

CoffeeScript Ristretto
An intense cup of code

raganwald

This book is for sale at http://leanpub.com/coffeescript-ristretto

This version was published on 2014-10-29

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2012 - 2014 raganwald

http://leanpub.com/coffeescript-ristretto
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help raganwald by spreading the word about this book on Twitter!

The suggested hashtag for this book is #coffeescriptristretto.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#coffeescriptristretto

http://twitter.com
https://twitter.com/search?q=%23coffeescriptristretto
https://twitter.com/search?q=%23coffeescriptristretto

Also By raganwald
Kestrels, Quirky Birds, and Hopeless Egocentricity

JavaScript Allongé

JavaScript Spessore

http://leanpub.com/u/raganwald
http://leanpub.com/combinators
http://leanpub.com/javascript-allonge
http://leanpub.com/javascript-spessore

This book is dedicated to my son, Thomas Aston Braithwaite

Contents

A Pull of the Lever: Prefaces . i
About This Book . ii
Foreword by Jeremy Ashkenas . iii
Legend . iv

Prelude: Values and Expressions . v
values and expressions . v
values and identity . vi

CoffeeScript Ristretto . 1

The first sip: Functions . 2
As Little As Possible About Functions, But No Less . 3
Ah. I’d Like to Have an Argument, Please. 9
Closures and Scope . 14
Summary . 20

Slurp: More About Functions and Scope . 21
Let Me Show You What To Do . 22
A Simple Question . 26
Making Things Easy . 29
Summary . 31

References, Identity, Arrays, and Objects . 33
arguments and arrays . 35
references and objects . 37

Stir the Espresso: Objects, Mutation, and State . 39
Reassignment and Mutation . 40
Normal Variables . 46
Comprehensions . 48
Encapsulating State with Closures . 52
Composition and Extension . 57
This and That . 61
Summary . 67

CONTENTS

Finish the Cup: Instances and Classes . 68
Prototypes are Simple, it’s the Explanations that are Hard To Understand 69
A Touch of Class . 77
Object Methods . 82
Canonicalization . 84
This Section Needs No Title . 87
Extending Classes . 88
Summary . 94

An Extra Shot of Ideas . 96
Refactoring to Combinators . 97
Method Decorators . 102
Callbacks and Promises . 108
Summary . 113

A Golden Crema . 115
How to run the examples . 116
Thanks! . 117
JavaScript Allongé . 120
Copyright Notice . 121
About The Author . 124

A Pull of the Lever: Prefaces

Caffe Molinari

“We always pour our coffee in the ristretto, or restricted, tradition. The coffee is
restricted to the most flavourful part of the shot. This tradition offers the heaviest shot,
thickest texture and finest flavour that the coffee has to offer.”–David Schomer¹

¹http://www.espressovivace.com/archives/9507scr.html

http://www.espressovivace.com/archives/9507scr.html
http://www.espressovivace.com/archives/9507scr.html

A Pull of the Lever: Prefaces ii

About This Book

Learning about “for” loops is not learning to program, any more than learning about
pencils is learning to draw.–Bret Victor, Learnable Programming²

Programming languages are characterized by their syntax and their semantics. The syntax of a
language defines its user interface; If you understand a language’s syntax, you understand what
it makes easy. The semantics of a language defines its capabilities; If you understand a language’s
semantics, you understand what it does well.

CoffeeScript Ristretto is first and foremost about a book about programming with functions, because
its flexible and powerful functions are what make the CoffeeScript³ programming language so
capable, and what CoffeeScript does well.

how this book is organized

CoffeeScript Ristretto begins at the beginning, with values and expressions, and builds from there
to discuss types, identity, functions, closures, scopes, and many more subjects up to working
with classes and instances in Chapter Five. Chapter Six, “An Extra Shot of Ideas,” introduces
advanced CoffeeScript idioms like method decorators. Since CoffeeScript Ristretto is a book about
CoffeeScript’s semantics, each topic is covered thoroughly, without hand-waving or simplification.

As a result, CoffeeScript Ristretto is a rich, dense read, much like the Espresso Ristretto beloved by
coffee enthusiasts everywhere.

²http://worrydream.com/LearnableProgramming/
³http://coffeescript.org

http://worrydream.com/LearnableProgramming/
http://coffeescript.org
http://worrydream.com/LearnableProgramming/
http://coffeescript.org

A Pull of the Lever: Prefaces iii

Foreword by Jeremy Ashkenas

“I particularly enjoyed this small book because I’ve reached for it a hundred times before
and come up empty-handed. Large and heavymanuals on object-oriented programming
and JavaScript are all around us, but to find a book that tackles the fundamental features
of functions and objects in a brief, strong gulp, is rare indeed.

“With the inimitable Mr. Braithwaite as your guide, you’ll explore the nature of
functions, the nooks and crannies of lexical scope, the essence of reference, the method
of mutation, the construction of classes, callbacks, prototypes, promises, and more.
And you’ll learn a great deal about the internals of CoffeeScript and the semantics
of JavaScript along the way. Every feature is broken apart into its basic pieces, and you
put it back together yourself, brick by brick.

“This book is dense, but hopefully you’ve chosen it because you like your ristretto bold
and strong. If Reg had pulled it any thicker you’d have to chew it.”—Jeremy Ashkenas,
CoffeeScript’s creator

A Pull of the Lever: Prefaces iv

Legend

Some text in monospaced type like this in the text represents some code being discussed. Some
monospaced code in its own lines also represents code being discussed:

1 this.async = do (async = undefined) ->

2

3 async = (fn) ->

4 (argv..., callback) ->

5 callback(fn.apply(this, argv))

Sometimes it will contain some code for you to type in for yourself. When it does, the result of
typing something in will often be shown using #=>, like this:

1 2 + 2

2 #=> 4

A paragraphmarked like this is a “key fact.” It summarizes an idea without adding anything
new.

A paragraph marked like this is a suggested exercise to be performed on your own.

..

A paragraph marked like this is an aside. It can be safely ignored. It contains whimsey and other
doupleplusunserious logorrhea that will not be on the test.

Prelude: Values and Expressions
The following material is extremely basic, however like most stories, the best way to begin is to start
at the very beginning.

Imagine we are visiting our favourite coffee shop. They will make for you just about any drink you
desire, from a short, intense espresso ristretto through a dry cappuccino, up to those coffee-flavoured
desert concoctions featuring various concentrated syrups and milks. (You tolerate the existence of
sugary drinks because they provide a sufficient profit margin to the establishment to finance your
hanging out there all day using their WiFi and ordering a $3 drink every few hours.)

You express your order at one end of their counter, the folks behind the counter perform their magic,
and deliver the coffee you value at the other end. This is exactly how the CoffeeScript environment
works for the purpose of this book. We are going to dispense with web servers, browsers and other
complexities and deal with this simple model: You give the computer an expression⁴, and it returns
a value⁵, just as you express your wishes to a barista and receive a coffee in return.

values and expressions

All values are expressions. Say you hand the barista a Cafe Cubana. Yup, you hand over a cup with
some coffee infused through partially caramelized sugar. You say, “I want one of these.” The barista
is no fool, she gives it straight back to you, and you get exactly what you want. Thus, a Cafe Cubana
is an expression (you can use it to place an order) and a value (you get it back from the barista).

Let’s try this with something the computer understands easily:

1 42

Is this an expression? A value? Neither? Or both?

The answer is, this is both an expression and a value.⁶ The way you can tell that it’s both is very
easy: When you type it into CoffeeScript, you get the same thing back, just like our Cafe Cubana:

1 42

2 #=> 42

⁴https://en.wikipedia.org/wiki/Expression_
⁵https://en.wikipedia.org/wiki/Value_
⁶Technically, it’s a representation of a value using Base10 notation, but we needn’t worry about that in this book. You and I both understand that

this means “42,” and so does the computer.

https://en.wikipedia.org/wiki/Expression_
https://en.wikipedia.org/wiki/Value_
https://en.wikipedia.org/wiki/Expression_
https://en.wikipedia.org/wiki/Value_

Prelude: Values and Expressions vi

All values are expressions. That’s easy! Are there any other kinds of expressions? Sure! let’s go back
to the coffee shop. Instead of handing over the finished coffee, we can hand over the ingredients.
Let’s hand over some ground coffee plus some boiling water.

..

Astute readers will realize we’re omitting something. Congratulations! Take a sip of espresso. We’ll
get to that in a moment.

Now the barista gives us back an espresso. And if we hand over the espresso, we get the espresso
right back. So, boiling water plus ground coffee is an expression, but it isn’t a value.⁷ Boiling water
is a value. Ground coffee is a value. Espresso is a value. Boiling water plus ground coffee is an
expression.

Let’s try this as well with something else the computer understands easily:

1 "CoffeeScript" + " " + "Ristretto"

2 #=> "CoffeeScript Ristretto"

These are “strings,” values featured in almost every contemporary computer language. We see that
“strings” are values, and you can make an expression out of strings and an operator +. Since strings
are values, they are also expressions by themselves. But strings with operators are not values, they
are expressions. Nowwe knowwhat was missing with our “coffee grounds plus hot water” example.
The coffee grounds were a value, the boiling hot water was a value, and the “plus” operator between
them made the whole thing an expression that was not a value.

values and identity

In CoffeeScript, we test whether two values are identical with the is operator, and whether they are
not identical with the isnt operator:

1 2 is 2

2 #=> true

3

4 'hello' isnt 'goodbye'

5 #=> true

How does is work, exactly? Imagine that you’re shown a cup of coffee. And then you’re shown
another cup of coffee. Are the two cups “identical?” In CoffeeScript, there are four possibilities:

⁷In some languages, expressions are a kind of value unto themselves and can be manipulated. The grandfather of such languages is Lisp.
CoffeeScript is not such a language, expressions in and of themselves are not values.

Prelude: Values and Expressions vii

First, sometimes, the cups are of different types. One is a demitasse, the other amug. This corresponds
to comparing two things in CoffeeScript that have different types. For example, the string "2" is not
the same thing as the number 2. Strings and numbers are different types, so strings and numbers
are never identical:

1 2 is '2'

2 #=> false

3

4 true isnt 'true'

5 #=> true

Second, sometimes, the cups are of the same type–perhaps two espresso cups–but they have different
contents. One holds a single, one a double. This corresponds to comparing two CoffeeScript values
that have the same type but different “content.” For example, the number 5 is not the same thing as
the number 2.

1 true is false

2 #=> false

3

4 2 isnt 5

5 #=> true

6

7 'two' is 'five'

8 #=> false

What if the cups are of the same type and the contents are the same? Well, CoffeeScript’s third and
fourth possibilities cover that.

value types

Third, some types of cups have no distinguishing marks on them. If they are the same kind of cup,
and they hold the same contents, we have no way to tell the difference between them. This is the
case with the strings, numbers, and booleans we have seen so far.

1 2 + 2 is 4

2 #=> true

3

4 (2 + 2 is 4) is (2 isnt 5)

5 #=> true

Prelude: Values and Expressions viii

Note well what is happening with these examples: Evenwhenwe obtain a string, number, or boolean
as the result of evaluating an expression, it is identical to another value of the same type with the
same “content.” Strings, numbers, and booleans are examples of what CoffeeScript calls “value” or
“primitive” types. We’ll use both terms interchangeably.

We haven’t encountered the fourth possibility yet. Stretching the metaphor somewhat, some types
of cups have a serial number on the bottom. So even if you have two cups of the same type, and
their contents are the same, you can still distinguish between them.

Cafe Macchiato is also a fine drink, especially when following up on the fortunes of the Azzuri or the standings
in the Giro D’Italia

reference types

So what kinds of values might be the same type and have the same contents, but not be considered
identical to CoffeeScript? Let’s meet a data structure that is very common in contemporary
programming languages, the Array (other languages sometimes call it a List or a Vector).

Here are some expressions for arrays you can try typing for yourself:

1 [1, 2, 3]

2 [1,2,2]

3 [1..3]

These are expressions, and you can combine [] with other expressions. Go wild with things like:

Prelude: Values and Expressions ix

1 [2-1, 2, 2+1]

2 [1, 1+1, 1+1+1]

We aren’t going to spend a lot of time talking about it, but if you enable multiline mode (with ctrl-v),
you can also type things like:

1 [

2 1

3 2

4 3

5]

Notice that you are always generating arrays with the same contents. But are they identical the same
way that every value of 42 is identical to every other value of 42? Try these for yourself:

1 [1..3] is [1,2,3]

2 [1,2,3] is [1, 2, 3]

3 [1, 2, 3] is [1, 2, 3]

How about that! When you type [1, 2, 3] or any of its variations, you are typing an expression
that generates its own unique array that is not identical to any other array, even if that other array
also looks like [1, 2, 3]. It’s as if CoffeeScript is generating new cups of coffee with serial numbers
on the bottom.

They look the same, but if you examine them with is, you see that they are different. Every time
you evaluate an expression (including typing something in) to create an array, you’re creating a
new, distinct value even if it appears to be the same as some other array value. As we’ll see, this is
true of many other kinds of values, including functions, the main subject of this book.

Prelude: Values and Expressions x

interlude…

A short, intense shot of espresso

Wikipedia⁸ on Ristretto:

”Ristretto is a very ‘short’ shot of espresso coffee. Originally this meant pulling a hand
press faster than usual using the same amount of water as a regular shot of espresso.
Since the water came in contact with the grinds for a much shorter time the caffeine
is extracted in reduced ratio to the flavorful coffee oils. The resultant shot could be
described as bolder, fuller, with more body and less bitterness.”

⁸https://en.wikipedia.org/wiki/Ristretto

https://en.wikipedia.org/wiki/Ristretto
https://en.wikipedia.org/wiki/Ristretto

CoffeeScript Ristretto

The perfect Espresso Ristretto begins with the right beans, properly roasted. CoffeeScript Ristretto begins with
functions, properly dissected.

The first sip: Functions

While Terroir tends toward pretty low body (particularly at its age when we pulled it), the crema’s so thin on
this shot due to it having been sipped from already!

The first sip: Functions 3

As Little As Possible About Functions, But No Less

In CoffeeScript, functions are values, but they are also much more than simple numbers, strings, or
even complex data structures like trees or maps. Functions represent computations to be performed.
Like numbers, strings, and arrays, they have a representation in CoffeeScript. Let’s start with the
very simplest possible function. In CoffeeScript, it looks like this:⁹

1 ->

This is a function that is applied to no values and produces no value. Hah! There’s the third thing.
How do we represent “no value” in CoffeeScript? We’ll find out in a minute. First, let’s verify that
our function is a value:

1 ->

2 #=> [Function]

What!? Why didn’t it type back -> for us? This seems to break our rule that if an expression is
also a value, CoffeeScript will give the same value back to us. What’s going on? The simplest and
easiest answer is that although the CoffeeScript interpreter does indeed return that value, displaying
it on the screen is a slightly different matter. [Function] is a choice made by the people who wrote
Node.js, the JavaScript environment that hosts the CoffeeScript REPL. If you try the same thing
in a browser (using “Try CoffeeScript” at coffeescript.org¹⁰ for example), you’ll get something else
entirely that isn’t CoffeeScript at all, it’s JavaScript.

⁹If you have dabbled in CoffeeScript or look at other people’s CoffeeScript programs, youmay discover that it is also legal towrite ->. Conceptually,
-> is a function with no arguments and no body. -> is a function with an empty list of arguments and no body. Generally, CoffeeScript programmers
prefer ->, so let’s do that.

¹⁰http://coffeescript.org

http://coffeescript.org
http://coffeescript.org

The first sip: Functions 4

..

I’d prefer something else, but I console myself with the thought that what gets typed back to us on
the screen is arbitrary, and all that really counts is that it is somewhat useful for a human to read.
But we must understand that whether we see [Function] or function () {} or–in some future
version of CoffeeScript–->, internally CoffeeScript has a full and proper function.

The exact same thing will happen to you once you figure out how to make an array that contains itself. You’ll try to print it out
and you’ll get [[Circular]] back. Never mind, internally CoffeeScript has constructed a perfectly fine Ouroborian array even if it
won’t try to print it out for you.

functions and identities

You recall that we have two types of values with respect to identity: Value types and reference types.
Value types share the same identity if they have the same contents.Reference types do not.

Which kind are functions? Let’s try it. For reasons of appeasing the CoffeeScript parser, we’ll enclose
our functions in parentheses:

1 (->) is (->)

2 #=> false

Like arrays, every time you evaluate an expression to produce a function, you get a new function that
is not identical to any other function, even if you use the same expression to generate it. “Function”
is a reference type.

applying functions

Let’s put functions to work. The way we use functions is to apply them to zero or more values
called arguments. Just as 2 + 2 produces a value (in this case 4), applying a function to zero or more
arguments produces a value as well. Some folks call the arguments the inputs to a function. Whether
you use the word “inputs” or “arguments,” it’s certainly a good thing to think of the function’s arrow
as pointing from the inputs to the output!

Here’s how we apply a function to some values in CoffeeScript: Let’s say that fn_expr is an
expression that when evaluated, produces a function. Let’s call the arguments args. Here’s how
to apply a function to some arguments:

fn_expr(args)

Right now, we only know about one such expression: ->, so let’s use it. We’ll put it in parentheses¹¹
to keep the parser happy, like we did above: (->). Since we aren’t giving it any arguments, we’ll
simply write () after the expression. So we write:

¹¹If you’re used to other programming languages, you’ve probably internalized the idea that sometimes parentheses are used to group operations
in an expression like math, and sometimes to apply a function to arguments. If not… Welcome to the ALGOL family of programming languages!

https://en.wikipedia.org/wiki/ALGOL

The first sip: Functions 5

1 (->)()

2 #=> undefined

What is this undefined?

undefined

In CoffeeScript, the absence of a value is written undefined, and it means there is no value. It will
crop up again. undefined is its own type of value, and it acts like a value type:

1 undefined

2 #=> undefined

Like numbers, booleans and strings, CoffeeScript can print out the value undefined.

1 undefined is undefined

2 # => true

3 (->)() is (->)()

4 # => true

5 (->)() is undefined

6 # => true

No matter how you evaluate undefined, you get an identical value back. undefined is a value that
means “I don’t have a value.” But it’s still a value :-)

Speaking of is undefined, a common pattern in CoffeeScript programming is to test wither
something isnt undefined:

1 undefined isnt undefined

2 #=> false

3 'undefined' isnt undefined

4 #=> true

5 false isnt undefined

6 #=> true

This is so common that a shortcut is provided, the suffix operator ?:

The first sip: Functions 6

1 undefined?

2 #=> false

3 'undefined'?

4 #=> true

5 false?

6 #=> true

..

You might think that undefined in CoffeeScript is equivalent to NULL in SQL. No. In SQL, two
things that are NULL are not equal to nor share the same identity, because two unknowns can’t be
equal. In CoffeeScript, every undefined is identical to every other undefined.

functions with no arguments

Back to our function. We evaluated this:

1 (->)()

2 #=> undefined

Let’s recall that we were applying the function -> to no arguments (because there was nothing inside
of ()). So how do we know to expect undefined? That’s easy. When we define a function, we write
the arguments it expects to the left of the -> and an optional expression to the right. This expression
is called the function’s body. Like this:

(args) -> body

There is a funny rule: You can omit the body, and if you do, applying the function always evaluates
to undefined.¹²

What about functions that have a body? Let’s write a few. Here’s the rule:We can use anything we’ve
already learned how to use as an expression. Cutting and pasting, that means that the following are
all expressions that evaluate to functions:

¹²Elsewhere, we’ve pledged to avoid optional bits that don’t add a lot to our understanding. This optional bit gives us an excuse to learn about
undefined, so that’s why it’s in. Now that we know this, we see that our expression -> evaluates to a function taking no arguments and having no
expression, therefore when you apply it to no arguments with (->)(), you get undefined.

The first sip: Functions 7

1 -> 2

2 -> 2 + 2

3 -> "Hello" + " " + "CoffeeScript"

4 -> true is not false

5 -> false isnt true

And you can evaluate them by typing any of these into CoffeeScript:

1 (-> 2)()

2 #=> 2

3 (-> 2 + 2)()

4 #=> 4

5 (-> "Hello" + " " + "CoffeeScript")()

6 #=> "Hello CoffeeScript"

7 (-> true is not false)()

8 #=> true

9 (-> false isnt true)()

10 #=> true

We haven’t discussed arguments yet, but let’s get clever with what we already have.

functions that evaluate to functions

If an expression that evaluates to a function is, well, an expression, and if a function expression can
have any expression on its right side… Can we put an expression that evaluates to a function on the
right side of a function expression?

Yes:

1 -> ->

That’s a function! It’s a function that when applied, evaluates to a function that when applied,
evaluates to undefined. Watch and see:

1 -> ->

2 #=> [Function]

It evaluates to a function…

The first sip: Functions 8

1 (-> ->)()

2 #=> [Function]

That when applied, evaluates to a function…

1 (-> ->)()()

2 #=> undefined

That when applied, evaluates to undefined. Likewise:

1 -> -> true

That’s a function! It’s a function that when applied, evaluates to a function, that when applied,
evaluates to true:

1 (-> -> true)()()

2 #=> true

Well. We’ve been very clever, but so far this all seems very abstract and computer science-y.
Diffraction of a crystal is beautiful and interesting in its own right, but you can’t blame us for
wanting to be shown a practical use for it, like being able to determine the composition of a star
millions of light years away. So… In the next chapter, “I’d Like to Have an Argument, Please,” we’ll
see how to make functions practical.

showering felicitous encouragement to incentivise the practice
of skewing the distribution of expression length towards the
minimal mode

Or, In praise of keeping it short.

When describing the behaviour of functions, we often use the expression “that when applied,
evaluates to…” For example, “The function (x, y) -> x + y is a function, that when applied
to two integer arguments, evaluates to the sum of the arguments.”¹³ This is technically correct. But
a mouthful. Another expression you will often hear is “returns,” as in “The function (x, y) -> x +

y is a function that returns the sum of its arguments.”

“Returns” is a little less precise, and is context dependant. But it suits our purposes, so we will often
use it. But when we use it, we will always mean “when applied, evaluates to…”

And with that’s let’s move on!

¹³It does something else when the first argument is a string, but let’s ignore that bit of pedantry for now.

The first sip: Functions 9

Ah. I’d Like to Have an Argument, Please.¹⁴

Up to now, we’ve looked at functions without arguments. We haven’t even said what an argument
is, only that our functions don’t have any.

..

Most programmers are perfectly familiar with arguments (often called “parameters”). Secondary
school mathematics discusses this. So you know what they are, and I know that you know what
they are, but please be patient with the explanation!

Let’s make a function with an argument:

1 (room) ->

This function has one argument, room, and no body. Here’s a function with two arguments and no
body:

1 (room, board) ->

I’m sure you are perfectly comfortable with the idea that this function has two arguments, room,
and board. What does one do with the arguments? Use them in the body, of course. What do you
think this is?

1 (diameter) -> diameter * 3.14159265

It’s a function for calculating the circumference of a circle given the radius. I read that aloud as
“When applied to a value representing the diameter, this function gives (that’s my word for the
arrow) the diameter times 3.14159265.”

Remember that to apply a function with no arguments, we wrote (->)(). To apply a function with
an argument (or arguments), we put the argument (or arguments) within the parentheses, like this:

1 ((diameter) -> diameter * 3.14159265)(2)

2 #=> 6.2831853

You won’t be surprised to see how to write and apply a function to two arguments:

¹⁴The Argument Sketch from “Monty Python’s Previous Record” and “Monty Python’s Instant Record Collection”

http://www.mindspring.com/~mfpatton/sketch.htm

The first sip: Functions 10

1 ((room, board) -> room + board)(800, 150)

2 #=> 950

a quick summary of functions and bodies
How arguments are used in a body’s expression is probably perfectly obvious to you from
the examples, especially if you’ve used any programming language (except, possibly for
the dialect of BASIC I recall from my secondary school that didn’t allow parameters when
you called a procedure).

Expressions consist either of representations of values (like 3.14159265, true, and
undefined), operators that combine expressions (like 3 + 2), and some special forms like
[1, 2, 3] for creating arrays out of expressions and (arguments) ->body-expression for
creating functions.

This loose definition is recursive, so we can intuit (or use our experience with other
languages) that since a function has an expression on its right hand side, we can write
a function that has a function as its expression, or an array that contains another array
expression. Or a function that gives an array, an array of functions, a function that gives
an array of functions, and so forth:

1 -> ->

2 -> [1, 2, 3]

3 [1, [2, 3], 4]

4 -> [(-> 1), (-> 2), (-> 3)]

call by value

Like most contemporary programming languages, CoffeeScript uses the “call by value” evaluation
strategy¹⁵. That’s a $2.75 way of saying that when you write some code that appears to apply a
function to an expression or expressions, CoffeeScript evaluates all of those expressions and applies
the functions to the resulting value(s).

So when you write:

1 ((diameter) -> diameter * 3.14159265)(1 + 1)

2 #=> 6.2831853

What happened internally is that the expression 1 + 1 was evaluated first, resulting in 2. Then our
circumference function was applied to 2.¹⁶

¹⁵http://en.wikipedia.org/wiki/Evaluation_strategy
¹⁶We said that you can’t apply a function to an expression. You can apply a function to one or more functions. Functions are values! This has

interesting applications, and they will be explored much more thoroughly in Functions That Are Applied to Functions.

http://en.wikipedia.org/wiki/Evaluation_strategy
http://en.wikipedia.org/wiki/Evaluation_strategy
http://en.wikipedia.org/wiki/Evaluation_strategy

The first sip: Functions 11

variables and bindings

Right now everything looks simple and straightforward, and we can move on to talk about
arguments in more detail. And we’re going to work our way up from (diameter) -> diameter

* 3.14159265 to functions like:

1 (x) -> (y) -> x

..

(x) -> (y) -> x just looks crazy, as if we are learning English as a second language and the
teacher promises us that soon we will be using words like antidisestablishmentarianism. Besides
a desire to use long words to sound impressive, this is not going to seem attractive until we find
ourselves wanting to discuss the role of the Church of England in 19th century British politics.

But there’s another reason for learning the word antidisestablishmentarianism: We might learn
how prefixes and postfixes work in English grammar. It’s the same thing with (x) -> (y) -> x.
It has a certain important meaning in its own right, and it’s also an excellent excuse to learn about
functions that make functions, environments, variables, and more.

In order to talk about how this works, we should agree on a few terms (you may already know them,
but let’s check-in together and “synchronize our dictionaries”). The first x, the one in (x) ->, is an
argument. The y in (y) -> is another argument. The second x, the one in -> x, is not an argument,
it’s an expression referring to a variable. Arguments and variables work the same way whether
we’re talking about (x) -> (y) -> x or just plain (x) -> x.

Every time a function is invoked (“invoked” is a synonym for “applied to zero or more arguments”),
a new environment is created. An environment is a (possibly empty) dictionary that maps variables
to values by name. The x in the expression that we call a “variable” is itself an expression that is
evaluated by looking up the value in the environment.

How does the value get put in the environment? Well for arguments, that is very simple. When you
apply the function to the arguments, an entry is placed in the dictionary for each argument. So when
we write:

1 ((x) -> x)(2)

2 #=> 2

What happens is this:

1. CoffeeScript parses this whole thing as an expression made up of several sub-expressions.
2. It then starts evaluating the expression, including evaluating sub-expressions
3. One sub-expression, (x) -> x evaluates to a function.

The first sip: Functions 12

4. Another, 2, evaluates to the number 2.
5. CoffeeScript now evaluates applying the function to the argument 2. Here’s where it gets

interesting…
6. An environment is created.
7. The value ‘2’ is bound to the name ‘x’ in the environment.
8. The expression ‘x’ (the right side of the function) is evaluated within the environment we just

created.
9. The value of a variable when evaluated in an environment is the value bound to the variable’s

name in that environment, which is ‘2’
10. And that’s our result.

When we talk about environments, we’ll use an unsurprising syntax¹⁷ for showing their bindings:
{x: 2, ...}. meaning, that the environment is a dictionary, and that the value 2 is bound to the
name x, and that there might be other stuff in that dictionary we aren’t discussing right now.

call by sharing

Earlier, we distinguished CoffeeScript’s value types from its reference types. At that time, we looked
at how CoffeeScript distinguishes objects that are identical from objects that are not. Now it is time
to take another look at the distinction between value and reference types.

There is a property that CoffeeScript strictly maintains: When a value–any value–is passed as an
argument to a function, the value bound in the function’s environment must be identical to the
original.

We said that CoffeeScript binds names to values, but we didn’t say what it means to bind a name
to a value. Now we can elaborate: When CoffeeScript binds a name to a value type value, it makes
a copy of the value and places the copy in the environment. As you recall, value types like strings
and numbers are identical to each other if they have the same content. So CoffeeScript can make as
many copies of strings, numbers, or booleans as it wishes.

What about reference types? CoffeeScript cannot place a copy of an array or object in an
environment, because the copy would not be identical to the original. So instead, CoffeeScript does
not place reference values in any environment. CoffeeScript places references to reference types in
environments, and when the value needs to be used, CoffeeScript uses the reference to obtain the
original.

Because many references can share the same value, and because CoffeeScript passes references as
arguments, CoffeeScript can be said to implement “call by sharing” semantics. Call by sharing is
generally understood to be a specialization of call by value, and it explains why some values are
known as value types and other values are known as reference types.

And with that, we’re ready to look at closures. When we combine our knowledge of value types,
reference types, arguments, and closures, we’ll understand why this function always evaluates to
true no matter what argument you apply it to:

¹⁷http://json.org/

http://json.org/
http://json.org/

The first sip: Functions 13

1 (value) ->

2 ((copy) ->

3 copy is value

4)(value)

The first sip: Functions 14

Closures and Scope

Before we explain (x) -> (y) -> x, we’re going to toss in something that doesn’t directly affect
our explanation, but makes things easier to see visually. Up to now, every function has looked like
this: (arguments) -> body. There’s another way to write functions. For example here’s the other
way to write (x) -> x:

1 (x) ->

2 x

You get the idea: You can indent the body instead of putting it on the same line. Let’s introduce a
new term: (x) -> is the function’s signature, and x is its body, just as we’ve mentioned before.

That means inductively we can also write (x) -> (y) -> x in two other ways:

1 (x) ->

2 (y) -> x

Or:

1 (x) ->

2 (y) ->

3 x

The indents help us see that the x is the body “belonging to” a function with signature (y) ->, and
that it belongs to a function with signature (x) ->.

Time to see how a function within a function works:

1 ((x) ->

2 (y) ->

3 x

4)(1)(2)

5 #=> 1

First off, let’s use what we learned above. Given (some function)(some argument), we know that
we apply the function to the argument, create an environment, bind the value of the argument to
the name, and evaluate the function’s expression. So we do that first with this code:

The first sip: Functions 15

1 ((x) ->

2 (y) ->

3 x

4)(1)

5 #=> [Function]

The environment belonging to the function with signature (x) -> becomes {x: 1, ...}, and the
result of applying the function is another function value. It makes sense that the result value is a
function, because the expression for (x) ->’s body is:

1 (y) ->

2 x

So now we have a value representing that function. Then we’re going to take the value of that
function and apply it to the argument 2, something like this:

1 ((y) ->

2 x)(2)

So we seem to get a new environment {y: 2, ...}. How is the expression x going to be evaluated in
that function’s environment? There is no x in its environment, it must come from somewhere else.

..

This, by the way, is one of the great defining characteristic of CoffeeScript and languages in the
same family: Whether they allow things like functions to nest inside each other, and if so, how they
handle variables from “outside” of a function that are referenced inside a function. For example,
here’s the equivalent code in Ruby:

1 lambda { |x|

2 lambda { |y| x }

3 }[1][2]

4 #=> 1

Now let’s have an Espresso before we continue!

If functions without free variables are pure, are closures impure?

The function (y) -> x is interesting. It contains a free variable, x.¹⁸ A free variable is one that is
not bound within the function. Up to now, we’ve only seen one way to “bind” a variable, namely by

¹⁸You may also hear the term “non-local variable.” Both are correct.

https://en.wikipedia.org/wiki/Free_variables_and_bound_variables

The first sip: Functions 16

passing in an argument with the same name. Since the function (y) -> x doesn’t have an argument
named x, the variable x isn’t bound in this function, which makes it “free.”

Now that we know that variables used in a function are either bound or free, we can bifurcate
functions into those with free variables and those without:

• Functions containing no free variables are called pure functions.
• Functions containing one or more free variables are called closures.

Pure functions are easiest to understand. They always mean the same thing wherever you use them.
Here are some pure functions we’ve already seen:

1 ->

2

3 (x) ->

4 x

5

6 (x) ->

7 (y) ->

8 x

The first function doesn’t have any variables, therefore doesn’t have any free variables. The second
doesn’t have any free variables, because its only variable is bound. The third one is actually two
functions, one in side the other. (y) -> has a free variable, but the entire expression refers to (x) ->,
and it doesn’t have a free variable: The only variable anywhere in its body is x, which is certainly
bound within (x) ->.

From this, we learn something: A pure function can contain a closure.

If pure functions can contain closures, can a closure contain a pure function? Using only
what we’ve learned so far, attempt to compose a closure that contains a pure function. If
you can’t, give your reasoning for why it’s impossible.

Pure functions always mean the same thing because all of their “inputs” are fully defined by their
arguments. Not so with a closure. If I present to you this free function (x, y) -> x + y, we know
exactly what it does with (2, 2). But what about this closure: (y) -> x + y? We can’t say what it
will do with argument (2) without understanding the magic for evaluating the free variable x.

it’s always the environment

To understand how closures are evaluated, we need to revisit environments. As we’ve said before,
all functions are associated with an environment. We also hand-waved something when describing

The first sip: Functions 17

our environment. Remember that we said the environment for ((x) -> (y) -> x)(1) is {x: 1,

...} and that the environment for ((y) -> x)(2) is {y: 2, ...}? Let’s fill in the blanks!

The environment for ((y) -> x)(2) is actually {y: 2, '..': {x: 1, ...}}. '..'means something
like “parent” or “enclosure” or “super-environment.” It’s (x) ->’s environment, because the function
(y) -> x is within (x) ->’s body. So whenever a function is applied to arguments, its environment
always has a reference to its parent environment.

And now you can guess how we evaluate ((y) -> x)(2) in the environment {y: 2, '..': {x: 1,

...}}. The variable x isn’t in (y) ->’s immediate environment, but it is in its parent’s environment,
so it evaluates to 1 and that’s what ((y) -> x)(2) returns even though it ended up ignoring its own
argument.

..

(x) -> x is called the I Combinator or Identity Function. (x) -> (y) -> x is called the K
Combinator or Kestrel. Some people get so excited by this that they write entire books about them,
some are great, some–how shall I put this–are interesting if you use Ruby.

http://www.amzn.com/0192801422?tag=raganwald001-20
https://leanpub.com/combinators

Functions can have grandparents too:

1 (x) ->

2 (y) ->

3 (z) ->

4 x + y + z

This function does much the same thing as:

1 (x, y, z) ->

2 x + y + z

Only you call it with (1)(2)(3) instead of (1, 2, 3). The other big difference is that you can call
it with (1) and get a function back that you can later call with (2)(3).

http://www.amzn.com/0192801422?tag=raganwald001-20
https://leanpub.com/combinators
http://www.amzn.com/0192801422?tag=raganwald001-20
https://leanpub.com/combinators

The first sip: Functions 18

..

The first function is the result of currying the second function. Calling a curried function with
only some of its arguments is sometimes called partial application. Some programming languages
automatically curry and partially evaluate functions without the need to manually nest them.

https://en.wikipedia.org/wiki/Currying
https://en.wikipedia.org/wiki/Partial_application

shadowy variables from a shadowy planet

An interesting thing happens when a variable has the same name as an ancestor environment’s
variable. Consider:

1 (x) ->

2 (x, y) ->

3 x + y

The function (x, y) -> x + y is a pure function, because its x is defined within its own environment.
Although its parent also defines an x, it is ignored when evaluating x + y. CoffeeScript always
searches for a binding starting with the functions own environment and then each parent in turn
until it finds one. The same is true of:

1 (x) ->

2 (x, y) ->

3 (w, z) ->

4 (w) ->

5 x + y + z

When evaluating x + y + z, CoffeeScript will find x and y in the great-grandparent scope and z

in the parent scope. The x in the great-great-grandparent scope is ignored, as are both ws. When a
variable has the same name as an ancestor environment’s binding, it is said to shadow the ancestor.

There can be spirited discussions over shadowing variables. Some people argue that shadowing
is a good thing, as it allows small pieces of code to be understood without checking any enclosing
environments. Others argue that it’s a bad thing, as it creates a confusing situation where two things
with the same name actually are different things, a lot like naming both of your twins “Lesley.”

https://en.wikipedia.org/wiki/Currying
https://en.wikipedia.org/wiki/Partial_application
https://en.wikipedia.org/wiki/Currying
https://en.wikipedia.org/wiki/Partial_application

The first sip: Functions 19

which came first, the chicken or the egg?

This behaviour of pure functions and closures has many, many consequences that can be exploited
to write software. We are going to explore them in some detail as well as look at some of the other
mechanisms CoffeeScript provides for working with variables and mutable state.

But before we do so, there’s one final question: Where does the ancestry start? If there’s no other
code in a file, what is (x) -> x’s parent environment?

CoffeeScript always has the notion of at least one environment we do not control: A global
environment in which many useful things are bound such as libraries full of standard functions.
So when you invoke ((x) -> x)(1) in the REPL, its full environment is going to look like this:
{x: 1, '..': global environment}. When you use CoffeeScript to compile physical files for use in
node or web applications, CoffeeScript does something interesting: It wraps your code in an invisible
function, like this:

1 (->

2 ((x) -> x)(1)

3)()

The effect of this is to insert a new, empty environment in between the global environment and your
own functions: {x: 1, '..': {'..': global environment}}. As we’ll see when we discuss mutable
state, this helps to prevent programmers from accidentally changing the global state that is shared
by code in every file.

The first sip: Functions 20

Summary

Functions

• Functions are values that can be part of expressions, returned from other functions,
and so forth.

• Functions are reference values.
• Functions are applied to arguments.
• The arguments are passed by sharing, which is also called “pass by value.”
• Function bodies have zero or more expressions.
• Function application evaluates to the value of the last expression evaluated or
undedfined.

• Function application creates a scope. Scopes are nested and free variable references
closed over.

• Variables can shadow variables in an enclosing scope.

Slurp: More About Functions and
Scope

Cafe Diplomatico in Toronto’s Little Italy

Slurp: More About Functions and Scope 22

Let Me Show You What To Do

let

Up to now, all we’ve really seen are anonymous functions, functions that don’t have a name. This
feels very different from programming in most other languages, where the focus is on naming
functions, methods, and procedures. Naming things is a critical part of programming, but all we’ve
seen so far is how to name arguments.

There are other ways to name things in CoffeeScript, but before we learn some of those, let’s see
how to use what we already have to name things. Let’s revisit a very simple example:

1 (diameter) ->

2 diameter * 3.14159265

What is this “3.14159265” number? Pi¹⁹, obviously. We’d like to name it so that we can write
something like:

1 (diameter) ->

2 diameter * Pi

In order to bind 3.14159265 to the name Pi, we’ll need a function with a parameter of Pi and an
argument of 3.14159265:

1 ((Pi) ->

2 ???

3)(3.14159265)

What do we put inside our new function that binds 3.14159265 to the name Pi when evaluated?
Our circumference function, of course:

1 ((Pi) ->

2 (diameter) ->

3 diameter * Pi

4)(3.14159265)

This expression, when evaluated, returns a function that calculates circumferences. It differs from
our original in that it names the constant Pi. Let’s test it:

¹⁹https://en.wikipedia.org/wiki/Pi

https://en.wikipedia.org/wiki/Pi
https://en.wikipedia.org/wiki/Pi

Slurp: More About Functions and Scope 23

1 ((Pi) ->

2 (diameter) ->

3 diameter * Pi

4)(3.14159265)(2)

5 #=> 6.2831853

That works! We can bind anything we want and use it in a function by wrapping the function
in another function that is immediately invoked with the value we want to bind. This “functional
programming pattern” was popularized in the Lisp programming language more than 50 years ago,
where it is called let²⁰.²¹ Although CoffeeScript doesn’t have a let keyword, when we discuss this
programming pattern we will call it let.

let works,²² but only a masochist would write programs this way in CoffeeScript. Besides all the
extra characters, it suffers from a fundamental semantic problem: there is a big visual distance
between the name Pi and the value 3.14159265we bind to it. They should be closer. Is there another
way?

Yes.

do

CoffeeScript programmers often wish to create a new environment and bind some values to names
within it as let does. To make this easier to read and write, CoffeeScript provides some syntactic
sugar called do.²³

²⁰http://jtra.cz/stuff/lisp/sclr/let.html
²¹let has made its way into other languages like JavaScript.
²²let is limited in some ways. For example, you can’t define a recursive function without some fixed point combinator backflips. This will be

discussed later when we look at the related pattern letrec.
²³“Syntactic sugar causes cancer of the semicolon”–Alan Perlis

http://jtra.cz/stuff/lisp/sclr/let.html
http://jtra.cz/stuff/lisp/sclr/let.html
http://www.cs.yale.edu/quotes.html

Slurp: More About Functions and Scope 24

Italians seem to prefer espresso with plenty of sugar, while North Americans often drink it without

This is what our example looks like using do:

1 do (Pi = 3.14159265) ->

2 (diameter) ->

3 diameter * Pi

Much, MUCH cleaner.

If you need to create more than one binding, you separate them with commas:

1 do (republican = 'Romney', democrat = 'Obama') ->

2 democrat

The value on the right side can be any expression. Try this for yourself:

1 do (Pi = 3.14159265, diameter = (radius) -> radius * 2) ->

2 (radius) ->

3 diameter(radius) * Pi

Did you try the example above? Did you notice what we slipped in? Yes, obviously, the value of
a binding can be any expression. But notice also that we can invoke a function on any expression
evaluating to a function, including a variable that looks up a binding in the environment.

Slurp: More About Functions and Scope 25

..

Dozens of pages into the book, we’re finally calling a function the way you’ll see functions being
called in most production code. Sheesh.

Slurp: More About Functions and Scope 26

A Simple Question

Both of the following produce the exact same result:

1 do (Pi = 3.14159265) ->

2 (diameter) ->

3 diameter * Pi

And:

1 (diameter) ->

2 do (Pi = 3.14159265) ->

3 diameter * Pi

Why do we habitually prefer the former?

To understand this, we’re going to take a simple step towards more complex, state-full programs
by introducing sequences of expressions. If we had no other tools, we could evaluate a series of
expressions with some legerdemain like this:

1 do (ignore1 = foo(),

2 ignore2 = bar(),

3 ignore3 = blitz(),

4 value = bash()) ->

5 bash

Or perhaps like this:

1 do (ignore = [foo(), bar(), blitz()], value = bash()) ->

2 bash

Or even this:

1 [

2 foo()

3 bar()

4 blitz()] and bash()

Slurp: More About Functions and Scope 27

Any of these would evaluate foo(), bar(), blitz(), and then return the value of bash() (whatever
they might be).

Why doesn’t foo() and bar() and blitz() and bash() work reliably?

But let’s learn another handy CoffeeScript feature, again because it helps us focus on what is actually
going on. Whenever you want to work with the body of a function, you can always have it evaluate
a simple sequence of one or more expressions by indenting them. The value of the body is the value
of the final expression.

So in that case, we can write something like:

1 do ->

2 foo()

3 bar()

4 blitz()

5 bash()

Anywhere a simple expression is allowed, you could use a dowith a sequence. This doesn’t come up
as much as you might think, because many of the places you want to do this, CoffeeScript already
lets you indent and include more than one expression. For example, in a function body:

1 (foo) ->

2 bar(foo)

3 bash(foo)

4 foo('blitz')

So back to our question. Here’s a test framework:

1 do (circumference = do (Pi = 3.14159265) ->

2 (diameter) ->

3 diameter * Pi) ->

4 circumference(1)

5 circumference(2)

6 circumference(3)

7 circumference(4)

8 circumference(5)

9 circumference(6)

10 circumference(7)

11 circumference(8)

12 circumference(9)

13 circumference(10)

14 #=> 31.4159265

Slurp: More About Functions and Scope 28

Let’s think about how many functions we are invoking. When this is first invoked, We invoke the
outer do (circumference = (...) ->. As part of doing that, we invoke do (Pi = 3.14159265)

-> and bind the result to circumference. Then every time we invoke circumference, we invoke
(diameter) ->. All together, twelve.

But with:

1 do (circumference = (diameter) ->

2 do (Pi = 3.14159265) ->

3 diameter * Pi) ->

4 circumference(1)

5 circumference(2)

6 circumference(3)

7 circumference(4)

8 circumference(5)

9 circumference(6)

10 circumference(7)

11 circumference(8)

12 circumference(9)

13 circumference(10)

14 #=> 31.4159265

What happens? There’s one outer do (circumference = (...) ->, same as before. And then every
time we invoke circumference, we also invoke do (Pi = 3.14159265) ->, so we have a total of
twenty-one function invocations. This is nearly twice as expensive.

Slurp: More About Functions and Scope 29

Making Things Easy

In CoffeeScript Ristretto, we are focusing on CoffeeScript’s semantics, the meaning of CoffeeScript
programs. As we go along, we’re learning just enough CoffeeScript to understand the next concept
simply and directly.

CoffeeScript actually supports a number of syntactic conveniences for making programs extremely
readable, by which we mean, making them communicate their intent without asking the program-
mer to struggle in a Turing Tarpit²⁴, no matter how elegant.

if i were a rich man

For example, it is possible to implement boolean logic using functions, by carefully combining the
Identity ((x) -> x), Kestrel ((x) -> (y) -> x), and Vireo ((x) -> (y) -> (z) -> z(x(y)))
functions using a clever trick. It look something like this:

1 do (I = ((x) -> x),

2 K = ((x) -> (y) -> x),

3 V = ((x) -> (y) -> (z) -> z(x(y)))

4) ->

5 do (t = K, f = K(I)) ->

6 # ...

7 # implement logical operators here

8 # ...

..

Did you notice that I slipped a new language feature in, one that allegedly allows a programmer
to communicate their intent? Comments in CoffeeScript are signalled by a # and continue to the
end of the line, much like // in C++ or JavaScript, and exactly like # in Ruby. If you have ever used
C to make a comment line in FORTRAN, you are a real programmer and ought not to be fooling
around with a quiche-eater’s language.

http://www.pbm.com/~lindahl/real.programmers.html

This is extraordinarily fascinating computer science stuff, but you can read about that elsewhere²⁵.
CoffeeScript supplies true, false, and, or, and not so you don’t need to roll your own out of
functions. But while we’re talking about logic, CoffeeScript also supplies conditional branches of
execution, and we’ll use those in examples to come.

The syntax is remarkably simple. Here’s a conditional expression²⁶:

²⁴https://en.wikipedia.org/wiki/Turing_tarpit
²⁵http://www.amzn.com/0192801422?tag=raganwald001-20
²⁶http://coffeescript.org/#conditionals

https://en.wikipedia.org/wiki/Turing_tarpit
http://www.pbm.com/~lindahl/real.programmers.html
http://www.pbm.com/~lindahl/real.programmers.html
http://www.amzn.com/0192801422?tag=raganwald001-20
http://coffeescript.org/#conditionals
https://en.wikipedia.org/wiki/Turing_tarpit
http://www.amzn.com/0192801422?tag=raganwald001-20
http://coffeescript.org/#conditionals

Slurp: More About Functions and Scope 30

1 if d < 32 then 'freezing' else 'warm'

Since it’s an expression, you can put it in parentheses and stick it anywhere you like, including inside
another conditional:

1 (d) ->

2 if d < 32 then 'solid' else if d < 212 then 'liquid' else 'gas'

Like function bodies, there is an indented form that can be more readable:

1 (d) ->

2 if d < 32

3 'solid'

4 else

5 if d < 212

6 'liquid'

7 else

8 'gas'

And the indented lines can have multiple expressions should you so desire:

1 if frobbish?

2 alert("Frobbish value: #{frobbish}")

3 snarglivate(frobbish)

4 frobbish

Slurp: More About Functions and Scope 31

Summary

More About Functions And Scope

• let is an idiom where we create a function and call it immediately in order to bind
values to names.

• CoffeeScript uses do as syntactic sugar for let.
• CoffeeScript’s comments are signalled with #.
• CoffeeScript has if, then, 'else and boolean logic.

Slurp: More About Functions and Scope 32

interlude…

A beautiful espresso machine

Michael Allen Smith²⁷ on Ristretto:

“It must have been 1996. I was living in South Tampa at the time and the area finally
got a great coffee house. The place was Jet City Espresso. Don’t go looking for it. It is
no longer there. As the name implies, the owner Jessica was from Seattle and shared
her coffee knowledge with her customers. After ordering numerous americanos and
espressos, Jessica thought it was time I tried a ristretto. I expected the short pull of the
espresso shot would result in a more bitter flavor. To my delight the shot was actually
a sweeter and more intense version of her espresso blend.”

²⁷http://www.ineedcoffee.com/07/ristretto-rant/

http://www.ineedcoffee.com/07/ristretto-rant/
http://www.ineedcoffee.com/07/ristretto-rant/

References, Identity, Arrays, and
Objects
a simple question

Consider this code:

1 do (x = 'June 14, 1962') ->

2 do (y = x) ->

3 x is y

4 #=> true

This makes obvious sense, because we know that strings are a value type, so no matter what
expression you use to derive the value ‘June 14, 1962’, you are going to get a string with the exact
same identity.

But what about this code?

1 do (x = [2012, 6, 14]) ->

2 do (y = x) ->

3 x is y

4 #=> true

Also true, even though we know that every time we evaluate an expression such as [2012, 6, 14],
we get a new array with a new identity. So what is happening in our environments?

arguments and references

In our discussion of closures, we said that environments bind values (like [2012, 6, 14]) to names
(like x and y), and that when we use these names as expressions, the name evaluates as the value.

What this means is that when we write something like do (y = x) ->, the name x is looked up
in the current environment, and its value is a specific array that was created when the expression
[2012, 6, 14] was first evaluated. We then bind that exact same value to the name y in a new
environment, and thus x and y are both bound to the exact same value, which is identical to itself.

The same thing happens with binding a variable through a more conventional means of applying a
function to arguments:

References, Identity, Arrays, and Objects 34

1 do (x = [2012, 6, 14]) ->

2 ((y) ->

3 x is y)(x)

4 #=> true

x and y both end up bound to the exact same array, not two different arrays that look the same to
our eyes.

References, Identity, Arrays, and Objects 35

arguments and arrays

CoffeeScript provides two different kinds of containers for values. We’ve met one already, the array.
Let’s see how it treats values and identities. For starters, we’ll learn how to extract a value from an
array. We’ll start with a function that makes a new value with a unique identity every time we call
it. We already know that every function we create is unique, so that’s what we’ll use:

1 do (unique = (-> ->)) ->

2

3 unique()

4 # => [Function]

5 unique() is unique()

6 # false

Let’s verify that what we said about references applies to functions as well as arrays:

1 do (x = unique()) ->

2 do (y = x) ->

3 x is y

4 #=> true

Ok. So what about things inside arrays? We know how to create an array with something inside it:

1 [unique()]

2 #=> [[Function]]

That’s an array with one of our unique functions in it. How do we get something out of it?

1 do (a = ['hello']) ->

2 a[0]

3 #=> 'hello'

Cool, arrays work a lot like arrays in other languages and are zero-based. The trouble with this
example is that strings are value types in CoffeeScript, so we have no idea whether a[0] always
gives us the same value back like looking up a name in an environment, or whether it does some
magic that tries to give us a new value.

We need to put a reference type into an array. If we get the same thing back, we know that the array
stores a reference to whatever you put into it. If you get something different back, you know that
arrays store copies of things.²⁸

Let’s test it:

²⁸Arrays in all contemporary languages store references and not copies, so we can be forgiven for expecting them to work the same way in
CoffeeScript. Nevertheless, it’s a useful exercise to test things for ourself.

References, Identity, Arrays, and Objects 36

1 do (unique = (-> ->)) ->

2 do (x = unique()) ->

3 do (a = [x]) ->

4 a[0] is x

5 #=> true

If we get a value out of an array using the [] suffix, it’s the exact same value with the same identity.
Question: Does that apply to other locations in the array? Yes:

1 do (unique = (-> ->)) ->

2 do (x = unique(), y = unique(), z = unique()) ->

3 do (a = [x, y, z]) ->

4 a[0] is x and a[1] is y and a[2] is z

5 #=> true

References, Identity, Arrays, and Objects 37

references and objects

CoffeeScript also provides objects. The word “object” is loaded in programming circles, due to the
widespread use of the term “object-oriented programming” that was coined by Alan Kay but has
since come to mean many, many things to many different people.

In CoffeeScript, Objects²⁹ are values that can store other values by name (including functions). The
most common syntax for creating an object is simple:

1 { year: 2012, month: 6, day: 14 }

Two objects created this way have differing identities, just like arrays:

1 { year: 2012, month: 6, day: 14 } is { year: 2012, month: 6, day: 14 }

2 #=> false

Objects use [] to access the values by name, using a string:

1 { year: 2012, month: 6, day: 14 }['day']

2 #=> 14

Values contained within an object work just like values contained within an array:

1 do (unique = (-> ->)) ->

2 do (x = unique(), y = unique(), z = unique()) ->

3 do (o = { a: x, b: y, c: z }) ->

4 o['a'] is x and o['b'] is y and o['c'] is z

5 #=> true

Names needn’t be alphanumeric strings. For anything else, enclose the label in quotes:

1 { 'first name': 'reginald', 'last name': 'lewis' }['first name']

2 #=> 'reginald'

If the name is an alphanumeric string conforming to the same rules as names of variables, there’s a
simplified syntax for accessing the values:

²⁹Tradition would have us call objects that don’t contain any functions “POCOs,” meaning Plain Old CoffeeScript Objects. Given that poco a poco
means “little by little” in musical notation, I’m tempted to go along with that.

References, Identity, Arrays, and Objects 38

1 { year: 2012, month: 6, day: 14 }['day'] is

2 { year: 2012, month: 6, day: 14 }.day

3 #=> true

All containers can contain any value, including functions or other containers:

1 do (Mathematics = { abs: (a) -> if a < 0 then -a else a }) ->

2 Mathematics.abs(-5)

3 #=> 5

Funny we should mention Mathematics. If you recall, CoffeeScript provides a global environment
that contains some existing object that have handy functions you can use. One of them is called
Math, and it contains functions for abs, max, min, and many others. Since it is always available, you
can use it in any environment provided you don’t shadow Math.

1 Math.abs(-5)

2 #=> 5

Stir the Espresso: Objects, Mutation,
and State

Life measured out by coffee spoons

So far, we have discussed what many call “pure functional” programming, where every expression
is necessarily idempotent³⁰, because we have no way of changing state within a program using the
tools we have examined.

It’s time to change everything.

³⁰https://en.wikipedia.org/wiki/Idempotence

https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence

Stir the Espresso: Objects, Mutation, and State 40

Reassignment and Mutation

Like most imperative programming languages, CoffeeScript allows you to re-assign the value of
variables. The syntax is familiar to users of most popular languages:

1 do (age = 49) ->

2 age = 50

3 age

4 #=> 50

..

In CoffeeScript, nearly everything is an expression, including statements that assign a value to a
variable, so we could just as easily write do (age = 49) -> age = 50.

We took the time to carefully examine what happens with bindings in environments. Let’s take the
time to fully explore what happens with reassigning values to variables. The key is to understand
that we are rebinding a different value to the same name in the same environment.

So let’s consider what happens with a shadowed variable:

1 do (age = 49) ->

2 do (age = 50) ->

3 # yadda yadda

4 age

5 #=> 49

Binding 50 to age in the inner environment does not change age in the outer environment because
the binding of age in the inner environment shadows the binding of age in the outer environment.
We go from:

1 {age: 49, '..': global-environment}

To:

1 {age: 50, '..': {age: 49, '..': global-environment}}

Then back to:

Stir the Espresso: Objects, Mutation, and State 41

1 {age: 49, '..': global-environment}

However, if we don’t shadow age, reassigning it in a nested environment changes the original:

1 do (age = 49) ->

2 do (height = 1.85) ->

3 age = 50

4 age

5 #=> 50

Like evaluating variable labels, when a binding is rebound, CoffeeScript searches for the binding in
the current environment and then each ancestor in turn until it finds one. It then rebinds the name
in that environment.

mutation and aliases

Now that we can reassign things, there’s another important factor to consider: Some values can
mutate. Their identities stay the same, but not their structure. Specifically, arrays and objects can
mutate. Recall that you can access a value from within an array or an object using []. You can
reassign a value using [] as well:

1 do (oneTwoThree = [1, 2, 3]) ->

2 oneTwoThree[0] = 'one'

3 oneTwoThree

4 #=> ['one', 2, 3]

You can even add a value:

1 do (oneTwoThree = [1, 2, 3]) ->

2 oneTwoThree[3] = 'four'

3 oneTwoThree

4 #=> [1, 2, 3, 'four']

You can do the same thing with both syntaxes for accessing objects:

Stir the Espresso: Objects, Mutation, and State 42

1 do (name = {firstName: 'Leonard', lastName: 'Braithwaite'}) ->

2 name.middleName = 'Austin'

3 name

4 #=> { firstName: 'Leonard',

5 # lastName: 'Braithwaite',

6 # middleName: 'Austin' }

We have established that CoffeeScript’s semantics allow for two different bindings to refer to the
same value. For example:

1 do (allHallowsEve = [2012, 10, 31]) ->

2 halloween = allHallowsEve

Both halloween and allHallowsEve are bound to the same array value within the local environment.
And also:

1 do (allHallowsEve = [2012, 10, 31]) ->

2 do (allHallowsEve) ->

3 # ...

Hello, what’s this? What does do (allHallowsEve) -> mean? Well, when you put a name in the
argument list for do -> but you don’t supply a value, CoffeeScript assumes you are deliberately
trying to shadow a variable. It acts as if you’d written:

1 ((allHallowsEve) ->

2 # ...

3)(allHallowsEve)

There are two nested environments, and each one binds the name allHallowsEve to the exact same
array value. In each of these examples, we have created two aliases for the same value. Before
we could reassign things, the most important point about this is that the identities were the same,
because they were the same value.

This is vital. Consider what we already know about shadowing:

1 do (allHallowsEve = [2012, 10, 31]) ->

2 do (allHallowsEve) ->

3 allHallowsEve = [2013, 10, 31]

4 allHallowsEve

5 #=> [2012, 10, 31]

The outer value of allHallowsEve was not changed because all we did was rebind the name
allHallowsEve within the inner environment. However, what happens if we mutate the value in
the inner environment?

Stir the Espresso: Objects, Mutation, and State 43

1 do (allHallowsEve = [2012, 10, 31]) ->

2 do (allHallowsEve) ->

3 allHallowsEve[0] = 2013

4 allHallowsEve

5 #=> [2013, 10, 31]

This is different. We haven’t rebound the inner name to a different variable, we’ve mutated the value
that both bindings share.

The same thing is true whenever you have multiple aliases to the same value:

1 do (greatUncle = undefined, grandMother = undefined) ->

2 greatUncle = {firstName: 'Leonard', lastName: 'Braithwaite'}

3 grandMother = greatUncle

4 grandMother['firstName'] = 'Lois'

5 grandMother['lastName'] = 'Barzey'

6 greatUncle

7 #=> { firstName: 'Lois', lastName: 'Barzey' }

This example uses the letrec pattern for declaring bindings. Now that we’ve finished with mutation
and aliases, let’s have a look at it.

letrec

One way to exploit reassignment is to “declare” your bindings with do and bind them to something
temporarily, and then rebind them inline, like so:

1 do (identity = undefined, kestrel = undefined) ->

2 identity = (x) -> x

3 kestrel = (x) -> (y) -> x

This pattern is called letrec after the Lisp special form. Recall that let looks like this in CoffeeScript:

1 do (identity = ((x) -> x), kestrel = (x) -> (y) -> x) ->

To see how letrec differs from let, consider writing a recursive function³¹ like pow. pow takes two
arguments, n and p, and returns n raised to the pth power. For simplicity, we’ll assume that p is an
integer.

³¹You may also find fixed point combinators interesting.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Stir the Espresso: Objects, Mutation, and State 44

1 do (pow = undefined) ->

2 pow = (n, p) ->

3 if p < 0

4 1/pow(n, -p)

5 else if p is 0

6 1

7 else if p is 1

8 n

9 else

10 do (half = pow(n, Math.floor(p/2)), remainder = pow(n, p % 2)) ->

11 half * half * remainder

In order for pow to call itself, pow must be bound in the environment in which pow is defined. This
wouldn’t work if we tried to bind pow in the do itself. Here’s a misguided attempt to create a recursive
function using let:

1 do (odd = (n) -> if n is 0 then false else not odd(n-1)) ->

2 odd(5)

To see why this doesn’t work, recall that this is equivalent to writing:

1 ((odd) ->

2 odd(5)

3)((n) -> if n is 0 then false else not odd(n-1))

The expression (n) -> if n is 0 then false else not odd(n-1) is evaluated in the parent
environment, where odd hasn’t been bound yet. Whereas, if we wrote odd with letrec, it would
look like this:

1 do (odd = undefined) ->

2 odd = (n) -> if n is 0 then false else not odd(n-1)

3 odd(5)

Which is equivalent to:

1 ((odd) ->

2 odd = (n) -> if n is 0 then false else not odd(n-1)

3 odd(5)

4)(undefined)

Now the odd function is bound in an environment that has a binding for the name odd. letrec also
allows you to make expressions that depend upon each other, recursively or otherwise, such as:

Stir the Espresso: Objects, Mutation, and State 45

1 do (I = undefined, K = undefined, T = undefined, F = undefined) ->

2 I = (x) -> x

3 K = (x) -> (y) -> x

4 T = K

5 F = K(I)

takeaway

CoffeeScript permits the reassignment of new values to existing bindings, as well as the
reassignment and assignment of new values to elements of containers such as arrays and
objects. Mutating existing objects has special implications when two bindings are aliases
of the same value.

The letrec pattern allows us to bind interdependent and recursive expressions.

Stir the Espresso: Objects, Mutation, and State 46

Normal Variables

Now that we’ve discussed reassignment, it’s time to discuss assignment.

..

It sounds odd to say we’ve reassigned things without assigning them. Up to now, we’ve bound
values to names through arguments, and do, which is really syntactic sugar for the let pattern.

In CoffeeScript, the syntax for assignment is identical to the syntax for reassignment:

1 birthday = { year: 1962, month: 6, day: 14 }

The difference comes when there is no value bound to the name birthday in any of the user-defined
environments. In that case, CoffeeScript creates one in the current function’s environment. The
current function is any of the following:

1. A function created with an arrow operator (-> that we’ve seen, and => that we’ll see when we
look at objects in more detail).

2. A function created with the do syntax.
3. When compiling CoffeeScript in files, an empty do -> is invisibly created to enclose the entire

file.

One good consequence of this feature is that you can dispense with all of the nested do (...) ->

expressions you’ve seen so far if you wish. You can boldly write things like:

1 identity = (x) -> x

2 kestrel = (x) -> (y) -> x

3 truth = kestrel

4 falsehood = kestrel(identity)

You can also do your assignments wherever you like in a function, not just at the top. Some feel this
makes code more readable by putting variable definitions closer to their use.

There are two unfortunate consequences. The first is that a misspelling creates a new binding rather
than resulting in an error:

Stir the Espresso: Objects, Mutation, and State 47

1 do (age = 49) ->

2 # ...

3 agee = 50

4 # ...

5 age

6 #=> 49, not 50

The second is that you may accidentally alias an existing variable if you are not careful. If you’re
in the habit of creating a lot of your variables with assignments rather than with do, you must be
careful to scan the source of all of your function’s parents to ensure you haven’t accidentally reused
the name of an existing binding.³²

..

CoffeeScript calls creating new bindings with assignment “normal ,” because it’s how most
programmers normally create bindings. Just remember that if anyone criticizes CoffeeScript for
being loose with scoping and aliases, you can always show them how to use do to emulate let and
letrec.

un-do

So, should we use do to bind variables or should we use “normal” variables? This is a very interesting
question. Using do has a certain number of technical benefits. Then again, Jeremy Ashkenas,
CoffeeScript’s creator, only uses do when it’s necessary, and most CoffeeScript programmers follow
his lead. It hasn’t done them any harm.

So here’s what we suggest:

When writing new software, use Normal variables as much as possible. If and when you find there’s
a scoping problem, you can refactor to do, meaning, you can change a normal variable into a variable
bound with do to solve the problem.

Programming philosophy is a little outside of the scope of this book, but there is a general
principle worth knowing: A good programmer is familiar with many design patterns, idioms, and
constructions. However, the good programmer does not attempt to design them into every piece of
code from the outset. Instead, the good programmer proceeds along a simple, direct, and clear path
until difficulties arise. Then, and only then, does the good programmer refactor to a pattern. In the
end, the code is simple where it does not solve a difficult or edge case, and uses a technique or idiom
where there is a problem that needed solving.

do is a good pattern to know and deeply understand, but it is generally sufficient to write with normal
variables. If you see a lot of do in this book, that is because we are writing to be excruciatingly clear,
not to construct software that is easy to read and maintain in a team setting.

³²It could be worse. One very popular language assumes that if you haven’t otherwise declared a variable local to a function, you must want a
global variable that may clobber an existing global variable used by any piece of code in any file or module.

Stir the Espresso: Objects, Mutation, and State 48

Comprehensions

Cupping Grinds

If you’re the type of person who can “Write Lisp in any language,” you could set about writing
entire CoffeeScript programs using let and letrec patterns such that you don’t have any normal
variables. But being a CoffeeScript programmer, youwill no doubt embrace normal variables. As you
dive into CoffeeScript, you’ll discover many helpful features that aren’t “Lisp-y.” Eschewing them is
to cut against CoffeeScript’s grain. One of those features is the comprehension³³, a mechanism for
working with collections that was popularized by Python.

Here’s a sample comprehension:

³³http://coffeescript.org/#loops

http://coffeescript.org/#loops
http://coffeescript.org/#loops

Stir the Espresso: Objects, Mutation, and State 49

1 names = ['algernon', 'sabine', 'rupert', 'theodora']

2

3 "Hello #{yourName}" for yourName in names

4 #=> ['Hello algernon',

5 # 'Hello sabine',

6 # 'Hello rupert',

7 # 'Hello theodora']

An alternate syntax for the same thing that supports multiple expressions is:

1 for yourName in names

2 "Hello #{yourName}"

3 #=> ['Hello algernon',

4 # 'Hello sabine',

5 # 'Hello rupert',

6 # 'Hello theodora']

Here’s a question: There’s a variable reference yourName in this code. Is it somehow bound to a new
environment in the comprehension? Or is it a “normal variable” that is either bound in the current
function’s environment or in a parent function’s environment?

Let’s try it and see:

1 yourName = 'clyde'

2 "Hello #{yourName}" for yourName in names

3 yourName

4 #=> 'theodora'

It’s a normal variable. If it was somehow ‘local’ to the comprehension, yourNamewould still be clyde
as the comprehension’s binding would shadow the current environment’s binding. This is usually
fine, as creating a new environment for every comprehension could have performance implications.

However, there are two times you don’t want that to happen. First, you might want yourName to
shadow the existing yourName binding. You can use do to fix that:

1 yourName = 'clyde'

2 do (yourName) ->

3 "Hello #{yourName}" for yourName in names

4 yourName

5 #=> `clyde`

Recall that when you put a name in the argument list for do -> but you don’t supply a value,
CoffeeScript assumes you are deliberately trying to shadow a variable. It acts as if you’d written:

Stir the Espresso: Objects, Mutation, and State 50

1 yourName = 'clyde'

2 ((yourName) ->

3 "Hello #{yourName}" for yourName in names

4)(yourName)

5 yourName

6 #=> `clyde`

So technically, the inner yourName will be bound to the same value as the outer yourName initially,
but as the comprehension is evaluated, that value will be overwritten in the inner environment but
not the outer environment.

preventing a subtle comprehensions bug

Consider this variation of the above comprehension:

1 for myName in names

2 (yourName) -> "Hello #{yourName}, my name is #{myName}"

Now what we want is four functions, each of which can generate a sentence like “Hello reader, my
name is rupert”. We can test that with a comprehension:

1 fn('reader') for fn in for myName in names

2 (yourName) -> "Hello #{yourName}, my name is #{myName}"

3 #=> ['Hello reader, my name is theodora',

4 # 'Hello reader, my name is theodora',

5 # 'Hello reader, my name is theodora',

6 # 'Hello reader, my name is theodora']

WTF!?

If we consider our model for binding, we’ll quickly discover the problem. Each of the functions we
generate has a closure that consists of a function and a local environment. yourName is bound in
its local environment, but myName is bound in the comprehension’s environment. At the time each
closure was created, myName was bound to one of the four names, but at the time the closures are
evaluated, myName is bound to the last of the four names.

Each of the four closures has its own local environment, but they share a parent environment, which
means they share the exact same binding for myName. We can fix it using the “shadow” syntax for
do:

Stir the Espresso: Objects, Mutation, and State 51

1 fn('reader') for fn in for myName in names

2 do (myName) ->

3 (yourName) -> "Hello #{yourName}, my name is #{myName}"

4 #=> ['Hello reader, my name is algernon',

5 # 'Hello reader, my name is sabine',

6 # 'Hello reader, my name is rupert',

7 # 'Hello reader, my name is theodora']

Now, each time we create a function we’re first creating its own environment and binding myName

there, shadowing the comprehension’s binding of myName. Thus, the comprehension’s changes to
myName don’t change each closure’s binding.

takeaway

Comprehensions³⁴ are extraordinarily useful for working with collections, but their loop
variables are normal variables and may require special care to obtain the desired results.
Also worth noting: Comprehensions may be the only place where let or do is necessary
in CoffeeScript. Every other case can probably be handled with appropriate use of normal
variables.

³⁴http://coffeescript.org/#loops

http://coffeescript.org/#loops
http://coffeescript.org/#loops

Stir the Espresso: Objects, Mutation, and State 52

Encapsulating State with Closures

OOP to me means only messaging, local retention and protection and hiding of state-
process, and extreme late-binding of all things.–Alan Kay³⁵

We’re going to look at encapsulation using CoffeeScript’s functions and objects. We’re not going to
call it object-oriented programming, mind you, because that would start a long debate. This is just
plain encapsulation³⁶, with a dash of information-hiding.

what is hiding of state-process, and why does it matter?

In computer science, information hiding is the principle of segregation of the design
decisions in a computer program that are most likely to change, thus protecting other
parts of the program from extensive modification if the design decision is changed. The
protection involves providing a stable interface which protects the remainder of the
program from the implementation (the details that are most likely to change).

Written another way, information hiding is the ability to prevent certain aspects
of a class or software component from being accessible to its clients, using either
programming language features (like private variables) or an explicit exporting policy.

–Wikipedia³⁷

Consider a stack³⁸ data structure. There are three basic operations: Pushing a value onto the top
(push), popping a value off the top (pop), and testing to see whether the stack is empty or not
(isEmpty). These three operations are the stable interface.

Many stacks have an array for holding the contents of the stack. This is relatively stable. You could
substitute a linked list, but in CoffeeScript, the array is highly efficient. You might need an index,
you might not. You could grow and shrink the array, or you could allocate a fixed size and use an
index to keep track of how much of the array is in use. The design choices for keeping track of the
head of the list are often driven by performance considerations.

If you expose the implementation detail such as whether there is an index, sooner or later some
programmer is going to find an advantage in using the index directly. For example, she may need
to know the size of a stack. The ideal choice would be to add a size function that continues to hide
the implementation. But she’s in a hurry, so she reads the index directly. Now her code is coupled to
the existence of an index, so if we wish to change the implementation to grow and shrink the array,
we will break her code.

³⁵http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en
³⁶“A language construct that facilitates the bundling of data with the methods (or other functions) operating on that data.”–Wikipedia
³⁷https://en.wikipedia.org/wiki/Information_hiding
³⁸https://en.wikipedia.org/wiki/Stack_

http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Stack_
http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en
https://en.wikipedia.org/wiki/Encapsulation_
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Stack_

Stir the Espresso: Objects, Mutation, and State 53

The way to avoid this is to hide the array and index from other code and only expose the operations
we have deemed stable. If and when someone needs to know the size of the stack, we’ll add a size
function and expose it as well.

Hiding information (or “state”) is the design principle that allows us to limit the coupling between
components of software.

how do we hide state using coffeescript?

We’ve been introduced to CoffeeScript’s objects, and it’s fairly easy to see that objects can be used
to model what other programming languages call (variously) records, structs, frames, or what-have-
you. And given that their elements are mutable, they can clearly model state.

Given an object that holds our state (an array and an index³⁹), we can easily implement our three
operations as functions. Bundling the functions with the state does not require any special “magic”
features. CoffeeScript objects can have elements of any type, including functions:

1 stack = do (obj = undefined) ->

2 obj =

3 array: []

4 index: -1

5 push: (value) ->

6 obj.array[obj.index += 1] = value

7 pop: ->

8 do (value = obj.array[obj.index]) ->

9 obj.array[obj.index] = undefined

10 obj.index -= 1 if obj.index >= 0

11 value

12 isEmpty: ->

13 obj.index < 0

14

15 stack.isEmpty()

16 #=> true

17 stack.push('hello')

18 #=> 'hello'

19 stack.push('CoffeeScript')

20 #=> 'CoffeeScript'

21 stack.isEmpty()

22 #=> false

23 stack.pop()

24 #=> 'CoffeeScript'

25 stack.pop()

³⁹Yes, there’s another way to track the size of the array, but we don’t need it to demonstrate encapsulation and hiding of state.

Stir the Espresso: Objects, Mutation, and State 54

26 #=> 'hello'

27 stack.isEmpty()

28 #=> true

method-ology

In this text, we lurch from talking about functions belong to an object to methods. Other languages
may separate methods from functions very strictly, but in CoffeeScript every method is a function
but not all functions are methods.

The view taken in this book is that a function is a method of an object if it belongs to that object and
interacts with that object in some way. So the functions implementing the operations on the queue
are all absolutely methods of the queue.

But these wouldn’t be methods. Although they belong to an object, they don’t interact with it:

1 {

2 min: (x, y) -> if x < y then x else y

3 max: (x, y) -> if x > y then x else y

4 }

hiding state

Our stack does bundle functions with data, but it doesn’t hide its state. “Foreign” code could interfere
with its array or index. So how do we hide these? We already have a closure, let’s use it:

1 stack = do (array = [], index = -1) ->

2 push: (value) ->

3 array[index += 1] = value

4 pop: ->

5 do (value = array[index]) ->

6 array[index] = undefined

7 index -= 1 if index >= 0

8 value

9 isEmpty: ->

10 index < 0

11

12 stack.isEmpty()

13 #=> true

14 stack.push('hello')

15 #=> 'hello'

16 stack.push('CoffeeScript')

17 #=> 'CoffeeScript'

Stir the Espresso: Objects, Mutation, and State 55

18 stack.isEmpty()

19 #=> false

20 stack.pop()

21 #=> 'CoffeeScript'

22 stack.pop()

23 #=> 'hello'

24 stack.isEmpty()

25 #=> true

Coffee DOES grow on trees

We don’t want to repeat this code every time we want a stack, so let’s make ourselves a “stack
maker:”

1 StackMaker = ->

2 do (array = [], index = -1) ->

3 push: (value) ->

4 array[index += 1] = value

5 pop: ->

6 do (value = array[index]) ->

7 array[index] = undefined

8 index -= 1 if index >= 0

9 value

10 isEmpty: ->

11 index < 0

12

13 stack = StackMaker()

Now we can make stacks freely, and we’ve hidden their internal data elements. We have methods
and encapsulation, and we’ve built them out of CoffeeScript’s fundamental functions and objects.

Stir the Espresso: Objects, Mutation, and State 56

In Instances and Classes, we’ll look at CoffeeScript’s support for class-oriented programming and
some of the idioms that functions bring to the party.

..

is encapsulation “object-oriented?”
We’ve built something with hidden internal state and “methods,” all without needing special def
or private keywords. Mind you, we haven’t included all sorts of complicated mechanisms to
support inheritance, mixins, and other opportunities for debating the nature of the One True
Object-Oriented Style on the Internet.

Then again, the key lesson experienced programmers repeat (although it often falls on deaf ears)
is, Composition instead of Inheritance. So maybe we aren’t missing much.

http://www.c2.com/cgi/wiki?CompositionInsteadOfInheritance

http://www.c2.com/cgi/wiki?CompositionInsteadOfInheritance
http://www.c2.com/cgi/wiki?CompositionInsteadOfInheritance

Stir the Espresso: Objects, Mutation, and State 57

Composition and Extension

composition

A deeply fundamental practice is to build components out of smaller components. The choice of how
to divide a component into smaller components is called factoring, after the operation in number
theory ⁴⁰.

The simplest and easiest way to build components out of smaller components in CoffeeScript is also
the most obvious: Each component is a value, and the components can be put together into a single
object or encapsulated with a closure.

Here’s an abstract “model” that supports undo and redo composed from a pair of stacks (see
Encapsulating State) and a Plain Old CoffeeScript Object:

1 # helper function

2 shallowCopy = (source) ->

3 do (dest = {}, key = undefined, value = undefined) ->

4 dest[key] = value for own key, value of source

5 dest

6

7 # our model maker

8 ModelMaker = (initialAttributes = {}) ->

9 do (attributes = shallowCopy(initialAttributes),

10 undoStack = StackMaker(),

11 redoStack = StackMaker(),

12 obj = undefined) ->

13 obj = {

14 set: (attrsToSet = {}) ->

15 undoStack.push(shallowCopy(attributes))

16 redoStack = StackMaker() unless redoStack.isEmpty()

17 attributes[key] = value for own key, value of attrsToSet

18 obj

19 undo: ->

20 unless undoStack.isEmpty()

21 redoStack.push(shallowCopy(attributes))

22 attributes = undoStack.pop()

23 obj

24 redo: ->

25 unless redoStack.isEmpty()

26 undoStack.push(shallowCopy(attributes))

⁴⁰And when you take an already factored component and rearrange things so that it is factored into a different set of subcomponents without
altering its behaviour, you are refactoring.

Stir the Espresso: Objects, Mutation, and State 58

27 attributes = redoStack.pop()

28 obj

29 get: (key) ->

30 attributes(key)

31 has: (key) ->

32 attributes.hasOwnProperty(key)

33 attributes: ->

34 shallowCopy(attributes)

35 }

36 obj

The techniques used for encapsulation work well with composition. In this case, we have a “model”
that hides its attribute store as well as its implementation that is composed of of an undo stack and
redo stack.

extension

Another practice that many people consider fundamental is to extend an implementation. Meaning,
they wish to define a new data structure in terms of adding new operations and semantics to an
existing data structure.

Consider a queue⁴¹:

1 QueueMaker = ->

2 do (array = [], head = 0, tail = -1) ->

3 pushTail: (value) ->

4 array[tail += 1] = value

5 pullHead: ->

6 if tail >= head

7 do (value = array[head]) ->

8 array[head] = undefined

9 head += 1

10 value

11 isEmpty: ->

12 tail < head

Now we wish to create a deque⁴² by adding pullTail and pushHead operations to our queue.⁴³
Unfortunately, encapsulation prevents us from adding operations that interact with the hidden data
structures.

⁴¹http://duckduckgo.com/Queue_
⁴²https://en.wikipedia.org/wiki/Double-ended_queue
⁴³Before you start wondering whether a deque is-a queue, we said nothing about types and classes. This relationship is called was-a, or

“implemented in terms of a.”

http://duckduckgo.com/Queue_
https://en.wikipedia.org/wiki/Double-ended_queue
http://duckduckgo.com/Queue_
https://en.wikipedia.org/wiki/Double-ended_queue

Stir the Espresso: Objects, Mutation, and State 59

This isn’t really surprising: The entire point of encapsulation is to create an opaque data structure
that can only be manipulated through its public interface. The design goals of encapsulation and
extension are always going to exist in tension.

Let’s “de-encapsulate” our queue:

1 QueueMaker = ->

2 do (queue = undefined) ->

3 queue =

4 array: []

5 head: 0

6 tail: -1

7 pushTail: (value) ->

8 queue.array[queue.tail += 1] = value

9 pullHead: ->

10 unless queue.isEmpty()

11 do (value = queue.array[queue.head]) ->

12 queue.array[queue.head] = undefined

13 queue.head += 1

14 value

15 isEmpty: ->

16 queue.tail < queue.head

Now we can extend a queue into a deque, with a little help from a helper function extend:

1 # helper function

2 extend = (object, extensions) ->

3 object[key] = value for key, value of extensions

4 object

5

6 # a deque maker

7 DequeMaker = ->

8 do (deque = QueueMaker()) ->

9 extend(deque,

10 size: ->

11 deque.tail - deque.head + 1

12 pullTail: ->

13 unless deque.isEmpty()

14 do (value = deque.array[deque.tail]) ->

15 deque.array[deque.tail] = undefined

16 deque.tail -= 1

17 value

18 pushHead: do (INCREMENT = 4) ->

Stir the Espresso: Objects, Mutation, and State 60

19 (value) ->

20 if deque.head is 0

21 for i in [deque.tail..deque.head]

22 deque.array[i + INCREMENT] = deque.array[i]

23 deque.tail += INCREMENT

24 deque.head += INCREMENT

25 deque.array[deque.head -= 1] = value

26)

Presto, we have reuse through extension, at the cost of encapsulation.

Encapsulation and Extension exist in a natural state of tension. A program with elaborate
encapsulation resists breakage but can also be difficult to refactor in other ways. Bemindful
of when it’s best to Compose and when it’s best to Extend.

Stir the Espresso: Objects, Mutation, and State 61

This and That

Let’s take another look at extensible objects. Here’s a Queue:

1 QueueMaker = ->

2 do (queue = undefined) ->

3 queue =

4 array: []

5 head: 0

6 tail: -1

7 pushTail: (value) ->

8 queue.array[queue.tail += 1] = value

9 pullHead: do (value = undefined) ->

10 ->

11 unless queue.isEmpty()

12 value = queue.array[queue.head]

13 queue.array[queue.head] = undefined

14 queue.head += 1

15 value

16 isEmpty: ->

17 queue.tail < queue.head

18

19 queue = QueueMaker()

20 queue.pushTail('Hello')

21 queue.pushTail('CoffeeScript')

Let’s make a copy of our queue using a handy extend function and a comprehension to make sure
we copy the array properly:

1 extend = (object, extensions) ->

2 object[key] = value for key, value of extensions

3 object

4

5 copyOfQueue = extend({}, queue)

6 copyOfQueue.array = (element for element in queue.array)

7

8 queue isnt copyOfQueue

9 #=> true

And start playing with our copies:

Stir the Espresso: Objects, Mutation, and State 62

1 copyOfQueue.pullHead()

2 #=> 'Hello'

3

4 queue.pullHead()

5 #=> 'CoffeeScript'

What!? Even though we carefully made a copy of the array to prevent aliasing, it seems that our two
queues behave like aliases of each other. The problem is that while we’ve carefully copied our array
and other elements over, the closures all share the same environment, and therefore the functions
in copyOfQueue all operate on the first queue.

..

This is a general issue with closures. Closures couple functions to environments, and that makes
them very elegant in the small, and very handy for making opaque data structures. Alas, their
strength in the small is their weakness in the large. When you’re trying to make reusable
components, this coupling is sometimes a hindrance.

Let’s take an impossibly optimistic flight of fancy:

1 AmnesiacQueueMaker = ->

2 array: []

3 head: 0

4 tail: -1

5 pushTail: (myself, value) ->

6 myself.array[myself.tail += 1] = value

7 pullHead: do (value = undefined) ->

8 (myself) ->

9 unless myself.isEmpty(myself)

10 value = myself.array[myself.head]

11 myself.array[myself.head] = undefined

12 myself.head += 1

13 value

14 isEmpty: (myself) ->

15 myself.tail < myself.head

16

17 queueWithAmnesia = AmnesiacQueueMaker()

18 queueWithAmnesia.pushTail(queueWithAmnesia, 'Hello')

19 queueWithAmnesia.pushTail(queueWithAmnesia, 'CoffeeScript')

The AmnesiacQueueMaker makes queues with amnesia: They don’t know who they are, so every
time we invoke one of their functions, we have to tell them who they are. You can work out

Stir the Espresso: Objects, Mutation, and State 63

the implications for copying queues as a thought experiment: We don’t have to worry about
environments, because every function operates on the queue you pass in.

The killer drawback, of course, is making sure we are always passing the correct queue in every
time we invoke a function. What to do?

what’s all this?

Any time we must do the same repetitive thing over and over and over again, we industrial humans
try to build a machine to do it for us. CoffeeScript is one such machine:

1 BanksQueueMaker = ->

2 array: []

3 head: 0

4 tail: -1

5 pushTail: (value) ->

6 this.array[this.tail += 1] = value

7 pullHead: do (value = undefined) ->

8 ->

9 unless this.isEmpty()

10 value = this.array[this.head]

11 this.array[this.head] = undefined

12 this.head += 1

13 value

14 isEmpty: ->

15 this.tail < this.head

16

17 banksQueue = BanksQueueMaker()

18 banksQueue.pushTail('Hello')

19 banksQueue.pushTail('CoffeeScript')

Every time you invoke a function that is a member of an object, CoffeeScript binds that object to
the name this in the environment of the function just as if it was an argument.⁴⁴ Now we can easily
make copies:

⁴⁴CoffeeScript also does other things with this as well, but this is all we care about right now.

Stir the Espresso: Objects, Mutation, and State 64

1 copyOfQueue = extend({}, banksQueue)

2 copyOfQueue.array = (element for element in banksQueue.array)

3

4 copyOfQueue.pullHead()

5 #=> 'Hello'

6

7 banksQueue.pullHead()

8 #=> 'Hello'

Presto, we now have a way to copy arrays. By getting rid of the closure and taking advantage of
this, we have functions that are more easily portable between objects, and the code is simpler as
well.

Closures tightly couple functions to the environments where they are created limiting their
flexibility. Using this alleviates the coupling. Copying objects is but one example of where
that flexibility is needed.

fat arrows are the cure for obese idioms

Wait a second! Let’s flip back a few pages and look at the code for a Queue:

1 QueueMaker = ->

2 do (queue = undefined) ->

3 queue =

4 array: []

5 head: 0

6 tail: -1

7 pushTail: (value) ->

8 queue.array[queue.tail += 1] = value

9 pullHead: ->

10 unless queue.isEmpty()

11 do (value = queue.array[queue.head]) ->

12 queue.array[queue.head] = undefined

13 queue.head += 1

14 value

15 isEmpty: ->

16 queue.tail < queue.head

Spot the difference? Here’s the pullHead function we’re using now:

Stir the Espresso: Objects, Mutation, and State 65

1 pullHead: do (value = undefined) ->

2 ->

3 unless this.isEmpty()

4 value = this.array[this.head]

5 this.array[this.head] = undefined

6 this.head += 1

7 value

Sneaky: The version of the pullHead function moves the do outside the function. Why? Let’s rewrite
it to look like the old version:

1 pullHead: ->

2 unless this.isEmpty()

3 do (value = this.array[this.head]) ->

4 this.array[this.head] = undefined

5 this.head += 1

6 value

Notice that we have a function. We invoke it, and this is set to our object. Then, thanks to the do,
we invoke another function inside that. The function invoked by the do keyword does not belong to
our object, so this is not set to our object. Oops!

..

Interestingly, this showcases one of CoffeeScript’s greatest strengths and weaknesses. Since
everything’s a function, we have a set of tools that interoperate on everything the exact same way.
However, there are some ways that functions don’t appear to do exactly what we think they’ll do.

For example, if you put a return 'foo' inside a do, you don’t return from the function enclosing the
do, you return from the do itself. And as we see, this gets set “incorrectly.” The Ruby programming
language tries to solve this problem by having something–blocks–that look a lot like functions, but
act more like syntax. The cost of that decision, of course, is that you have two different kinds of
things that look similar but behave differently. (Make that five: Ruby has unbound methods, bound
methods, procs, lambdas, and blocks.)

There are two solutions. The error-prone workaround is to write:

Stir the Espresso: Objects, Mutation, and State 66

1 pullHead: ->

2 unless this.isEmpty()

3 do (value = this.array[this.head], that = this) ->

4 that.array[that.head] = undefined

5 that.head += 1

6 value

Besides its lack of pulchritude, there are many opportunities to mistakingly write this when you
meant to write that. Or that for this. Or something, especially when refactoring some code.

The better way is to force the function to have the this you want. CoffeeScript gives you the “fat
arrow” or => for this purpose. Here it is:

1 pullHead: ->

2 unless this.isEmpty()

3 do (value = this.array[this.head]) =>

4 this.array[this.head] = undefined

5 this.head += 1

6 value

The fat arrow says, “Treat this function as if we did the this and that idiom, so that whenever I
refer to this, I get the outer one.” Which is exactly what we want if we don’t care to rearrange our
code.

Stir the Espresso: Objects, Mutation, and State 67

Summary

Objects, Mutation, and State

• CoffeeScript permits reassignment/rebinding of variables.
• Arrays and Objects are mutable.
• References permit aliasing of reference types.
• The letrec pattern permits defining recursive or mutually dependent functions.
• “Normal Case” variables are automagically scoped.
• Comprehensions are convenient, but require care to avoid scoping bugs.
• State can be encapsulated/hidden with closures.
• Encapsulations can be aggregated with composition.
• Encapsulation resists extension.
• The automagic binding this facilitates sharing of functions.
• The fat arrow (=>) is syntactic sugar for binding this.

Finish the Cup: Instances and Classes

Other languages call their objects “beans,” but serve extra-weak coffee in an attempt to be all things to all people

As discussed in References, Identity, Arrays, and Objects and again in Encapsulating State, Coffee-
Script objects are very simple, yet the combination of objects, functions, and closures can create
powerful data structures. That being said, there are language features that cannot be implemented
with Plain Old CoffeeScript Objects, functions, and closures⁴⁵.

One of them is inheritance. In CoffeeScript, inheritance provides a cleaner, simpler mechanism for
extending data structures, domain models, and anything else you represent as a bundle of state and
operations.

⁴⁵Since the CoffeeScript that we have presented so far is computationally universal, it is possible to perform any calculation with its existing
feature set, including emulating any other programming language. Therefore, it is not theoretically necessary to have any further language features;
If we need macros, continuations, generic functions, static typing, or anything else, we can greenspun them ourselves. In practice, however, this is
buggy, inefficient, and presents our fellow developers with serious challenges understanding our code.

https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Greenspun%27s_Tenth_Rule

Finish the Cup: Instances and Classes 69

Prototypes are Simple, it’s the Explanations that are
Hard To Understand

As you recall from our code for making objects extensible, we wrote a function that returned a Plain
Old CoffeeScript Object. The colloquial term for this kind of function is a “Factory Function.”

Let’s strip a function down to the very bare essentials:

1 Ur = ->

This doesn’t look like a factory function: It doesn’t have an expression that yields a Plain Old
CoffeeScript Object when the function is applied. Yet, there is a way to make an object out of it.
Behold the power of the new keyword:

1 new Ur()

2 #=> {}

We got an object back! What can we find out about this object?

1 new Ur() is new Ur()

2 #=> false

Every time we call new with a function and get an object back, we get a unique object. We could
call these “Objects created with the new keyword,” but this would be cumbersome. So we’re going
to call them instances. Instances of what? Instances of the function that creates them. So given i =

new Ur(), we say that i is an instance of Ur.

For reasons that will be explained after we’ve discussed prototypes, we also say that Ur is the
constructor of i, and that Ur is a constructor function. Therefore, an instance is an object created by
using the new keyword on a constructor function, and that function is the instance’s constructor.

..

We are going to look at CoffeeScript’s class keyword later, but it’s worth noting that what
CoffeeScript calls a constructor function does almost everything that people think of when they use
the word “class.” It constructs instances, it defines their common behaviour, and it can be tested.

prototypes

There’s more. Here’s something you may not know about functions:

Finish the Cup: Instances and Classes 70

1 Ur.prototype

2 #=> {}

What’s this prototype? Let’s run our standard test:

1 (->).prototype is (->).prototype

2 #=> false

Every function is initialized with its own unique prototype. What does it do? Let’s try something:

1 Ur.prototype.language = 'CoffeeScript'

2

3 continent = new Ur()

4 #=> {}

5 continent.language

6 #=> 'CoffeeScript'

That’s very interesting! Instances seem to behave as if they had the same elements as their
constructor’s prototype. Let’s try a few things:

1 continent.language = 'JavaScript'

2 continent

3 #=> {language: 'JavaScript'}

4 continent.language

5 #=> 'JavaScript'

6 Ur.prototype.language

7 'CoffeeScript'

You can set elements of an instance, and they “override” the constructor’s prototype, but they don’t
actually change the constructor’s prototype. Let’s make another instance and try something else.

1 another = new Ur()

2 #=> {}

3 another.language

4 #=> 'CoffeeScript'

New instances don’t acquire any changes made to other instances. Makes sense. And:

Finish the Cup: Instances and Classes 71

1 Ur.prototype.language = 'Sumerian'

2 another.language

3 #=> 'Sumerian'

Even more interesting: Changing the constructor’s prototype changes the behaviour of all of its
instances. This strongly implies that there is a dynamic relationship between instances and their
constructors, rather than some kind of mechanism that makes objects by copying.⁴⁶

Speaking of prototypes, here’s something else that’s very interesting:

1 continent.constructor

2 #=> [Function]

3

4 continent.constructor is Ur

5 #=> true

Every instance acquires a constructor element that is initialized to their constructor. This is true
even for objects we don’t create with new in our own code:

1 {}.constructor

2 #=> [Function: Object]

If that’s true, what about prototypes? Do they have constructors?

1 Ur.prototype.constructor

2 #=> [Function]

3 Ur.prototype.constructor is Ur

4 #=> true

Very interesting! We will take another look at the constructor element when we discuss class
extension.

revisiting this idea of queues

Let’s rewrite our Queue to use new and .prototype, using this and =>:

⁴⁶For many programmers, the distinction between a dynamic relationship and a copying mechanism too fine to worry about. However, it makes
many dynamic program modifications possible.

Finish the Cup: Instances and Classes 72

1 extend = (object, extensions) ->

2 object[key] = value for key, value of extensions

3 object

4

5 Queue = ->

6 extend(this, {

7 array: []

8 head: 0

9 tail: -1

10 })

11

12 extend(Queue.prototype,

13 pushTail: (value) ->

14 this.array[this.tail += 1] = value

15 pullHead: ->

16 unless this.isEmpty()

17 do (value = this.array[this.head]) =>

18 this.array[this.head] = undefined

19 this.head += 1

20 value

21 isEmpty: ->

22 this.tail < this.head

23)

You recall that when we first looked at this, we only covered the case where a function that belongs
to an object is invoked. Now we see another case: When a function is invoked by the new operator,
this is set to the new object being created. Thus, our code for Queue initializes the queue.

You can see why this is so handy in CoffeeScript: We wouldn’t be able to define functions in the
prototype that worked on the instance if CoffeeScript didn’t give us an easy way to refer to the
instance itself.

objects everywhere?

Now that you know about prototypes, it’s time to acknowledge something that even small children
know: Everything in CoffeeScript behaves like an object, everything in CoffeeScript behaves like
an instance of a function, and therefore everything in CoffeeScript behaves as if it inherits some
methods from its constructor’s prototype and/or has some elements of its own.

For example:

Finish the Cup: Instances and Classes 73

1 3.14159265.toPrecision(5)

2 #=> '3.1415'

3

4 'FORTRAN, SNOBOL, LISP, BASIC'.split(', ')

5 #=> ['FORTRAN',

6 # 'SNOBOL',

7 # 'LISP',

8 # 'BASIC']

9

10 ['FORTRAN',

11 'SNOBOL',

12 'LISP',

13 'BASIC'].length

14 #=> 5

Functions themselves are instances, and they have methods. For example, we know that CoffeeScript
treats the fat arrow as if you were using the this and that idiom. But if you didn’t have a fat arrow
and you didn’t want to take a chance on getting the idiom wrong, you could take advantage of the
fact that every function has a method call.

Call’s first argument is a context : When you invoke .call on a function, it invoked the function,
setting this to the context. It passes the remainder of the arguments to the function.

So, if we have:

1 pullHead: ->

2 unless this.isEmpty()

3 do (value = this.array[this.head]) =>

4 this.array[this.head] = undefined

5 this.head += 1

6 value

We could also write it like this:

1 pullHead: ->

2 unless this.isEmpty()

3 ((value) ->

4 this.array[this.head] = undefined

5 this.head += 1

6 value

7).call(this, this.array[this.head])

It seems like are objects everywhere in CoffeeScript!

Finish the Cup: Instances and Classes 74

impostors

You may have noticed that we use “weasel words” to describe how everything in CoffeeScript
behaves like an instance. Everything behaves as if it was created by a function with a prototype.

The full explanation is this: As you know, CoffeeScript has “value types” like String, Number, and
Boolean. As noted in the first chapter, value types are also called primitives, and one consequence
of the way CoffeeScript implements primitives is that they aren’t objects. Which means they can
be identical to other values of the same type with the same contents, but the consequence of
certain design decisions is that value types don’t actually have methods or constructors. They aren’t
instances of some constructor.

So. Value types don’t have methods or constructors. And yet:

1 "Spence Olham".split(' ')

2 #=> ["Spence", "Olham"]

Somehow, when we write "Spence Olham".split(' '), the string "Spence Olham" isn’t an instance,
it doesn’t have methods, but it does a damn fine job of impersonating an instance of a String

constructor. How does "Spence Olham" impersonate an instance?

CoffeeScript pulls some legerdemain. When you do something that treats a value like an object,
CoffeeScript checks to seewhether the value actually is an object. If the value is actually a primitive,⁴⁷
CoffeeScript temporarily makes an object that is a kinda-sorta copy of the primitive and that kinda-
sorta copy has methods and you are temporarily fooled into thinking that "Spence Olham" has a
.split method.

These kinda-sorta copies are called String instances as opposed to String primitives. And the
instances have methods, while the primitives do not. How does CoffeeScript make an instance out
of a primitive? With new, of course. Let’s try it:

1 new String("Spence Olham")

2 #=> "Spence Olham"

The string instance looks just like our string primitive. But does it behave like a string primitive?
Not entirely:

1 new String("Spence Olham") is "Spence Olham"

2 #=> false

Aha! It’s an object with its own identity, unlike string primitives that behave as if they have a
canonical representation. If we didn’t care about their identity, that wouldn’t be a problem. But if
we carelessly used a string instance where we thought we had a string primitive, we could run into
a subtle bug:

⁴⁷Recall that Strings, Numbers, Booleans and so forth are value types and primitives. We’re calling them primitives here.

Finish the Cup: Instances and Classes 75

1 if userName is "Spence Olham"

2 getMarried()

3 goCamping()

That code is not going to work as we expect should we accidentally bind new String("Spence

Olham") to userName instead of the primitive "Spence Olham".

This basic issue that instances have unique identities but primitives withthe same contents have
the same identities–is true of all primitive types, including numbers and booleans: If you create an
instance of anything with new, it gets its own identity.

There are more pitfalls to beware. Consider the truthiness of string, number and boolean primitives:

1 if '' then 'truthy' else 'falsy'

2 #=> 'falsy'

3 if 0 then 'truthy' else 'falsy'

4 #=> 'falsy'

5 if false then 'truthy' else 'falsy'

6 #=> 'falsy'

Compare this to their corresponding instances:

1 if new String('') then 'truthy' else 'falsy'

2 #=> 'truthy'

3 if new Number(0) then 'truthy' else 'falsy'

4 #=> 'truthy'

5 if new Boolean(false) then 'truthy' else 'falsy'

6 #=> 'truthy'

Our notion of “truthiness” and “falsiness” is that all instances are truthy, even string, number, and
boolean instances corresponding to primitives that are falsy.

There is one sure cure for “CoffeeScript Impostor Syndrome.” Just as new PrimitiveType(...)

creates an instance that is an impostor of a primitive, PrimitiveType(...) creates an original,
canonicalized primitive from a primitive or an instance of a primitive object.

For example:

1 String(new String("Spence Olham")) is "Spence Olham"

2 #=> true

Getting clever, we can write this:

Finish the Cup: Instances and Classes 76

1 original = (unknown) ->

2 unknown.constructor(unknown)

3

4 original(true) is true

5 #=> true

6 original(new Boolean(true) is true

7 #=> true

Of course, original will not work for your own creations unless you take great care to emulate the
same behaviour. But it does work for strings, numbers, and booleans.

Finish the Cup: Instances and Classes 77

A Touch of Class

CoffeeScript has “classes,” for some definition of “class.” You’ve met them already, they’re con-
structors that are designed to work with the new keyword and have behaviour in their .prototype
element. You can create one any time you like by:

1. Writing the constructor so that it performs any initialization on this, and:
2. Putting all of the method definitions in its prototype.

This is simple enough, but there are some advantages to making it even simpler, so CoffeeScript
does. Here’s our queue again:

1 class Queue

2 constructor: ->

3 extend(this,

4 array: []

5 head: 0

6 tail: -1

7)

8 pushTail: (value) ->

9 this.array[this.tail += 1] = value

10 pullHead: ->

11 unless this.isEmpty()

12 do (value = this.array[this.head]) =>

13 this.array[this.head] = undefined

14 this.head += 1

15 value

16 isEmpty: ->

17 this.tail < this.head

18

19 q = new Queue()

20 q.pushTail('hello')

21 q.pushTail('CoffeeScript')

Behind the scenes, CoffeeScript acts as if you’d written things out by hand, with several small but
relevant details.

the constructor method

As you’ve probably noticed, CoffeeScript turns what may look like a constructor method into
the body of the Queue function. You recall that every object in CoffeeScript has a constructor

element initialized to the function that created it. So it’s natural that in the class statement, you use
constructor to define the body of the function.

Finish the Cup: Instances and Classes 78

scope

CoffeeScript wraps the entire class statement in a do -> so that you can work with some normal
variables if you need them.

Here’s a gratuitous example:

1 class Queue

2 empty = 'UNUSED'

3 constructor: ->

4 extend(this,

5 array: []

6 head: 0

7 tail: -1

8)

9 pushTail: (value) ->

10 this.array[this.tail += 1] = value

11 pullHead: ->

12 unless this.isEmpty()

13 do (value = this.array[this.head]) =>

14 this.array[this.head] = empty

15 this.head += 1

16 value

17 isEmpty: ->

18 this.tail < this.head

The value 'UNUSED' is bound to the name empty within the class “statement” but not outside it
(unless you are aliasing an empty variable). CoffeeScript allows this kind of thing but will get hissy
if you try to get fancy and write something like:

1 class Queue

2 do (empty = 'UNUSED') ->

3 constructor: ->

4 extend(this,

5 array: []

6 head: 0

7 tail: -1

8)

9 # ...

That won’t work, you can’t wrap a do around the instance methods of the class.

Finish the Cup: Instances and Classes 79

at-at walkers

CoffeeScript, in what may be an homage to Ruby, provides an abbreviation for this., you can
preface any label with an @ as a shortcut. This small detail could easily be ignored, except for the
fact that there’s one place where it’s mandatory. With that teaser in place, let’s discuss a use case.

Let’s modify our Queue to count how many queues have been created:

1 class Queue

2 constructor: ->

3 Queue.queues += 1

4 extend(this,

5 array: []

6 head: 0

7 tail: -1

8)

9 # ...

10

11 Queue.queues = 0

To make this work properly, CoffeeScript has to wrap our code in a do so that the code in the
constructor always refers to the correct function, even if we subsequently change the binding for
Queue in the outer environment. CoffeeScript does this.

Assigning values to elements of the function outside of the class statement is awkward, so
CoffeeScript lets us put Queue.queues = 0 inside, anywhere we’d like. The top is fine. But
interestingly, CoffeeScript also sets the context of the body of the class statement to be the class
itself. So we can write:

1 class Queue

2 this.queues = 0

3 constructor: ->

4 Queue.queues += 1

5 extend(this,

6 array: []

7 head: 0

8 tail: -1

9)

10 # ...

And back to our shortcut. We can also write:

Finish the Cup: Instances and Classes 80

1 class Queue

2 @queues = 0

3 constructor: ->

4 Queue.queues += 1

5 extend(this,

6 array: []

7 head: 0

8 tail: -1

9)

10 pushTail: (value) ->

11 @array[@tail += 1] = value

12 pullHead: ->

13 unless @isEmpty()

14 do (value = @array[@head]) =>

15 @array[@head] = undefined

16 @head += 1

17 value

18 isEmpty: ->

19 @tail < @head

Everything up to now has been a matter of taste. But should you wish, you can write:

1 class Queue

2 @queues: 0

3 # ...

Putting the @ prefix (and not this.) on a label as part of the structure inside the class statement
indicates that the element belongs to the constructor (or “class”) and not the prototype. Obviously,
if you put functions in the constructor, you get constructor methods and not instance methods. For
example:

1 class Queue

2 @queues: 0

3 @resetQueues: ->

4 @queues = 0

5 # ...

We’ve added a constructor method to reset the count.

Finish the Cup: Instances and Classes 81

It seems there is Strong Typing in Coffeeland

Classes

CoffeeScript’s class statement is a nice syntactic convenience over manually wiring
everything up, and it may help avoid errors. Since most CoffeeScript programmers will
use “classes,” it’s wise to use the class statement when the underlying semantics are what
you want. That way your code will communicate its intent clearly and be a little more
resistant to small errors.

Finish the Cup: Instances and Classes 82

Object Methods

An instance method is a function defined in the constructor’s prototype. Every instance acquires this
behaviour unless otherwise “overridden.” Instance methods usually have some interaction with the
instance, such as references to this or to other methods that interact with the instance. A constructor
method is a function belonging to the constructor itself.

There is a third kind of method, one that any object (obviously including all instances) can have. An
object method is a function defined in the object itself. Object methods usually have some interaction
with the object, such as references to this or to other methods that interact with the object.

Object methods are really easy to create with Plain Old CoffeeScript Objects, because they’re the
only kind of method you can use. Recall from This and That:

1 QueueMaker = ->

2 array: []

3 head: 0

4 tail: -1

5 pushTail: (value) ->

6 this.array[this.tail += 1] = value

7 pullHead: ->

8 unless this.isEmpty()

9 do (value = this.array[this.head]) =>

10 this.array[this.head] = undefined

11 this.head += 1

12 value

13 isEmpty: ->

14 this.tail < this.head

pushTail, pullHead, and isEmpty are object methods. Also, from encapsulation:

1 stack = do (obj = undefined) ->

2 obj =

3 array: []

4 index: -1

5 push: (value) ->

6 obj.array[obj.index += 1] = value

7 pop: ->

8 do (value = obj.array[obj.index]) ->

9 obj.array[obj.index] = undefined

10 obj.index -= 1 if obj.index >= 0

11 value

12 isEmpty: ->

Finish the Cup: Instances and Classes 83

Although they don’t refer to the object, push, pop, and isEmpty semantically interact with the opaque
data structure represented by the object, so they are object methods too.

object methods within instances

Instances of constructors can have object methods as well. Typically, object methods are added in
the constructor. Here’s a gratuitous example, a widget model that has a read-only id. We’re using
the class statement, but it could just as easily be rolled by hand:

1 class WidgetModel

2 constructor: (id, attrs = {}) ->

3 this[key] = value for key, value of own attrs

4 @id = ->

5 id

6 this

7 set: (attrs) ->

8 # ...

9 get: (key) ->

10 # ...

11 has: (key) ->

12 # ...

set, get, and has are instancemethods, but id is an objectmethod: Each object has its own id closure,
where id is bound to the id of the widget by the argument id in the constructor. The advantage of
this approach is that instances can have different object methods, or object methods with their own
closures as in this case. The disadvantage is that every object has its own methods, which uses up
much more memory than instance methods, which are shared amongst all instances.

Finish the Cup: Instances and Classes 84

Canonicalization

Early in this book, we discussed how objects, arrays, and functions are reference types. When we
create a new object, even if it has the same contents as some other object, it is a different value, as
we can tell when we test its identity with is:

1 { foo: 'bar' } is { foo: 'bar' }

2 #=> false

Sometimes, this is not what you want. A non-trivial example is the HashLife⁴⁸ algorithm for
computing the future of Conway’s Game of Life. HashLife aggressively caches both patterns on the
board and their futures, so that instead of iteratively simulating the cellular automaton a generation
at a time, it executes in logarithmic time.

In order to take advantage of cached results, HashLife must canonicalize square patterns. Meaning,
it must guarantee that if two square patterns have the same contents, they must be the same object
and share the same identity. This ensures that updates are shared everywhere.

One way to make this work is to eschew having all the code create new objects with a constructor.
Instead, the construction of new objects is delegated to a cache. When a function needs a new object,
it asks the cache for it. If a matching object already exists, it is returned. If not, a new one is created
and placed in the cache.

This is the algorithm used by recursiveuniver.se⁴⁹, an experimental implementation of HashLife in
CoffeeScript. The fully annotated source code for canonicalization is online⁵⁰, and it contains this
method for the Square.cache object:

1 for: (quadrants, creator) ->

2 found = Square.cache.find(quadrants)

3 if found

4 found

5 else

6 {nw, ne, se, sw} = quadrants

7 Square.cache.add _for(quadrants, creator)

Instead of enjoying a stimulating digression explaining how that works, let’s make our own. We’re
going to build a class for cards in a traditional deck. Without canonicalization, it looks like this:

⁴⁸https://en.wikipedia.org/wiki/Hashlife
⁴⁹http://recursiveuniver.se
⁵⁰http://recursiveuniver.se/docs/canonicalization.html

https://en.wikipedia.org/wiki/Hashlife
http://recursiveuniver.se
http://recursiveuniver.se/docs/canonicalization.html
https://en.wikipedia.org/wiki/Hashlife
http://recursiveuniver.se
http://recursiveuniver.se/docs/canonicalization.html

Finish the Cup: Instances and Classes 85

1 class Card

2 ranks = [2..10].concat ['J', 'Q', 'K', 'A']

3 suits = ['C', 'D', 'H', 'S']

4 constructor: ({@rank, @suit}) ->

5 throw "#{@rank} is a bad rank" unless @rank in ranks

6 throw "#{@suit} is a bad suit" unless @suit in suits

7 toString: ->

8 '' + @rank + @suit

The instances are not canonicalized:

1 new Card({rank: 4, suit: 'S'}) is new Card({rank: 4, suit: 'S'})

2 #=> false

If a constructor function explicitly returns a value, that’s what is returned. Otherwise,
the newly constructed object is returned. Unlike other functions and methods, the last
evaluated value is not returned by default.

We can take advantage of that to canonicalize cards:

1 class Card

2 ranks = [2..10].concat ['J', 'Q', 'K', 'A']

3 suits = ['C', 'D', 'H', 'S']

4 cache = {}

5 constructor: ({@rank, @suit}) ->

6 throw "#{@rank} is a bad rank" unless @rank in ranks

7 throw "#{@suit} is a bad suit" unless @suit in suits

8 return cache[@toString()] or= this

9 toString: ->

10 '' + @rank + @suit

Now the instances are canonicalized:

1 new Card({rank: 4, suit: 'S'}) is new Card({rank: 4, suit: 'S'})

2 #=> true

Wonderful!

Finish the Cup: Instances and Classes 86

caveats

Using techniques like this to canonicalize instances of a class has many drawbacks and takes careful
consideration before use. First, while this code illustrates the possibilities inherent in having a
constructor return a different object, it is wasteful in that it creates an object only to throw it away
if it is already in the cache.

If there are a tractable number of possible instances of a class (such as cards in a deck), it may be
more practical to enumerate them all in advance rather than lazily create them, and/or to use a
factory method to retried them rather than changing the behaviour of the constructor.

More serious is that the engine that executes CoffeeScript programs does not support weak
references.⁵¹ As a result, if you wish to perform cache eviction for memory management purposes,
you will have to implement your own reference management scheme. This may be non-trivial.

If you have many, many possible instances, your cache can end up holding onto what some
programmers call zombie objects: Objects that are not in use anywhere in your program except
the cache. If they are never accessed again, the memory they take up will never be released for
reuse. An early version of the HashLife implementation did not clear objects from the cache. Some
computations would consume as much as 700MB of data for the cache before the virtual machine
was unable to continue. Most of that memory was consumed by zombie objects.

All that being said, canonicalization is sometimes the appropriate path forward, and even if it isn’t,
it serves to illustrate the possibilities latent in writing constructors that return objects explicitly.

⁵¹A weak reference is a reference that does not protect the referenced object from collection by a garbage collector; unlike a strong reference. An
object referenced only by weak references is considered unreachable (or weakly reachable) and so may be collected at any time.

https://en.wikipedia.org/wiki/Weak_reference

Finish the Cup: Instances and Classes 87

This Section Needs No Title

CoffeeScript is fundamentally an object-oriented language in the sense that Alan Kay first described
object orientation. His vision was of software constructed from entities that communicate with
message passing, with the system being extremely dynamic (what he described as “extreme late-
binding”). However, words and phrases are only useful when both writer and reader share a common
understanding, and for many people the words “object-oriented” carry with them a great deal of
baggage related to constructing ontologies of domain entities.

The word “Inheritance” also means many different things to many different people. Some people
take it extremely seriously, tugging thoughtfully on their long white beards as they ponder things
like Strict Liskov Equivalence. We will avoid this term as well.

What wewill discuss is extension. In the next section, we’re going to show how functions that create
instances can extend each other through their prototypes. Since we just finished looking at the class
statement, we’ll start by chaining two classes together, and then generalize extension so that you
can use it with any two functions that create instances.

We’ll finish by looking at the excellent support CoffeeScript provides so that you can accomplish all
of this with a single keyword.

Finish the Cup: Instances and Classes 88

Extending Classes

You recall from Composition and Extension that we extended a Plain Old CoffeeScript Queue to
create a Plain Old CoffeeScript Deque. But what if we have decided to use CoffeeScript’s prototypes
and class statements instead of Plain Old CoffeeScript Objects? How do we extend a queue into a
deque?

Here’s our Queue:

1 class Queue

2 constructor: ->

3 @array = []

4 @head = 0

5 @tail = -1

6 pushTail: (value) ->

7 @array[@tail += 1] = value

8 pullHead: ->

9 unless @isEmpty()

10 do (value = @array[@head]) =>

11 @array[@head] = undefined

12 @head += 1

13 value

14 isEmpty: ->

15 @tail < @head

And our Deque before we wire things together:

1 class Deque

2 size: ->

3 @tail - @head + 1

4 pullTail: ->

5 unless @isEmpty()

6 do (value = @array[@tail]) =>

7 @array[@tail] = undefined

8 @tail -= 1

9 value

10 INCREMENT = 4

11 pushHead: (value) ->

12 if @head is 0

13 for i in [@tail..@head]

14 @array[i + INCREMENT] = @array[i]

15 @tail += INCREMENT

Finish the Cup: Instances and Classes 89

16 @head += INCREMENT

17 @array[@head -= 1] = value

So what do we want from dequeues?

1. A Deque function that initializes a deque when invoked with new

2. Deque.prototype must have all the behaviour of a deque and all the behaviour of a queue.

Hmmm. So, should we copy everything from Queue.prototype into Deque.prototype? No, there’s
a better idea. Prototypes are objects, right? Why must they be Plain Old CoffeeScript Objects? Can’t
a prototype be an instance?

Yes they can. Imagine that Deque.prototype was a proxy for an instance of Queue. It would, of
course, have all of a queue’s behaviour through Queue.prototype. We don’t want it to be an actual
instance, mind you. It probably doesn’t matter with a queue, but some of the things we might work
with might make things awkward if we make random instances. A database connection comes to
mind, we may not want to create one just for the convenience of having access to its behaviour.

Here’s such a proxy:

1 QueueProxy = ->

2

3 QueueProxy.prototype = Queue.prototype

Our QueueProxy isn’t actually a Queue, but its prototype is an alias of Queue.prototype. Thus, it
can pick up Queue’s behaviour. We want to use it for our Deque’s prototype. Let’s insert that code in
our class:

1 class Deque

2 QueueProxy = ->

3 QueueProxy.prototype = Queue.prototype

4 Deque.prototype = new QueueProxy()

5 size: ->

6 @tail - @head + 1

7 # ...

Before we rush off to try this, we’re missing something. How are we going to initialize our deques?
We’d better call Queue’s constructor:

Finish the Cup: Instances and Classes 90

1 constructor: ->

2 Queue.prototype.constructor.call(this)

Here’s what we have so far:

1 class Deque

2 QueueProxy = ->

3 QueueProxy.prototype = Queue.prototype

4 @prototype = new QueueProxy()

5 constructor: ->

6 Queue.prototype.constructor.call(this)

7 # ...

And it seems to work:

1 d = new Deque()

2 d.pushTail('Hello')

3 d.pushTail('CoffeeScript')

4 d.pushTail('!')

5 d.pullHead()

6 #=> 'Hello'

7 d.pullTail()

8 #=> '!'

9 d.pullHead()

10 #=> 'CoffeeScript'

Wonderful!

getting the constructor element right

How about some of the other things we’ve come to expect from instances?

1 d.constructor is Deque

2 #=> false

Oops! Messing around with Dequeue’s prototype broke this important equivalence. Luckily for
us, the constructor property is mutable for objects we create. So, let’s make a small change to
QueueProxy:

Finish the Cup: Instances and Classes 91

1 class Deque

2 QueueProxy = ->

3 @constructor = Deque

4 this

5 QueueProxy.prototype = Queue.prototype

6 @prototype = new QueueProxy();

7 # ...

Now it works:

1 d.constructor is Deque

2 #=> true

The QueueProxy function now sets the constructor for every instance of a QueueProxy (hopefully
just the one we need for the Deque class). It returns the object being created (it could also return
undefined and work. But if it carelessly returned something else, that would be assigned to Deque’s
prototype, which would break our code).

extracting the boilerplate

Let’s turn our extension modifications into a function:

1 xtend = (child, parent) ->

2 do (proxy = undefined) ->

3 proxy = ->

4 @constructor = child

5 this

6 proxy.prototype = parent.prototype

7 child.prototype = new proxy()

And use it in Deque:

Finish the Cup: Instances and Classes 92

1 class Deque

2 xtend(Deque, Queue)

3 constructor: ->

4 Queue.prototype.constructor.call(this)

5 size: ->

6 @tail - @head + 1

7 pullTail: ->

8 unless @isEmpty()

9 do (value = @array[@tail]) =>

10 @array[@tail] = undefined

11 @tail -= 1

12 value

13 INCREMENT = 4

14 pushHead: (value) ->

15 if @head is 0

16 for i in [@tail..@head]

17 @array[i + INCREMENT] = @array[i]

18 @tail += INCREMENT

19 @head += INCREMENT

20 @array[@head -= 1] = value

And you can use xtend even if you don’t want to use the class statement:

1 A = ->

2 B = ->

3 xtend(B, A)

It’s such a nice idea. Wouldn’t it be great if CoffeeScript had it built-in? Behold:

1 B extends A

Most helpful! In fact, CoffeeScript’s keyword is superior to the xtend function: It provides support
for extending functions that have other properties, not just the prototype.⁵²

How about the class statement? CoffeeScript does a lot more work for you if you wish. You can
write:

⁵²You should almost always use extends rather than rolling your own code to chain functions and instances. And even if you let CoffeeScript do
the work, you should always understand what CoffeeScript is doing for you.

Finish the Cup: Instances and Classes 93

1 class Deque

2 Deque extends Queue

3 constructor: ->

4 Queue.prototype.constructor.call(this)

5 # ...

But there’s more. If you instead write:

1 class Deque extends Queue

2 # ...

1. CoffeeScript will do evenmore work for you. If you aren’t doing any extra setup, you can leave
the constructor out. CoffeeScript will handle calling the extended function’s constructor for
you.

2. If you do wish to do some extra setup, write your own constructor. Like Ruby, you can call
super in any method to access the extended version of the same method.

3. CoffeeScript’s class and extends keywords handle a lot of the boilerplate and play nicely
together. Use them unless you have specific needs they don’t cover.

Finish the Cup: Instances and Classes 94

Summary

Instances and Classes

• The new keyword turns any function into a constructor for creating instances.
• All functions have a prototype element.
• Instances behave as if the elements of their constructor’s prototype are their
elements.

• Instances can override their constructor’s prototype without altering it.
• The relationship between instances and their constructor’s prototype is dynamic.
• this works seamlessly with methods defined in prototypes.
• Everything behaves like an object.
• CoffeeScript can convert primitives into instances and back into primitives.
• The class keyword and constructor method are syntactic sugar for creating
functions and populating prototypes.

• @ is a convenient shorthand for this..
• Object methods are typically created in the constructor and are private to each
object.

• Canoncialization is tricky but possible in CoffeeScript.
• Prototypes can be chained to allow extension of instances.
• CoffeeScript’s extends keyword is syntactic sugar for extending prototypes.
• extends plays well with class.

Finish the Cup: Instances and Classes 95

interlude…

Drawing a Doppio

Aaron De Lazzer⁵³ on Ristretto:

“The ristretto shot of espresso is one of the most fiercely debated and favourite topics
amongst the coffee cognoscenti. It is the purists pour. The cutting edge of espresso
extraction, flying in the face of the “Big Gulp” coffee drinker like nothing else around.

In anything at all, perfection is finally attained not when there is no longer anything to
add, but when there is no longer anything to take away.–Antoine de Saint-Exupery

“Antoine would have drank ristretto shots.

“There is no where to hide with a straight unadulterated shot of espresso. Even more
(less?) so with a ristretto shot. Any weakness in the blend or in the preparation of the
coffee will be brought to light here. Either the heavens open up and the angels sing after
that first sip or….something significantly less. Which is always such a disappointment
knowing all the potential distilled into the dribble of coffee liquor that barely coats the
bottom of your cup.”

⁵³http://www.coffeegeek.com/opinions/aarondelazzer/02-24-2002

http://www.coffeegeek.com/opinions/aarondelazzer/02-24-2002
http://www.coffeegeek.com/opinions/aarondelazzer/02-24-2002

An Extra Shot of Ideas

The Intestines of an Espresso Machine

An Extra Shot of Ideas 97

Refactoring to Combinators

The word “combinator” has a precise technical meaning in mathematics:

“A combinator is a higher-order function that uses only function application and earlier
defined combinators to define a result from its arguments.”–Wikipedia⁵⁴

In this book, we will be using a much looser definition of “combinator:” Pure functions that act on
other functions to produce functions. Combinators are the adverbs of functional programming.

memoize

Let’s begin with an example of a combinator, memoize. Consider that age-old interview quiz, writing
a recursive fibonacci function (there are other ways to derive a fibonacci number, of course). Here’s
simple implementation:

1 fibonacci = (n) ->

2 if n < 2

3 n

4 else

5 fibonacci(n-2) + fibonacci(n-1)

We’ll time it:

1 s = (new Date()).getTime()

2 new Fibonacci(45).toInt()

3 ((new Date()).getTime() - s) / 1000

4 #=> 28.565

Why is it so slow? Well, it has a nasty habit of recalculating the same results over and over and over
again. We could rearrange the computation to avoid this, but let’s be lazy and trade space for time.
What we want to do is use a lookup table. Whenever we want a result, we look it up. If we don’t
have it, we calculate it and write the result in the table to use in the future. If we do have it, we
return the result without recalculating it.

We could write something specific for fibonacci and then generalize it, but let’s skip right to a general
solution (we’ll discuss extracting a combinator below). First, a new feature. Within any function the
name arguments is always bound to an object that behaves like a collection of all the arguments
passed to a function. Using arguments, here is a memoize implementation that works for many⁵⁵
kinds of functions:

⁵⁴https://en.wikipedia.org/wiki/Combinatory_logic
⁵⁵To be precise, it works for functions that take arguments that can be expressed with JSON. So you can’t memoize a function that is applied to

functions, but it’s fine for strings, numbers, arrays of JSON, POCOs of JSON, and so forth.

https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/Combinatory_logic

An Extra Shot of Ideas 98

1 memoized = (fn) ->

2 do (lookupTable = {}, key = undefined, value = undefined) ->

3 ->

4 key = JSON.stringify(arguments)

5 lookupTable[key] or= fn.apply(this, arguments)

We can apply memoized to a function and we will get back a new function that memoizes its results.

Let’s try it:

1 fastFibonacci =

2 memoized (n) ->

3 if n < 2

4 n

5 else

6 fastFibonacci(n-2) + fastFibonacci(n-1)

7

8 fastFibonacci(45)

9 #=> 1134903170

We get the result back instantly. It works!

Exercise:

Optimistic Ophelia tries the following code:

1 fibonacci = (n) ->

2 if n < 2

3 n

4 else

5 fibonacci(n-2) + fibonacci(n-1)

6

7 quickFibonacci = memoize(fibonacci)

Does quickFibonacci behave differently than fastFibonacci? Why?

By using a combinator instead of tangling lookup code with the actual “domain logic” of fibonacci,
our fastFibonacci code is easy to read and understand. As a bonus, we DRY up our application, as
the same memoize combinator can be used in many different places.

An Extra Shot of Ideas 99

the once and future combinator refactoring

Combinators can often be extracted from your code. The result is cleaner than the kinds of
refactorings possible in languages that have less flexible functions. Let’s walk through the process
of discovering a combinator to get a feel for the refactoring to combinator process.

Some functions should only be evaluated once, but might be invoked more than once. You want to
evaluate them the first time they are called, but thereafter ignore the invocation.

We’d start with a function like this, it assumes there’s some “it” that needs to be initialized once,
and several pieces of code might call this function before using “it:”

1 ensureItIsInitialized = do (itIsInitialized = false) ->

2 ->

3 unless itIsInitialized

4 itIsInitialized = true

5 # ...

6 # initialization code

7 # ...

The typical meta-pattern is when several different functions all share a common precondition such as
loading certain constant data from a server or initializing a resource. We can see that we’re tangling
the concern of initializing once with the concern of how to perform the initialization. Let’s extract
a method⁵⁶:

1 initializeIt = ->

2 # ...

3 # initialization code

4 # ...

5 ensureItIsInitialized = do (itIsInitialized = false) ->

6 ->

7 unless itIsInitialized

8 itIsInitialized = true

9 initializeIt()

Inmany other languages, we’d stop right there. But in CoffeeScript, we can see that ensureItIsInitialized
is much more generic than its name suggests. Let’s convert it to a combinator with a slight variation
on the extracting a parameter⁵⁷. We’ll call the combinator once:

⁵⁶http://refactoring.com/catalog/extractMethod.html
⁵⁷http://www.industriallogic.com/xp/refactoring/extractParamter.html

http://refactoring.com/catalog/extractMethod.html
http://refactoring.com/catalog/extractMethod.html
http://www.industriallogic.com/xp/refactoring/extractParamter.html
http://refactoring.com/catalog/extractMethod.html
http://www.industriallogic.com/xp/refactoring/extractParamter.html

An Extra Shot of Ideas 100

1 once = (fn) ->

2 do (done = false) ->

3 ->

4 unless done

5 done = true

6 fn.apply(this, arguments)

And now our code is very clean:

1 initializeIt = ->

2 # ...

3 # initialization code

4 # ...

5 ensureItIsInitialized = once(initializeIt)

This is so clean you could get rid of initializeIt as a named function:

1 ensureItIsInitialized = once ->

2 # ...

3 # initialization code

4 # ...

The concept of a combinator is more important than having a specific portfolio of combinators
at your fingertips (although that is always nice). The meta-pattern is that when you are working
with a function, identify the core “domain logic” the function should express. Try to extract that
and turn what is left into one or more combinators that take functions as parameters rather than
single-purpose methods.

(The memoize and once combinators are available in the underscore.js⁵⁸ library along with several
other handy functions that operate on functions such as throttle and debounce.)

Composition and Combinators

Although you can write nearly any function and use it as a combinator, one property that is nearly
essential is composability. It should be possible to pass the result of one combinator as the argument
to another.

Let’s consider this combinator as an example:

⁵⁸http://underscorejs.org

http://underscorejs.org
http://underscorejs.org

An Extra Shot of Ideas 101

1 requiresValues = (fn) ->

2 ->

3 throw "Value Required" unless arg? for arg in arguments

4 fn.apply(this, arguments)

And this one:

1 requiresReturnValue = (fn) ->

2 ->

3 do (result = fn.apply(this, arguments)) ->

4 throw "Value Required" unless result?

5 result

You can use both of these combinators and the once combinator on a function to add some runtime
validation that both input arguments and the returned value are defined:

1 checkedFibonacci = once requiresValues requiresReturnValue (n) ->

2 if n < 2

3 n

4 else

5 fibonacci(n-2) + fibonacci(n-1)

Combinators should be designed by default to compose. And speaking of composition, it’s easy to
compose functions in CoffeeScript:

1 checkBoth = (fn) ->

2 requiresValues requiresReturnValue fn

Libraries like Functional⁵⁹ also provide compose and sequence functions, so you can write things
like:

1 checkBoth = Functional.compose(requiresValues, requiresReturnValue)

All of this is made possible by the simple property of composability, the property of combinators
taking a function as an argument and returning a function that operates on the same arguments and
returns something meaningful to code expecting to call the original function.

⁵⁹http://osteele.com/sources/javascript/functional/

http://osteele.com/sources/javascript/functional/
http://osteele.com/sources/javascript/functional/

An Extra Shot of Ideas 102

Method Decorators

Now that we’ve seen how function combinators can make our code cleaner and DRYer, it isn’t a
great leap to ask if we can use combinators with methods. After all, methods are functions. That’s
one of the great strengths of CoffeeScript, since methods are “just” functions, we don’t need to have
one kind of tool for functions and another for methods, or a messy way of turning methods into
functions and functions into methods.

And the answer is, “Yes we can.” With some caveats. Let’s get our terminology synchronized. A
combinator is a function that modifies another function. A method decorator is a combinator that
modifies a method expression used inline. So, all method decorators are combinators, but not all
combinators are method decorators.⁶⁰

decorating object methods

As you recall, an object method is a method belonging directly to a Plain Old CoffeeScript object or
an instance. All combinators work as decorators for object methods. For example:

1 class LazyInitializedMechanism

2 constructor: ->

3 @initialize = once ->

4 # ...

5 # complicated stuff

6 # ...

7 someInstanceMethod: ->

8 @initialize()

9 # ...

10 anotherInstanceMethod: (foo) ->

11 @initialize()

12 # ...

decorating constructor methods

Decorating constructor methods works just as well as decorating instance methods, for example:

⁶⁰The term “method decorator” is borrowed from the Python programming language

An Extra Shot of Ideas 103

1 class LazyClazz

2 @setUpLazyClazz: once ->

3 # ...

4 # complicated stuff

5 # ...

6 constructor: ->

7 this.constructor.setUpLazyClazz()

8 # ...

For this class, there’s some setup to be done, but it’s deferred until the first instance is created.

decorating instance methods

Decorating instance methods can be tricky if they rely on closures to encapsulate state of any kind.
For example, this will not work:

1 class BrokenMechanism

2 initialize: once ->

3 # ...

4 # complicated stuff

5 # ...

6 someInstanceMethod: ->

7 @initialize()

8 # ...

9 anotherInstanceMethod: (foo) ->

10 @initialize()

11 # ...

If you have more than one BrokenMechanism, only one will ever be initialized. There is one
initialize method, and it belongs to BrokenMechanism.prototype, so once it is called for the first
BrokenMechanism instance, all others calling it for the same or different instances will not execute.

The initializemethod could be converted from an instance method to an object method as above.
An alternate approach is to surrender the perfect encapsulation of once, and write a decorator
designed for use on instance methods:

1 once = (name, method) ->

2 ->

3 unless @[name]

4 @[name] = true

5 method.apply(this, arguments)

Now the flag for being done has been changed to an element of the instance, and we use it like this:

An Extra Shot of Ideas 104

1 class WorkingMechanism

2 initialize: once 'doneInitializing', ->

3 # ...

4 # complicated stuff

5 # ...

6 someInstanceMethod: ->

7 @initialize()

8 # ...

9 anotherInstanceMethod: (foo) ->

10 @initialize()

11 # ...

Since the flag is stored in the instance, the one function works with all instances. (You do need to
make sure that each method using the decorator has its own unique name.)

a decorator for fluent interfaces

Fluent interfaces⁶¹ are a style of API often used for configuration. The principle is to return an
instance that has meaningful methods for the next thing you want to do. The simplest (but not only)
type of fluent interface is a cascade of methods configuring the same object, such as:

1 car = new Automobile()

2 .withBucketSeats(2)

3 .withStandardTransmission(5)

4 .withDoors(4)

To implement an interface with this simple API, methods need to return this. It’s one line and easy
to do, but you look at the top of the method to see its name and the bottom of the method to see
what it returns. If there are multiple return paths, you must take care that they all return this.

It’s easy to write a fluent decorator:

1 fluent = (method) ->

2 ->

3 method.apply(this, arguments)

4 this

And it’s easy to use:

⁶¹https://en.wikipedia.org/wiki/Fluent_interface

https://en.wikipedia.org/wiki/Fluent_interface
https://en.wikipedia.org/wiki/Fluent_interface

An Extra Shot of Ideas 105

1 class Automobile

2 withBucketSeats: fluent (num) ->

3 # ...

4 withStandardTransmission: fluent (gears) ->

5 # ...

6 withDoors: fluent (num) ->

7 # ...

combinators for making decorators

Quite a few of the examples involve initializing something before doing some work. This is a very
common pattern: Do something before invoking a method. Can we extract that into a combinator?
Certainly. Here’s a combinator that takes a method and returns a decorator:

1 before =

2 (decoration) ->

3 (base) ->

4 ->

5 decoration.apply(this, arguments)

6 base.apply(this, arguments)

You would use it like this:

1 forcesInitialize = before -> @initialize()

2

3 class WorkingMechanism

4 initialize: once 'doneInitializing', ->

5 # ...

6 # complicated stuff

7 # ...

8 someInstanceMethod: forcesInitialize ->

9 # ...

10 anotherInstanceMethod: forcesInitialize (foo) ->

11 # ...

Of course, you could put anything in there, including the initialization code if you wanted to:

An Extra Shot of Ideas 106

1 class WorkingMechanism

2 forcesInitialize = before ->

3 # ...

4 # complicated stuff

5 # ...

6 someInstanceMethod: forcesInitialize ->

7 # ...

8 anotherInstanceMethod: forcesInitialize (foo) ->

9 # ...

When writing decorators, the same few patterns tend to crop up regularly:

1. You want to do something before the method’s base logic is executed.
2. You want to do something after the method’s base logic is executed.
3. You want to wrap some logic around the method’s base logic.
4. You only want to execute the method’s base logic provided some condition is truthy.

We saw before above. Here are three more combinators that are very useful for writing method
decorators:

1 after =

2 (decoration) ->

3 (base) ->

4 ->

5 decoration.call(this, __value__ = base.apply(this, arguments))

6 __value__

7

8 around =

9 (decoration) ->

10 (base) ->

11 (argv...) ->

12 __value__ = undefined

13 callback = =>

14 __value__ = base.apply(this, argv)

15 decoration.apply(this, [callback].concat(argv))

16 __value__

17

18 provided =

19 (condition) ->

20 (base) ->

21 ->

22 if condition.apply(this, arguments)

23 base.apply(this, arguments)

An Extra Shot of Ideas 107

All four of these, and many more can be found in the method combinators⁶² module. They can be
used with all CoffeeScript and JavaScript projects.

⁶²https://github.com/raganwald/method-combinators

https://github.com/raganwald/method-combinators
https://github.com/raganwald/method-combinators

An Extra Shot of Ideas 108

Callbacks and Promises

Like nearly all languages in widespread use, CoffeeScript expresses programs as expressions that
are composed together with a combination of operators, function application, and control flow
constructs such as sequences of statements.

That’s all baked into the underlying language, so it’s easy to use it without thinking about it. Much
as a fish (perhaps) exists in the ocean without being aware that there is an ocean. In this chapter,
we’re going to examine how to compose functions together when we have non-traditional forms of
control-flow such as asynchronous function invocation.

composition

The very simplest example of composing functions is simply “pipelining” the values. CoffeeScript’s
optional parentheses make this quite readable. Given:

1 getIdFromSession = (session) ->

2 # ...

3

4 fetchCustomerById = (id) ->

5 # ...

6

7 currentSession = # ...

You can write either:

1 customerList.add(

2 fetchCustomerById(

3 getIdFromSession(

4 currentSession

5)

6)

7)

Or:

1 customerList.add fetchCustomerById getIdFromSession currentSession

The “flow” of data is from right-to-left. Some people find it more readable to go from left-to-right.
The sequence function accomplishes this:

An Extra Shot of Ideas 109

1 sequence = ->

2 do (fns = arguments) ->

3 (value) ->

4 (value = fn(value)) for fn in fns

5 value

6

7 sequence(

8 getIdFromSession,

9 fetchCustomerById,

10 customerList.add

11)(currentSession)

asynchronous code

CoffeeScript executes within an environment where code can be invoked asynchronously. For
example, a browser application can asynchronously invoke a request to a remote server and invoke
handler code when the request is satisfied or deemed to have failed.

A very simple example is that in a browser application, you can defer invocation of a function after
all current processing has been completed:

1 defer (fn) ->

2 window.setTimeout(fn, 0)

The result is that if you write:

1 defer -> console.log('Hello')

2 console.log('Asynchronicity')

The console will show:

1 Asynchronicity

2 Hello

The computer has no idea whether the result should be “Asynchronicity Hello” or “Hello Asyn-
chronicity” or sometimes one and sometimes the other. But if we intend that the result be
“Asynchronicity Hello,” we say that the function -> console.log('Hello') depends upon the code
console.log('Asynchronicity').

This might be what you want. If it isn’t, you need to have a way to force the order of evaluation
when there is supposed to be a dependency between different evaluations. There are a number of
different models and abstractions for controlling these dependencies.

We will examine two of them (callbacks and promises) briefly. Not for the purpose of learning the
subtleties of using either model, but rather to obtain an understanding of how functions can be used
to implement an abstraction over an underlying model.

An Extra Shot of Ideas 110

callbacks

The underlying premise of the callback model is that every function that invoked code asyn-
chronously is responsible for invoking code that depends on it. The simplest protocol for this is
also the most popular: Functions that invoke asynchronous code take an extra parameter called a
callback. That parameter is a function to be invoked when they have completed.

So our defer function looks like this if we want to use callbacks:

1 defer (fn, callback) ->

2 window.setTimeout (-> callback fn), 0

Instead of handing fn directly to window.setTimeout, we’re handing it a function that invokes fn
and pipelines the result (if any) to callback. Now we can ensure that the output is in the correct
order:

1 defer (-> console.log 'hello'), (-> console.log 'Asynchronicity')

2

3 #=> Hello

4 # Asynchronicity

Likewise, let’s say we have a displayPhoto function that is synchronous, and not callback-aware:

1 displayPhoto = (photoData) ->

2 # ... synchronous function ...

It can also be converted to take a callback:

1 displayPhotoWithCallback = (photoData, callback) ->

2 callback(displayPhoto(photoData))

There’s a combinator we can extract:

1 callbackize = (fn) ->

2 (arg, callback) ->

3 callback(fn(arg))

You recall that with ordinary functions, you could chain them with function application. With
callbacks, you can also chain them manually. Here’s an example inspired by a blog post⁶³, fetching
photos from a remote photo sharing site using their asynchronous API:

⁶³http://elm-lang.org/learn/Escape-from-Callback-Hell.elm

http://elm-lang.org/learn/Escape-from-Callback-Hell.elm
http://elm-lang.org/learn/Escape-from-Callback-Hell.elm

An Extra Shot of Ideas 111

1 tag = 'ristretto'

2

3 fotositeGetPhotosByTag tag, (photoList) ->

4 fotositeGetOneFromList photos, (photoId) ->

5 fotositeGetPhoto photoId, displayPhoto

We can also create a callback-aware function that represents the composition of functions:

1 displayPhotoForTag = (tag, callback) ->

2 fotositeGetPhotosByTag tag, (photoList) ->

3 fotositeGetOneFromList photos, (photoId) ->

4 fotositeGetPhoto photoId, displayPhoto

This code is considerably less messy in CoffeeScript than other languages that require a lot of
additional syntax for functions. As a bonus, although it has some extra scaffolding and indentation,
it’s already in sequence order from top to bottom and doesn’t require re-ordering like normal
function application did. That being said, you can avoid the indentation and extra syntax by writing
a sequenceWithCallbacks function:

1 I = (x) -> x

2

3 sequenceWithCallbacks = ->

4 do (fns = arguments,

5 lastIndex = arguments.length - 1,

6 helper = undefined) ->

7 helper = (arg, index, callback = I) ->

8 if index > lastIndex

9 callback arg

10 else

11 fns[index] arg, (result) ->

12 helper result, index + 1, callback

13 (arg, callback) ->

14 helper arg, 0, callback

15

16 displayPhotoForTag = sequenceWithCallbacks(

17 fotositeGetPhotosByTag,

18 fotositeGetOneFromList,

19 fotositeGetPhoto,

20 displayPhotoWithCallback

21)

An Extra Shot of Ideas 112

sequenceWithCallbacks is more complex than sequence, but it does help us make callback-aware
code “linear” instead of nested/indented.

As we have seen, we can compose linear execution of asynchronous functions, using either the
explicit invocation of callbacks or using sequenceWithCallbacks to express the execution as a list.

solving this problem with promises

Asynchronous control flow can also be expressed using objects and methods. One model is called
promises⁶⁴. A promise is an object that acts as a state machine.⁶⁵ Its permissible states are:

• unfulfilled
• fulfilled
• failed

The only permissible transitions are from unfulfilled to fulfilled and from unfulfilled to failed. Once
in either the fulfilled or failed states, it remains there permanently.

Each promise must at a bare minimum implement a single method, .then(fulfilledCallback,
failedCallback).⁶⁶ fulfilledCallback is a function to be invoked by a fulfilled promise, failedCallback
by a failed promise. If the promise is already in either state, that function is invoked immediately.

.then returns another promise that is fulfilled when the appropriate callback is fulfilled or fails when
the appropriate callback fails. This allows chaining of .then calls.

If the promise is unfulfilled, the function(s) provided by the .then call are queued up to be invoked if
and when the promise transitions to the appropriate state. In addition to this being an object-based
protocol, the promise model also differs from the callback model in that .then can be invoked on a
promise at any time, whereas callbacks must be specified in advance.

Here’s how our fotosite API would be used if it implemented promises instead of callbacks (we’ll
ignore handling failures):

1 fotositeGetPhotosByTag(tag)

2 .then fotositeGetOneFromList

3 .then fotositeGetPhoto

4 .then displayPhoto

Crisp and clean, no caffeine. The promises model provides linear code “out of the box,” and it “scales
up” to serve as a complete platform for managing asynchronous code and remote invocation. Be
sure to look at libraries supporting promises like q⁶⁷, and when⁶⁸.

⁶⁴http://wiki.commonjs.org/wiki/Promises/A
⁶⁵A state machine is a mathematical model of computation used to design both computer programs and sequential logic circuits. It is conceived

as an abstract machine that can be in one of a finite number of states. The machine is in only one state at a time; the state it is in at any given time
is called the current state. It can change from one state to another when initiated by a triggering event or condition, this is called a transition. A
particular FSM is defined by a list of its states, and the triggering condition for each transition.

⁶⁶Interactive promises also support .get and .call methods for interacting with a potentially remote object.
⁶⁷https://github.com/kriskowal/q
⁶⁸https://github.com/cujojs/when

http://wiki.commonjs.org/wiki/Promises/A
https://github.com/kriskowal/q
https://github.com/cujojs/when
http://wiki.commonjs.org/wiki/Promises/A
https://en.wikipedia.org/wiki/Finite-state_machine
https://github.com/kriskowal/q
https://github.com/cujojs/when

An Extra Shot of Ideas 113

Summary

An Extra Shot of Ideas

• Combinators are pure functions that act on other functions to produce functions.
• Combinators are the adverbs of functional programming.
• Combinators can often be extracted from your code.
• Combinators make code more composeable.
• Many combinators are also Method Decorators.
• Some combinators decorate decorators.
• Callbacks abstract control flow.
• Callbacks hide asynchronicity.
• Promises represent control flow with an object API.

An Extra Shot of Ideas 114

the last word…

Espresso a lungo, or the long pull, is thinner in texture, more acidic, and contains more caffeine than a ristretto
pull

A Golden Crema

You’ve earned a break!

A Golden Crema 116

How to run the examples

If you follow the instructions at coffeescript.org⁶⁹ to install NodeJS and CoffeeScript,⁷⁰ you can run
an interactive CoffeeScript REPL⁷¹ on your command line simply by typing coffee. This is how the
examples in this bookwere tested, andwhat many programmers will do.When running CoffeeScript
on the command line, ctrl-V switches between single-line and multi-line input mode. If you need to
enter more than one line of code, be sure to enter multi-line mode.

Somewebsites function as online REPLs⁷², allowing you to type CoffeeScript programs right within a
web page and see the results (as well as a translation from CoffeeScript to JavaScript). The examples
in this book have all been tested on coffeescript.org⁷³. You simply type a CoffeeScript expression
into the blank window and you will see its JavaScript translation live. Clicking “Run” evaluates the
expression in the browser.

To actually see the result of your expressions, you’ll need to either include a call to console.log

(and be using a browser that supports console logging) or you could go old-school and use alert,
e.g. alert 2+2 will cause the alert box to be displayed with the message 4.

⁶⁹http://coffeescript.org/#installation
⁷⁰Instructions for installing NodeJS and modules like CoffeeScript onto a desktop computer is beyond the scope of this book, especially given the

speed with which things advance. Fortunately, there are always up-to-date instructions on the web.
⁷¹https://en.wikipedia.org/wiki/REPL
⁷²https://en.wikipedia.org/wiki/REPL
⁷³http://coffeescript.org/#try:

http://coffeescript.org/#installation
https://en.wikipedia.org/wiki/REPL
https://en.wikipedia.org/wiki/REPL
http://coffeescript.org/#try:
http://coffeescript.org/#installation
https://en.wikipedia.org/wiki/REPL
https://en.wikipedia.org/wiki/REPL
http://coffeescript.org/#try:

A Golden Crema 117

Thanks!

Daniel Friedman and Matthias Felleisen

The Little Schemer

CoffeeScript Ristretto was inspired by The Little Schemer⁷⁴ by Daniel Friedman and Matthias
Felleisen. But where The Little Schemer’s primary focus is recursion,CoffeeScript Ristretto’s primary
focus is functions as first-class values.

⁷⁴http://www.amzn.com/0262560992?tag=raganwald001-20

http://www.amzn.com/0262560992?tag=raganwald001-20
http://www.amzn.com/0262560992?tag=raganwald001-20

A Golden Crema 118

Richard Feynman

QED: The Strange Theory of Light and Matter

Richard Feynman’s QED⁷⁵ was another inspiration: A book that explains Quantum Electrodynamics
and the “Sum of the Histories” methodology using the simple expedient of explaining how light
reflects off a mirror, and showing how most of the things we think are happening–such as light
travelling on a straight line, the angle of reflection equalling the angle of refraction, or that a beam
of light only interacts with a small portion of the mirror, or that it reflects off a plane–are all wrong.
And everything is explained in simple, concise terms that build upon each other logically.

⁷⁵http://www.amzn.com/0691125759?tag=raganwald001-20

http://www.amzn.com/0691125759?tag=raganwald001-20
http://www.amzn.com/0691125759?tag=raganwald001-20

A Golden Crema 119

Trevor Burnham

CoffeeScript: Accelerated JavaScript Development

Trevor Burnham provided invaluable assistance with this book. Trevor is the author of CoffeeScript:
Accelerated JavaScript Development⁷⁶, an excellent resource for CoffeeScript programmers.

⁷⁶http://pragprog.com/book/tbcoffee/coffeescript

http://pragprog.com/book/tbcoffee/coffeescript
http://pragprog.com/book/tbcoffee/coffeescript
http://pragprog.com/book/tbcoffee/coffeescript

A Golden Crema 120

JavaScript Allongé

a long and strong programming book

JavaScript Allongé⁷⁷ is the companion book to CoffeeScript Ristretto.

⁷⁷http://leanpub.com/javascript-allonge

http://leanpub.com/javascript-allonge
http://leanpub.com/javascript-allonge

A Golden Crema 121

Copyright Notice

The original words in this sample preview of CoffeeScript Ristretto⁷⁸ are (c) 2012, Reginald
Braithwaite. This sample preview work is licensed under an Attribution-NonCommercial-NoDerivs
3.0 Unported⁷⁹ license.

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License

images

• The picture of the author is (c) 2008, Joseph Hurtado⁸⁰, All Rights Reserved.
• Double ristretto menu⁸¹ (c) 2010, Michael Allen Smith. Some rights reserved⁸².
• Short espresso shot in a white cup with blunt handle⁸³ (c) 2007, EVERYDAYLIFEMODERN.
Some rights reserved⁸⁴.

• Espresso shot in a caffe molinari cup⁸⁵ (c) 2007, EVERYDAYLIFEMODERN. Some rights
reserved⁸⁶.

• Beans in a Bag⁸⁷ (c) 2008, Stirling Noyes. Some Rights Reserved⁸⁸.
• Free Samples⁸⁹ (c) 2011, Myrtle Bech Digitel. Some Rights Reserved⁹⁰.
• Free Coffees⁹¹ image (c) 2010, Michael Francis McCarthy. Some Rights Reserved⁹².
• La Marzocco⁹³ (c) 2009, Michael Allen Smith. Some rights reserved⁹⁴.
• Cafe Diplomatico⁹⁵ (c) 2011, Missi. Some rights reserved⁹⁶.
• Sugar Service⁹⁷ (c) 2008 Tiago Fernandes. Some rights reserved⁹⁸.

⁷⁸https://leanpub.com/coffeescript-ristretto
⁷⁹http://creativecommons.org/licenses/by-nc-nd/3.0/
⁸⁰http://www.flickr.com/photos/trumpetca/
⁸¹http://www.flickr.com/photos/digitalcolony/5054568279/
⁸²http://creativecommons.org/licenses/by-sa/2.0/deed.en
⁸³http://www.flickr.com/photos/everydaylifemodern/1353570874/
⁸⁴http://creativecommons.org/licenses/by-nd/2.0/deed.en
⁸⁵http://www.flickr.com/photos/everydaylifemodern/434299813/
⁸⁶http://creativecommons.org/licenses/by-nd/2.0/deed.en
⁸⁷http://www.flickr.com/photos/the_rev/2295096211/
⁸⁸http://creativecommons.org/licenses/by/2.0/deed.en
⁸⁹http://www.flickr.com/photos/thedigitelmyr/6199419022/
⁹⁰http://creativecommons.org/licenses/by-sa/2.0/deed.en
⁹¹http://www.flickr.com/photos/sagamiono/4391542823/
⁹²http://creativecommons.org/licenses/by-sa/2.0/deed.en
⁹³http://www.flickr.com/photos/digitalcolony/3924227011/
⁹⁴http://creativecommons.org/licenses/by-sa/2.0/deed.en
⁹⁵http://www.flickr.com/photos/15481483@N06/6231443466/
⁹⁶http://creativecommons.org/licenses/by-sa/2.0/deed.en
⁹⁷http://www.flickr.com/photos/tjgfernandes/2785677276/
⁹⁸http://creativecommons.org/licenses/by/2.0/deed.en

https://leanpub.com/coffeescript-ristretto
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.flickr.com/photos/trumpetca/
http://www.flickr.com/photos/digitalcolony/5054568279/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/everydaylifemodern/1353570874/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/everydaylifemodern/434299813/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/the_rev/2295096211/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/thedigitelmyr/6199419022/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/sagamiono/4391542823/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/3924227011/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/15481483@N06/6231443466/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/tjgfernandes/2785677276/
http://creativecommons.org/licenses/by/2.0/deed.en
https://leanpub.com/coffeescript-ristretto
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.flickr.com/photos/trumpetca/
http://www.flickr.com/photos/digitalcolony/5054568279/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/everydaylifemodern/1353570874/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/everydaylifemodern/434299813/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/the_rev/2295096211/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/thedigitelmyr/6199419022/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/sagamiono/4391542823/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/3924227011/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/15481483@N06/6231443466/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/tjgfernandes/2785677276/
http://creativecommons.org/licenses/by/2.0/deed.en

A Golden Crema 122

• Biscotti on a Rack⁹⁹ (c) 2010 Kirsten Loza. Some rights reserved¹⁰⁰.
• Coffee Spoons¹⁰¹ (c) 2010 Jenny Downing. Some rights reserved¹⁰².
• Drawing a Doppio¹⁰³ (c) 2008 Osman Bas. Some rights reserved¹⁰⁴.
• Cupping Coffees¹⁰⁵ (c) 2011 Dennis Tang. Some rights reserved¹⁰⁶.
• Three Coffee Roasters¹⁰⁷ (c) 2009 Michael Allen Smith. Some rights reserved¹⁰⁸.
• Blue Diedrich Roaster¹⁰⁹ (c) 2010 Michael Allen Smith. Some rights reserved¹¹⁰.
• Red Diedrich Roaster¹¹¹ (c) 2009 Richard Masoner. Some rights reserved¹¹².
• Roaster with Tree Leaves¹¹³ (c) 2007 ting. Some rights reserved¹¹⁴.
• Half Drunk¹¹⁵ (c) 2010 Nicholas Lundgaard. Some rights reserved¹¹⁶.
• Anticipation¹¹⁷ (c) 2012 Paul McCoubrie. Some rights reserved¹¹⁸.
• Ooh!¹¹⁹ (c) 2012 Michael Coghlan. Some rights reserved¹²⁰.
• Intestines of an Espresso Machine¹²¹ (c) 2011 Angie Chung. Some rights reserved¹²².
• Bezzera Espresso Machine¹²³ (c) 2011 Andrew Nash. Some rights reserved¹²⁴. *Beans Ripening
on a Branch¹²⁵ (c) 2008 John Pavelka. Some rights reserved¹²⁶.

• Cafe Macchiato on Gazotta Della Sport¹²⁷ (c) 2008 Jon Shave. Some rights reserved¹²⁸.
• Jars of Coffee Beans¹²⁹ (c) 2012 Memphis CVB. Some rights reserved¹³⁰.

⁹⁹http://www.flickr.com/photos/kirstenloza/4805716699/
¹⁰⁰http://creativecommons.org/licenses/by/2.0/deed.en
¹⁰¹http://www.flickr.com/photos/jenny-pics/5053954146/
¹⁰²http://creativecommons.org/licenses/by/2.0/deed.en
¹⁰³http://www.flickr.com/photos/33388953@N04/4017985434/
¹⁰⁴http://creativecommons.org/licenses/by/2.0/deed.en
¹⁰⁵http://www.flickr.com/photos/tangysd/5953453156/
¹⁰⁶http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹⁰⁷http://www.flickr.com/photos/digitalcolony/4000837035/
¹⁰⁸http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹⁰⁹http://www.flickr.com/photos/digitalcolony/4309812256/
¹¹⁰http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹¹¹http://www.flickr.com/photos/bike/3237859728/
¹¹²http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹¹³http://www.flickr.com/photos/lacerabbit/2102801319/
¹¹⁴http://creativecommons.org/licenses/by-nd/2.0/deed.en
¹¹⁵http://www.flickr.com/photos/nalundgaard/4785922266/
¹¹⁶http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹¹⁷http://www.flickr.com/photos/paulmccoubrie/6828131856/
¹¹⁸http://creativecommons.org/licenses/by-nd/2.0/deed.en
¹¹⁹http://www.flickr.com/photos/mikecogh/7676649034/
¹²⁰http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹²¹http://www.flickr.com/photos/yellowskyphotography/5641003165/
¹²²http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹²³http://www.flickr.com/photos/andynash/6204253236/
¹²⁴http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹²⁵http://www.flickr.com/photos/28705377@N04/5306009552/
¹²⁶http://creativecommons.org/licenses/by/2.0/deed.en
¹²⁷http://www.flickr.com/photos/shavejonathan/2343081208/
¹²⁸http://creativecommons.org/licenses/by/2.0/deed.en
¹²⁹http://www.flickr.com/photos/ilovememphis/7103931235/
¹³⁰http://creativecommons.org/licenses/by-nd/2.0/deed.en

http://www.flickr.com/photos/kirstenloza/4805716699/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/jenny-pics/5053954146/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/33388953@N04/4017985434/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/tangysd/5953453156/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/4000837035/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/4309812256/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/bike/3237859728/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/lacerabbit/2102801319/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/nalundgaard/4785922266/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/paulmccoubrie/6828131856/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/mikecogh/7676649034/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/yellowskyphotography/5641003165/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/andynash/6204253236/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/28705377@N04/5306009552/
http://www.flickr.com/photos/28705377@N04/5306009552/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/shavejonathan/2343081208/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/ilovememphis/7103931235/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/kirstenloza/4805716699/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/jenny-pics/5053954146/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/33388953@N04/4017985434/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/tangysd/5953453156/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/4000837035/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/4309812256/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/bike/3237859728/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/lacerabbit/2102801319/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/nalundgaard/4785922266/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/paulmccoubrie/6828131856/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/mikecogh/7676649034/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/yellowskyphotography/5641003165/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/andynash/6204253236/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/28705377@N04/5306009552/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/shavejonathan/2343081208/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/ilovememphis/7103931235/
http://creativecommons.org/licenses/by-nd/2.0/deed.en

A Golden Crema 123

• Types of Coffee Drinks¹³¹ (c) 2012 Michael Coghlan. Some rights reserved¹³².
• Coffee Trees¹³³ (c) 2011 Dave Townsend. Some rights reserved¹³⁴.
• Cafe do Brasil¹³⁵ (c) 2003 Temporalata. Some rights reserved¹³⁶.
• Brown Cups¹³⁷ (c) 2007 Michael Allen Smith. Some rights reserved¹³⁸.
• Mirage¹³⁹ (c) 2010 Mira Helder. Some rights reserved¹⁴⁰.
• Coffee Van with Bullet Holes¹⁴¹ (c) 2006 Jon Crel. Some rights reserved¹⁴².

¹³¹http://www.flickr.com/photos/mikecogh/7561440544/
¹³²http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹³³http://www.flickr.com/photos/dtownsend/6171015997/
¹³⁴http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹³⁵http://www.flickr.com/photos/93425126@N00/313053257/
¹³⁶http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹³⁷http://www.flickr.com/photos/digitalcolony/2833809436/
¹³⁸http://creativecommons.org/licenses/by-sa/2.0/deed.en
¹³⁹http://www.flickr.com/photos/citizenhelder/5006498068/
¹⁴⁰http://creativecommons.org/licenses/by/2.0/deed.en
¹⁴¹http://www.flickr.com/photos/joncrel/237026246/
¹⁴²http://creativecommons.org/licenses/by-nd/2.0/deed.en

http://www.flickr.com/photos/mikecogh/7561440544/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/dtownsend/6171015997/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/93425126@N00/313053257/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/2833809436/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/citizenhelder/5006498068/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/joncrel/237026246/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/mikecogh/7561440544/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/dtownsend/6171015997/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/93425126@N00/313053257/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/2833809436/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/citizenhelder/5006498068/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/joncrel/237026246/
http://creativecommons.org/licenses/by-nd/2.0/deed.en

A Golden Crema 124

About The Author

When he’s not shipping CoffeeScript, Ruby, JavaScript and Java applications scaling out to millions
of users, Reg “Raganwald” Braithwaite has authored libraries¹⁴³ for CoffeeScript, JavaScript and
Ruby programming such as Method Combinators, Katy, JQuery Combinators, YouAreDaChef,
andand, and others.

He writes about programming on his “Homoiconic¹⁴⁴” un-blog as well as general-purpose rumina-
tions on his posterous space¹⁴⁵. He is also known for authoring the popular raganwald programming
blog¹⁴⁶ from 2005-2008.

contact

Twitter: @raganwald¹⁴⁷
Email: reg@braythwayt.com¹⁴⁸

¹⁴³http://github.com/raganwald
¹⁴⁴http://github.com/raganwald/homoiconic
¹⁴⁵http://raganwald.posterous.com
¹⁴⁶http://weblog.raganwald.com
¹⁴⁷https://twitter.com/raganwald
¹⁴⁸mailto:reg@braythwayt.com

http://github.com/raganwald
http://github.com/raganwald/homoiconic
http://raganwald.posterous.com
http://weblog.raganwald.com
http://weblog.raganwald.com
https://twitter.com/raganwald
mailto:reg@braythwayt.com
http://github.com/raganwald
http://github.com/raganwald/homoiconic
http://raganwald.posterous.com
http://weblog.raganwald.com
https://twitter.com/raganwald
mailto:reg@braythwayt.com

A Golden Crema 125

Reg “Raganwald” Braithwaite

	Table of Contents
	A Pull of the Lever: Prefaces
	About This Book
	Foreword by Jeremy Ashkenas
	Legend

	Prelude: Values and Expressions
	values and expressions
	values and identity

	CoffeeScript Ristretto
	The first sip: Functions
	As Little As Possible About Functions, But No Less
	Ah. I'd Like to Have an Argument, Please.
	Closures and Scope
	Summary

	Slurp: More About Functions and Scope
	Let Me Show You What To Do
	A Simple Question
	Making Things Easy
	Summary

	References, Identity, Arrays, and Objects
	arguments and arrays
	references and objects

	Stir the Espresso: Objects, Mutation, and State
	Reassignment and Mutation
	Normal Variables
	Comprehensions
	Encapsulating State with Closures
	Composition and Extension
	This and That
	Summary

	Finish the Cup: Instances and Classes
	Prototypes are Simple, it's the Explanations that are Hard To Understand
	A Touch of Class
	Object Methods
	Canonicalization
	This Section Needs No Title
	Extending Classes
	Summary

	An Extra Shot of Ideas
	Refactoring to Combinators
	Method Decorators
	Callbacks and Promises
	Summary

	A Golden Crema
	How to run the examples
	Thanks!
	JavaScript Allongé
	Copyright Notice
	About The Author

