i}. 

From the above equation it is easy to see that A is determinate iff 
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A$ is determinate. Thus we have the following. 

THEOREM 5. For any automaton A there exists a scheme AS such that T(A$) 

= ~(A){$} and A is determinate iff AS is determinate. 

$3 

Fig. 2. AS where Z~ = {a,$1} , E~ = {b,$2} and E~ = {c,$3}. 

4. Main Theorem 

THEOREM 6. The following three decision problems are reducible each other. 

(i) Whether two finite deterministic n-tape automata are equivalent or not. 

(2) Whether two finite determinate n-tape automata are equivalent or not. 

(3) Whether a finite n-tape automaton is determinate or not. 

Proof. (i) is reducible to (2): Clear. (2) is reducible to (3): We may 

assume n ~ 2. Let A = (QA,Z,~A,SA,FA) and B = (QB,Z,6B,SB,FB) be deter- 

minate automata. Choose arbitrary o I E E1 and ~2 e E2' and construct an 

automaton C = (QAUQBU{s,t,u,d},Z,6,S,FAUFB) as described in Fig. 3. Then 

C is determinate iff s is determinate in C iff T(A) = T(B). 

EIUZ2_{Ol,O2 } 

Fig. 3. The automaton C. 
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(3) is reducible to (i): Let A be a finite automaton. By theorem 5 we 

may assume that A = (Q,Z,~,s,F) is a scheme. Then we can obtain a deter- 

ministic subscheme B = (Q,Z,6',s,F) of A,where ~' is defined as follows: 

Choose an arbitrary i~ I for each qeQ, and let ~'(q,~) = 6(q,o) for each 
q 

e Zi, and ~'(q,o) be undefined for all ~ e Z - Z i. Then the identity 

mapping g : Q ÷ Q is a morphism from B to A. Let {Bkl k E K} be the set 

of all the deterministic subschemes of A constructed as above. Since B k 

is determinate for all k 6 K, by the corollary of theorem 4, A is deter- 

minate iff TB.(q) = TB.(q) for each i,j e K and q e Q. Since Q is a 
l j 

finite set and so is K, we can decide the determinacy of A by testing 

the finite set of equalities TB.(q) = TB.(q) for deterministic schemes. 
i J 

If A is a determinate scheme, then a deterministic subscheme B of 

A in the proof of theorem 6 accepts the same language as A, since g is 

a morphism. Hence we have the following two theorems. 

THEOREM 7. A language L is accepted by a determinate scheme iff L is 

accepted by a deterministic scheme. 

THEOREM 8. If a language L is accepted by a determinate automaton then 

L{$] is accepted by a deterministic scheme. 

5. Concluding Remarks 

We have shown:whether two deterministic automata are equivalent or 

not is decidable iff whether an automaton is determinate or not is de- 

cidable. In the proof of the main theorem we have shown that two deter- 

ministic automata are equivalent iff they can be mapped in a reasonable 

manner into a determinate automaton. The determinacy guaranZees a kind 

of deterministic behavior of an n-tape automaton, and so does the 

closedness. 

For the 2-tape case, Bird [3] showed that two deterministic schemes 

are equivalent iff they can be mapped into a closed scheme, and gave an 

algorithm to construct a finite closed scheme and morphisms when the given 

two finite schemes are equivalent. His algorithm works correctly for 

arbitrary n-tape schemes providing it terminates. But it does not neces- 

sarily terminate. There exist two equivalent 3-tape finite deterministic 

schemes which cannot be mapped into a finite closed scheme. (Indeed, 

the deterministic subschemes of A$ in Fig. 2 are equivalent. But they 

cannot be mapped into a finite closed scheme.) 
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INTRODUCTION 

The paper introduces three complexity measures of computations 

on Turing machines with oracles. The complexity of a computation on 

a Turing machine with an oracle is given either by the number of in- 

teractions with the oracle during the computation, or by the sum of 

the lengths of the questions asked by the machine of its oracle during 

the computation, or by the maximum of lengths of these questions. The 

complexity depends neither on the amount of the tape required by the 

computation nor on the number of its steps. For the case of these 

measures we try to find the least enlargement of the complexity bound 

which increases the computing power. 

For oracles of a minimal level (they can decide the acceptance 

of words on Turing machines without oracles) we construct five com- 

plexity hierarchies. The first three hierarchies are constructed on 

the set of languages accepted by deterministic Turing machines with 

a fixed oracle according to the three measures mentioned above. An- 

other hierarchy with respect to the first measure is constructed on 

the set of languages accepted by nondeterministic Turing machines of 

a special type with an oracle, and the last hierarchy is constructed 

on the set of languages accepted by nondeterministic TurinE machines 

with an oracle according to the second measure. The hierarchy on the 

same set according to the third measure does not differ from the de- 

t erminist ic case. 

The paper is a by-product of the work (~k ~3~) on the same prob- 

lem for the case of space complexity of computations on Turing machi- 
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nes and is based on the same principle of diagonalization. It consists 

of two chapters. The first chapter is concerned with diagonalization 

and second contains all complexity results. 

CHAPTER I 

The aim of this chapter is to introduce a principle of diagonali- 

zation. The first part of this chapter contains a basic definition of 

a mapping called the result of the testing process (rtp) and a theorem 

which exhibits the logical structure of the diagonalization principle 

without taking care of existence and complexity aspects. The second 

part of the chapter contains a lemma which ensures the existence of the 

rip-mappings and introduces first complexity aspects. The proofs of the 

theorem and of two lemmas of the chapter can be found in ~k ~3] • 

Let us first recall some usual definitions and conventions. An 

alphabet is a nonempty finite set of symbols, all alphabets are subsets 

of a fixed ~nfinite set containing, among others, the symbols b,0,1,2,S. 

A string or a word over an alphabet is a finite sequence of its sym- 

bols, ~t denotes the empty word, lua is the length of the word u. A 

language over am alphabet is a set of strings over this alphabet. If 

X is an alphabet then X* (X+,X u) is the language of all words (of po- 

sitive length, of the length n, respectively) over X. Two words may be 

concatenated which yields a similar operation for languages. N denotes 

the set of natural numbers. If a is a symbol and i~N then a i is a 

string of ass of the length i. By a function or by a bound we always 

mean a mapping of N into itself. The identity function will be denoted 

id, id(n) = n, and the integer part of the binary logarithm will be 

denoted log. For two functions f,g we shall write f-~ g iff 

(Wn)(f(n)-~g(n) )~ and f%g iff (~no~N)(Vn ~no)( f(n)-~ g(n) ). 

From time to time in the following text we shall use the if .. then .. 

else construction well-known from the programing languages. 

We shall call two languages LI,L 2 equivalent (LI~ L 2) iff they 

differ only in a f~mite number of strings. If W is a class of langua- 

ges then ~'# will be the class of all languages for which there are 

equivalent languages in W. 
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By a program system we mean a pair (P,F)~ where P is a language 

and F is a mapping of P into a set of languages over an alphabet. In 

this context, P is called the set of programs and its elements are 

called programs. In what follows if we use the phrase "Let P be a set 

of programs", we implicitly understand that P is the first item of 

a program system. Its second item will have the general denotation L 

and Lp will mean the language which corresponds to the program p E P. 

The set of all such ~ for all p~P will be denoted JQ(P). 

For a progrsm p and a word u, we say that p accepts u (plu) iff 

u~ Lp. 

Let p be a program and Q a set of programs. We say that p diago- 

nalizes Q iff there is a finite set F such that ( V q g Q-F)(p'q~-~lq!q). 

Lemma I. Let p be a program and Q a set of programs. If there are 

infinitely many programs from Q with the same language as the program 

p then p does not diagonalize Q. 

Definition. Let Q,R be sets of programs, RTP a mapping of N with- 

out some initial segment into the set Q and e a function. If for all 

q~Q the sets 

Rq = {rE R I RTP(e(Irl)) = q & U(q!r~ ~ur!r)] 

are infinite then RTP is called the result of a testing process with 

the function e on the sets Q,R in short, rtp with e on Q,R. 

Theorem I. Let Q,R be sets of programs, RTP an rip with e on Q,R, 

X a program and z a mapping from R into N. If for all q~Q there are 

infinitely many r @ Rq such that 

(I) X!rlZ(r)~ = ur:r~ and 

(2) (V j, 0 -~j zz(r))(X!rlJ~-.- RTP(e( Irl))!rlJ+l)j 

We say that a Turing machine (TM) T accepts a word u if there is 

a computation of T on u which stops in a final (accepting) state. If 

T is a deterministic single-tape TM and accepts a word u, then T(u) 
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denotes the wo~d written on the tape after the computation of T on u 

has been finished. 

A Turing machine with oracle A (A ~ N) is a Turing machine which 

has among its tapes a fi~ed one, on which a special symbol S may be 

written. The set of states of the machine includes three special states 

q,YES,N0 . If it enters the state q, then in the next step if the num- 

ber of occurrences of S on its fixed tape belongs to A, it must enter 

the state YES, otherwise the state NO. 

A function e will be called (A-)recursive if there is a determi- 

nistic Turing machine T (with oracle A) such that for all n E N T(1 n) = 
= I e(n) . 

A language over an alphabet X is called (A-)recursively enumerable 

if it is accepted by a Turing machine (with oracle A) and it is called 

(A-)recursive if moreover its complement in X + is also (A-)recursively 

enumerable. 

If P is a set of programs then !p is the binary relation 

~(p,u) I PE P, U~Lp} . - The graph of a binary relation H on a set 

of strings is the set {u2v I (u,v) eH I ° 

Let A be an oracle. We say that a sequence {all of words over 

an alphabet is (A-)effective iff there is a deterministic Turing ma- 

chine (with oracle A) rewriting the unary code of any iE N to a i. 

Lemma 2 (rtp-lemma). (a) Let Q,R be nonempty sets of programs and 

e a function. If no program from Q diagonalizes R and if e-Lid and 

lira e = oo then there is an rip with e on Q,R . 

(b) L~t A be an oracle. If, in addition, the sets Q,R, Q _~ {b,ll ~ , 

are (A-)recursively enumerable languages and the graphs of the rela- 

tions !Q,X R are (A-)recursive and also the function e is (A-)recu~siVe 

then there is a deterministic Turing machine T (with oracle A) with 

one tape and with one head such that 

(1) during the computation on the input word I k, T uses only the input 

cells end two adjacent cells, 

(2) T writes only the symbols 1,b (1,b,S), 

(3) there is a constant c such that the mapping RTP = 

= ~(k,T(Ik)) I k~N, k~c~ is an rip with e on Q,R. 
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In fact,we have two lemmas - the version without an oracle and 

the relativized version. 

CHAPTER 2 

In this chapter, by an oracle machine we shall mean a determini- 

stic or nondeterministic single-tape single-head Turing machine with 

an oracle such that its tape is infinite in both directions and with 

input words over the alphabet CO,l) only. 

We shall say that a machine M asks its oracle if M is in the sta- 

te q. By the length of such a question we shall mean the number of 

symbols S currently written on the tape. 

For an oracle machine M and for an input word u, we define 

oracle~u) = oracl~(u) = oracle(u) = oo if M does not accept u, 

otherwise 

oraclel(u) = the minimal number of questions asked by M of its oracle 

during an accepting computation of M on u, 

oracle2(u) = min (s I s = sum of lengths of all questions asked by M 

of its oracle during an accepting computation of M on u), and 

oracleS(u) = rain ~ s I s = maximum of lengths of questions asked by M 

during an accepting computation of M on u } . 

(In short, the complexity of acceptance of a word by a machine is gi- 

ven By the complexity of the most modest accepting computation.) 

In what follows, by a machine we shall mean a nondeterministic 

machine with a fixed oracle A. 

Lemma 3 (Universal machine). There is a recursive set S, 

S ~l + ~b,l~ ~ , in a one-one correspondence with the set of all machi- 

nes, and a machine U such that for all i = 1,2,3, for all s~S and for 

all input words u the equality or~cle~(su) = oracleiMs(U) holds (whe- 

re M s stands for the machine corresponding to s). 

A similar lemma holds for the case of deterministic machines. 

Then U D is a deterministic universal machine and S D a set of codes of 

deterministic machines. 
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Let us fix the set S from Lemma 3. In what follows the language 

accepted by the machine M s will be denoted L(M s) or L(s). For i = 

= 1,2,3, we shall also write oracleis(U) instead of oracl 4 (u),where 

s~S and u ~ ~0,I~*. s 

Definition (for i = 1,2,3). (a) If t is a bound and M s a machine 

then by i-t-cut off of the language L(s)we mean the set ~(s) = 

: s) : {u loracle (u  t(lu) 
(b) We say that a machine M s accepts its language within i-bound t if 

T,Cs) = ~ ( s ) .  
(o) For a bound t we define 

omc~Ei(t) : {-~I( ~s~S)(~ : L(s) : ~(s))] , 

CORAC~Ei(t) : { ~(s) I s ~ s 3, , 

D..oma~Ei(t) : {L I( 3s .SD)(~ : r(s) : ~(s))} , 

D-CORACLEi(t) = {Li(s)I S ~SD~ • 

Let us repeat some standard definitions. For A,B ~ N we shall wri- 

te A<-mB iff there is a reoursive function f such that for all x, x~N, 

x~ A ~f(x) ~ B. 

K will be a set of natural numbers, 

K = ~ ~T,u? I T is a TM without oracle, u ~ {0,I~ ~ 

where ~ > is a standard coding. 

, T accepts u), 

Definition (for i = 1,2,3) . Let A be an oracle and f,g functions. 

We say that f is (i,g,A)-recursive iff there is a deterministic machine 

T with oracle A such that L(T) = 1 ~ , T(1 n) = I f(n) for all n~N, and 

L(T) = Li(T) . We say that f is (i,rec,A)-reoursive Iff it is (i,h,A)- 

-recursive for a recursive function h. 

Lemma @ (for i - 2,3). If K%mA and if t is an A-recursive bound 

then the language L ~su fuel(s), seS ~ is A-recursive. 

If moreover t is (l,rec,A)-recursive then there is a recursive function 

f such that the language L can be decided by a machine D for which the 

equality L(D) = Li(D) holds. 

Remark. L emma A yields trivial separation results such as: for 

i = 2,3 0RACLEI(f) - CORACLEI(t) ~ @ • It seems that f is not a 

small function (with respect to t). 
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For a word u, a language L, a family of languages ~5 we define 

Shadow u ltUl Shadow L = [Shadow u I u ~LI and Shadow 

= ~Shadow L IL ~ ~ . 

Theorem 2. Let t be a recu~sive bound, lira t = ~ . If E~m A then 

there is a lauguage L such that 

(I) L -~ I ~ , 

(2) T ~ ORACLE 3(t) , 

(3) L #Shadow 0RACL~(t °) , where t°(O) = 0 , t°(n) = t(n-1) for n nO. 

Sketch of the proof. First, we shall choose a set Q of programs 

such that ~ (Q) = Shadow CORACL~(t S) and a set R of programs both sa- 

tisfying the conditions of the rtp-l~mma. Secondly, we shall construct 

a machine X such that X accepts its language L(X) within 3-oracle bound 

t and this language has the properties (1),(2) from Theorem 1. By ap- 

plication of this theorem we shall get L(X) $ E~(Q) = 

= ~ Shadow CO~ACT~(t') = Shadow ORAC~(t °) • 

Let us write Q = S and, for qeQ , Lq = Shadow ~.(q). 

Let ~si~ be an effective sequence of programs from S in which 

each s, s ~S, occurs infinitely many times. 

Now we define a recursive sequence rl, z(rl), r 2, z(r2), ... , r i, 

z(ri) , ... , where r i~l +, z(r i) EN, r I = I, ri+ I = r i + z(r i) + I, 

and 

z(r i) = rain <nl the tape of the length t(Iril + n) is sufficient for 

deciding whether ri~ Lri = Shadow ~s(s i) 

- see Lemma O. We put R = ~r i I i~N ) . 

Let us define, for i 6 N, 

e Clril) : rain( {Jril ] ~ ~t( Iri1+ j)] O~_j ~z(rl) } ), 

and e(n) = n for non such that n ~ grit for each i tN. 

There is an ~p RTP with e on Q,R constructive in sense of the 

rtp-lemma since Q,R,e satisfy ~he conditions of this lemma. 

Now, we are going to construct the machine X. X accepts only 
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strings of l's and during the computation on the input word I n X never 

asks of A a question of the length greater than t(n) - see conditions 

(1),(2) of the theorem. After computing t(n), X recurslvely constructs 

the sequence rl, z(rl) , ... ,ri, z(ri) , .... 

If (~ reR)(l n = rl z(r)) then X decides whether r eL r and accepts iff 

qr!r • 

If ( ~ r ~ R)(I n = rlJ), where 0-~ j ~ z(r), then X recursively constructs 

the number e(Irl) and then the program q, q = RTP(e(Jrl)). Further X 

nondeterministically rewrites the input word I n to any word from 

{O,I } n + I and on this word computes in the same way as the uni- 

versal machine U (Lemma 3) according to the program q. If there is an 

accepting computation of U on a word from {0,I} n + I according to 

the program q and this computation does not require to ask of A a ques- 

tion of a length greater then t(n) then X accepts. Formally: 

(I) I n~L(x) ~ ~( ~u ~ /0,I} n ÷ l)(oraol4(RTP(e (IriL))u)It(n)) . 

Now, we shall apply Theorem I. We have rlZ(r)~ L(X) ~e 7r!r for 

all r 6R and therefore it suffices to prove for all sufficiently large 

r, r e R, that 

( Vj, O-~j~z(r))(rl j ~L(X) ~ RTP(e(Irl)),rl j + I ) 

- condition (2) of Theorem 1. Let us fix r,j , rER, 0Wj~z(r), and 

write n = Irl +j . We know that the following statements are equivalent: 

(i) rl j~L(x) , 

(ii) (Su ~{0,1} n + l)(oracleuS(RTP(e(irf))u) z t(n)) - see (1) , 

(iii) (3u 6 {0,I~ n + 1)(oracle3q(U) .~t(n) = t'(n + 1)) 

- see Lemma 3, q = RTP(e(Jrl)) , 

(iv) (3u ~/0, I} n+ 1)(u6~,(q)) , 

(v) I n + IE Shadow ~,(q) = Lq , 

(vi) q!in + 1 , 

(vii) RTP(e(trl))Irl j + I . 

fore 

The language L(X) satisfies the conditions of Theorem 1 and there- 

L(X) $ E/f (Q) = E Shadow CORACLE3(t ") = Shadow ORACL~(t'). 

Q. E. D. 



550 

x _  _ 

From the fact D-ORACLE~Ct) = OR/CLEW(t) follows that the same 

theorem holds for the deterministic case. 

Remark. Condition (5) in Theorem 2 may be changed as follows: 

D~Shadow U' ~ORACL~Ct') I lira ~e (tCn) -t~(n + 1)) >~O~ . 

Example. ORACLE3(n + 1) - 0RACLE-5(n) J ~ • 

Now, we turn our attention to the complexity measures oracle 1 

and oracle 2 . 

Lemma 5 (for i = 1,2). If K.~m A then for each k, k~N, k>~l, 

there is an (i,e'/k,A)-recursive function e" such that: 

(1) e~is nondecreasing and unbounded, e'~ id, 

(2) Val e" = ~e'(n) I n~N I is a recusive set, 

(5) for each nondecreasing and unbounded recursive function d the 

inequality e'~ d holds. 

Definition. We say that a machine with an oracle is an r-machine 

if each its infinite computation contains infinitely many questions to 

its oracle. 

Lemma 6. If K ~m~ then there is a mapping F, F:S-~S, such that: 

(a) For each s ~S, MF(s) is an r-machine. 

(b) If M s is an r-machine, then for each u & ~0,I 1 + the equality 

oracleFl(s)(U) = 1 + 2oo~aclels(u) holds. 

(c) The set F(S) = {F(s) I s ~S } is recursive . 

<d) F is realizable on a TM. 

Let us fix the mapping F from the !emma and write F(M s) , 

F(Ms) =df MF(s) " 

Lemma 7. Let A be an oracle, K~m A o If t is an A-recursive bound 

then the langu~e~ ~ su / u ~ L~< ~) , s ~ FCS) I and 

{SUl u&Ltl(s) , S6S D 3 are A-recursive. 

Definition. For a bound t we define 

F-OmCLEI(t) _- {LI ( ~s~F(S)}(~ = ~(s} ~- 5~(s))I, ~a 
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F-co~cLEI(~) = {'L~(~) Is ~F(s) } . 

By a p p l i c a t i o n  o f  Theorem 1 we can p r o v e  t h e  f o l l o w i n g  theo rem,  

Theorem 3 ,  Let  A be an o ~ a c l e ,  K_~m A, t a r e o u r s i v e  bound,  The 

following sets contain a language over the alphabet { i] : 

F-0RACLEI(t) - Shadow F-CORACLEI(t •) , 

0RACLE2(t) - Shadow CORACLE2(t °) , 

D-OmCLEI(t) - D-CO~AC~I(t ") , 

O-0PACLE2(t) - O-C0RACLE2(t') 

where t*(n + l) = t(n) - eS(n) for all hen and e * is (l,e~/8,A) - or 

(2, e'/8,A)-recursiVe function from Lemma 5, providing e'~ t . 

Example. La~Iguages over { 11 are also contained in 

0RACLE2(n + log k n) - Shadow ORACTE2(n) for k 70 , 

D-ORACLEi(n + log k n) - D-ORACLEi(n) for i = 1,2 and kp0. 

A trivial di~onalization yields results such as 

D-ORACLEI(2 + 2n) - D-ORACLEI(n) # ~ . 

Remark after Lemma ~ gives trivial results for i = 2 . 
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Introduction 

In this paper, we consider the l-calculus as a formal setting for studying 

procedure calls in programming languages. These languages (as in LISP) allow proce- 

dures to take procedure as arguments and also to deliver procedures as results. The 

l-calculus could be typed or untyped. In the first case, it is more realistic to add 

a recursion operator as in LCF[Mi|, PI2, Mi2, Be2]. In the untyped case, the recur- 

sion is already in the language. (Take Y= lf.(lx.f(xx))(lx.f(xx))). In both cases, 

the l-calculus has constants which correspond to the basic functions symbols of terms 

in recursive program schemes [Ni~Vu]. Therefore, one can say that the l-calculus 

framework is a generalisation of recursive programs schemes to any functional order. 

Here, we shall look at syntactic results in [Be3, Lel]. We only consider the 

untyped l-calculus, because definitions are simpler in it. Of course, we do not claim 

that programming languages should be untyped. But the pure l-calculus has already 

enough properties which exist too in other formalisms [Be4, Be3, Hulj Hu2]. As usual, 

the survey will be very partial. For a full treatment of the syntax and the semantics 

of the l-calculus, it is strongly recommended to look at ~e future book [Ba2]. Fur- 

thermore, a lot of our results could not exist without the l-calculus models [Sc], 

Sc2, PI], PI3] and the study of their connections with the syntax [Ba], Wa|, Hy|,Nal, 

Bo], Mo], Ba3, PI2, Mi2, Be3, Cu2]. 

I. Basic definitions 

Let V = {x],x2~...}~a~infinite enumerable set of variables also -~ritten 

x,y,z...f,g,h ''~ and C = {ci,c2,.''} a set of const~t symbols. Then the set 

A = A(VpC) of %-e~ressions on V and C is the minimal set containing V and C such 

that : 

| )  If M,NcA, then (MN) sA (application) 

2) If xeV and MEA, then (lxM)eA (abstraction w.r.t, x) 

Parenthesis can be suppressed in %-expressions with the usual following ab- 

breviations [Chl]. For applications, parenthesis are implicitly to the left. Thus 

(MNIN2...N n) stands for (...((MN|)N~..'N n) when n~l. A new symbol "-" is added and 

permits to gather abstractions. Thus (Ix|x2"''Xm'M) is for (%x1(Ix2"''(lXmM)°'')) 

when mel. Finally, the outermost parenthesis and also the ones corresponding to the 
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the expression following a dot symbol can be suppressed. For instance, one has 

(Xxy-cxy)z(Ix.x) for (((%x(ly((cx)y)))z)(lxx)). 

Intuitively, the expression (%x.M) corresponds to a unary procedure with x 

as a formal parameter and M as result. Procedures with several arguments are repre- 

sented by a sequence of unary procedures (curryficaticr~). For instance (%xy.M) can be 

considered as the procedure with parameters x and y, and M as result. 

In any expression, variables can be or not under the scope of a correspon- 

ding abstraction operator. They are respectively called bound or free. For instance, 

in (Xx-xy) x is a bound variable and y is free. The binders act exactly as uni- 

versal or existential quantifiers in logical formulae. The substituti~ of the free 

variable x by an expression N in M, written MIx\N], is defined as follows : 

c[x\N] = e 

x[x\N] = N 

yEx\N] = y (x~y) 

(m~')Ex\N] = (~[x\N] M'[x\N]) 

( X x . M ) [ x \ N ]  = (Xx.M) 

( X y . M ) [ x \ N ]  = ( X z . M E y \ z ] E x \ N ] )  i f  x~y  a n d  z i s  t h e  v a r i a b l e  s u c h  t h a t  

l) if x is not free in M or y not free in N, then z=y 

2) otherwise, z is the first variable in V not free in M and N. (Thus, one 

forbids to any occurrence of a free variable in N to become bound in M[x\N]). 

The usual rules of conversion in the l-calculus are the following : 

(s-rule) (lx.M)÷(Xy.M[x\y]) if y is not free in M 

(B-rule) (Xx.M)N+M[x\N] 

(~-rule) %x.Mx+M if x is not free in M 

(8-rule) eMIM2...Mn+N 

The first rule means renaming of bound variables. The second one is the usual 

ALGOL copy-rule which substitutes the actual parameter N to the formal parameter x of 

(Xx.M). The q-rule reflects the extensional aspects of functions. The ~-rules permits 

to describe the behaviour of constants. There can be a large number of them. For ins- 

tance, if we suppose that the truth values constants {gt,ff} and the conditional if 

are in C, we can have the 6-rules : 

if tt M N + M  

if ff MN÷N 

Now, an expression M aan be immediatly reduced to N, also written M+N, if 

one can get N from M by converting a subexpression of M. This subexpression is called 
* 

a redex. And M can be reduced to N, written M-~N~ if M÷MI->M2...+M =N for some n~0 and 
n 

expressions MI,M2,...M n. Between two given expressions M and N, there may be several 

reductions. In order to specify one of them, we should have to precise the occurren- 

ces of the redexes converted at each elementary step. This will not be done here. We 

shall make no difference between redexes and their occurrences, as long as it will be 
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clear from the context. Thus M->RN means that R is the redex converted from M to N. 

Furthermore, we use letters ppo,T for giving names to reductions and write p:M+N to 

indicate that M and N are the initial and final expressions of the reduction p. If o 

starts at the final expression of p, the concatenation of O and o is written Oo. The 

empty reduction starting at M is denoted by O M or simply by O, when M is clear from 

the context. 

An expression without redexes is called a normal form. And if M+N where N 

is in normal form~ then M has N as a normal form. 

Thus, reductions map computations in the X-calculus considered as a program- 

ming language. Normal forms correspond to final results. We shall =estrict attention 

here to the only case of the a and B-rules of conversion. The D-rule is more a logical 

rule than a rule existing in programming languages. The 6-rules, although very impor- 

tant from a computer scientist point of view, are more complicated and there is not 

yet a full treatment of them (see for instance [~u|, Hu2] for first order terms). 

Furthermore, the o-rule and all the corresponding tedious problems will be ignored. 

We shall just remember that bound variables names are not important, the set of %-ex- 

pressions being understood as the quotient set by ~-interconvertibility and equality 

of X-expressions as the ~-interconvertibility relation. Hence, we just consider the 

%-calculus with the B-rule, i.e. a programming language with just procedure calls as 

rules of computations. By reductions, redexes and normal forms~ we shall mean B-reduc- 

tions, B-redexes and B-normal forms. Finally, as constants and free variables have 

the same behaviour for the B-rule, we can simplify by assuming C=@, i.e. a X-calculus 

without constants. 

2. Confluency. The lattice structure of reductions 

The following result is well-known in the X-calculus. 

* 
Theorem 2.1 (The Church-Rosser theorem). If M~N and M-+P, there is an expression Q 

such that N~Q and P~Q. 

As a corollary, if M has a normal form, then this normal form is unique. 

The proof of the Church-Rosser theorem is not too simple. One can prove easily that, 

if M+N and M+P, then there is a Q such that N~Q and P~Q. But this local confluency 

property is not enough for deriving the theorem. The solution is to define parallel 

reductions. Let F be a given set of redexes (occurrences) in an expression M. The si- 

multaneous contraction of redexes in F written M~FN, can be defined as the successive 

contractions of the redexes of F in an inside-out way. This is the Martin-L~f method 

(see [Be]]). An alternative solution is used in [Chl, Cu]], gives more information, 

but is more complicated. Roughly speaking, it says that the order in which the redexes 

in F are contracted is not relevant (finite developments theorem [Be2, Hil, Cu], Left). 

Now, the Church-Rosser theorem can be proved by showing the following lemma. 
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Lemma 2.2. Let F and G be two sets of redexes in M, and I~FN and M~GP. Then there are 
'q F' 

two sets G' and F' of redexes in N and P, and an expression Q such that N~ and P÷ Q. 

The previous lemma can be strengthened, becsuse the sets F' and G' are 

connected to F and G. In order to state the stronger property, one needs to trace 

redexes along a given reduction. Let R and S be two redexes (occurrences) in M, and 

p:M~N. Then the set R/p of residulzl8 of R by p is the set of redexes in N correspon- 

ding to R. The exact definition is done by tedious cases on the relative positions of 

R and S (see [Ch]]). It is simpler to look at some examples. Take l=Xx.x~ A=%x-xx and 

underline redex R and their residuals in the following elementary reductions : 

p :M = ~(Ix)~(Zx) (Ix)=N 

p :M = (lx) (& (Ix))+(Ix__) (Ix) (Ix))=N 

p:M = I(A(Ix))+I~Ix)(Ix))=N 

p:M = A(Ix)+(Ix)(Ix)=N 

:M = (~x) (~(!9)+(Ix) (!a~) (!~=N 

p:M = A__AA÷AA=N 

Now, if p:M~N is a non elementary reduction and R is a redex in M, then 

the residuals R/p of R by p are defined by transitivity. Similarly, if F is a set of 

redexes in M, then F/p is the natural set extension. Finally, the residuals defini- 

tion works too with parallel reductions. (The finite development theorem even tells 

that the order in which redexes are contracted at each elementary step is not rele- 

vant for the residual relation). 

In order to state the strenghtened lemma, it will be convenient to call 

coinitial two reductions starting at the same expression and cofinal two reductions 

ending at the same expression. Furthermore, if G is a set of redexes in M and p and q 

are two parallel reductions of the form 0:M+N and a: P~ we denote by q/P the reduc- 
G' 

tion q/p:N~ Q where G'=G/p is the set of residuals of G by 0. Finally, let also write 

pOq = O(q/O). Now, the following lemma is fundamental for the rest of the paragraph. 

Lemma 2.3 (The parallel moves lemma). Let p and v be two coinitial elementary paral- 

lel reductions steps starting at M. Then : 

]) pOa and oU0 are cofinal, 

2) R/(0U~) = R/(~Up) for any redex R in M. 

(One proves it usually as a corollary of the already mentioned finite de- 

velopments theorem). Now, we shall consider the structure of coinitial parallel re- 

ductions and generalise to the l-calculus the computation lattice defined in [Vu] 

for reeursive programs schemes. The trouble with the l-calculus is the total absence 

of structure for expressions which can be obtained by reductions from a given expres- 

sion. (This is true too in reeursive programs schemes without the restrictions used 

in [Vu]). This difficulty will be overcomed by defining a permutation equivalence on 

reductions as the smallest congruence for concatenation generated from the parallel 

moves lemma and from the suppression of the empty steps. 
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Formally, there are some slight difficulties with the empty steps. Let de- 
n 

note by ~M the elementary parallel reduction M~M and by ~M the reduction ~MOM...~M 

(n steps of elementary empty parallel reduction). When M is clear from the context, 

we just write ~ and ~n. 

Definition 2.4. The equivalence - of two (parallel) ~eductions by permutations, 

written p-=G, is the smallest equivalence relation such that : 

I) pU~-~Up if p and o are two coinitial elementary parallel reductions, 

2) O~-t3p-p, 

3) pzl~-p~2o if Tl-Z 2. 

Clearly, if p-=o, then p and ~ are coinitial and cofinal. But the converse 

could not be true. Take for instance I=%x.x and M=I(Ix). Let R and S be the two re- 

dexes in M and p:M+RN, o:MSN. Then p~o. The permutation equivalence will be shown to 

be easily decidable. This is achieved by extending the / and U operators to any coi- 

nitial parallel reductions. We have already defined o/p and p[Jo when o is an elemen- 

tary parallel reduction step and P is an arbitrary reduction. Now suppose that P 

and ~ are two coinitial (parallel) reductions. Then let 

olp = (~ l /p ) (~2t (P /Ol ) )  
if o=~1o 2 and o 2 is an elementary reduction step. Furthermore, we always write 

p[j~=p(o/p). This is better described by figure I~ in which each elementary square is 

an application of the parallel moves lemma. 

Fn P o ~ P Figure 1 

Lemma 2.5 (The genaralised parallel moves lemma Let p and o be two coinitial 

parallel reductions. Then : 

I) pUG and oU0 are ¢ofinal, 

2) z/(pUo) = ~/(o~p) for any reduction coinitial with p and o. 

This lemma can be proved by algebraic manipulations from the previou s de- 
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finitions, which elso give the below list of properties (forgetting the ap- 

propriate conditions on initial and final expressions of the considered reductions) 

p/(~) = (pl~)/~, 

p~o iff p/~=@n and ~/p=¢P for some n,p~0, (~ is decidable) 

0Ea iff V~.~/p=r/d, 

pUpEp, 

pU(~)=(PU~)U~, 

p~EOT implies GET, 

p~a implies p/~a/r. 

We can now consider the associate prefix ordering on coinitial (parallel) 

reductions, by defining : 

p[o iff ~T. p~Eo 

Again, a list of properties of [ can be easily done : 

P~P, 
p[_~[~ implies p[~, 

piaip iff pE~, 

p~ iff p/o=~n for some he0, (~ is decidable) 

p!o implies p/~[o/T, 

p!~ implies rp[To. 

Theorem 2.6 (The semi-upper lattice property). The set of reductions starting at a 

given expression forms a semi-upper lattice. Formally, if P and o are coinitial, then 

I) p~PUa and oipU~ 

2) For any T such that p[~ and o[~, then OUoiT. 

The proof works again by easy algebraic manipulations. For the category 

theory people, the category whose objects are expressions and morphisms are equiva- 

lence classes of reductions is a pushout category where every arrow is an epimor- 

phism. Remark too that this structure of reductions depends only on the parallel mo- 

ves lemma and thus exists in a lot of confluent rewriting Systems (see for instance 

[Be2, Be4, Hu2]). The case of non-confluent systems seems more complicated (see[Bo]), 

but not impossible. 

3. Correct strategies for the normal form 

Leftmost outermost redexes have nice properties in the %-calculus. For ins- 

tance, if R is the leftmost outermost redex in M and o:M~N is a reduction such that 

R/p#~, then R/p={S} and S is the leftmost outermost redex in N (Remark : this may 

not be true of any outermost redex). Furthermorep let the nodal reduction starting 

at M be the reduction 

, 

contracting successively the leftmost o~termost redexes R i of Mi_l. 
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Then the following theorem is shown in [Cull. 

Theorem 3.1. If M has a normal form, then the normal reduction of M reaches the nor- 

mal form. 

In fact~ it is a corollary of a stronger theorem. Let the reduction 

R 
M R~ MI R-~2 M2 ... ~ Mn=N 

be a standard reduction iff, for all i,j such that l~i<j~n, the redex R. is not a re- 
J 

sidual (along p) of a redex containing R i or to the left of R i. Then, the standardi- 

sation theorem of [Cull can be strengthened as follows. 

Theorem 3.2 (The standardisation theorem). For any reduction D, there is a unique 

standard reduction Ps such that pup s . 

Again this theorem exists in other formalisms, for instance [Be2, Be4, Hu2], 

although in this last case standard reductions are more difficult to define. In terms 

of programming languages, we just rediscover that a call-by-name evaluation strategy 

can produce more result than a call-by-value one. But, further properties of normal 

forms can be studied. 

Let us introduce a constant ~ and consider the set A~=A(V,{~}) of corres- 

ponding l-a-expressions. Let N~ and N be the set of (8-) normal forms in A n and A. 

Consider now the prefix ordering on %-~-expressions, written MSN, defined by : 

I) ~M for all M~A~, 

2) %x.M~kx.N if M-<N, 

3) MN~PQ if M~P and N~Q. 

Let say that M and N are compatible, written M+N, if there is a P such that 

MNP and N~P. The greatest lower bound (glb) of two h-~-expressiens M and N, written 

F~N, and the least upper bound (lub) of two compatible %-~-expressions M and N, writ- 

ten M[jN, are defined by : 

I~=~ if M=~ or N=~ or M and N are incompatible 

(%x.M)R(hx.N) = %x.(MfqN) 

(MN)~(PQ) = (MFTP) (NFIQ) 

~ = MA~=M 

(~x.M) ~(~x.N) = ~x. Ci_~) 

(MN)~(PQ) = (MUP) (NUQ) 

Finally, let us order the set q-F= (tt,ff} of truth values by ~f[tt and 

denote by ^ the glh on q~ (i.e. the usual "and" on boolean values). We give a name 
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to the property of having a normal form by defining : 

nf(M)=tt iff M~N for some NEN 

Then, it is straightforward to check that nf is monotonic, i.e. M~N implies 

nf(M)Lnf(N). Now, the following theorems can be proved. 

Theorem 3.3 (The stability theorem). If M+N, then nf(Mf]N) = nf(M)^nf(N). 

Corollary. For any k-~-expression M, there is a (unique) minimum prefix N of M such 

that nf(M) = nf(N). 

Thus, if an expression M has a normal form, the redexes of M which are also 

in this minimum prefix are really needed in order to get the normal form. It can he 

proved that a redex is needed iff it has a residual contracted in the normal reduc- 

tion. Call-by-need reductions strategies (see [Vu, Le|]) can be defined as contrac- 

ting at each step one needed redex. And they can be shown to reach the normal form. 

The stability theorem is proved in [Bel] in a more general statement. It exists too 

in other frameworks [Hu2]. 

But, needed redexes can be found without look-ahead with the use of the fol- 

lowing theorem (see [Bel, Hu2]), which corresponds to the activity lemma in [PI2]. 

Theorem 3.4 (The sequentiality theorem). Let M be any given l-~-expression such 

that nf(M)=ff and there exists a %-~-expression N verifying nf(N)=tt and M~N. Then 

there is an occurrence of an ~ in M such that, for every NeM such that nf(N)=tt, 

there is no more ~ at that occurrence in N. 

Thus, in any %~-expression M such that nf(M)=ff, there is always one uni- 

formly critical ~ to increase in order to get s normal form. Take for instance M=(~). 

Then the first ~ is critical, but not the second one since (Ix-y)g+y. But in 

M = (Ix-xg~)~, the last ~ is the only critical one. 

4. Reductions costs 

In order to compute a normal form, useless redexes can be avoided by con- 

tracting only the needed redexes (for instance the leftmost outermost one). But nee- 

ded redexes can be duplicated. For instance, take M=A((lx.xy)l) with A=Ix.xx and 

l=Ix.x. Then all the redexes in M are needed and the normal reduction takes five 

steps. However, with a sharing mechanism as in [Wal, Vu], this can be reduced to 

three steps : 

shared l-calculus usual l-calculus 

M = A((lx.xy)I) M = A((lx.xy)I) 

MI= (T T ) ~(lx.xy)I MI= ((Xx.xyll)((Xx.xy)l) 
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M~ = (j~_//.__~ly M 2 = (ly)(ly) 

M~ = ()t_~___~y M 3 = yy 

From this example, we can guess that the (parallel) reductions, which cor- 

respond to shared reductions~ contract at each step residuals of a single redex. Re- 

mark that this redex may not be on the considered reduction. In the third step of the 

example, the two (ly) redexes are only residuals of a single (ly) redex when the two 

first steps are permuted. This means that we shall consider duplications (or resi- 

duals) modulo the permutation equivalence on reductions. 

For this, we relativize redexes to their history, i.e. to the reductions 

which permit to get them. Formally, we write the pair (0,R) for meaning that R is a 
, 

redex in the final expression N of p:M+N. Now, for two coinitial reduction p and 

and two corresponding redexes(p,R) and (a,S), the duplication relation (modulo permu- 

tations) can be defined by 

(p,R)~(~,S) iff 3~" pTEC and ScR/T 

By remembering that 0E~ implies R/p=R/~ and by using the laws of E end [, 

a list of properties of N can again be done by easy algebraic manipulations. 

(p,R)N(o,S) iff (p',R)N(o',S), when 05p ' and oEo', 

(p~K)~(o,S) iff p[o and SeR/(d/p), (N is decidable) 

(p,R) N(p,R), 

(p,R)g(~,S)g(T,T) implies (p,R)~(~,T), 

(p,R)g(~,S)N(p,R) iff pUG and R=S. 

The duplication relation can be closed by symmetry and transitivity. Thus 

redexes R and S with histories p and ~ are in a same redex family, written 

(p,R)~(o,S), iff 

l) either (p,R)~(o,S), 

2) or (o,S)g(p,R) , 

3) or 3(T,T) such that (p,R)~(T,T)~(o,S). 

Again by easy manipulations, it can be proved that : 

(p,K)~(o,S) iff (p',R)~(o',S), when p~p' and oEo', 

(O,R)~(o,S) iff SeR/o (remember 0 is the empty reduction). 

But, further properties of redexes families are more complicated, mainly 

because one needs to look inside expressions. For instance, (p,R) and (o,S) seem to 

be in a same family iff R and S are "created in a same way" along 0 and ~. But crea- 

tion of redexes has not been yet expressed in simple terms in the X-calculus. Howe- 

ver, this can be done [Vu, Be4, Lel, Le2] by extracting along any reduction p the 

steps necessary for getting a redex R in the final expression of p, or by giving na- 

mes to redexes and a corresponding law for generating new names. These tedious me- 
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thods show that (p,R)~(o,S) is decidable. 

An easier property is to prove the existence of a cctnonical element in 

each family class. Let p and a be two eoinitial reductions. Then say that ~ is to the 

right of p iff the standard reductions Ps and ~s of p and ~ are of the form ps=Tp ' 

and Os=~' with the first redex contracted in ~' being internal or to the right of 

the first redex uontracted in p'. 

Lemma 4.1. In each redex family class, there is a~l element (p,R),unique up to S, such 

that p is maximum to the right and minimum for [. 

This canonical element (p,R) can also be characterised as the only one in 

the class such that the length of the associated standard reduction 0 s is minimum. 

Furthermore, when (p,R) is canonical and p[o, one has (p,R)~(o,S) iff (p,R)~(~,S), 

(thus generalising the previously mentioned case when p=0). These families properties 

can he summarised on the example of figure 2. 

AR 

YY 

Figure 2 (~=lx.xx~l = %x.x,R = (lx.xy)l and the three canonical redexes 

corresponding to the three redexes families are underlined). 

Now, let us also use the notation (p,F) for meaning that F is a set of 
, 

redexes (occurrences) in the final expression N of p:M+N. Then, the set F with his- 

tory p is a set o/ duplication8 of a single redex, if there exists a redex S with 

history ~ such that (~,S)~(p,R) for all ReF. We say too that F is complete for du- 
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plications, in short d-complete , iff F is a maximum set of du- 

plications of a single redex. Similarly, an f-co~lete set F of redexes with history 

P is a maximum set such that (p,R)~(o,$) for every R,S~F. Now, d-complete (parallel) 

reductions can be defined as contracting at each step a d-complete set of redexes. 

Similarly for f-complete reductions. It is not hard to prove that f-complete and 

d-complete reductions coincide. Thus, as the family relation is decidable, the 

d-complete reductions are effective in some sense. Furthermore, the d-complete reduc- 

tion form a sublattiee of the reductions lattice. Finally, by associating needed re- 

dexes and d-complete reductions, the following optimality result can be stated. 

Theorem 4.2. Any d-complete reduction, which contracts a needed redex at each step, 

reaches the normal form in a minimum number of steps. 

Thus, the d-complete reduction which contracts the leftmost outermost re- 

dex is optimal. However, remark that our cost measure unit is the simultaneous con- 

traction of a set of duplications of one single redex. One may not trust in it, main- 

ly because there is not yet an implementation of a l-calculus evaluator correspon- 

ding to the d-complete reductions. The trouble is well shown in the following exam- 

pie : 

d-complete reductions 

M = (Ix. (xs) (xt)) (Xy. ly) 

M]= ((%y.ly)z)((ly-ly)t) 

M2= (Iz) ((ly.ly)t) 

M3= z((ly.y)t) 

M4= zt 

shared l-calculus 

M = (Ix. (xz) (xt)) (ly.ly) 

u~= (! ~)(I t) ~ly.ly 

? 

? 

? 

The second step of this d-complete reduction shows that we can no more 

share subexpressions, but expressions with some environment (i.e. closures in the 

programming languages terminology). The methods in [Wa],Vu] do not treat the pre- 

vious example, and it remains to design an efficient evaluator corresponding to 

d-complete reductions. Finally, let us remark that costs of reductions can he stu- 

died in a similar way in other rewriting systems frameworks (see [Vu, Be4, Hu2]). 

5. Approximation s Bohm~s trees 

We now consider more extensional properties. Instead of looking at reduc- 

tions, one can study the behaviour of l-expressions on the outside world. For this, 

let a aontext C[ ] he a l-expression with one missing subexpression, and C[M] he the 

expression obtained when this subexpression is M. (Remark : free variables of M may 

become bound in C[M]). Now, we can say that M is totally undefined iff, for all con- 

texts C[ ] and ~-expressions N, when C[M] has a normal form, then C[N] has also a 
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normal form. Hence, if M is totally undefined, when there is a non termination pos- 

sibility for C[N], then C[M]does not terminate too. Fortunately~ there is an inter- 

nal characterization of totally undefined %-expressions [Wal, Bali. Let a head nor- 

mal form (in short hn~ be any expression of the form ~xlx2...xm.xMiM2...Mn, where 

m,n~0 and Xl,X2,...,m,X~V and MI,M2,...MnEA. Furthermore, let us say that M ~a8 a 

~f iff there is a hnf N such that M~N. Then M is totally undefined iff M has not a 

hnf. (Remark : totally undefined is also called unsolvable in [Bali). 

Thus, we have new objects to consider : the head normal forms. We can re- 

mark that hnfs have a behaviour similar to normal forms. For instance, if M has a 

hnf, the normal reduction (see §3) always reaches a (minimal) hnf. Moreover, although 

an expression can have several hnfs, they have all the same "first level structure". 

This suggests that we can decompose any %-expression M in its hnf structure. In the 

literature,this is called the Bo~rs tree of M.We shall not define it properly here, 

because one needs to define infinite h-expressions, But the following (unproper) 

definition will be enough speaking. The Bohm's tree of M, written BT(M), is such 

that : 

BT(M)=~ if M has no hnf, 

Br(M)=~xlx2'''Xm'X(BT(M|)) (BT(M2)) ... (BT(Mn)) if M~%x|x2...Xm.XM|M2...~ ~. 

Hence, a Bohm's tree can be infinite. For instance BT(Y)=%f.f(f(f(-..))) 

(see introduction for Y). The prefix ordering ~ and the glb operator R for %-~-ex- 

pressions can be extended to Bohm's trees in an obvious way. For instance, BT(M)~BT(N) 

iff BT(M) matches BT(N) except in some ~'s. We use letters a,b~c.., for finite 

Bohm's trees, i.e. a %-~-expression whose all subexpressions (except ~'s) are in hnf. 

Finally, when asBT(M), the finite Bohm's tree a will be called a y~nite approximation 

of M. 

Theorem 5.1 (The stability theorem). If M÷N, then BT(I~qN) = BT(M)~BT(N). 

Again, as a corollary, for any %-~-expression M and for any finite ap- 

proximation a, there is a (unique) minimum prefix N of M such that a~BT(N). This 

theorem is proved in [Bell. Sequentiality can also be expressed for Bohm's trees. 

Let M be a %-~-expression and u an occurrence of some ~ in M. Write M< N for meaning u 
M-<N and that the subexpression of occurrence u in N is not any longer ~. Thus M< N u 
means that N increases at least at occurrence u. This notation can also be extended 

to infinite Bohm's trees. 

Theorem 5.2 (The sequentiality theorem). Let M be a %-~-expression and v an occur- 

rence of an ~ in BT(M). If there is an N such that M-<N and BT(M)<vBT(N), then there 

is an occurrence u of an ~ in M such that, for all N~M, BT(M)<vBT(N) implies M< N. u 

Thus, BT is a sequential function in the sense of [KP]. This means that 
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we can evaluate BT(M) in a coroutine-like way (see also [KP]). Finally, application 

and X-abstraction may be shown continuous with respect to Bohm's trees. 

Theorem 5.3 (The continuity theorem). Let C[ ] be any context, M any expression. 

Then, for any b~BT(C[M]), there is an a-<BT(M) such that b~BT(C[a]). 

As a corollary, Bohm's trees can be consider~das a semantics for X-expres- 

sions, since M~N implies BT(M)=BT(N), and that BT(M)=BT(N) implies BT(C[M])=BT(C[N]) 

for any context C[ ]. One may wonder whether these three theorems are true in the 

usual models of the k-calculus. In fact, the only continuity property always holds. 

Stability and sequentiality are for instance not true in the D model [Scl]. A model, 

in which every function is stable, is built in [Be3]. Finally, a proof of these last 

theorems can be found respectively in [Bel, Lel, Wa2]. 

, 
Finally, by writing ~ for q-reduction and by composing the ~ and ~ binary 

relations, the following table establishes the correspondance between Bohm's trees 

and models of the k-calculus : 

i.eo 

M [ N iff Va-<BT(M) ~b-<BT(N) s.t. a-<b, (i.e. BT(M)-<BT(N)) [Ba3] 
-TOO 

M Lpm N iff ~]a<BT(M) ~b-<BT(N) s.t. a+-<bn [Hyl,Ba3q 

M [Mo N iff ~a-<BT(M) ~b-<BT(N) s.t. a~--<÷b~ ~ [Hyl] 

* k* 
N iff ~k->0 ~a-<BT(M)~b-<BT(N) s.t. a÷_<->b. [Hyl,Wa2] M I-D= q q 

By aNkb, we means that a matches b until the k-level except in some ~'s, 

a~0b for all a and b, 

~ for all b and k~0, 

Xxlx2...Xm*Xa|a2...an~k+]xxlx2...Xm.Xb]b2-..bn if ai~kbi for ]~i~n. 

The models T~,P~,D= are described in [PI3,PII,Sc2,Sc]].By LMo,We mean the extensional 

relation in LMol] defined by: 

M ~Mo N iff VC[ ] nf(C[M])=tt implies nf(C[N])=tt. 

Furthermore,one corresponding Bohm's theorem [Hy1,Wa2] can also be proved for D : 

M ~D N iff VC[ ] hnf(C[M])=tt implies hnf(C[N])=tt 

where hnf(M)=tt means that M has a hnf.(This kind of theorem should also be true in 

T m and Pm if one adds 6-rules,because otherwise it is impossible to distinguish n- 

interconvertible expressions with the only B-rule.) 

Acknowledgments:to G.Huet for permitting to use notions and notations o~ [Hu2]. 
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ON RATIONAL EXPRESSIONS REPRESENTING INFINITE RATIONAL TREES : 

APPLICATION TO THE STRUCTURE OF FLOW CHARTS 

Guy Cousineau and Maurice Nivat 

Laboratoire d'Informatique Th~oriqne et Programmation, Paris 

O. INTRODUCTION 

The idea to associate to a flow-chart or non recursive program scheme an infi- 

nite tree obtained by development of the flow-chart is an ancient one : it is sugges- 

ted if not formalized in [14, 16, 21, 25]. The earliest neat mathematical formula- 

tion is [29]. This tree is also the solution of a system of tree equations which can 

easily be written using the labels in the flow-chart represented by an ordinary 

Algol-like program with go to statements [7, 23, 25] it happens that this tree is a 

rational infinite tree where we define such a tree by the fact that its set of sub- 

trees is finite : an alternative characterization is that a tree is rational if and on- 

ly if it is the limit of a sequence of finite trees {tn] n ~ N} whose elements form 

a rational subset of the set of finite trees (in the sense of Donner [10], the limit 

can be taken either in the natural metric topology on the set of all finite and infi- 

nite trees [22] or as a least upper bound in the structure of complete partial order 

defined on the same set [29]). 

Clearly two flow-charts with the same infinite tree are equivalent in the most 

obvious sense already introduced in [13, 28]. Also two expressions representing the 

same infinite tree will be two equivalent ways of expressing the same flow-chart : 

one standard way of expressing a flow chart is the set of labeled instructions and 

conditional go to statements which is immediately translated into a system of tree 

equations, but long ago and ever since many people have been interested in using to 

express the same flow-chart other language constructs such as while repeat and exit 

statements, do loops etc... [I, 3, 4, 11, 17, ;8, 19, 20]. What is expected is to 

get more compact, or more easily readable programs to express the same flow-chart : 

and indeed, it should be possible to define the same tree from this different expres- 

sion. 

The analogy of the while construct with the Kleene's star which is one of the 

basic operations in the theory of rational languages has lead to several studies 

[3, 4, ]6, ]7, ]8, ]9, 20] which have mainly proved that the while statement is not 
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powerful enough to build all infinite rational trees. Several authors introduced then 

the "iteration with multiple exits" [], ]8, 20, 24, 27] which is indeed powerful 

enough in that sense that every infinite rational tree can be represented by a finite 

expression containing the basic operations and predicates, the composition, and the 

iteration (repeat statement). 

In order to prove algebraically this result the first author of the present pa- 

per introduced in [8] the set of trees with indexed leaves which we describe below. 

The indices which appear as labels of the leaves are to be interpreted as exit state- 

ments, and if one adds in the set of basic operations the star (which corresponds to 

iteration) and the product (which corresponds to composition) the resulting set of 

trees M (F u N u {*, "}) is no longer a free-magma : on the contrary a set of reduc- 

tion rules can be given which allows to transform any finite tree t ~M(FuNu {*, "}) 

into an infinite tree T = ~(t) which does not contain * or , that is an ele- 

ment of M~(F u ~. The main theorem is that, given a system of tree equations of a 

special type which we call regular, there exists an algorithm to build a finite tree 

t E M(F u N u {*, ,}) such that ~(t) is the solution of the system (this theorem 

is also the main one in [9]). 

This is immediately interpreted as an algorithm to transform an Algol-like pro- 

gram with go to statements into an iterative program containing no go to's but instead 

iterations and answers the question raised by Arsac [I, 2]. The interesting fact 

about the set of trees with indexed leaves is that one can define a natural product 

and a natural star operation, this being not possible in the ordinary set of trees. 

The formal analogy with the product and star defined on the subsets of a free menoid 

is however very formal as proved by the consideration of the set of branches of the 

trees and the operations on these sets of branches corresponding to the tree product 

and tree star [23bis , see also 6], 

A number of problems arise if one considers non regular systems of equations, 

whose solutions have been proved by C. Henry to be algebraic trees (as defined and 

studied by B. Courcelle [6]). 

This is a survey paper mainly based on previous work by the authors [8, 9, 23, 

23 bis] students of them [5, ]2], and by several people with whom they have been wor- 

king in close connection [I, 2, 7, 24, 26, 27]. 

[, REGULAR TREES 

We use the same notations as Courcelle-Nivat [6 bis]. Given an alphabet X with 

arity, M~(X) [resp. M~(X ] denotes the set of trees [resp. finite trees] that can be 

built with the symbols in X and a special 0-ary symbol ~ in accordance with the 

arities. The infinite trees will be denotes by capital letters T], T2,... and 

finite trees by small letters tl, t2,... For various purposes, it is very conve- 

nient to present these trees as mappings : N~ ~ X u {~} [I0]. 
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The order < is defined by : 

T 1 < T 2 iff dom (TI) E dom (T2) and 

m ~ dom (T]) Tl(m) # ~ ~ T2(m) = Tl(m) 

It can be shown that ~(X) with the free operations corresponding to elements of 

X and the order < is the free complete ordered X-magma (or X-algebra). 

A central notion in this paper is the notion of sub-tree : the subtree T/m of 

root m in the tree T. 

dom(T/m) = {m' e N~/ mm' ~ dom(T)} and (T/m) (m') = T(mm') 

A tree T is regular if the set of its subtrees is finite. Regular trees are 

exactly the solutions of regular systems of equations. Such a system is of the form 

a I = TI,... , a n = T n ~here al,..., a n are 0-ary variables and ¥ i e [n] 

T i ¢ M~(X 0 {a I ..... an}). 

At that this point, a comparison with languages can be useful. To the alphabet 

X is associated X which contains letters x],..., x n for each n-ary symbol x 

in X. So every tree T e M~(X) has a branch language Br(T) i X* which can be 

defined in the following way : to each element m = i .. i in dom (T) is associa- 
(I) . x(k) I" k 

ted the word br(m) = x ..... where T(E) = x (I) and Vj I N j ~ k-1 
~! i k 

• x (j+l) and Br(T) = l_I br(m) T(il... lj) = m~dom(T) " 

We have the following facts : 

- V m e dom(T) Br(T/m) = Br(T) / br(m) where for any language L and word 

u e L , L/u denotes the quotient of L by u i.e. {v/uv ¢ L}. 

- (T],..., T n) is the solution of the system _a i = Ti, i = I,..., n iff 

(Br(TI),..., Br(Tn)) is the solution in (2X*) n of the system ~i = Br(Ti)' 

i = I,..., n which is a right linear algebraic grammar. 

It follows irmmediatly that the branch languages of regular trees are exactly 

those regular languages L which are prefix-closed and complete in the sense that 

whenever ux iv ~ L E X* where x is an n-ary symbol of X, for each j e [n] 

there exists some v' such that ux. v' e L [6, 23 bis]. 
J 

Now we would like to extend this comparison to regular expressions and find 

a way to solve regular systems of equations on ~(X). For that purpose, we shall 

have to particularize our tree domains and introduce the notion of trees with indexed 

leaves. 

2. TREES WITH INDEXED LEAVES 

This paragraph is mainly taken from [91 where all proofs are to be found. 
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We assume now that our alphabet X is the disjoint union of F and N where 

N is the set of integers which will be considered as O-ary symbols. 

On M~(F u ~, we define the following operations : 

¥ k • N +k : M~(F u Nr) _> M~(F u N) +k(T) = T [i + I / i , i -> k] 

N)2 oo 
C k : M~(F U ÷ M~(F U N) Ck(TI, T2) = T| [T 2 /k] 

These operations are continuous in the sense of Scott. We shall write + instead 

of i and call this operation the positive shift. Similarly, we define a negative 
o 

shift + by +(T) = T [~/0 ; i/i+l]. We shall also write TI.T 2 instead of 
oo 

Co(T], T2) and call this operation product. With this product M~(F u N) is a 

monoid : indeed the product is associative and has a neutral element 0. We shall 
o 

define T = O and T n+l = Tn.T . 

For any tree T, {%(Tn)/n • N} is an increasing sequence for the order < and 

we shall denote *(T) = lub{+(Tn)/n • N}. The least upper bound of the sequence 

.(T 1 : 

{%(Tn)} 

Exemple : 

exists since M~(F u N) 

T ° / ~ \  

t I 
o /\ 

n 0 

9 a 

/\ 
9 h 9 
r i , 1 

o F. O /\ / 

1 o ~ o 

is a complete partial order. 

~.(T °] = ~ o )  

The operations ~k' Ck and * do preserve regular trees. Thus every expression 

~÷k } ~ 
E in M~(F u N u {*, c k, • represents a regular tree T in M~.F u ~ which we 

denote ~ (E). Moreover, +k' Ck' * are related by the following properties : 

Property : VT ~k +k(*(T)) = * (+k+](T)) 
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Property : V TI, T 2 Vk C k (*(TI), T 2) = *(Ck+I(T I, ÷(T2)). 

The set formed of the equations which express the fact that c k and +k are 

morphisms on ~(FoN~, the intuitive simplifications rules Ck(k , T) = T, 

Ck(k' , T) = k' for k' ~ k, +k(k') = k' + I for k' ~ k, ÷k(k') = k' for k' < k, 

is a (infinite) confluent reduction system as defined in [5] : any expression built 

with ÷k ' c k , * as operations and trees as variables can he transformed by a se- 

quence of reduction into a normal form containing only the * operation which is 

equivalent to the first one in the sense that it denotes the same tree. The operations 

÷k and c k are thus redundant. 

An example of reduction is : 

I ! I 
. .  / \  / \  
, I 7 "7 i'\ F 9 +~ F 

/ \  / \  , , ! > / t  1 
t) 4 1 o o I ~ o t t4 o 1 

1 I / 9 \  

19\ 1~]\ I I 
4 I) -i o 4 o 

I I t I t 
F~ F / \  /\ / / \  

I > 1 \  I > / \  > / \  > I 

I z \  / ~  / \  

3. SOLVING REGULAR EQUATIONS 

The main property established in [8] which enables us to solve regular equa- 

tions is the following : Let M be a subset of dom(T)\{E}. Then 

Theorem : Vm E M T/m = T implies T = *((÷(T)) [M ÷ 0]). 
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where we denote by q~[M ÷ O] the tree obtained by substituting O to every subtree 

of root m e M 

Concretely, let us be given an equation ~ = T with T ~ M~(F u N u {~})\{~}. 

It has a unique solution T = T[T/~] and this solution is equal to the tree denoted 

by *(T') where T ~ is obtained from T by increasing every integer and replacing 

all occurrences of ~ by O. 

Example : ~ = f(~, g(O, ~)) 

implies ~ =*(f(O, g(1, 0)). 

It is not entirely trivial to extend this way of solving an equation to the 

problem of solving a system of equations. Let us consider the following system : 

= f(~, ~, 0) 

B = g(B, O, ~) 

The natural idea is to start by solving the second equations, considering tempo- 

rarily ~ as a constant. The solution of this equation is the tree T = g (T, O, ~) 

which can be depicted by the following drawing 

° 

and which can be represented by the expression *(g(O, ], i(~))). 

The intuitive reason for introducing the shift operation in the expression 

representing T is that any tree T' substituted to ~ in T must have its 

leaves increased by one in the expression for T since when one expands the star, 

the leaves will be decreased by one : the upper shift and lower shift cancel them- 

selves so that eventually it is really T' which is substituted to ~ in T . 

Now we substitute the result T in the first equation and obtain : 

= f(~, T, O) 

Pictorially this gives 
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oc ~ o 

/ , \  

This equation in ~ has a unlque solution which is the tree 

by the (infinite) expression : 

I 

° 

, q 0 
i 

T' represented 

It is easy to see that the equation a = f(~, T, O) can also be written 

= f(~, *(g(0, I, f(~))), O) 

since T is represented by * (g (0, 1, +(~))) and its solution T' represented by 

• (f (O, *(g(O, 2, 1)), I) (it suffices to compute this expression). 

The way we obtained this expression from equationswill be now precisely descri- 

bed. We shall call regular expression any element of M(F u {*} u N) and regular 

T-expression any element of M(F u {*} u N u M({+} u {~l''''' an})) (where elements 

of M({+}, {al,... , an} ) have arity O) which respects some restrictions on the places 

where shift operations occur (these restrictions will be given in the sequel). These 

expressions can be considered as trees and described by mappings with domain in ~+. 

Given an expression E and m ~ dom (E), the depth d(m, E) of point m in E 

is the number of left-factors m' of E such that E(m) = *. An integer leaf m 

of a regular expression or regular T-expression E is said to be a terminal sign of 

E iff E(m) ~ ~(m, E). 

The restriction we put on regular T-expressions E is that whenever 

(m) = +k(ai) , k is equal to ~(m, E). E 

Now the resolution rule can be fully stated : 
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Given an equation a n = T n where Tn is a regular T-expression the solution is 

* (T') where T' is obtained from T by increasing every terminal sign, repla- 

cing all occurrences of a n by 0 and any occurrence of ik(ai) with i # n by 

÷k+I(ai). 

Using this rule together with the copy rule, one can solve any regular system 

of equations into a regular expression. As a consequence we have the following. 

Theorem : Regular expressions denote exactly the regular trees. 

The deux ex machina is that regular T-expressions are exactly those expressions 

T in M~(Fu {*} u N 0 M({~} 0 (a I ..... an})) to which we can associate a regular 

term ~(T) e M~(F u N u {al,... , an}) in such a way that ~ commutes with substitu- 

tion to the variables al,... , a n : 

~(T[TI/a I .... , Tn/~n]) = ~(T) [Tl/al,... , Tn/~ n] 

4. HIERARCHY RESULTS (adapted from Kosaraju [20] see also [15, 27] 

We now show that the classes of regular trees C n that can be described by an 

expression T in M(F o {*} u {0, l,..., n}) form a strictly increasing hierarchy. 

We take F = {fij / 0 N i,j ~ n+ I} all symbols in 

defined by - T(e) = f 
oo 

- if T(m) = fij 

We shall use projections ~I 

It should be clear that 

F being binary and the tree T 

T(ml) = fiTj where i' = i+I mod n+ 2 

T(m2) = fij' where j' = j+1 mod n+ 2 

and ~2 : ~l(fij) = i ~2(fij) = j 

T is the first component of the solution of the system 

of equations ~ij = fij(ai'j ' aij') and that this system can be solved with only 

n+ 2 applications of the resolution rule. So, T e Cn+ I. (The first application 

creates a zero O and the following can only increase it by one). 

We now show that T ~ C . First observe that T has the two following properties: 
n 

(1) Vm, m' ~ ~+ T/m = T/mm' ~ Im'l ~ ~+I 

',o.. m' prefixes of m' such that and ] m I ' n+2 

either Vi,j ¢ In+2] ~l(T(mm~)) # ~l(T(mmi)) 

or Vi,j In+2] ~2(T(mm~)) # ~2(T(mm~)) 

(2) Vm e dom(T) V p e N ~2(T(m lP)) = ~2(T(m)) 

~I(T(m2P)) = ~l(T(m)) 
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Let 

E(mo) = * o 

E(m ° Im) = 0. If not, E can be simplified using the rule * (+(T)) = T . 

Let m ° be ~E(mol) where OE is defined as follows : 

~E(e) = c oE(im) = OE/i(m) if E(g) = * 

= i.~E/i(m) if E(g) ~ F 

E be a regular expression denoting T and m ¢ dom (E) such that 
o 

, E/m 1 c M(F, N). We can assume that there exists some m such that 

We have Vm e dom (E/mol) 

if E(mo 1 m) e F then T(mom) = E(mo ]m) 

if E(mo ] ~) = 0 then T/mom = T/mo 

Vml, m 2 ¢ dom(E/mol) 

if E(mo 1 m]) = E(mo 1 m2) ¢ N then T(mo ml) = T(mo m2) 

Now if E(mo I m) = 0 , we have T/mo = T/mo m and by property (I) there 

exists ml,... , mn+2, prefixes of m such that either 

Vi,j ¢ In+2] ~z(T(momi)) # ~l(T(mo mj)) 

or Vi,j E In+2] ~2(T(mo mi)) # ~2(T(mo mj)) 

Let us consider the first case : let Pi be for each i c [n+2] the greatest 

integer such that mo I m. 2 pi ~ dnm (E). 

~l(T(mo m i 2Pi)) = ~l(T(mo mi)) 

~1(T(~o m i 2Pi)) # ~I(T(~o mj 2PJ)) 

T(~o m i 2 pi) # T(~o mj 2 pj) 

E(mo m i 2 pi) # E(mo l mj 2 pj) 

Then, E must contain ~n+2) distinct integers and consequently cannot belong 

to M(F u {*} u {0 ..... n}). 

The proof can be easily extended to show that T cannot be denoted either by 

an expression T E M(F u {*, "} u {0,..., n}) in which we allow concatenation. We 

would have only to change the definition of ~E and use the fact that if 

E/mo ! E M(F u {-} u {0, 1,..., n}), it can be transformed into an equivalent expres- 

sion in M(F u {0, l,..., n}) using the rules of section 2. 

1 

We have V i E [n+2] 

Therefore ¥ i,j e [n+2] 

hence 

hence 

5. NON-REGULAR EQUATIONS 

We have seen two kinds of systems of equations having regular solutions : the 

regular ones and the systems in which the right member of equations are regular 

T-expressions. One can obtain systems having non-regular solutions in many diffe- 

rent ways : for example by allowing the use of products in the right members or hy 
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deleting the condition we put in the definition of regular T-expressions. The 

following equations have non-regular solutions : 

/\ 

two 

In fact, they both have for solution the tree T defined by : 

- dom(T) is the Lukasiewiez language on the alphabet {l, 2} 

- T(m) is equal to 0 if m is maximal in dom(T) and f otherwise T can be 

depicted by the following drawing where single arrows point out subtrees equal 

to T, double arrows suhstrees equal to T 2, triple arrows, trees equal to T 3 

/ 
~+-- 

o ~ F  

/ 

/ \ ; 1 \ ,  
0 , 0 i 

1 i 
i i 

The following result is due to Henry []2]. 

Theorem : The solution of the systel ~. = T. where 
i i 

T i ~ M(F u {*, "} u N u {~I'''" an}) are exactly the algebraic trees [6]. 

Note : Algebraic trees are usually defined on some magma M~(F, V) where V is a 

denumerable set of variables that can be put in one to one correspondance with N. 

6. APPLICATION TO PROGRAMS 

In this paragraph we show how the rule given above solves the problem of trans- 

lating go to statements into repeat and exit statements. 

It has already been mentioned in the introduction that star and product corres- 

pond to iteration and concatenation of programs. So any rule used to obtain and 

modify our rational expressions can be used as program transformations. We shall use 

a tree representation for programs writing repeat for repeat E end , 



577 

for E I ; E 2 if E l is a compound statement , a for a ; E 
I 
E 

if a is a basic statement and making exit 0 (skip) statements explicit. 

For example the program 

repeat 

if p then a 

else b ; exit ] 

f i  

end 

repeat 

if 

repeat repeat 

1 r 
/ \  /\= 

e x i t :  0 e x i t  I e x i t  1 e x i t  0 

q then c ; exit ] 

else d 

fi 

end 

is represented by : 

This tree is very similar to the example in section 2 . Applying the same rules 

we obtain : 

repeat 

a~P~b 
I 

exit 0 repeat 

I 

I I 
exit 2 exit 0 

or in more usual notations : 



578 

repeat 

if 

fi 

end 

p then a 

else b ; 

repeat 

if 

fi 

end 

q then c ; exit 2 

else d 

Similarly, the way we solved equations in section 3 can be used to put programs 

into iterative form. The program 

: if p then a ; goto 

else b ; goto 

fi 

: if r then c ; goto 

else if s then d 

else e ; goto 

fi 

fi 

which can be represented by the system 

aL =/P\ 
a * 

J 
c $ 

I a/\o 0 
I 1 

e~ikO oc 

and solved in the following way : 

I / \  
¢~L~O a t 

( a 

i 

{ rJp,(,t 
i 

/ \  
12. S 
~ / \  

exL~O a "t 

I I 

c~ 

I 

, 
e~Lto re  eat 

I 
C /\ 

I / \  
exil:0 cL e 

I 1 
exit ~ ~Lt4 
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We obtain therefore the following program : 

then a 

else b ; 

repeat if r then c 

else if 

re ~eat if p 

fi 

end 

end 

fi 

fi 

s then d ; exit 2 

else e ; exit I 
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